EP0949320A2 - Lubrifcating compositions - Google Patents

Lubrifcating compositions Download PDF

Info

Publication number
EP0949320A2
EP0949320A2 EP99302498A EP99302498A EP0949320A2 EP 0949320 A2 EP0949320 A2 EP 0949320A2 EP 99302498 A EP99302498 A EP 99302498A EP 99302498 A EP99302498 A EP 99302498A EP 0949320 A2 EP0949320 A2 EP 0949320A2
Authority
EP
European Patent Office
Prior art keywords
friction modifier
use according
carbon atoms
friction
micropitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99302498A
Other languages
German (de)
French (fr)
Other versions
EP0949320A3 (en
Inventor
Helen T. Ryan
Rodney I. Barber
Craig R. Paterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afton Chemical Ltd
Original Assignee
Afton Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afton Chemical Ltd filed Critical Afton Chemical Ltd
Publication of EP0949320A2 publication Critical patent/EP0949320A2/en
Publication of EP0949320A3 publication Critical patent/EP0949320A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/12Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings

Definitions

  • the present invention relates to the use of friction modifiers to reduce micropitting of metal surfaces such as gear teeth, and to lubricant compositions comprising friction modifiers.
  • Micropitting is a type of surface damage which occurs predominantly in rolling-sliding contacts of hard steel surfaces. Sometimes called “frosting”, “greystaining” or “peeling” it typically occurs in rolling element bearings and most often on gear teeth, where it poses a significant practical problem. Micropitting may lead to higher noise, to significant rapid wear and to more serious surface damage, such as scuffing and even to tooth fracture in gears.
  • Conventional lubricants are used to reduce friction when metal surfaces move in contact with each other but they do not prevent the occurrence of micropitting.
  • Original equipment manufacturers require lubricants which can lead to a reduction in the amount of micropitting when compared with the conventional lubricants. It is an object of the present invention to meet this need.
  • a micropitting test has been established by the FZG Institute in Germany and is called the FZG micropitting test. This test is run on gears sets with the same metallurgy and surface profile/roughness as gears used in the field. The conditions of the test (high load/low speed) are the optimum conditions for micropitting to occur. Equipment manufacturers believe that the FZG micropitting test correlates well with field experience.
  • the FZG micropitting test is carried out using a standardized FZG test rig according to CEC L-07-A-71, with C type case hardened gears of minimum 0.4 Ra surface roughness.
  • the test has a stepwise phase to investigate build up of micropitting and an endurance phase to investigate resistance to micropitting.
  • the stepwise phase runs from load stage 5 to load stage 10, each stage lasting 16 hours.
  • the profile of the gears is measured prior to testing and during the test.
  • the variation from the original gear profile (the profile deviation) is calculated.
  • the percentage micropitting the percentage of gear tooth which is micropitted
  • the weight loss from the gears is run for 80 hours at load stage 8 and then at load stage 10 until failure.
  • the deviation from the original profile maximum 20 microns
  • the level of micropitting and the weight loss are measured.
  • a result which would be particularly acceptable to the industry would be a pass at load stage 10 in the stepwise phase of the test. This corresponds to a profile deviation of less than 7.5 ⁇ m, micropitting of less than 15% (approx) and weight loss of less than 15 mg (approx) after load stage 10. Extended performance in the endurance phase is also desirable.
  • the present invention is based on the surprising appreciation that certain friction modifiers may be included in lubricant compositions with the result that an improvement in micropitting performance is observed when the lubricant compositions are used, i.e. there is reduced micropitting. Accordingly, the present invention concerns the use of at least one friction modifier to reduce micropitting of a metal surface, which comprises lubricating the metal surface with a lubricant composition comprising the at least one friction modifier, wherein the at least one friction modifier is selected such that micropitting is reduced when the metal surface is so lubricated.
  • the metal surface may be the surface of a gear tooth, in which case the at least one friction modifier may be added to a formulated gear lubricant composition.
  • friction modifier is used to describe additive compounds which are conventionally used in lubricant compositions to reduce friction.
  • the friction modifiers which are useful in practising the present invention are all known in the art.
  • any given friction modifier in reducing micropitting may be assessed by comparing the amount of micropitting observed when a metal surface is lubricated with a lubricant composition comprising the friction modifier with the amount of micropitting observed when an identical metal surface is lubricated (under the same conditions) using the corresponding lubricant composition from which the friction modifier of interest has been omitted.
  • the FZG micropitting test may be used to assess the relative performance of lubricant compositions.
  • the at least one friction modifier may be selected such that, when measured at 130°C using a high frequency reciprocating rig (HFRR) under the conditions described in SAE Technical Paper 961142, a lubricant which comprises the friction modifier and which has a viscosity grade of ISO 220 has a coefficient of friction of 0.100 or less.
  • HFRR high frequency reciprocating rig
  • Lubricant compositions which have a viscosity grade of ISO 220 and which are useful in screening friction modifiers may be prepared by blending a conventional sulphur-and phosphorus-containing gear additive package with a base oil having a viscosity of between 1.98 x 10 -4 to 2.42 x 10 -4 m 2 /s (198 to 242 cSt) at 40°C.
  • Suitable additive packages include those comprising from 15-75 wt%, preferably from 45-65 wt%, of a sulfurized isobutylene, from 0-25 wt%, preferably from 3-15 wt%, of a phosphorus-containing antiwear agent, from 0-60 wt%, preferably from 5-25 wt% of a carboxylic-type or Mannich-type ashless dispersant, from 0-20 wt%, preferably from 1-10 wt% of corrosion and rust inhibitors, from 0-20 wt%, preferably from 1-10 wt%, of surface active agents and diluent oil.
  • Such additive packages are commercially available.
  • the additive package is used at conventional treat rates.
  • a suitable base oil to use in formulating the compositions includes a blend of 51 wt% ESSO 600SN and 49 wt% of 2500 Brightstock. Useful additive package are described in EP-A-0744456 and EP-A-0812901.
  • a number of different classes of friction modifiers have been found to be useful in the present invention. Mention may be made of phosphonate esters, phosphite esters, aliphatic succinimides, molybdenum compounds and acid amides.
  • Useful phosphonate esters include O,O-di-(primary alkyl) acyclic hydrocarbyl phosphonates in which the primary alkyl groups are the same or different each independently containing 1 to 4 carbon atoms and in which the acyclic hydrocarbyl group bonded to the phosphorus atom contains 12 to 24 carbon atoms and is a linear hydrocarbyl group free of acetylenic unsaturation.
  • These compounds thus comprise O,O-dimethyl hydrocarbyl phosphonates, O,O-diethyl hydrocarbyl phosphonates, O,O-dipropyl hydrocarbyl phosphonates, O,O-dibutyl hydrocarbyl phosphonates, O,O-diiso-butyl hydrocarbyl phosphonates, and analogous compounds in which the two alkyl groups differ, such as, for example, O-ethyl-O-methyl hydrocarbyl phosphonates, O-butyl-O-propyl hydrocarbyl phosphonates, and O-butyl-O-isobutyl hydrocarbyl phosphonates, wherein in each case the hydrocarbyl group is linear and is saturated or contains one or more olefinic double bonds, each double bond preferably being an internal double bond.
  • a preferred friction modifier in this class is dimethyloctadecyl phosphonate. Phosphonate esters useful in the present invention are described in USP 4,158,633.
  • Useful phosphite esters are described in WO88/04313. These include dihydrocarbyl hydrogen phosphites in which the hydrocarbyl groups are the same or different linear aliphatic hydrocarbyl groups free of acetylenic unsaturation each independently containing 8 to 24 carbon atoms, and amine salts of these phosphites.
  • the phosphites typically contain linear aliphatic hydrocarbyl groups, each of which contains 12 to 24, preferably 16 to 20 carbon atoms. It is also preferred that at least 50% of the hydrocarbyl groups in the dihydrocarbyl hydrogen phosphite contain at least one internal double bond. It is preferred to use dioleylphosphite.
  • Preferred amine salts of the foregoing dihydrocarbyl hydrogen phosphites are those in which the aliphatic group of the amine is a linear primary aliphatic group having 8 to 24 carbon atoms, for example 16 to 20 carbon atoms, and in which at least 50% of the aliphatic groups contain one or more internal double bonds.
  • Useful succinimides include those of formula: in which Z is a group R 1 R 2 CH- in which R 1 and R 2 are the same or different each independently representing straight- or branched-chain hydrocarbon groups containing from 1 to 34 carbon atoms and the total number of carbon atoms in the groups R 1 and R 2 is from 11 to 35. Such compounds are described in EP-A-0020037, EP-A-0389237 and EP-A-0776964.
  • the radical Z may be, for example, 1-methylpentadecyl, 1-propyltridecenyl, 1-pentyltridecenyl, 1-tridecylpentadecenyl or 1-tetradecyleicosenyl.
  • the number of carbon atoms in the groups R 1 and R 2 is from 16 to 28 and more commonly 18 to 24. It is especially preferred that the total number of carbon atoms in R 1 and R 2 is about 20 or about 22.
  • the succinimide is a 3 - C 18-24 alkenyl-2,5-pyrrolidindione. A sample of this succinimide contains a mixture of alkenyl groups having from 18 to 24 carbon atoms.
  • molybdenum compounds are described in USP 5,650,381. These compounds are typically substantially free of active sulphur. Examples of suitable compounds include glycol molybdate complexes as described in U.S.P. 3,285,942, overbased alkali metal and alkaline earth metal sulfonates, phenates and salicylate compositions containing molybdenum such as those disclosed in U.S.P. 4,832,857, molybdenum complexes prepared by reacting a fatty oil, a diethanolamine and a molybdenum source as described in U.S.P.
  • Molybdenum salts such as the carboxylates are a preferred group of molybdenum compounds.
  • the molybdenum salts used in this invention may be completely dehydrated (complete removal of water during preparation), or partially dehydrated. They may be salts of the same anion or mixed salts, meaning that they are formed from more than one type of acid.
  • suitable anions there can be mentioned chloride, carboxylate, nitrate, sulfonate, or any other anion.
  • the molybdenum carboxylate is preferably that of a monocarboxylic acid such as those having from about 4 to 30 carbon atoms.
  • Such acids can be hydrocarbon aliphatic, alicyclic or aromatic carboxylic acids.
  • Monocarboxylic aliphatic acids having about 4 to 18 carbon atoms are preferred, particularly those having an alkyl group of about 6 to 18 carbon atoms.
  • the alicyclic acids may generally contain from 4 to 12 carbon atoms.
  • the aromatic acids generally contain one or two fused rings and contain from 7 to 14 carbon atoms wherein the carboxyl group may or may not be attached directly to the ring.
  • the carboxylic acid can be a saturated or unsaturated fatty acid having from about 4 to 18 carbon atoms.
  • Examples of carboxylic acids that may be used to prepare the molybdenum carboxylates include butyric acid, valeric acid, caproic acid, heptanoic acid, cyclohexanecarboxylic acid, cyclodecanoic acid, naphthenic acid, phenyl acetic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, suberic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, linolenic acid, heptadecanoic acid, stearic acid, oleic acid, nonadecanoic acid, eicosanoic acid, heneicosanoic acid, docosanoic acid and erucic acid.
  • the preferred molybdenum carboxylate is molyb
  • Useful carboxylic acid amides include aliphatic monocarboxylic acid amides. These may be represented by the formula (R 3 CO)N(R 4 )(R 5 ) in which R 3 represents an alkyl or alkenyl group having 8 to 24 carbon atoms and R 4 and R 5 which may be the same or different are each independently hydrogen or alkyl of up to 7 carbon atoms. Typically, R 3 represents a C 14-18 alkyl radical. Amides of this type are described in USP 4,280,916. A preferred friction modifier falling within this class is oleyamide.
  • Friction modifiers which are useful in the present invention are commercially available or may be prepared by the adaptation or application of known methods.
  • the amount of the at least one friction modifier which is used is at least sufficient for it to exert its intended function of reducing micropitting.
  • the friction modifier(s) is/are generally used at conventional treat rates.
  • the total concentration of friction modifier used is 0.125 to 1% by weight based on the total weight of the lubricant composition.
  • the total amount of friction modifier is 0.15 to 0.75% by weight, more preferably about 0.5% by weight.
  • friction modifiers may be used.
  • friction modifiers of the same or different type may be used in combination.
  • satisfactory results have been obtained using combinations of dimethyloctadecyl phosphonate and a 3-C 18-24 alkenyl-2,5-pyrrolidindione.
  • the total amount of friction modifier is as described above.
  • the at least one friction modifier employed is sufficiently soluble in the lubricant composition at the treat rate at which it is used. It is also important that the at least one friction modifier is sufficiently compatible with the additional components commonly found in lubricating compositions. Such components include dispersants, detergents, antioxidants, extreme pressure agents, antiwear agents, foam inhibitors, viscosity index improvers and pour point depressants. These additives are themselves used in conventional amounts.
  • the base oil which is used to formulate lubricant compositions useful in the present invention may be natural or synthetic, or a blend thereof. Useful base oils are known in the art.
  • the lubricant compositions are formulated in known manner by blending the individual components.
  • the at least one friction modifier responsible for improving the micropitting performance may be added at the time the lubricant is formulated. Alternatively, the at least one friction modifier may be added as a top treat to improve or boost the micropitting performance of an existing formulated lubricant composition.
  • the invention also provides lubricant compositions which exhibit excellent micropitting performance relative to conventional lubricants.
  • the invention provides a lubricant composition comprising an O,O-di-(primary alkyl)acyclic hydrocarbyl phosphonate as described above and a succinimide as described above.
  • the composition comprises dimethyloctadecyl phosphonate and a 3-C 18-24 alkenyl-2-pyrrolidindione.
  • the composition comprises a molybdenum carboxylate, such as molybdenum octanoate, and a sulfurized isobutylene extreme pressure agent.
  • the compositions may also include one or more of the other additive components described above.
  • Lubricant compositions were prepared by blending the components listed in Table 1 below.
  • the sulphur- and phosphorus-containing gear additive package had the following composition:
  • the coefficient of friction for each composition was measured at 130°C using an HFRR operated under the conditions described in SAE Technical Paper 961142 (ball diameter 6mm, load 4N, frequency 20 Hz, stroke length 1mm; ball and flat ANSI 52100 steel).
  • the HFRR coefficient of friction for each composition is given in Table 2.
  • Each composition was also subjected to the FZG micropitting test in accordance with CEC L-07-A-71. The results obtained in this test are also shown in Table 2.
  • the FZG result is given as a load stage result (in the stepwise phase).
  • a profile deviation of 7.5 ⁇ m is used to differentiate a pass or fail result at any given load stage.
  • Runs 1 and 2 give “10 fail” and “9 fail” results respectively which means that the profile deviation exceeded 7.5 ⁇ m after load stage 10 (Run 1) and load stage 9 (Run 2).
  • Runs 4-7 on the other hand give an FZG result of "10 pass” which means that the profile deviation has not exceeded 7.5 ⁇ m after load stage 10.
  • the lubricant composition used in Runs 1 and 2 is a conventional gear lubricant. This gives reasonable micropitting protection, the 7.5 ⁇ m threshold being exceeded after load stage 10 (Run 1) or 9 (Run 2). For Run 3 the micropitting test was aborted after load stage 6 because the composition tested was found to contain precipitate. This emphasises the need for the friction modifiers used to be fully soluble/compatible in lubricant at the treat rate at which they are used.
  • the compositions used in Runs 4-7 illustrate the present invention and give improved FZG results of "10 pass” when compared with the conventional lubricant compositions of Runs 1 and 2. A consistent "10 pass” result would be very acceptable in the industry. Runs 4-7 also showed acceptably low levels of percentage micropitting and weight loss.
  • a friction modifier which is known to exhibit poor micropitting protection was included in a lubricant composition having a viscosity grade ISO 220 and the resulting composition tested using the HFRR test (in accordance with SAE Technical Paper 961142).
  • the composition gave an HFRR result of 0.114, i.e. well above the threshold value of 0.100.
  • the HFRR screening procedure was repeated using compositions using a different sulphur- and phosphorus-containing gear additive package.
  • the base oil was ESSO ISO 220.
  • the viscosity grade of the formulated compositions was ISO 220.
  • the treat rate of the various components and the HFRR results obtained are shown in Table 3 below.
  • COMPONENT RUN 9 10 Dimethyloctadecyl phosphonate - 0.25% 3-C 18-24 alkenyl 2,5-pyrollidindione - 0.25% S/P Containing gear pack 2.0% 2.0% HFRR 0.105 0.070
  • the HFRR result for Run 9 of in excess of 0.100 is consistent with the HFRR results for Runs 1 and 2 in Table 1.
  • the composition used in Run 10 included a combination of friction modifiers which are known to give improved micropitting performance (see the result for Run 6 in Table 2).
  • the HFRR result for Run 10 is less than 0.100. This is consistent with the HFRR result obtained for Run 6 in Table 2 where a different gear additive package was used in formulating the composition under test. This shows that the HFRR screening procedure remains predictive of useful friction modifiers even when different gear additive packages are used in formulating the lubricant compositions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Use of at least one friction modifier to reduce micropitting of a metal surface, which comprises lubricating the metal surface with a lubricant composition comprising the at least one friction modifier, wherein the at least one friction modifier is selected such that micropitting is reduced when the metal surface is so lubricated.

Description

  • The present invention relates to the use of friction modifiers to reduce micropitting of metal surfaces such as gear teeth, and to lubricant compositions comprising friction modifiers.
  • Micropitting is a type of surface damage which occurs predominantly in rolling-sliding contacts of hard steel surfaces. Sometimes called "frosting", "greystaining" or "peeling" it typically occurs in rolling element bearings and most often on gear teeth, where it poses a significant practical problem. Micropitting may lead to higher noise, to significant rapid wear and to more serious surface damage, such as scuffing and even to tooth fracture in gears. Conventional lubricants are used to reduce friction when metal surfaces move in contact with each other but they do not prevent the occurrence of micropitting. Original equipment manufacturers require lubricants which can lead to a reduction in the amount of micropitting when compared with the conventional lubricants. It is an object of the present invention to meet this need.
  • The awareness of micropitting within the lubricant additives industry has increased significantly. A micropitting test has been established by the FZG Institute in Germany and is called the FZG micropitting test. This test is run on gears sets with the same metallurgy and surface profile/roughness as gears used in the field. The conditions of the test (high load/low speed) are the optimum conditions for micropitting to occur. Equipment manufacturers believe that the FZG micropitting test correlates well with field experience.
  • The FZG micropitting test is carried out using a standardized FZG test rig according to CEC L-07-A-71, with C type case hardened gears of minimum 0.4 Ra surface roughness. The test has a stepwise phase to investigate build up of micropitting and an endurance phase to investigate resistance to micropitting. The stepwise phase runs from load stage 5 to load stage 10, each stage lasting 16 hours. The profile of the gears is measured prior to testing and during the test. The variation from the original gear profile (the profile deviation) is calculated. Also evaluated are the percentage micropitting (the percentage of gear tooth which is micropitted) and the weight loss from the gears. After the stepwise phase the endurance phase is run for 80 hours at load stage 8 and then at load stage 10 until failure. Again, the deviation from the original profile (maximum 20 microns), the level of micropitting and the weight loss are measured. A result which would be particularly acceptable to the industry would be a pass at load stage 10 in the stepwise phase of the test. This corresponds to a profile deviation of less than 7.5 µm, micropitting of less than 15% (approx) and weight loss of less than 15 mg (approx) after load stage 10. Extended performance in the endurance phase is also desirable.
  • The present invention is based on the surprising appreciation that certain friction modifiers may be included in lubricant compositions with the result that an improvement in micropitting performance is observed when the lubricant compositions are used, i.e. there is reduced micropitting. Accordingly, the present invention concerns the use of at least one friction modifier to reduce micropitting of a metal surface, which comprises lubricating the metal surface with a lubricant composition comprising the at least one friction modifier, wherein the at least one friction modifier is selected such that micropitting is reduced when the metal surface is so lubricated.
  • The metal surface may be the surface of a gear tooth, in which case the at least one friction modifier may be added to a formulated gear lubricant composition.
  • In the present specification the term "friction modifier" is used to describe additive compounds which are conventionally used in lubricant compositions to reduce friction. The friction modifiers which are useful in practising the present invention are all known in the art.
  • In accordance with the present invention it has been found that only certain friction modifiers may be used to give the desired technical effect of reduced micropitting. The efficacy of any given friction modifier in reducing micropitting may be assessed by comparing the amount of micropitting observed when a metal surface is lubricated with a lubricant composition comprising the friction modifier with the amount of micropitting observed when an identical metal surface is lubricated (under the same conditions) using the corresponding lubricant composition from which the friction modifier of interest has been omitted. The FZG micropitting test may be used to assess the relative performance of lubricant compositions.
  • Another way of identifying suitable friction modifiers is by reference to the friction coefficient of lubricants including them. It has been found that the at least one friction modifier may be selected such that, when measured at 130°C using a high frequency reciprocating rig (HFRR) under the conditions described in SAE Technical Paper 961142, a lubricant which comprises the friction modifier and which has a viscosity grade of ISO 220 has a coefficient of friction of 0.100 or less. The HFRR test may thus be employed as a screen for useful friction modifiers. Lubricant compositions which have a viscosity grade of ISO 220 and which are useful in screening friction modifiers may be prepared by blending a conventional sulphur-and phosphorus-containing gear additive package with a base oil having a viscosity of between 1.98 x 10-4 to 2.42 x 10-4 m2/s (198 to 242 cSt) at 40°C. Suitable additive packages include those comprising from 15-75 wt%, preferably from 45-65 wt%, of a sulfurized isobutylene, from 0-25 wt%, preferably from 3-15 wt%, of a phosphorus-containing antiwear agent, from 0-60 wt%, preferably from 5-25 wt% of a carboxylic-type or Mannich-type ashless dispersant, from 0-20 wt%, preferably from 1-10 wt% of corrosion and rust inhibitors, from 0-20 wt%, preferably from 1-10 wt%, of surface active agents and diluent oil. Such additive packages are commercially available. The additive package is used at conventional treat rates. A suitable base oil to use in formulating the compositions includes a blend of 51 wt% ESSO 600SN and 49 wt% of 2500 Brightstock. Useful additive package are described in EP-A-0744456 and EP-A-0812901.
  • A number of different classes of friction modifiers have been found to be useful in the present invention. Mention may be made of phosphonate esters, phosphite esters, aliphatic succinimides, molybdenum compounds and acid amides.
  • Useful phosphonate esters include O,O-di-(primary alkyl) acyclic hydrocarbyl phosphonates in which the primary alkyl groups are the same or different each independently containing 1 to 4 carbon atoms and in which the acyclic hydrocarbyl group bonded to the phosphorus atom contains 12 to 24 carbon atoms and is a linear hydrocarbyl group free of acetylenic unsaturation. These compounds thus comprise O,O-dimethyl hydrocarbyl phosphonates, O,O-diethyl hydrocarbyl phosphonates, O,O-dipropyl hydrocarbyl phosphonates, O,O-dibutyl hydrocarbyl phosphonates, O,O-diiso-butyl hydrocarbyl phosphonates, and analogous compounds in which the two alkyl groups differ, such as, for example, O-ethyl-O-methyl hydrocarbyl phosphonates, O-butyl-O-propyl hydrocarbyl phosphonates, and O-butyl-O-isobutyl hydrocarbyl phosphonates, wherein in each case the hydrocarbyl group is linear and is saturated or contains one or more olefinic double bonds, each double bond preferably being an internal double bond. Preferred are compounds in which both O,O-alkyl groups are identical to each other. Also preferred are compounds in which the hydrocarbyl group bonded to the phosphorus atom contains 16 to 20 carbon atoms. A preferred friction modifier in this class is dimethyloctadecyl phosphonate. Phosphonate esters useful in the present invention are described in USP 4,158,633.
  • Useful phosphite esters are described in WO88/04313. These include dihydrocarbyl hydrogen phosphites in which the hydrocarbyl groups are the same or different linear aliphatic hydrocarbyl groups free of acetylenic unsaturation each independently containing 8 to 24 carbon atoms, and amine salts of these phosphites. The phosphites typically contain linear aliphatic hydrocarbyl groups, each of which contains 12 to 24, preferably 16 to 20 carbon atoms. It is also preferred that at least 50% of the hydrocarbyl groups in the dihydrocarbyl hydrogen phosphite contain at least one internal double bond. It is preferred to use dioleylphosphite.
  • Preferred amine salts of the foregoing dihydrocarbyl hydrogen phosphites are those in which the aliphatic group of the amine is a linear primary aliphatic group having 8 to 24 carbon atoms, for example 16 to 20 carbon atoms, and in which at least 50% of the aliphatic groups contain one or more internal double bonds.
  • Useful succinimides include those of formula:
    Figure 00040001
       in which Z is a group R1R2CH- in which R1 and R2 are the same or different each independently representing straight- or branched-chain hydrocarbon groups containing from 1 to 34 carbon atoms and the total number of carbon atoms in the groups R1 and R2 is from 11 to 35. Such compounds are described in EP-A-0020037, EP-A-0389237 and EP-A-0776964.
  • The radical Z may be, for example, 1-methylpentadecyl, 1-propyltridecenyl, 1-pentyltridecenyl, 1-tridecylpentadecenyl or 1-tetradecyleicosenyl. Preferably the number of carbon atoms in the groups R1 and R2 is from 16 to 28 and more commonly 18 to 24. It is especially preferred that the total number of carbon atoms in R1 and R2 is about 20 or about 22. Preferably, the succinimide is a 3 - C18-24 alkenyl-2,5-pyrrolidindione. A sample of this succinimide contains a mixture of alkenyl groups having from 18 to 24 carbon atoms.
  • Useful molybdenum compounds are described in USP 5,650,381. These compounds are typically substantially free of active sulphur. Examples of suitable compounds include glycol molybdate complexes as described in U.S.P. 3,285,942, overbased alkali metal and alkaline earth metal sulfonates, phenates and salicylate compositions containing molybdenum such as those disclosed in U.S.P. 4,832,857, molybdenum complexes prepared by reacting a fatty oil, a diethanolamine and a molybdenum source as described in U.S.P. 4,889,647, molybdenum containing compounds prepared from fatty acids and 2-(2-aminoethyl)aminoethanol as described in U.S.P. 5,137,647, overbased molybdenum complexes prepared from amines, diamines, alkoxylated amines, glycols and polyols as described in U.S.P. 5,143,633, and 2,4-heteroatom substituted-molybdena-3,3-dioxacycloalkanes as described in U.S.P. 5,412,130.
  • Molybdenum salts such as the carboxylates are a preferred group of molybdenum compounds. The molybdenum salts used in this invention may be completely dehydrated (complete removal of water during preparation), or partially dehydrated. They may be salts of the same anion or mixed salts, meaning that they are formed from more than one type of acid. Illustrative of suitable anions there can be mentioned chloride, carboxylate, nitrate, sulfonate, or any other anion.
  • The molybdenum carboxylate is preferably that of a monocarboxylic acid such as those having from about 4 to 30 carbon atoms. Such acids can be hydrocarbon aliphatic, alicyclic or aromatic carboxylic acids. Monocarboxylic aliphatic acids having about 4 to 18 carbon atoms are preferred, particularly those having an alkyl group of about 6 to 18 carbon atoms. The alicyclic acids may generally contain from 4 to 12 carbon atoms. The aromatic acids generally contain one or two fused rings and contain from 7 to 14 carbon atoms wherein the carboxyl group may or may not be attached directly to the ring. The carboxylic acid can be a saturated or unsaturated fatty acid having from about 4 to 18 carbon atoms. Examples of carboxylic acids that may be used to prepare the molybdenum carboxylates include butyric acid, valeric acid, caproic acid, heptanoic acid, cyclohexanecarboxylic acid, cyclodecanoic acid, naphthenic acid, phenyl acetic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, suberic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, linolenic acid, heptadecanoic acid, stearic acid, oleic acid, nonadecanoic acid, eicosanoic acid, heneicosanoic acid, docosanoic acid and erucic acid. The preferred molybdenum carboxylate is molybdenum octanoate.
  • Useful carboxylic acid amides include aliphatic monocarboxylic acid amides. These may be represented by the formula (R3CO)N(R4)(R5) in which R3 represents an alkyl or alkenyl group having 8 to 24 carbon atoms and R4 and R5 which may be the same or different are each independently hydrogen or alkyl of up to 7 carbon atoms. Typically, R3 represents a C14-18 alkyl radical. Amides of this type are described in USP 4,280,916. A preferred friction modifier falling within this class is oleyamide.
  • Friction modifiers which are useful in the present invention are commercially available or may be prepared by the adaptation or application of known methods.
  • The amount of the at least one friction modifier which is used is at least sufficient for it to exert its intended function of reducing micropitting. The friction modifier(s) is/are generally used at conventional treat rates. Typically, the total concentration of friction modifier used is 0.125 to 1% by weight based on the total weight of the lubricant composition. Preferably, the total amount of friction modifier is 0.15 to 0.75% by weight, more preferably about 0.5% by weight.
  • Mixtures of friction modifiers may be used. In this case friction modifiers of the same or different type may be used in combination. For example, satisfactory results have been obtained using combinations of dimethyloctadecyl phosphonate and a 3-C18-24 alkenyl-2,5-pyrrolidindione. When mixtures of friction modifiers are employed the total amount of friction modifier is as described above.
  • It is important that the at least one friction modifier employed is sufficiently soluble in the lubricant composition at the treat rate at which it is used. It is also important that the at least one friction modifier is sufficiently compatible with the additional components commonly found in lubricating compositions. Such components include dispersants, detergents, antioxidants, extreme pressure agents, antiwear agents, foam inhibitors, viscosity index improvers and pour point depressants. These additives are themselves used in conventional amounts.
  • The base oil which is used to formulate lubricant compositions useful in the present invention may be natural or synthetic, or a blend thereof. Useful base oils are known in the art. The lubricant compositions are formulated in known manner by blending the individual components. The at least one friction modifier responsible for improving the micropitting performance may be added at the time the lubricant is formulated. Alternatively, the at least one friction modifier may be added as a top treat to improve or boost the micropitting performance of an existing formulated lubricant composition.
  • The invention also provides lubricant compositions which exhibit excellent micropitting performance relative to conventional lubricants. In one embodiment the invention provides a lubricant composition comprising an O,O-di-(primary alkyl)acyclic hydrocarbyl phosphonate as described above and a succinimide as described above. Preferably, the composition comprises dimethyloctadecyl phosphonate and a 3-C18-24 alkenyl-2-pyrrolidindione. In another embodiment the composition comprises a molybdenum carboxylate, such as molybdenum octanoate, and a sulfurized isobutylene extreme pressure agent. The compositions may also include one or more of the other additive components described above.
  • The invention is illustrated in the following examples.
  • EXAMPLES 1-7
  • Lubricant compositions were prepared by blending the components listed in Table 1 below. The sulphur- and phosphorus-containing gear additive package had the following composition:
  • 50 wt%
    sulfurized isobutylene (extreme pressure agent)
    8 wt%
    mixed phosphite and phosphate anti-wear agent
    17.5 wt%
    phosphorylated, boronated succinimide dispersant
    9 wt%
    rust inhibitor package
    2.6 wt%
    corrosion inhibitor
    0.5 wt%
    defoamer
    0.15%
    demulsifier
    1.5 wt%
    3-C18-24 alkenyl-2,5-pyrrolidindione
    balance
    base (diluent) oil
    The base oil was ESSO ISO 220. The viscosity grade of each composition was ISO 220.
    COMPONENT RUN
    1 2 3 4 5 6 7
    Molybdenum octanoate - - - 0.50%
    Dimethyloctadecyl phosphonate - - - - 0.50% 0.25% 0.50%
    Dioleylphosphite - - - - - - -
    3-C18-24 alkenyl 2,5-pyrollidindione - - 0.25% - - 0.25% 0.50%
    Oleyamide - - 0.20% - - - -
    S/P Containing gear pack 2.5% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%
  • The coefficient of friction for each composition was measured at 130°C using an HFRR operated under the conditions described in SAE Technical Paper 961142 (ball diameter 6mm, load 4N, frequency 20 Hz, stroke length 1mm; ball and flat ANSI 52100 steel). The HFRR coefficient of friction for each composition is given in Table 2. Each composition was also subjected to the FZG micropitting test in accordance with CEC L-07-A-71. The results obtained in this test are also shown in Table 2.
  • The solubility/compatibility of the friction modifier(s) within the lubricant compositions tested the appearance of the compositions was assessed visually. The presence of precipitate indicates poor solubility/compatibility. Table 2 reports the extent of the solubility/compatibility.
  • The percentage micropitting and weight loss were assessed after load stage 10. The weight loss was determined by comparing the initial weight of the gears under test with the weight of the gears after load stage 10. The results are also shown in Table 2.
    RUN 1 2 3 4 5 6 7
    HFRR 0.110 0.109 0.102 0.087 0.094 0.098 0.091
    FZG 10 FAIL 9 FAIL ABORTED 10 PASS 10 PASS 10 PASS 10 PASS
    SOLUBILITY/COMPATIBILITY GOOD GOOD BAD SATISFACTORY SATISFACTORY SATISFACTORY SATISFACTORY
    %MICROPITTING - 18.0 - 12.0 8.62 8.43 9.40
    WEIGHT LOSS (mg) - 22 - 9 10 11 15.0
  • In this table the FZG result is given as a load stage result (in the stepwise phase). A profile deviation of 7.5 µm is used to differentiate a pass or fail result at any given load stage. For example, Runs 1 and 2 give "10 fail" and "9 fail" results respectively which means that the profile deviation exceeded 7.5 µm after load stage 10 (Run 1) and load stage 9 (Run 2). Runs 4-7 on the other hand give an FZG result of "10 pass" which means that the profile deviation has not exceeded 7.5 µm after load stage 10.
  • The results in Table 2 show that the friction coefficient obtained in the HFRR test may be used to predict which friction modifier(s) is/are useful in improving micropitting performance. HFRR results of less than 0.100 are predictive of friction modifiers which give improved micropitting performance.
  • The lubricant composition used in Runs 1 and 2 is a conventional gear lubricant. This gives reasonable micropitting protection, the 7.5 µm threshold being exceeded after load stage 10 (Run 1) or 9 (Run 2). For Run 3 the micropitting test was aborted after load stage 6 because the composition tested was found to contain precipitate. This emphasises the need for the friction modifiers used to be fully soluble/compatible in lubricant at the treat rate at which they are used. The compositions used in Runs 4-7 illustrate the present invention and give improved FZG results of "10 pass" when compared with the conventional lubricant compositions of Runs 1 and 2. A consistent "10 pass" result would be very acceptable in the industry. Runs 4-7 also showed acceptably low levels of percentage micropitting and weight loss.
  • Example 8
  • To confirm the accuracy of the friction modifier screening procedure glycerol monooleate, a friction modifier which is known to exhibit poor micropitting protection, was included in a lubricant composition having a viscosity grade ISO 220 and the resulting composition tested using the HFRR test (in accordance with SAE Technical Paper 961142). The composition gave an HFRR result of 0.114, i.e. well above the threshold value of 0.100.
  • Examples 9 and 10
  • The HFRR screening procedure was repeated using compositions using a different sulphur- and phosphorus-containing gear additive package. The base oil was ESSO ISO 220. The viscosity grade of the formulated compositions was ISO 220. The treat rate of the various components and the HFRR results obtained are shown in Table 3 below.
    COMPONENT RUN
    9 10
    Dimethyloctadecyl phosphonate - 0.25%
    3-C18-24 alkenyl 2,5-pyrollidindione - 0.25%
    S/P Containing gear pack 2.0% 2.0%
    HFRR 0.105 0.070
  • The HFRR result for Run 9 of in excess of 0.100 is consistent with the HFRR results for Runs 1 and 2 in Table 1. The composition used in Run 10 included a combination of friction modifiers which are known to give improved micropitting performance (see the result for Run 6 in Table 2). The HFRR result for Run 10 is less than 0.100. This is consistent with the HFRR result obtained for Run 6 in Table 2 where a different gear additive package was used in formulating the composition under test. This shows that the HFRR screening procedure remains predictive of useful friction modifiers even when different gear additive packages are used in formulating the lubricant compositions.

Claims (18)

  1. Use of at least one friction modifier to reduce micropitting of a metal surface, which comprises lubricating the metal surface with a lubricant composition comprising the at least one friction modifier, wherein the at least one friction modifier is selected such that micropitting is reduced when the metal surface is so lubricated.
  2. Use according to claim 1, wherein the lubricant composition is a gear lubricant composition.
  3. Use according to claim 1 or claim 2, wherein the at least one friction modifier is selected such that, when measured at 130°C using a high frequency reciprocating rig (HFRR) under the conditions described in SAE Technical Paper 961142, a lubricant which comprises the at least one friction modifier and which has a viscosity grade of ISO 220 has a coefficient of friction of 0.100 or less.
  4. Use according to any one of claims 1 to 3, wherein the friction modifier is an O,O-di-(primary alkyl) acyclic hydrocarbyl phosphonate in which the primary alkyl groups are the same or different each independently containing 1 to 4 carbon atoms and in which the acyclic hydrocarbyl group bonded to the phosphorus atom contains 12 to 24 carbon atoms and is a linear hydrocarbyl group free of acetylenic unsaturation.
  5. Use according to claim 4, wherein the friction modifier is dimethyloctadecyl phosphonate.
  6. Use according to any one of claims 1 to 3, wherein the friction modifier is a dihydrocarbyl hydrogen phosphite in which the hydrocarbyl groups are the same or different linear aliphatic hydrocarbyl groups free of acetylenic unsaturation each independently containing 8 to 24 carbon atoms, or an amine salt thereof.
  7. Use according to claim 6, wherein the friction modifier is dioleylphosphite.
  8. Use according to any one of claims 1 to 3, wherein the friction modifier is a succinimide of formula:
    Figure 00160001
    in which Z is a group R1R2CH- in which R1 and R2 are the same or different each independently representing straight- or branched-chain hydrocarbon groups containing from 1 to 34 carbon atoms and the total number of carbon atoms in the groups R1 and R2 is from 11 to 35.
  9. Use according to claim 8, wherein the friction modifier is a 3 - C18-24 alkenyl-2,5-pyrrolidindione.
  10. Use according to any one of claims 1 to 3, wherein the friction modifer is a molybdenum compound.
  11. Use according to claim 10, wherein the friction modifier is molybdenum carboxylate.
  12. Use according to claim 11, wherein the friction modifier is molybdenum octanoate.
  13. Use according to any one of claims 1 to 3, wherein the friction modifier is an aliphatic monocarboxylic acid amide of formula (R3CO)N(R4)(R5) in which R3 represents an alkyl or alkenyl group having 8 to 24 carbon atoms and R4 and R5 which bay be the same or different are each independently hydrogen or alkyl of up to 7 carbon atoms.
  14. Use according to claim 13, wherein the friction modifier is oleyamide.
  15. Use according to any one of claims 1 to 14, wherein the at least one friction modifier is used in an amount of 0.125 to 1.0% by weight based on the total weight of the lubricant composition.
  16. A lubricant composition comprising an O,O-di-(primary alkyl)acyclic hydrocarbyl phosphonate as defined in claim 4 and a succinimide as defined in claim 8.
  17. A lubricant composition according to claim 16 comprising dimethyloctadecyl phosphonate and 3-C18-24 alkenyl-2-pyrrolidindione.
  18. A lubricant composition comprising a molybdenum carboxylate and a sulfurized isobutylene extreme pressure agent.
EP99302498A 1998-04-09 1999-03-30 Lubrifcating compositions Withdrawn EP0949320A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9807843 1998-04-09
GBGB9807843.9A GB9807843D0 (en) 1998-04-09 1998-04-09 Lubricating compositions

Publications (2)

Publication Number Publication Date
EP0949320A2 true EP0949320A2 (en) 1999-10-13
EP0949320A3 EP0949320A3 (en) 2000-09-06

Family

ID=10830267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99302498A Withdrawn EP0949320A3 (en) 1998-04-09 1999-03-30 Lubrifcating compositions

Country Status (6)

Country Link
EP (1) EP0949320A3 (en)
JP (1) JP3200044B2 (en)
CN (1) CN1214094C (en)
CA (1) CA2266841C (en)
GB (1) GB9807843D0 (en)
SG (1) SG77676A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062335A1 (en) * 2008-10-28 2010-06-03 Exxonmobil Research And Engineering Company Low sulfur and ashless formulations for high performance industrial oils
EP2334771A1 (en) * 2008-08-22 2011-06-22 ExxonMobil Research and Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
EP3798287A1 (en) * 2019-09-27 2021-03-31 Ab Nanol Technologies Oy Use of organometallic salt compositions for alleviating the formation of white etching cracks
DE102022111794B3 (en) 2022-05-11 2023-03-30 Fuchs Petrolub Se Base oil and lubricating fluid composition containing the base oil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970291B2 (en) * 2012-08-20 2016-08-17 出光興産株式会社 Lubricating oil composition

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285942A (en) 1962-03-06 1966-11-15 Exxon Research Engineering Co Preparation of glycol molybdate complexes
US4158633A (en) 1978-03-30 1979-06-19 Edwin Cooper, Inc. Lubricating oil
EP0020037A1 (en) 1979-05-18 1980-12-10 Edwin Cooper Inc. Oil-soluble friction-reducing additive, process for the preparation thereof, and lubricating oil or fuel composition containing the additive
US4280916A (en) 1980-03-31 1981-07-28 Shell Oil Company Lubricant composition
WO1988004313A2 (en) 1986-12-11 1988-06-16 The Lubrizol Corporation Phosphite ester compositions, and lubricants and functional fluids containing same
US4832857A (en) 1988-08-18 1989-05-23 Amoco Corporation Process for the preparation of overbased molybdenum alkaline earth metal and alkali metal dispersions
US4889647A (en) 1985-11-14 1989-12-26 R. T. Vanderbilt Company, Inc. Organic molybdenum complexes
EP0389237A2 (en) 1989-03-20 1990-09-26 Ethyl Petroleum Additives Limited Friction modifier
US5137647A (en) 1991-12-09 1992-08-11 R. T. Vanderbilt Company, Inc. Organic molybdenum complexes
US5143633A (en) 1989-06-19 1992-09-01 Societe Nationale Elf Aquitaine Overbased additives for lubricant oils containing a molybdenum complex, process for preparing them and compositions containing the said additives
US5412130A (en) 1994-06-08 1995-05-02 R. T. Vanderbilt Company, Inc. Method for preparation of organic molybdenum compounds
EP0744456A2 (en) 1995-05-22 1996-11-27 Ethyl Petroleum Additives Limited Lubricant compositions
EP0776964A1 (en) 1995-12-01 1997-06-04 Ethyl Petroleum Additives Limited Hydraulic fluids
US5650381A (en) 1995-11-20 1997-07-22 Ethyl Corporation Lubricant containing molybdenum compound and secondary diarylamine
EP0812901A2 (en) 1996-06-12 1997-12-17 Ethyl Corporation Clean performing gear oils

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69033375T2 (en) * 1990-04-02 2000-05-11 Ethyl Petroleum Additives Ltd., Bracknell Lubricant compositions and additives therefor
US6096691A (en) * 1993-04-09 2000-08-01 Ethyl Corporation Gear oil additive concentrates and lubricants containing them
US5750477A (en) * 1995-07-10 1998-05-12 The Lubrizol Corporation Lubricant compositions to reduce noise in a push belt continuous variable transmission
US5840672A (en) * 1997-07-17 1998-11-24 Ethyl Corporation Antioxidant system for lubrication base oils

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285942A (en) 1962-03-06 1966-11-15 Exxon Research Engineering Co Preparation of glycol molybdate complexes
US4158633A (en) 1978-03-30 1979-06-19 Edwin Cooper, Inc. Lubricating oil
EP0020037A1 (en) 1979-05-18 1980-12-10 Edwin Cooper Inc. Oil-soluble friction-reducing additive, process for the preparation thereof, and lubricating oil or fuel composition containing the additive
US4280916A (en) 1980-03-31 1981-07-28 Shell Oil Company Lubricant composition
US4889647A (en) 1985-11-14 1989-12-26 R. T. Vanderbilt Company, Inc. Organic molybdenum complexes
WO1988004313A2 (en) 1986-12-11 1988-06-16 The Lubrizol Corporation Phosphite ester compositions, and lubricants and functional fluids containing same
US4832857A (en) 1988-08-18 1989-05-23 Amoco Corporation Process for the preparation of overbased molybdenum alkaline earth metal and alkali metal dispersions
EP0389237A2 (en) 1989-03-20 1990-09-26 Ethyl Petroleum Additives Limited Friction modifier
US5143633A (en) 1989-06-19 1992-09-01 Societe Nationale Elf Aquitaine Overbased additives for lubricant oils containing a molybdenum complex, process for preparing them and compositions containing the said additives
US5137647A (en) 1991-12-09 1992-08-11 R. T. Vanderbilt Company, Inc. Organic molybdenum complexes
US5412130A (en) 1994-06-08 1995-05-02 R. T. Vanderbilt Company, Inc. Method for preparation of organic molybdenum compounds
EP0744456A2 (en) 1995-05-22 1996-11-27 Ethyl Petroleum Additives Limited Lubricant compositions
US5650381A (en) 1995-11-20 1997-07-22 Ethyl Corporation Lubricant containing molybdenum compound and secondary diarylamine
EP0776964A1 (en) 1995-12-01 1997-06-04 Ethyl Petroleum Additives Limited Hydraulic fluids
EP0812901A2 (en) 1996-06-12 1997-12-17 Ethyl Corporation Clean performing gear oils

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2334771A1 (en) * 2008-08-22 2011-06-22 ExxonMobil Research and Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
EP2334771A4 (en) * 2008-08-22 2013-01-09 Exxonmobil Res & Eng Co Low sulfur and low metal additive formulations for high performance industrial oils
WO2010062335A1 (en) * 2008-10-28 2010-06-03 Exxonmobil Research And Engineering Company Low sulfur and ashless formulations for high performance industrial oils
EP3798287A1 (en) * 2019-09-27 2021-03-31 Ab Nanol Technologies Oy Use of organometallic salt compositions for alleviating the formation of white etching cracks
WO2021058868A1 (en) * 2019-09-27 2021-04-01 Ab Nanol Technologies Oy Use of organometallic salt compositions for alleviating the formation of white etching cracks
CN114514305A (en) * 2019-09-27 2022-05-17 Ab纳诺技术公司 Use of organometallic salt compositions for mitigating white corrosion crack formation
US11932821B2 (en) 2019-09-27 2024-03-19 Ab Nanol Technologies Oy Use of organometallic salt compositions for alleviating the formation of white etching cracks
DE102022111794B3 (en) 2022-05-11 2023-03-30 Fuchs Petrolub Se Base oil and lubricating fluid composition containing the base oil
WO2023217313A1 (en) 2022-05-11 2023-11-16 Fuchs SE Base oil and lubricating fluid composition containing said base oil
EP4386069A1 (en) 2022-05-11 2024-06-19 Fuchs Se Use of a base oil and a lubricating fluid composition containing the base oil

Also Published As

Publication number Publication date
GB9807843D0 (en) 1998-06-10
CN1234430A (en) 1999-11-10
JP3200044B2 (en) 2001-08-20
CA2266841C (en) 2008-07-29
CA2266841A1 (en) 1999-10-09
SG77676A1 (en) 2001-01-16
EP0949320A3 (en) 2000-09-06
CN1214094C (en) 2005-08-10
JPH11323366A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
US6184186B1 (en) Lubricating compositions
US7598211B2 (en) Synergistic organoborate compositions and lubricating compositions containing same
KR100866811B1 (en) Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as anti-rust agent
EP0976813B1 (en) Borate containing additive for manual transmission lubricant being stable to hydrolysis and providing high synchromesh durability
US5364545A (en) Lubricating oil composition containing friction modifier and corrosion inhibitor
EP0953629A1 (en) Lubricating oil compositions for internal combustion engines
EP0389237B1 (en) Friction modifier
JP5165863B2 (en) Lubricating oil composition
JP2006090552A (en) Lubricant for manual transmission or automated manual transmission
JP2912414B2 (en) Lubricant composition
WO1994011470A1 (en) Greases
JPH02212596A (en) Hydraulic fluid composition for power steering
WO2002102945A1 (en) Improved antiwear performance of engine oils with $g(b)-dithiophosphorylated propionic acids
CA2266841C (en) Lubricating compositions
CA1223861A (en) Lubricant additive concentrate
EP0556404A1 (en) Lubricating oil composition
US20110086787A1 (en) Lubricating composition having improved storage stability
US5028345A (en) Lubricating oil composition
JPH024897A (en) Lubricating oil composition for manual transmission
US20240076571A1 (en) Lubricating composition to prevent corrosion and/or tribocorrosion of metallic parts in an engine
US20020049144A1 (en) Use of surfactants with low molecular weight for improving the filterability in hydraulic lubricants
JPH05140556A (en) Hydrocarbon oil additive and lubricating oil composition containing the same
WO2008024111A1 (en) Lubricating composition having improved storage stability
KR20220050132A (en) Lubricant composition for preventing corrosion and/or wear-corrosion of metal parts in engines
KR20160074557A (en) Lubricating oil composition for protection of silver bearings in medium speed diesel engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001102

AKX Designation fees paid

Free format text: BE DE FR GB

17Q First examination report despatched

Effective date: 20030213

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AFTON CHEMICAL LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10N 40/00 20060101ALN20080624BHEP

Ipc: C10N 30/06 20060101ALN20080624BHEP

Ipc: C10N 10/12 20060101ALN20080624BHEP

Ipc: C10M 141/08 20060101ALI20080624BHEP

Ipc: C10M 129/40 20060101AFI20080624BHEP

RTI1 Title (correction)

Free format text: USE OF A MOLYBDENUM COMPOUND TO REDUCE MICROPITTING AND A LUBRICATING COMPOSITION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081211