EP4143277A1 - Schmierstoffzusammensetzung und deren verwendung - Google Patents

Schmierstoffzusammensetzung und deren verwendung

Info

Publication number
EP4143277A1
EP4143277A1 EP21721438.6A EP21721438A EP4143277A1 EP 4143277 A1 EP4143277 A1 EP 4143277A1 EP 21721438 A EP21721438 A EP 21721438A EP 4143277 A1 EP4143277 A1 EP 4143277A1
Authority
EP
European Patent Office
Prior art keywords
lubricant composition
weight
acid
esters
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21721438.6A
Other languages
English (en)
French (fr)
Inventor
Stefan Seemeyer
Patrick WITTMEYER
Danijela GRAD
Erika PAULUS
Maria FRACKOWIAK
Balasubramaniam Vengudusamy
Max Sommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klueber Lubrication Muenchen GmbH and Co KG
Original Assignee
Klueber Lubrication Muenchen SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klueber Lubrication Muenchen SE and Co KG filed Critical Klueber Lubrication Muenchen SE and Co KG
Publication of EP4143277A1 publication Critical patent/EP4143277A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • C10M2207/2815Esters of (cyclo)aliphatic monocarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/18Anti-foaming property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/36Seal compatibility, e.g. with rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings

Definitions

  • the present invention relates to lubricant compositions and their use as gear, roller bearing and plain bearing oil for general industry and as gear oil and plain bearing oil in the marine sector and in inland waters, as well as in machines and machine elements on land that deal with water and / or aqueous media can come into contact.
  • Radial shaft seals which are usually made of elastomers such as FKM (fluororubber), NBR (nitrile butadiene rubber), HNBR (hydrogenated nitrite butadiene rubber), ACM / AEM (acrylate elastomers / ethylene acrylic elastomers) and polyurethanes, are used in gearboxes, plain bearings and roller bearings are made, for use.
  • FKM fluororubber
  • NBR nitrile butadiene rubber
  • HNBR hydrogenated nitrite butadiene rubber
  • ACM / AEM acrylate elastomers / ethylene acrylic elastomers
  • polyurethanes are used in gearboxes, plain bearings and roller bearings are made, for use.
  • the object of the present invention was therefore to provide lubricants or lubricant compositions which show improved compatibility with sealing materials, in particular elastomers, and have excellent tribological properties, so that they have improved sliding behavior, a reduction in the stick-slip effect ("Sti ck-SI i p- Effect ”), as well as having a positive influence on the microspot resistance, and which are suitable for use as gear, roller bearing and plain bearing oil for general industry.
  • a further object of the present invention was to provide minimally toxic, i.e. NSF / H1 -certified lubricants which are suitable and which are also suitable for use as gear, roller bearing and plain bearing oils for general industry, including applications in the food processing industry show the above-mentioned advantageous properties in terms of seal compatibility and sliding behavior.
  • a lubricant composition containing as components:
  • Lubricant composition an organic compound that comprises both a polar and a non-polar part, as a slip improver, the organic compound having a relative permittivity e G in the range from 1.5 to 10, and where a quotient J Si / i-S2 der organic compound is in the range from 1 to 25.
  • J Si denotes the sum of the area (s) of the IR absorption band (s) in the wavenumber range 3100-2750 cm -1 in an ATR spectrum of the organic
  • J S2 denotes the sum of the area (s) of the IR absorption band (s) in the wavenumber range 1800-1650 cm -1 in an ATR spectrum of the organic
  • the organic compound in addition to the other constituents / components contained in the lubricant composition, the organic compound comprising both a polar and a non-polar part and the requirements for both the relative permittivity e G (in the range of 1 , 5 to 10) as well as the quotients / Si / / S2 (im Range from 1 to 25), a significant improvement in the sliding behavior between two friction partners, for example metal / metal or metal / elastomer (eg FKM or NBR), causes.
  • the organic compound is therefore referred to herein as a "slip improver".
  • lubricant composition lubricant and formulation are used synonymously.
  • organic compound includes both individual compounds (that is, molecules) and mixtures of individual compounds as well as oligomers and polymers including homopolymers, copolymers and polymer blends, as well as mixtures thereof.
  • an oligomer is understood to mean a molecule or a chemical compound which is composed of several, in particular two to ten, structurally identical or similar organic units (monomers) and in particular a weight-average molar mass (M w ) of up to about 1000 having.
  • a polymer (homopolymer) is accordingly understood to be a molecule or a chemical compound which is built up from a large number, in particular more than ten, structurally identical or similar organic units (monomers) and in particular has a weight-average molar mass ( M w ) of about 1000 or more.
  • a copolymer is understood to mean polymers which are composed of two or more different types of monomer.
  • the organic compound C) contains both a polar and a non-polar part, that is, it is made up of one or more identical or different polar molecular parts and one or more identical or different non-polar molecular parts, which results in a specific relative polarity.
  • Polar parts of the molecule in the context of the invention can be all polar, functional groups known to the person skilled in the art.
  • Non-polar parts of the molecule for the purposes of the invention can be all non-polar groups known to the person skilled in the art, and they are in particular selected from one or more of linear or branched or cyclic alkyl groups or aromatic groups, such as, for example, linear or branched alkylbenzene groups.
  • the organic compound C) has a relative permittivity e G in the range from 1.5 to 10, preferably from 1.7 to 8, particularly preferably from 2 to 7, and most preferably from 2.3 to 5.
  • the permittivity also called dielectric conductivity, describes a material property of electrically insulating, polar or non-polar substances, so-called dielectrics, and indicates the permeability of a material or substance to electrical fields.
  • the relative permittivity is a measure of the field-weakening effects of the dielectric polarization of the material or substance.
  • the organic compound C) contained in the lubricant composition according to the invention is further characterized in that it has a quotient iSi / J S2 which is in the range from 1 to 25, preferably from 1.3 to 22, particularly preferably 1.7 to 17, and most preferably from 2 to 14.
  • Js denotes the sum of the area (s) of the IR absorption band (s) in the wavenumber range 3100-2750 cm -1 in an ATR spectrum of the organic compound
  • J S2 denotes the sum of the area (s) of the IR Absorption band (s) in the wavenumber range 1800-1650 cm -1 in an ATR spectrum of the organic compound.
  • ATR infrared spectroscopy is a measurement technique of infrared spectroscopy that is suitable for solid and liquid samples and has meanwhile become the dominant IR technique in many areas.
  • ATR infrared spectroscopy is based on the principle of total reflection (ATR, attenuated total reflection, see NJ Harrick: Internal Reflection Spectroscopy. John Wiley & Sons Inc, 1967, ISBN 0-470-35250-7).
  • the spectra are similar to those of the Transmission spectroscopy.
  • the quotient J S1 / JS2 thus sets the absorption in the wavenumber range 3100-2750 cm 1 , mainly caused by non-polar molecular parts of the organic compound, in relation to the absorption in the wavenumber range 1800-1650 cm -1 , caused mainly by polar molecular parts of the organic compound .
  • the quotient J S1 / J S2 can thus be interpreted as a measure of the polarity of the organic compound contained in the lubricant composition, which comprises both a polar and a non-polar part.
  • the amount of the organic compound C) in the lubricant composition is preferably 0.001% by weight or more, particularly preferably 0.05% by weight or more, for example 0.1% by weight or more, and 10% by weight or less, particularly preferably 5% by weight or less, based on the total weight of the lubricant composition, in order to achieve optimum elastomer compatibility and lubricity.
  • embodiments of the invention which are particularly suitable for use as gear, roller bearing and plain bearing oil for general industry, including in the area of the food processing industry, for occasional, unintentional food contact, if the amount of the organic compound C) 0.001-2.5% by weight, and very particularly preferably 0.05-1% by weight, based on the total weight of the Lubricant composition to achieve optimal elastomer compatibility and sliding effect.
  • the amount of the organic compound C) is 0.1-10% by weight, very particularly preferably 0.1-5% by weight, and most preferably 0.1-3% by weight. -%, based on the total weight of the lubricant composition, in order to achieve optimal elastomer compatibility and sliding effect.
  • the organic compound which comprises both a polar and a non-polar part and the requirements defined above for both the relative permittivity e G (in the range from 1.5 to 10) and the quotient / Si / / S2 ( in the range from 1 to 25), in addition to the other components / constituents of the lubricant composition, such as base oil (s) or additive (s), can surprisingly improve the sliding or lubricating behavior, especially at low gear and bearing speeds and high load. Furthermore, the organic compound contributes to improving the compatibility of the lubricant composition according to the invention with elastomer materials such as FKM and NBR.
  • the organic compounds C) additionally have an NSF / H1 certification so that they are used in lubricants that are used as gear, roller bearing and plain bearing oils for occasional, unintended food contact in the food processing industry come.
  • the organic compound C) is an organic compound which is additionally biodegradable (e.g. according to OECD test guideline 301 AF or OECD 306) and / or has a low level of aquatoxicity (e.g. according to OECD test guideline 201, 202, 203 or 236).
  • the organic compound is used in lubricants, which are used as gear, roller bearing and plain bearing oil in the marine area and in inland waters, as well as in machines and machine elements on land, which can come into contact with water and / or aqueous media, are suitable.
  • Preferred examples of organic compounds which can advantageously be used as slip improvers in the lubricant composition according to the invention are the following compounds, but are not limited to them: Maleic acid-olefin copolymers (commercially available, for example, as Ketjenlube® 135, Ketjenlube® 2700, Ketjenlube® 23000 ); modified polyesters (commercially available e.g. as Perfad TM 3000, Perfad TM 3050); Polymethyl methacrylate (PMMA), linear polymers and star polymers (commercially available e.g. as Lubrizol 87725); Oleic acid, in particular mixtures of C16-C18 fatty acids and C18 unsaturated fatty acids (commercially available e.g.
  • Glycerine monooleate GMO
  • Glycerine monooleate GMO
  • PMA Polymethacrylate
  • linear polymers and comb polymers commercially available e.g. as Viscoplex® 3-200
  • Comb polymers made from 1-decene and 9-dodecylic acid methyl ester commercially available e.g. as Elevance Aria® WTP 40
  • Pentaerythritol tetraisostearate commercially available e.g. as Priolube TM 3987-LQ.
  • the lubricant composition according to the invention contains a base oil component as a further constituent A).
  • the base oil is preferably selected from synthetic esters, in particular neopentyl glycol esters such as neopentyl glycol diisostearate, pentaerythritol esters such as pentaerythritol tetraisostearate, trimethylolpropane esters such as trimethylpropane trioleate or trimethylolpropane tricaprylate, or which are preferably mono / esterified or partially esterified with unsaturated or partially esterified propane and trimethyl ester mixtures
  • Monocarboxylic acids and / or dicarboxylic acids with a chain length of 4 to 36 carbon atoms which can be linear or branched, such as pentaerythritol isostearate sebacate complex esters or trimethyolpropane isostearate stearate sebacate complex esters, aliphatic carboxylic acid and dicarboxylic acid esters such as di- (2 ethylhexy
  • complex esters is understood to mean in particular esters in the preparation of which, for example, dicarboxylic acids (that is, dibasic carboxylic acids) are used in addition to monocarboxylic acids (that is, monobasic carboxylic acids) and polyols.
  • the base oil is selected from polyalphaolefins (PAOs), metallocene-polyalphaolefins (mPAOs), white oils, mineral oils, neopentyl glycol esters, Pentaerythritol esters, trimetylolpropane esters and pentaerythritol and trimetylolpropane complex esters, which are preferably as defined above, aliphatic carboxylic acid and dicarboxylic acid esters, triglyceride fatty acid (C8 / C10) esters, alkylnaphthalines, ethylene / a-olefin-soluble, water-soluble oligomers, and water-soluble oligomers and / or oil-soluble polyglycols, as well as mixtures of two or more thereof
  • the base oil has NSF / H1 certification in order to enable the lubricant composition to be used as gear, roller bearing and plain bearing oil for occasional, unintended food contact in the food processing industry.
  • the base oil is selected from polyalphaolefins (PAOs), metallocene polyalphaolefins (mPAOs), white oils, ferns-based oils, estolides and oil-soluble polyglycols, and mixtures of two or more thereof.
  • PAOs polyalphaolefins
  • mPAOs metallocene polyalphaolefins
  • white oils ferns-based oils
  • estolides and oil-soluble polyglycols
  • mixtures of two or more thereof are advantageous in terms of their biodegradability (i.e., biodegradable e.g.
  • OECD test guideline 301 AF or OECD 306 can accordingly contribute to improved biodegradability of the lubricant composition, so that it is particularly suitable for applications as gear, roller bearing and plain bearing oil in the marine area and in the area of inland waters, as well as in machines and Machine elements on land that may come into contact with water and / or aqueous media is suitable.
  • the amount of base oil or base oil mixture in the lubricant composition is usually determined on the basis of the amounts of the other constituents / components contained in the composition, that is, the lubricant composition is made up to 100% by weight with the base oil.
  • the total amount of the base oil or base oil mixture is preferably at least 20% by weight, 30% by weight, 40% by weight, 50% by weight or 60% by weight.
  • the base oil or base oil mixture used according to the invention also preferably has a viscosity of at least 5 mm 2 / s, more preferably from 5 mm 2 / s to 20,000 mm 2 / s, particularly preferably from 5 mm 2 / s to 10,000 mm 2 / s, and very particularly preferably from 5 mm 2 / s to 1700 mm 2 / s, each measured in accordance with ASTM D 7042 at 40 ° C.
  • the lubricant composition according to the invention also contains, as a further component B), at least one additive as an additive which improves a desired property of the lubricant.
  • additives or additives known in the art are antioxidants, anti-wear additives, high-pressure additives, friction reducers, anti-corrosion agents,
  • Non-ferrous metal deactivators ion complexing agents, solid lubricants, dispersants, pour point and viscosity improvers, UV stabilizers, emulsifiers, color indicators and defoamers, without being restricted to these.
  • the lubricant composition therefore contains at least one additive selected from antioxidants, anti-wear additives, high-pressure additives,
  • Friction reducers corrosion protection agents, non-ferrous metal deactivators, ion complexing agents, solid lubricants, dispersants, pour point and
  • the lubricant composition particularly preferably contains an additive mixture of two or more additives selected from antioxidants, anti-wear additives, and high-pressure additives
  • Friction reducers corrosion protection agents, non-ferrous metal deactivators, ion complexing agents, solid lubricants, dispersants, pour point and Viscosity improvers, UV stabilizers, emulsifiers, color indicators and defoamers.
  • the targeted addition of one or more additives can improve certain properties of the lubricant and / or give the lubricant certain properties.
  • the oxidation stability of the lubricant composition can be further improved and thus an increase in (thermal) stability can be achieved.
  • the antioxidants are preferably selected from the following compounds, without being limited thereto: Amine compounds (aminic antioxidants), in particular linear or branched aliphatic amine compounds and aromatic amine compounds and their salts, the aliphatic and aromatic amine compounds with one or more radicals selected from linear and / or branched alkyl radicals and aryl radicals, phenol compounds (phenolic antioxidants); Propionates; Phosphites; sulfur-containing compounds, in particular sulfur-containing phenol compounds and sulfur-containing carboxylic acids, phosphorothionates, thiocarbamates, thiophosphates, and thiopropionates; and mixtures of these compounds.
  • Amine compounds aminonic antioxidants
  • aliphatic and aromatic amine compounds with one or more radicals selected from linear and / or branched alkyl radicals and aryl radicals
  • phenol compounds phenolic antioxidants
  • Propionates Phosphites
  • sulfur-containing compounds in particular sulfur-containing phenol compounds and sulfur-containing carb
  • antioxidants are selected from aromatic diamines and secondary aromatic amines, phenolic resins, Thiophenolharzen, phosphites, Zinkthiocarbamat, zinc thiophosphate, butylated hydroxytoluene, butylated hydroxyanisole, phenyl-alpha-naphthylamines, phenyl-beta-naphthylamines, diphenylamine and diphenylamine derivatives, in particular octylated diphenylamines , butylated diphenylamines and styrenated diphenylamines, quinoline and quinoline derivatives, naphthylamine and naphthylamine derivatives, di-alpha-tocopherol, di-te / f-butyl
  • antioxidants according to the invention are benzolamine, N-phenyl, reaction products with 2,4,4-trimethylpentene, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, bis (4- ( 1, 1, 3,3-tetramethylbutyl) phenyl) amine, N - [(1, 1,3,3-
  • Tetramethylbutyl) phenyl] naphthalen-1-amine isomer mixtures of 90% to 97.5% C7 to C9 alkyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate and 2.5% to 10% Methyl-3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, and thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], without being limited thereto.
  • Suitable antioxidants are commercially available.
  • the antioxidant is selected from phenolic antioxidants, aminic antioxidants, preferably linear or branched aliphatic amine compounds and aromatic amine compounds.
  • the antioxidant is selected from phenolic antioxidants, aminic antioxidants, preferably linear or branched aliphatic amine compounds and aromatic amine compounds and their salts, the aliphatic and aromatic compounds having one or more radicals can be substituted from linear and / or branched alkyl radicals and aryl radicals, phosphites, phosphorothionates and thiocarbamates, especially when the lubricant composition is used as gear, plain bearing and roller bearing oil in the marine area and in inland waters, as well as in machines and Machine elements on land that can come into contact with water and / or aqueous media, with amine antioxidants being particularly preferred.
  • a single compound or a combination of two or more compounds can be used as the antioxidant.
  • the lubricant composition according to the invention can contain one or more corrosion protection agents.
  • the addition of anti-corrosion agents can give the lubricant composition a corrosion and rust-inhibiting effect.
  • Suitable anti-corrosive agents are, without being limited thereto, preferably selected from the group of acid salts, in particular carboxylic acid metal salts, sulfonic acid metal salts, naphthalenesulfonic acid metal salts, benzosulfonic acid metal salts, benzoic acid metal salts, naphthoic acid metal salts, metal salts naphthenic acid metal salts, Salicylic acid metal salts and phosphoric acid metal salts, and their derivatives, including linear and branched aliphatic and aromatic derivatives of the acids / acid salts, which are also substituted with one or more radicals selected from linear and / or branched alkyl radicals and aryl radicals may be, with sodium (Na), calcium (Ca), potassium (K) and magnesium (Mg) salts being particularly preferred; Amine, imine and imide compounds and their metal salts, in particular linear and branched aliphatic amine, imine and imide compounds and aromatic amine, imine and imide
  • Suitable anti-corrosion agents are commercially available.
  • N-methylglycine or its derivatives e.g. sarcosine
  • the corrosion protection agent is selected from the group of carboxylic acid Metal salts, sulfonic acid metal salts, benzosulfonic acid metal salts, naphthalenesulfonic acid metal salts, benzoic acid metal salts and naphthoic acid metal salts and naphthenic acid metal salts, as well as their Derivatives, including linear and branched aliphatic and aromatic derivatives of the acid salts, which can also be substituted with one or more radicals selected from linear and / or branched alkyl radicals and aryl radicals, where Na, Ca, K- and Mg salts are particularly preferred; and partially neutralized or unneutralized dicarboxylic acid derivatives, such as succinic acid half-esters.
  • the corrosion protection agent is selected from neutralized or neutral acid salts, preferably from neutral carboxylic acid, sulfonic acid, naphthalenesulfonic acid, benzosulfonic acid, benzoic acid, naphthoic acid, naphthenic acid and phosphoric acid metal salts and their derivatives , including linear and branched aliphatic and aromatic derivatives of the acid salts, which can also be substituted with one or more radicals selected from linear and / or branched alkyl radicals and aryl radicals, and preferably the Na, Ca, K - and Mg salts, with neutralized or neutral sulphonic acid, naphthalenesulphonic acid and benzosulphonic acid metal salts being very particularly preferred, and in particular the Ca salts and neutral calcium sulphonates being most preferred, especially when the lubricant composition is used as gear, roller bearings - and plain bearing oil in the marine area and in the area of inland waters, as
  • the anti-corrosion agents can be used singly or in a combination of two or more.
  • neutral or neutralized acid salts or metal salts are understood as meaning acid salts or metal salts which have an acid number (TAN) of 30 mg KOH / g or less.
  • the lubricant composition according to the invention can contain one or more non-ferrous metal deactivators and / or ion complexing agents.
  • non-ferrous metal deactivators and / or ion complexing agents By adding non-ferrous metal deactivators and / or ion complexing agents, non-ferrous metals such as cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), which belong to the so-called non-ferrous metals, as well as their alloys, are protected from corrosion by active sulfur.
  • Cd cadmium
  • Co cobalt
  • Cu copper
  • Ni nickel
  • Pb tin
  • Zn zinc
  • Suitable non-ferrous metal deactivators and ion complexing agents are preferably selected from triazole compounds, in particular tolyltriazole, benzotriazole and their derivatives, imidazoline compounds, diazoles, mercaptothiadiazoles.
  • non-ferrous metal deactivators or ion complexing agents are triazole compounds, salicylates and mercaptothiadiazoles, and their derivatives, with triazole compounds and derivatives thereof, in particular benzotriazole and derivatives thereof, being very particularly preferred, both when the lubricant composition is used as gear bearings, roller bearings - and plain bearing oil for general industry as well as in the marine area and in the area of inland waters, as well as in machines and machine elements on land that can come into contact with water and / or aqueous media.
  • the non-ferrous metal deactivators or ion complexing agents can be used individually or in a combination of two or more thereof.
  • Examples of particularly preferred non-ferrous metal deactivators or ion complexing agents are benzotriazole and tolyltriazole and derivatives thereof, N, N-bis (2-ethylhexyl) -ar-methyl-1H-benzotriazole-1-methanamine, and a reaction mixture composed of N, N-bis ( 2-ethylhexyl) -6- methyl-1H-benzotriazole-1-methanamine, N, N-bis (2-ethylhexyl) -4-methyl-2H-benzotriazole-2-methanamine, N, N-bis (2-ethylhexyl) -5-methyl-2H-benzotriazole-2-methanamine, N, N-bis (2-ethylhexyl) -4-methyl-1H-benzotriazole-1-methylamine and N, N-bis (2-ethylhexyl) -5- methyl-1H-benzotriazole-1-methylamine, without being restricted to this
  • Suitable non-ferrous metal deactivators or ion complexing agents are commercially available.
  • the lubricant composition according to the invention can also contain one or more wear protection agents, friction reducers and / or extreme pressure additives.
  • Suitable wear protection agents, friction reducers and high-pressure additives are preferably selected from amines, amine phosphates, branched and / or linear alkylated phosphates, phosphites, thiophosphates, and phosphorothionates, aryl phosphates, aryl thiophosphates, alkylated polysulfides, sulfurized amine compounds, sulfurized fatty acid methyl esters, sulfurized fatty acid methyl esters, Al22, sulfurized fatty acid methyl esters , T1O2, ZrÜ 2 , WO3, Ta 2 0 5 , V2O5, CeÜ 2 , Aluminum titanate, BN, MoSh, SiC, S13N4, TiC, TiN, ZrB2, clay minerals and their mixtures, sulfonic acid salts, and thermally stable carbonates and
  • Suitable commercially available additives are, for example, the following products: IRGALUBE® TPPT, IRGALUBE® 232, IRGALUBE® 349, IRGALUBE® 353, IRGALUBE® 211 and ADDITIN® RC3760 Liq 3960, FIRC-SHUN® FG 1505 and FG 1506, NA-LUBE® KR-015FG, LUBEBOND®, FLUORO® FG, SYNALOX® 40-D, ACHESON® FGA 1820 and ACHESON® FGA 1810.
  • the lubricant composition according to the invention can also contain one or more viscosity improvers.
  • Suitable viscosity improvers are preferably selected from linear and branched alkylated, acrylated and aliphatic polymers and copolymers and polymerized fatty acid esters, as well as mixtures of two or more thereof, without being restricted thereto.
  • suitable viscosity improvers are polymethacrylate, ethylene-propylene copolymer, polyisobutylene, polyalkylstyrene and hydrogenated styrene-isoprene copolymer. Suitable viscosity improvers are available for purchase.
  • the lubricant composition according to the invention can also contain one or more UV stabilizers.
  • Suitable UV stabilizers are preferably selected from nitrogen heterocycles and substituted nitrogen heterocycles, as well as mixtures of two or more thereof, without being restricted thereto. Suitable UV stabilizers are available for purchase.
  • the lubricant composition according to the invention can also contain one or more solid lubricants.
  • Suitable solid lubricants are preferably selected from PTFE, boron nitride, zinc oxide, magnesium oxide, pyrophosphates, thiosulfates, magnesium carbonate, calcium carbonate, calcium stearate, zinc sulfide, molybdenum sulfide, tungsten sulfide, tin sulfide, graphite, graphene, nano tubes, Si0 2 modifications, and mixtures of two or more of this, without being limited to it.
  • Suitable solid lubricants are available for purchase.
  • the lubricant composition according to the invention can also contain one or more emulsifiers.
  • Suitable emulsifiers are preferably selected from branched and / or linear ethoxylated and / or propoxylated alcohols and their salts, in particular alcohols with chain lengths of 14-18 carbon atoms, ethoxylated and / or propoxylated alkyl ethers, fatty acid esters, and ionic surfactants such as.
  • the lubricant composition according to the invention can also contain one or more defoamers in order to prevent the formation of solid foams.
  • Suitable defoamers are preferably selected from ethoxylated and / or propoxylated alcohols with chain lengths of 10-18 carbon atoms, mono- and diglycerides of edible fats, acrylates, propoxylated and / or ethoxylated alkyl ethers, polyols including diols, and polysiloxanes such as silicone oils or polydimethylsiloxanes, as well as mixtures of two or more of these, without being limited thereto.
  • Defoamers particularly preferred according to the invention are ethoxylated and / or propoxylated alcohols with chain lengths of 10-18 carbon atoms, polyols, acrylates and polysiloxanes, polysiloxanes being very particularly preferred, both when the lubricant composition is used as gear, roller bearing and plain bearing oil in the marine sector and in the area of inland waters, as well as in machines and machine elements on land that can come into contact with water and / or aqueous media, as well as when the lubricant composition is used as gear, roller bearing and plain bearing oil for general industry and in the food sector processing industry for occasional, unintended food contact. Suitable defoamers are available for purchase.
  • the lubricant composition according to the invention can also contain one or more color indicators.
  • a suitable color indicator is, for example, 2,5-thiophenediylbis (5-ter-butyl-1,3-benzoxazole), without being restricted to this. Suitable color indicators are available for purchase.
  • All additives can each be present as a single compound or in a combination of two or more in the lubricating grease composition according to the invention.
  • the total amount of all additives in the lubricant composition is preferably 0.01% by weight or more, particularly preferably 0.025% by weight or more, for example 0.5% by weight or more, and 10% by weight or less, especially preferably 7.5% by weight or less, for example 6% by weight or less, or 5% by weight or less, based on the total lubricant composition.
  • the total amount of all additives is 0 0.1-7.5% by weight, very particularly preferably 0.01-6.0% by weight, based on the total weight of the lubricant composition.
  • the total amount of all additives is 0.5-7.0% by weight, very particularly preferably 0.5-5.0% by weight, based on the total weight of the lubricant composition.
  • the additives serve to improve certain properties of the lubricant and / or to give it certain properties, they can be added to the lubricant as a single substance or as a mixture of two or more additives, depending on the need or requirement of the lubricant, the amount of the individual additives in an additive mixture is not restricted as long as the total amount of all additives defined above, based on the total lubricant composition, is not exceeded.
  • the lubricant composition contains
  • the lubricant composition contains an additive mixture of two or more additives, one or more antioxidants , one or more anti-wear and / or high-pressure additives, one or more defoamers, optionally one or more non-ferrous metal deactivators, optionally one or more corrosion protection agents, and optionally a color indicator.
  • the lubricant composition contains
  • the additive mixture one or more antioxidants, one or more anti-wear and / or extreme pressure additives, one or more defoamers, optionally one or more
  • Non-ferrous metal deactivators optionally one or more corrosion protection agents, and optionally a color indicator
  • the lubricant composition contains
  • the base oil is preferably selected from polyalphaolefins (PAOs), metallocene-polyalphaolefins (mPAOs), white oils, mineral oils, neopentyl glycol esters, pentaerythritol esters, trimetylolpropane esters and pentaerythritol and trimetylolpropane complex carboxylic acid and trimethylolpropane complex esters, which are preferably as defined above , Triglyceride fatty acid (C8 / C10) esters, alkyl naphthalenes, ethylene / ⁇ -olefin oligomers and water-soluble, water-miscible and / or oil-soluble, and mixtures of two or more thereof.
  • PAOs polyalphaolefins
  • mPAOs metallocene-polyalphaolefins
  • white oils mineral oils
  • Lubricants of this embodiment are highly compatible with elastomers such as FKM, NBR, HNBR, ACM / AEM and polyurethanes, which are commonly used as sealing materials.
  • lubricants of this embodiment show good tribological properties, so that they improve the sliding behavior, reduce the stick-slip effect ("Sti ck-SI i p effect"), especially in frictional contact with high loads and low bearing speeds and high loads, as well as a positive one Influence on the microstain resistance, which is why they are particularly suitable for use as gear, roller bearing and plain bearing oil for general industry.
  • the lubricant composition contains as an additional component D) an ester compound, mixtures of two or more different ester compounds also being included according to the invention.
  • the at least one ester compound D) is selected from natural glyceride esters, in particular from the group consisting of sunflower oil, rapeseed oil or rapeseed oil, linseed oil, corn oil, diestel oil, soybean oil, linseed oil, peanut oil, lesqueralle oil, palm oil, olive oil, the can each be present in the monomeric, oligomeric and / or polymerized form, as well as mixtures of the oils mentioned; and synthetic esters, in particular from the group consisting of Polyol esters, polyol complex esters, complex esters of dimer acids, dimer acid esters, aliphatic carboxylic acid and dicarboxylic acid esters, phosphate esters and trimellitic and pyromellitic acid esters; and combinations thereof, with polyol esters and polyol complex esters being particularly preferred, and in particular those polyol esters which are obtained by reacting polyhydric alcohols (that is to say alcohols with more than one
  • ester compounds D) be biodegradable according to standard OECD 301 A-F or OECD 306 in order to achieve improved biodegradability and ecological compatibility of the lubricant composition according to the invention.
  • the at least one ester compound has a kinematic viscosity of at least 130 mm 2 / s at 40 ° C.
  • the kinematic viscosity of the at least one ester compound is particularly preferably in the range from 130-1500 mm 2 / s at 40 ° C., more preferably in the range from 130-1300 mm 2 / s at 40 ° C., each measured in accordance with ASTM D 7042 .
  • ester compounds in the lubricant composition in an amount of 0.1-85% by weight, more preferably from 5-85% by weight, particularly preferably from 10-85% by weight % By weight, based on the total weight of the lubricant composition, is included.
  • the lubricant composition of the present invention contains:
  • Total weight of the lubricant composition the constituents present adding up to a total of 100% by weight and components A), B), C) and D) being as defined above.
  • a lubricant of this composition shows good sliding behavior and is at the same time readily biodegradable, and is therefore particularly suitable for use as gear oil, roller bearing oil and plain bearing oil in the marine area and in inland waters, as well as in Machines and machine elements on land that can come into contact with water and / or aqueous media.
  • the present invention therefore relates in a further aspect to a lubricant composition, in particular for use as gear oil, roller bearing oil and plain bearing oil in the marine area and in inland waters, as well as in machines and machine elements on land that can come into contact with water and / or aqueous media , containing as components:
  • the range is from 1 to 25, preferably from 1.3 to 22, particularly preferably 1.7 to 17, and most preferably from 2 to 14, where J s is the sum of the area (s) of the IR absorption band (s) in the wave number range 3100- 2750 cnr 1 denotes in an ATR spectrum of the organic compound, and J S2 ′′ denotes the sum of the area (s) of the IR absorption band (s) in the wavenumber range 1800- 1650 cm -1 in an ATR spectrum of the organic compound.
  • the constituents A), B), C) and D) are preferably as defined above.
  • the ester compound D) is particularly preferably selected from neopentyl glycol esters, trimethylolpropane esters, and pentaerythritol esters, which are in particular with saturated and / or mono- or polyunsaturated, linear and / or branched monocarboxylic acids of chain length C4-C36, preferably C10-36, particularly preferably C14-C36, and very particularly preferably C18-C36, are esterified; and neopentyl glycol complex esters, trimethylolpropane complex esters, and pentaerythritol complex esters, in particular with saturated and / or mono- or polyunsaturated, linear and / or branched monocarboxylic acids of chain length C4-C36, preferably C10-36, particularly preferably C14-C36, and very particularly preferably C18-C36, and with saturated and / or mono- or polyunsaturated, linear and / or branched
  • ester compounds are particularly preferred with regard to the biocompatibility or biodegradability of the lubricant composition.
  • ester compounds are pentaerythritol tetraisostearate, pentaerythritol isostearate sebacate complex ester, trimethylolpropane trisostearate,
  • Trimethylolpropane trioleate Trimethylolpropane trioleate, trimethylolpropane tricaprylate, trimethylolpropane isostearate stearate sebacate complex ester, neopentyl glycol diisostearate, without being restricted to this.
  • the base oil is selected from oil-soluble polyglycols, polyalphaolefins (PAOs), metallocene polyalphaolefins (mPAOs), white oils, ferns-based oils, estolides, and mixtures of two or more thereof, oil-soluble polyglycols, Polyalphaolefins (PAOs) and metallocene polyalphaolefins (mPAOs) are very particularly preferred.
  • These base oils have particularly advantageous properties with respect to on their biodegradability (ie, biodegradable, for example according to OECD test guideline 301 AF or OECD 306) and can accordingly contribute to an improved biodegradability of the lubricant composition.
  • the lubricant composition contains an additive mixture which comprises one or more antioxidants, non-ferrous metal deactivators and corrosion inhibitors and optionally one or more defoamers and anti-wear and / or extreme pressure additives.
  • the at least one additive B) is an additive mixture that contains one or more antioxidants, non-ferrous metal deactivators and corrosion protection agents and optionally one or more defoamers and anti-wear and / or high-pressure additives.
  • the following have proven particularly advantageous:
  • Antioxidants selected from phenolic antioxidants, aminic antioxidants, preferably linear or branched aliphatic amine compounds and aromatic amine compounds and salts thereof, the aliphatic and aromatic compounds having one or more radicals selected from linear and / or branched alkyl radicals and aryl Residues that can be substituted, phosphites, phosphorothionates and thiocarbamates, aminic antioxidants being particularly preferred;
  • Non-ferrous metal deactivators selected from triazole compounds, salicylates and mercaptothiadiazoles, and their derivatives, triazole compounds, in particular benzotriazole compounds, and derivatives thereof being particularly preferred;
  • Corrosion inhibitors selected from neutralized or neutral carboxylic acid, sulfonic acid, naphthalenesulfonic acid, benzosulfonic acid, benzoic acid, naphthoic acid, naphthenic acid and phosphoric acid metal salts, and their derivatives, preferably Na, Ca, K and Mg salts , whereby neutralized or neutral sulfonic acid, naphthalenesulfonic acid and benzosulfonic acid metal salts are particularly preferred, in particular Ca salts, and being neutral calcium sulfonates, such as neutral
  • Alkylnaphthalenesulfonic acid calcium salts are very particularly preferred.
  • Defoamers selected from ethoxylated and / or propoxylated alcohols with chain lengths of 10-18 carbon atoms, polyols including diols, acrylates and polysiloxanes, polysiloxanes being particularly preferred;
  • Wear protection and / or extreme pressure additives selected from amines, amine phosphates, branched and / or linear alkylated phosphates, phosphites, thiophosphates, and phosphorothionates, aryl phosphates, alkylated polysulfides, sulfurized amine compounds, sulfurized fatty acid methyl esters, naphthenic acids, nanoparticles selected from Al 2 O 3 , S1O 2 , T1O 2 , ZrC> 2, WO 3 , Ta 2 0s, V 2 O 5 , CeC> 2, aluminum titanate, BN, M0S1 2 , SiC, S1 3 N 4 , TiC, TiN, Zrß2, clay minerals and their mixtures, Sulfonic acid salts, and thermally stable carbonates and sulfates.
  • amines selected from amines, amine phosphates, branched and / or linear alkylated phosphates, phosphites
  • Such an additive mixture is particularly suitable for lubricant compositions for use as gear, roller bearing or plain bearing oil in the marine sector and in inland waters as well as in machines and machine elements on land that can come into contact with water and / or aqueous media.
  • an additive mixture comprising: one or more antioxidants selected from aminic antioxidants, phenolic antioxidants, phosphites, phosphorothionates and thiocarbamates; one or more non-ferrous metal deactivators selected from triazole compounds, salicylates and mercaptothiadiazoles, and their derivatives; one or more corrosion inhibitors selected from neutralized / neutral carboxylic acid, sulfonic acid, naphthalenesulfonic acid, benzosulfonic acid, benzoic acid, naphthoic acid, naphthenic acid and phosphoric acid metal salts, as well as their derivatives, in particular Na, Ca, K and Mg -Salts; optionally one or more defoamers selected from ethoxylated and / or propoxylated alcohols with chain lengths of 10-18 carbon atoms, polyols, acrylates and polysiloxanes; and optionally one or more anti-wear
  • a lubricant composition which is particularly suitable for use as gear, roller bearing or plain bearing oil in the marine sector and in inland waterways as well as in machines and machine elements on land that can come into contact with water and / or aqueous media therefore contains according to a particularly preferred embodiment of the present invention:
  • the total weight of the lubricant composition comprising: one or more antioxidants selected from aminic antioxidants, phenolic antioxidants, phosphites, phosphorothionates and thiocarbamates; one or more non-ferrous metal deactivators selected from triazole compounds, salicylates and mercaptothiadiazoles, and their derivatives; one or more corrosion inhibitors selected from neutralized / neutral carboxylic acid, sulfonic acid, naphthalenesulfonic acid, benzosulfonic acid, benzoic acid, naphthoic acid, naphthenic acid and phosphoric acid metal salts, as well as their derivatives; optionally one or more defoamers selected from ethoxylated and / or propoxylated alcohols with chain lengths of 10-18 carbon atoms, polyols, acrylates and polysiloxanes; and optionally one or more anti-wear and / or extreme pressure additives selected from amines, amine
  • the ester compound being selected from neopentyl glycol esters, trimethylolpropane esters, and pentaerythritol esters, particularly preferred with saturated and / or mono- or polyunsaturated, linear and / or branched monocarboxylic acids of chain length C4-C36, preferably C10-36 C14-C36, and very particularly preferably C18-C36, are esterified; and neopentyl glycol complex esters, trimethylolpropane complex esters, and pentaerythritol complex esters, in particular with saturated and / or mono- or polyunsaturated, linear and / or branched monocarboxylic acids of chain length C4-C36, preferably C10-36, particularly preferably C14-C36, and very particularly preferably C18-C36, and with saturated and / or mono- or polyunsaturated, linear and / or branched dicarboxylic
  • the additive mixture is largely neutral or has the lowest possible total acid number (TAN), since this has a particularly advantageous effect with regard to the elastomer compatibility of the lubricant compositions.
  • TAN total acid number
  • the lubricant composition contains:
  • a base oil selected from oil-soluble polyglycols, polyalphaolefins (PAOs) and metallocene-polyalphaolefins (mPAOs), as well as mixtures of two or more thereof;
  • PAOs polyalphaolefins
  • mPAOs metallocene-polyalphaolefins
  • B) 0.5-5% by weight of an additive mixture comprising one or more aminic antioxidants, one or more neutralized / neutral sulfonic acid, naphthalenesulfonic acid and / or benzosulfonic acid metal salts, one or more triazole compounds, in particular benzotriazole compounds, and / or derivatives thereof, and one or more polysiloxanes;
  • a lubricant of this composition shows a high level of compatibility with sealing materials, in particular elastomers, as well as good sliding and lubricating properties.
  • a lubricant of this composition has good biocompatibility, ie good biodegradability according to standard OECD 301 A - F or OECD 306 and low aquatoxicity (e.g. according to standard OECD 201, 202, 203 or 236), and is therefore particularly suitable for use as Gear oil Rolling bearing or plain bearing oil in the marine area and in inland waters, as well as in machines and machine elements on land that can come into contact with water and / or aqueous media.
  • the present invention is therefore also a
  • Lubricant composition for use as gear, roller bearing and
  • a base oil selected from oil-soluble polyglycols, polyalphaolefins (PAOs) and metallocene-polyalphaolefins (mPAOs), as well as mixtures of two or more thereof;
  • PAOs polyalphaolefins
  • mPAOs metallocene-polyalphaolefins
  • B) 0.5-5% by weight of an additive mixture comprising one or more amine antioxidants, one or more neutralized / neutral sulfonic acid, naphthalenesulfonic acid and / or benzosulfonic acid metal salts, one or more triazole compounds and / or triazole derivatives , and one or more polysiloxanes;
  • the specified amounts each refer to the total weight of the lubricant composition and the constituents contained add up to a total of 100% by weight
  • the organic compound has a relative permittivity e G in the range from 1.5 to 10, preferably 1.7 to 8, particularly preferably from 2 to 7, and most preferably from 2.3 to 5, and where a quotient ⁇ Si / J-S2 of the organic compound in the range from 1 to 25, preferably from 1.3 to 22, particularly preferably 1.7 to 17, and most preferably from 2 to 14, where J Si ”is the sum of the area (s) of the IR absorption band (s) in the wavenumber range 3100-2750 cm -1 in an ATR spectrum of the organic compound, and “J S2” denotes the sum of the area (s) of the IR absorption band (s) in the wavenumber range 1800-1650 cm -1 in an ATR spectrum of the organic compound.
  • the lubricant composition according to the invention is
  • gear oils in particular spur, bevel, planetary, worm, hypoid and cycloid gears
  • hydraulics linear guides
  • pneumatic components fittings
  • Bearings in particular slide and roller bearings
  • chains ropes
  • springs springs
  • screws and compressors and in particular also of machine components and in systems that come into occasional, unintentional contact with food, without being limited to this.
  • Chains consist of similar, interconnected links. They are used for power transmission and are used as drive chains, e.g. for bicycles, as timing chains for car engines, as load chains for lock gates or as transport chains for conveyor systems.
  • Ropes can be used in running ropes such as B. can be found in cranes, winches, and elevators, subdivide into standing ropes, such as guy ropes, as well as suspension ropes and sling ropes. Screws are connecting elements that should be assembled and disassembled with as little effort as possible and the materials used are not damaged in the process.
  • Springs include leaf spring packs, cup spring packs, ring spring packs, coil cup springs, and leg springs.
  • Valves are used to regulate solid, liquid and gas flows. In addition, they can also take on the function of standing, i.e. mixing and regulating one or more volume flows. In addition to the typical applications as a tap or mixer, all types of valves also apply to the fittings.
  • Pneumatic components are pneumatic valves and cylinders which, by converting pneumatic energy into mechanical energy, generate straight-line movements for moving, lifting or returning workpieces and tools. With hydraulics, force and torque are transmitted by means of pressure and volume flow. Examples are axial piston machines, external gear machines and radial piston motors.
  • Another object of the present invention is therefore the use of the lubricant compositions according to the invention as gear oil, roller bearing oil and plain bearing oil for general industry, in particular for the lubrication of gears such as spur, bevel, planetary, worm, hypoid and cycloid gears, hydraulics, Linear guides, pneumatic components, fittings, bearings, such as plain and roller bearings, chains, ropes, springs, screws and compressors, and in particular of machine components and in systems that come into occasional, unintentional contact with food, the lubricant composition preferably containing:
  • an additive mixture comprising: one or more antioxidants selected from phenolic antioxidants, aminic antioxidants, propionates and thiopropionates; one or more defoamers selected from ethoxylated and / or propoxylated alcohols with chain lengths of 10-18 carbon atoms, polyols, acrylates and polysiloxanes; one or more anti-wear and / or extreme pressure additives selected from amines, amine phosphates, branched and / or linear alkylated phosphates, phosphites, thiophosphates, and phosphothionates, aryl phosphates, alkylated polysulfides, sulfurized amine compounds, sulfurized fatty acid methyl esters, naphthenic acids, nanoparticles selected from AI 2 O 3 , S1O 2 , T1O 2 , ZrÜ2, WO
  • the base oil preferably being selected from polyalphaolefins (PAOs), metallocene polyalphaolefins (mPAOs), white oils, mineral oils, neopentyl glycol esters, pentaerythritol esters, trimethylol propane esters as well as pentaerythritol and trimetylolpropane complex esters, which are preferably as defined above, aliphatic carboxylic acid and dicarboxylic acid esters, triglyceride fatty acid (C8 / C10) esters, alkylnaphthalene, Ethylene / ⁇ -olefin oligomers and oil-soluble polyglycols, as well as mixtures of two or more thereof, and where the constituents contained add up to a total of 100% by weight and the organic compound C) is as defined above, as gear oil, roller
  • the lubricant composition according to the invention is also excellently suited for use as gear oil, roller bearing oil and plain bearing oil in the marine area and in inland waters as well as in machines and machine elements on land that can come into contact with water and / or aqueous media.
  • Areas of application in the marine sector and in inland waters include, in particular, the lubrication of gears, hydraulics, bearings such as sliding, roller or stern tube bearings, propeller rudders, propeller shafts, pneumatic components, linear guides, chains and ropes in machines, machine components and systems used in the marine sector come into contact with salt water, for example offshore systems, or in inland waters with water and / or aqueous media, without being limited to this.
  • gears are used in thrusters and azipods, for example.
  • This application is used for power transmission and power conversion, which takes place between the drive and the propeller. Both an entry of water into the interior and an escape of lubricant into the marine environment are to be expected here.
  • Hydraulics in the marine sector are used to drive adjustable propeller rudders, as well as in fin stabilizers and rudder bearings.
  • linear guides are also used, which are usually lubricated with the same lubricant.
  • lubrication takes place below the waterline. This is also the case in this case water entry into the machine parts and leakage of the lubricant into the marine environment are to be expected.
  • the plain bearing application in the marine sector is primarily a propeller shaft bearing, which is located in the stern tube, the so-called stern tube bearing.
  • the primary task of the propeller shaft is to transmit the drive movement through the ship's hull to the propeller.
  • the bearing ensures low-friction movement.
  • This also includes chains that are used, for example, in lock gates, ropes such as ship ropes or ropes that are used in networks, as well as fittings for regulating solid, liquid and gas flows.
  • chains that are used, for example, in lock gates, ropes such as ship ropes or ropes that are used in networks, as well as fittings for regulating solid, liquid and gas flows.
  • screws, springs and valves have to be lubricated in a wide variety of devices and machines.
  • Another object of the present invention is therefore the use of the lubricant composition according to the invention as gear oil, roller bearing oil and plain bearing oil in the marine sector and in inland waters, in particular for the lubrication of gears, hydraulics, propeller rudders, propeller shafts, linear guides, pneumatic components, fittings, bearings such as sliding , Roller or stern tube bearings, chains, ropes, springs and screws in machines, machine components and systems that come into contact with salt water in the marine sector or with water and / or aqueous media in inland waters, as well as in machines and machine elements on land that come into contact with Water and / or aqueous media can come into contact, the lubricant composition preferably containing:
  • Total weight of the lubricant composition the constituents present adding up to a total of 100% by weight and components A), B), C) and D) being as defined above.
  • a base oil selected from oil-soluble polyglycols, polyalphaolefins (PAOs) and metallocene-polyalphaolefins (mPAOs), as well as mixtures of two or more thereof;
  • PAOs polyalphaolefins
  • mPAOs metallocene-polyalphaolefins
  • B) 0.5-5% by weight of an additive mixture comprising one or more amine antioxidants, one or more neutralized / neutral sulfonic acid, naphthalenesulfonic acid and / or benzosulfonic acid metal salts, one or more triazole compounds and / or triazole derivatives , and one or more polysiloxanes;
  • viscosity measurements are carried out in accordance with ASTM D 7042 using a Stabinger viscometer SVM 3000 (Anton Paar).
  • the sample is dissolved in a solvent mixture and then titrated with an alcoholic potassium hydroxide solution in accordance with ASTM D 664-18E02.
  • the titration is carried out potentiometrically with the aid of a Solvotrode on a Metrohm 905 Titrando titration unit.
  • the molecular weight is determined by means of GPC (gel permeation chromatography) against a polystyrene standard according to DIN 55672-1: 2016-03 "Gel permeation chromatography (GPC) - Part 1: Tetrahydrofuran (THF) as eluent" using a SECcure GPC system .
  • GPC gel permeation chromatography
  • ATR infrared spectroscopy measurements on the slip improvers are based on the standard DIN 51451 (DIN 51451: 2020-02) "Testing of mineral oil products and related products: Infrared spectrometric analysis - General
  • the integral range is halved.
  • the respective absolute minima are determined in these two sub-areas. If there are several absolute minimum points in a sub-area, the point is used which is located furthest in the edge area of the entire integral.
  • the baseline is calculated using a straight line equation from the two absolute minimum points in the entire integral.
  • the spectrum to be integrated is adjusted for the baseline.
  • the baseline-adjusted spectrum is then integrated.
  • the production of the lubricant compositions takes place according to a procedure known to the person skilled in the art, in that the base oils and additives are mixed in a suitable vessel, e.g. a mixing vessel, using a suitable stirrer. Solid additives or components are brought into solution by increasing the temperature and stirred in. Production can also be carried out by means of continuous processes.
  • lubricant compositions according to the invention are prepared as described above (see Table 2 - Examples 1-15b).
  • lubricant compositions without slip improvers base formulation
  • base formulation lubricant compositions without slip improvers
  • Example 16 Effect of the slip improver on the slip properties of lubricants
  • the transition speed is defined as the speed at which the contact surfaces separate completely, i.e. the speed at which the transition from mixed friction (i.e. occasional contact of the metallic friction partners / incompletely formed lubricating film) to the elastohydrodynamic (EHL) area (i.e. fully developed lubricating film and complete separation of the metallic friction partners by the lubricating film).
  • mixed friction i.e. occasional contact of the metallic friction partners / incompletely formed lubricating film
  • EHL elastohydrodynamic
  • the tests are carried out using a tribometer (BALL-DISC TRIBOMETER from AC 2 Tresearch / Austrian Competence Center for Tribology) with the test combination cylinder-on-ring.
  • a 10 c 10 mm (diameter c length) 100Cr6 steel cylinder with a roughness Ra of approx. 0.02 pm is rubbed against a white metal ring with a roughness Ra of approx. 1.3 pm while applying a defined load.
  • the white metal ring is located in an oil reservoir.
  • a running-in procedure was performed prior to the start of the test. This included speed ramps from 0.05 m / s to 2.5 m / s and then from 2.5 m / s to 0.05 m / s at 10 N and 20 N at room temperature and at 10 N at 40 ° C
  • the Stribeck curve is then generated at 20 N at 40 ° C with a speed ramp of 0.05 m / s to 2.5 m / s.
  • 1 shows the measurement of the Stribeck curves for a basic formulation without a slip improver (comparative example 1) and a lubricant according to the invention with a slip improver (example 8). It can be seen that in the presence of the slip improver, the transition speed shifts significantly to a lower speed (A to B).
  • Fig. 2 the transition speed of all tested lubricants is shown.
  • all examined lubricants with slip improvers (Examples 2, 5, 8, 9, 11) have a significantly lower transition speed than a basic formulation (Comparative Example 1) and a lubricant composition that contains a non-inventive slip improver (Comparative Example 5 ), which indicates that the lubricants according to the invention which contain the slip improver according to the invention form the lubricating film much earlier than those of the comparative examples.
  • the improved lubricating properties of the lubricants according to the invention with slip improvers show that they bring about an improved load capacity, for example in slide bearings and similar components.
  • Example 17 Determination of the sliding behavior by means of elastomer dynamic measurements:
  • the conditions / measurement parameters are selected as follows: Elastomer material: 75 FKM 585; Pressure: 0.25 bar; Temperature: 70 ° C; Test duration: 240 h; 10 cycles with a speed of 2000 rpm (20h) and Orpm (4h); Greasing: Bremer & Leguil Cassida GTS 2.
  • Example 3 GV 1; Example 15b: GV 2, in each case in comparison to Comparative Example 2) a reduction in the radial shaft sealing ring tread / wear width from 0.66 mm to 0.35 mm (Example 3) or 0.54 mm (Example 15b) and a reduction in the shaft run-in from 20 pm to 0 pm (Example 3) or 14 pm (Example 15b) compared to the basic formulation without slip improvers (Comparative Example 2) is achieved .
  • the measurement results for comparative example 4 show, increasing the viscosity of the basic formulation (mPAO 150 / comparative example 4 compared to mPAO 65 / comparative example 2) does not, however, achieve any improvement.
  • Example 18 Determination of the sliding behavior with elastomer as friction partner by means of DES (Dynamic Elastomer Screening):
  • the tests are carried out with a "ring-disc tribometer" under further development of the structure described by Sommer M. and Haas W. ([1] Sommer, M., Haas, W. "A new approach on grease tribology in sealing technology: Influence of the thickener particles ", Tribology International (2016), 103, 574-583).
  • FKM elastomer material is used as the test material.
  • the counter body is a steel counter body
  • the lubricant composition to be examined is observed on a ring-disc tribometer, as described in [1], at a constant speed of 1.5 m / s and a temperature of 60 ° C. with a line load of 0.90 N / mm in order to provoke a breakdown of the lubricating film and solid body contact in the event of poor lubricating film formation.
  • the lubricant compositions according to the invention with slip improvers show a significantly quieter and lower course over time the coefficient of friction m, which means a stable lubricating film build-up and speaks for hydrodynamic lubrication.
  • the basic formulation without slip improvers shows an unstable build-up of the lubricating film, which manifests itself in a strong fluctuation and a higher profile of the coefficient of friction. This speaks for, at least local, solid body contact and a pronounced stick-slip effect.
  • the addition of the slip improver reduces wear on the elastomer body by 57% (example 2: GV 3), 50% (example 14, GV 1), 67% (example 11, GV 2) or 63% (Example 5, GV 5), and the wear on the steel counter body is reduced by 80% (Example 2: GV 3), 67% (Example 14: GV 1), 67% (Example 11 : GV 2) or 73% (Example 5: GV 5), in each case in comparison with the basic formulation without slip improvers (Comparative Example 3).
  • micropitting resistance test stand PCS Instruments, London, UK. Micropittings describe damage to gear contacts.
  • the test bench uses a triple configuration where a central roller is in contact with three disks, resulting in three roller contact cycles per roller revolution.
  • the two lower discs are partially immersed in oil and transport it into contact during the test, which simulates splash lubrication.
  • the roller and the disks are driven by separate motors, which allows the simulation of different slide-roll ratios (SRR).
  • SRR slide-roll ratios
  • the tests are performed at a Hertzian contact pressure of 1.7 GPa, an SRR of 20% to 30%, an oil temperature of 90 ° C and 10 million cycles.
  • the coefficient of friction and vibration were recorded with a torque meter and an accelerometer, respectively, during the test.
  • the test roller is cleaned using a solvent to remove residual oil and the weight of the roller is determined and the track track is taken with an optical microscope.
  • the ability of a lubricant composition with regard to its resistance to micropitting is assessed by the weight loss (comparison of weight before and after measurement) of the roller (see FIG. 5A) and by changing the wear track width (see FIG. 5B).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Die vorliegende Erfindung betrifft Schmierstoffzusammensetzungen und deren Verwendung als Getriebeöl, Wälzlageröl und Gleitlageröl für die allgemeine Industrie sowie im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können.

Description

Schmierstoffzusammensetzung und deren Verwendung
Die vorliegende Erfindung betrifft Schmierstoffzusammensetzungen und deren Verwendung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie sowie als Getriebeöl und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können.
Bei der Anwendung von Schmierstoffen bzw. Schmierstoffzusammensetzungen als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie besteht die Herausforderung darin, sowohl sehr gute tribologische Eigenschaften in der Verzahnung als auch eine sehr gute Verträglichkeit des Schmierstoffes gegenüber Dichtungsmaterialien zu gewährleisten. In Getrieben, Gleitlagern und Wälzlagern kommen in der Regel Radialwellendichtringe, die üblicherweise aus Elastomeren wie FKM (Fluorkautschuk), NBR ( nitrile butadien rubber), HNBR ( hydrogenated nitrite butadien rubber), ACM/AEM ( acrylate elastomers/ethylene acrylic elastomers) und Polyurethanen gefertigt sind, zum Einsatz. Die Wichtigkeit der Dichtungsverträglichkeit des Schmierstoffes zeigt sich durch die Häufigkeit der Ursachen für Getriebe-, Gleitlager- und Wälzlagerausfälle. Der Anteil an Getriebe-, Gleitlager- und Wälzlagerausfällen bedingt durch die Inkompatibilität von Schmierstoff und Dichtungsmaterial ist signifikant höher als der Anteil an Getriebe-, Gleitlager- und Wälzlagerausfällen bedingt durch z.B. Fressen. Daher ist die Auswahl der Grundölkomponente(n) für den Schmierstoff sowie die sorgfältig abgestimmte Additivauswahl essentiell, um Schäden an Dichtungsmaterialien zu verhindern und dennoch sehr gute tribologische Eigenschaften zu erreichen. Ein weiteres Problem besteht darin, dass viele Schmierstoffe, die in der allgemeinen Industrie zum Einsatz kommen, nicht für den gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln, z.B. bei lebensmitteltechnischen Anwendungen, geeignet sind, d.h. sie haben nach NSF Code of Federal Regulations §21 CFR 178.3570 keine H1-Zertifizierung.
Es besteht deshalb ein Bedarf an neuen Schmierstoffen bzw. Schmierstoffzusammensetzungen für die Anwendung als Getriebe-, Wälzlager- oder Gleitlageröl für die allgemeine Industrie, die eine hohe Verträglichkeit gegenüber Dichtungsmaterialien, insbesondere Elastomermaterialien, zeigen und gleichzeitig gute tribologische Eigenschaften aufweisen, so dass sie eine Verbesserung des Gleitverhaltens, eine Reduktion des Haftgleiteffekts („Sti ck-SI i p- Effekts“) , insbesondere im Reibkontakt bei hoher Belastung und niedrigen Drehzahlen, sowie einen positiven Einfluss auf die Graufleckentragfähigkeit bewirken.
Zudem wäre es in der Praxis wünschenswert, wenn diese Schmierstoffzusammensetzungen auch minimal toxisch sind und nach NSF/H1- Zertifizierung für den gelegentlichen, unabsichtlichen Lebensmittelkontakt zulässig sind, so dass sie sich für Anwendungen in der Lebensmittel verarbeitenden Industrie eignen.
Bei Anwendungen von Schmierstoffen bzw. Schmierstoffzusammensetzungen im marinen Bereich und im Bereich der Binnengewässer, das heißt, Anwendungen, bei denen die Schmierstoffe bzw. Schmierstoffzusammensetzungen üblicherweise unterhalb der Wasserlinien in Öl-zu-Wasser-Schnittstellen eingesetzt werden, besteht das Risiko, dass die Meeres- bzw. Gewässerumwelt durch Schmierstoffaustritt, verursacht beispielsweise durch Leckagen, kontaminiert wird. Obwohl versucht wird, bei diesen Anwendungen die Wasserseite bestmöglich abzudichten, sind Schmierstoffverluste alltäglich. Die Nachfrage nach ökologisch unbedenklichen Schmierstoffen zur Verringerung der Belastung der Meere und Binnengewässer durch Chemikalien steigt deshalb enorm. Die Nachfrage nach ökologisch unbedenklichen Schmierstoffen steigt jedoch auch an Land, denn auch die Belastung der Böden durch Chemikalien spielt eine immer größere Rolle. Bauteile, die an Land Verwendung finden, können zum Beispiel durch Regen in Kontakt mit Wasser kommen. Zudem sind Leckagen auch hier nicht ausgeschlossen, so dass es zur Kontamination der Umwelt und des Bodens kommen kann. Ein hoher Bedarf an ökologisch unbedenklichen Schmierstoffen an Land besteht insbesondere in der Bergbauindustrie, bei Windkraftanlagen sowie bei Landmaschinen.
In den letzten Jahren gewann der Schutz der Umwelt immer mehr an Bedeutung, insbesondere auch der Schutz der Meere. Für Schmierstoffe, die unterhalb der Wasserlinien in Öl-zu-Wasser-Schnittstellen eingesetzt werden, fordert beispielsweise das Vessel General Permit (VGP) der United States Environmental Protection Agency die Verwendung sogenannter Environmentally Acceptable Lubricants (EALs), die hohe Anforderungen hinsichtlich Bioabbaubarkeit und Aquatoxizität erfüllen müssen. Gängige EALs werden deshalb auf Basis natürlicher und synthetischer Ester hergestellt, anstatt wie herkömmlich auf Mineralölbasis. Im Vergleich zu mineralölbasierten Schmierstoffen kommt es bei der Verwendung von EALs aufgrund ihrer vergleichsweise geringeren Stabilität jedoch häufig zu Schäden an Dichtungsmaterialien und zu immensen Performanceeinbrüchen hinsichtlich des Gleit- oder Schmierverhaltens. Es besteht deshalb auch ein Bedarf an bioverträglichen, das heißt gut biologisch abbaubaren und minimal aquatoxischen, Schmierstoffen, die eine hohe Verträglichkeit gegenüber Dichtungsmaterialien, insbesondere Elastomermaterialien, aufweisen, insbesondere zur Anwendung als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer. Dies schließt auch Anwendung in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, mit ein.
Im Vergleich zu mineralölbasierten Schmierstoffen treten bei der Verwendung von EALs zudem gehäuft Probleme in der Stevenrohr-Schmierung auf. Vieles deutet darauf hin, dass es bei der Verwendung von EALs zur Mangelschmierung des Lagers bei geringen Geschwindigkeiten und hoher Belastung kommt. Es ist bekannt, dass Mangelschmierungszustände auch an weiteren Schmierstellen auftreten können. Zu diesen zählen beispielsweise alle Gleitlager, Getriebe, Linearführungen, Pneumatikkomponenten, Armaturen, Wälzlager, Ketten, Seile, Federn sowie Schrauben. In diesem Zusammenhang besteht auch ein Bedarf an neuen bioverträglichen Schmierstoffen zur Anwendung als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, die zudem eine Verbesserung des Gleitverhaltens bewirken.
Aufgabe der vorliegenden Erfindung war es daher, Schmierstoffe beziehungsweise Schmierstoffzusammensetzungen bereitzustellen, die eine verbesserte Verträglichkeit gegenüber Dichtungsmaterialien, insbesondere Elastomeren, zeigen und hervorragende tribologische Eigenschaften aufweisen, so dass sie ein verbessertes Gleitverhalten, eine Reduktion des Haftgleiteffekts („Sti ck-SI i p- Effekts“) , sowie einen positiven Einfluss auf die Graufleckentragfähigkeit bewirken, und die zur Verwendung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie geeignet sind.
Eine weitere Aufgabe der vorliegenden Erfindung lag darin, minimal toxische, das heißt NSF/H1 -zertifizierte Schmierstoffe bereitzustellen, die sich zur Verwendung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie einschließlich Anwendungen in der Lebensmittel verarbeitenden Industrie eignen, und die ebenfalls die vorstehend genannten vorteilhaften Eigenschaften im Hinblick auf die Dichtungsverträglichkeit und das Gleitverhalten zeigen. Zudem war es Aufgabe der vorliegenden Erfindung, bioverträgliche, das heißt gut biologisch abbaubare und minimal aquatoxische, Schmierstoffe bereitzustellen, die eine verbesserte Verträglichkeit gegenüber Dichtungsmaterialien, insbesondere Elastomeren, aufweisen und gleichzeitig eine Verbesserung des Gleit- bzw. Schmierverhaltens bewirken, und die sich zur Verwendung als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, eignen.
Eine oder mehrere der vorstehend genannten Aufgaben werden gelöst durch eine Schmierstoffzusammensetzung enthaltend als Bestandteile:
A) ein Grundöl;
B) mindestens ein Additiv; und
C) 0,001-10 Gew.-%, bezogen auf das Gesamtgewicht der
Schmierstoffzusammensetzung, einer organischen Verbindung, die sowohl einen polaren als auch einen unpolaren Teil umfasst, als Gleitverbesserer, wobei die organische Verbindung eine relative Permittivität eG im Bereich von 1,5 bis 10 aufweist, und wobei ein Quotient J Si / i-S2 der organischen Verbindung im Bereich von 1 bis 25 liegt.
J Si “ bezeichnet die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 3100-2750 cm-1 in einem ATR-Spektrum der organischen
Verbindung.
„J S2“ bezeichnet die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 1800-1650 cm-1 in einem ATR-Spektrum der organischen
Verbindung.
Überraschend wurde gefunden, dass die Anwesenheit einer organischen Verbindung zusätzlich zu den weiteren in der Schmierstoffzusammensetzung enthaltenen Bestandteilen/Komponenten, wobei die organische Verbindung sowohl einen polaren als auch einen unpolaren Teil umfasst und die Anforderungen sowohl an die relative Permittivität eG (im Bereich von 1,5 bis 10) als auch an den Quotienten / Si / / S2 (im Bereich von 1 bis 25) erfüllt, eine signifikante Verbesserung des Gleitverhaltens zwischen zwei Reibpartnern, zum Beispiel Metall/Metall oder Metall/Elastomer (z.B. FKM oder NBR), bewirkt. Die organische Verbindung wird hierin deshalb als „Gleitverbesserer“ bezeichnet.
Im Sinne der Erfindung werden die Begriffe Schmierstoffzusammensetzung, Schmierstoff, und Formulierung synonym verwendet.
Im Sinne der vorliegenden Erfindung beinhaltet der Begriff „organische Verbindung“ sowohl Einzelverbindungen (das heißt, Moleküle) und Gemische von Einzelverbindungen als auch Oligomere und Polymere einschließlich Homopolymere, Copolymere und Polymerblends, sowie Mischung hiervon.
Unter einem Oligomer wird im Sinne der Erfindung ein Molekül oder eine chemische Verbindung verstanden, das/die aus mehreren, insbesondere zwei bis zehn, strukturell gleichen oder ähnlichen organischen Einheiten (Monomeren) aufgebaut ist und insbesondere eine gewichtsmittlere Molmasse (Mw) bis etwa 1000 aufweist. Unter einem Polymer (Homopolymer) wird im Sinne der Erfindung dementsprechend ein Molekül oder eine chemische Verbindung verstanden, das/die aus einer hohen Anzahl, insbesondere mehr als zehn, strukturell gleichen oder ähnlichen organischen Einheiten (Monomeren) aufgebaut ist und insbesondere eine gewichtsmittlere Molmasse (Mw) von etwa 1000 oder mehr aufweist. Unter einem Copolymer werden Polymere verstanden, die aus zwei oder mehr verschiedenartigen Monomereinheiten zusammengesetzt sind.
Die organische Verbindung C) enthält erfindungsgemäß sowohl einen polaren als auch einen unpolaren Teil, das heißt, sie ist aus einem oder mehreren gleichen oder verschiedenen polaren Molekülteilen und einem oder mehreren gleichen oder verschiedenen unpolaren Molekülteilen aufgebaut, woraus eine bestimmte relative Polarität resultiert. Polare Molekülteile im Sinne der Erfindung können alle dem Fachmann bekannten polaren, funktionellen Gruppen sein. Insbesondere sind die polaren Molekülteilen ausgewählt aus einem oder mehreren aus einer Carbonylgruppe, Estergruppe (R-CO-O-R), Keto-Gruppe (R-CO-R), Aldehyd-Gruppe (R-CHO), Amid- Gruppe (R-CO-A, A= NH2, NHR, oder NR2), Imid-Gruppe (R-CO-NR-CO-R), Carbonsäureanhydrid-Gruppe (R-CO-O-CO-R), Harn Stoff gruppe (R2N-CO-NR2), Urethan- Gruppe (R-NH-CO-O-R), Carboxylat-Gruppe (R-COO ) und einer Carboxygruppe (R- COOH), wobei R jeweils unabhängig voneinander einen beliebigen organischen, aliphatischen oder aromatischen Rest darstellt. Unpolare Molekülteile im Sinne der Erfindung können alle dem Fachmann bekannten unpolaren Gruppen sein, und sie sind insbesondere aus einem oder mehreren aus linearen oder verzweigten oder cyclischen Alkylgruppen oder aromatischen Gruppen, wie beispielsweise linearen oder verzweigten Alkylbenzolgruppen, ausgewählt.
Die organische Verbindung C) weist erfindungsgemäß eine relative Permittivität eG im Bereich von 1,5 bis 10, bevorzugt von 1,7 bis 8, insbesondere bevorzugt von 2 bis 7, und am meisten bevorzugt von 2,3 bis 5 auf.
Die relative Permittivität eG eines Mediums, auch Permittivitäts- oder Dielektrizitätszahl genannt, ist das dimensionslose Verhältnis seiner Permittivität e zur Permittivität eo des Vakuums: eG = e/e o. Die Permittivität, auch dielektrische Leitfähigkeit genannt, bezeichnet eine Materialeigenschaft elektrisch isolierender, polarer oder unpolarer Stoffe, sogenannter Dielektrika, und gibt die Durchlässigkeit eines Materials bzw. Stoffes für elektrische Felder an. Die relative Permittivität ist ein Maß für die feldschwächenden Effekte der dielektrischen Polarisation des Materials bzw. Stoffes.
Die erfindungsgemäß in der Schmierstoffzusammensetzung enthaltene organische Verbindung C) ist des Weiteren dadurch gekennzeichnet, dass sie einen Quotienten iSi / J S2 aufweist, der im Bereich von 1 bis 25, bevorzugt von 1,3 bis 22, insbesondere bevorzugt 1,7 bis 17, und am meisten bevorzugt von 2 bis 14 liegt.
Dabei bezeichnet Js die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 3100-2750 cm-1 in einem ATR-Spektrum der organischen Verbindung, und J S2“ bezeichnet die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 1800-1650 cm-1 in einem ATR-Spektrum der organischen Verbindung.
Dem Fachmann ist bekannt, dass die ATR-Infrarotspektroskopie eine Messtechnik der Infrarotspektroskopie ist, die sich für feste und flüssige Proben eignet und mittlerweile in vielen Bereichen die dominierende IR-Technik ist. Im Gegensatz zu der klassischen IR- Messmethode, bei der die Messung des Transmissionsgrades einer Probe erfolgt, basiert die ATR-Infrarotspektroskopie auf dem Prinzip der Totalreflexion (ATR, attenuated total reflection, siehe N. J. Harrick: Internal Reflection Spectroscopy. John Wiley & Sons Inc, 1967, ISBN 0-470-35250-7). Es ergeben sich ähnliche Spektren wie bei der Transmissionsspektroskopie. Zwar werden die IR-Absorptionsbanden in ATR-Spektren zu größeren Wellenlängen (kleinere Wellenzahl) hin breiter und intensiver als bei entsprechenden Transmissionsspektren, es ist jedoch bekannt, dass die Lagen der IR- Absorptionsbanden bei Transmissions- und ATR-Spektren identisch sind. Aus Spektrendatenbanken und Tabellen von Schwingungsdaten wichtiger Atomgruppen (z.B. Helmut Günzler, Hans-Ulrich Gremlich: IR-Spektroskopie: Eine Einführung. 4. Auflage. Wiley-VCH, Weinheim 2003, S. 165-240) ist dem Fachmann bekannt, dass in einem Transmissions- bzw. ATR-Spektrum im Wellenzahlenbereich von etwa 1800-1650 cm-1 insbesondere die charakteristische IR-Absorptionsbande der C-O-Streckschwingung (Valenzschwingung) der Carbonylgruppe von Carbonylverbindungen liegt, und dass in einem Transmissions- bzw. ATR-Spektrum im Wellenzahlenbereich von etwa 3100-2750 insbesondere die charakteristische IR-Absorptionsbande der C-H-Streckschwingung (Valenzschwingung) einer Gruppe -C-Hx (x = 1, 2 oder 3, Anzahl der gebundenen Wasserstoffatome) in aliphatischen oder aromatischen Kohlenwasserstoffen liegt.
Der Quotient J S1 / JS2 setzt somit die Absorption in dem Wellenzahlenbereich 3100- 2750 cm 1, verursacht überwiegend durch unpolare Molekülteile der organischen Verbindung, ins Verhältnis zur Absorption in dem Wellenzahlenbereich 1800-1650 cm-1, verursacht überwiegend durch polare Molekülteile der organischen Verbindung. Der Quotient J S1 / J S2 kann somit als ein Maß für die Polarität der in der Schmierstoffzusammensetzung enthaltenen organischen Verbindung, die sowohl einen polaren als auch einen unpolaren Teil umfasst, interpretiert werden.
Die Menge der organischen Verbindung C) in der Schmierstoffzusammensetzung beträgt bevorzugt 0,001 Gew.-% oder mehr, besonders bevorzugt 0,05 Gew.% oder mehr, beispielsweise 0,1 Gew.% oder mehr, und 10 Gew.% oder weniger, besonders bevorzugt 5 Gew.% oder weniger, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, um eine optimale Elastomerverträglichkeit und Gleitwirkung zu erreichen.
Beispielsweise ist es in Ausführungsformen der Erfindung, die insbesondere für die Anwendung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie einschließlich im Bereich der Lebensmittel verarbeitenden Industrie für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt geeignet sind, besonders bevorzugt, wenn die Menge der organischen Verbindung C) 0,001-2,5 Gew.-%, und ganz besonders bevorzugt 0,05-1 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, um eine optimale Elastomerverträglichkeit und Gleitwirkung zu erreichen.
Beispielsweise ist es in Ausführungsformen der Erfindung, die insbesondere für die Anwendung als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, geeignet sind, besonders bevorzugt, wenn die Menge der organischen Verbindung C) 0,1-10 Gew.-% beträgt, ganz besonders bevorzugt 0,1-5 Gew.-%, und am meisten bevorzugt 0,1-3 Gew.- % beträgt, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, um eine optimale Elastomerverträglichkeit und Gleitwirkung zu erreichen.
Durch die Zugabe der organischen Verbindung, die sowohl einen polaren als auch einen unpolaren Teil umfasst und die vorstehend definierten Anforderungen sowohl an die relative Permittivität eG (im Bereich von 1,5 bis 10) als auch an den Quotienten / Si / / S2 (im Bereich von 1 bis 25) erfüllt, zusätzlich zu den anderen Komponenten/Bestandteilen der Schmierstoffzusammensetzung, wie Grundöl(e) oder Additiv(e), kann überraschenderweise eine Verbesserung des Gleit- bzw. Schmierverhaltens, insbesondere auch bei niedrigen Getriebe- und Lagergeschwindigkeiten und hoher Belastung, erreicht werden. Des Weiteren trägt die organische Verbindung zur Verbesserung der Verträglichkeit der erfindungsgemäßen Schmierstoffzusammensetzung gegenüber Elastomermaterialien, wie FKM und NBR, bei.
In einer Ausführungsform der Erfindung weist die organische Verbindungen C) zusätzlich eine NSF/H1 -Zertifizierung auf, so dass sie in Schmierstoffen eingesetzt werden, die als Getriebe-, Wälzlager- und Gleitlageröl für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt in der Lebensmittel verarbeitenden Industrie zur Anwendung kommen.
In einer weiteren Ausführungsform der Erfindung ist die organische Verbindungen C) eine organische Verbindung, die zusätzlich biologisch abbaubar (z.B. gemäß OECD- Prüfrichtlinie 301 A-F oder OECD 306) ist und/oder eine geringe Aquatoxizität (z.B. nach OECD-Prüfrichtlinie 201, 202, 203 oder 236) aufweist. Dadurch ist die organische Verbindung zur Verwendung in Schmierstoffen, die als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, zur Anwendung kommen, geeignet.
Bevorzugte Beispiele organischer Verbindungen, die vorteilhaft als Gleitverbesserer in der erfindungsgemäßen Schmierstoffzusammensetzung eingesetzt werden können, sind die folgenden Verbindungen, ohne jedoch darauf beschränkt zu sein: Maleinsäure-Olefin- Copolymere (kommerziell erhältlich z.B. als Ketjenlube® 135, Ketjenlube® 2700, Ketjenlube® 23000); modifizierte Polyester (kommerziell erhältlich z.B. als Perfad™ 3000, Perfad™ 3050); Polymethylmethacrylat (PMMA), lineare Polymere sowie Sternpolymere (kommerziell erhältlich z.B. als Lubrizol 87725); Ölsäure, insbesondere Gemische aus C16-C18-Fettsäuren und C18-ungesättigten Fettsäuren (kommerziell erhältlich z.B. als Herwemag OA); Glycerinmonooleate (GMO), insbesondere solche mit Monogehalt min. 40%, freies Glycerin max. 6% (kommerziell erhältlich z.B. als llco Lube 2316); Polymethacrylat (PMA), lineare Polymere sowie Kammpolymere (kommerziell erhältlich z.B. als Viscoplex® 3-200); Kammpolymere aus 1-Decen und 9-Dodecyl- säuremethylester (kommerziell erhältlich z.B. als Elevance Aria® WTP 40); Pentaerythrit- tetraisostearat (kommerziell erhältlich z.B. als Priolube™ 3987-LQ).
Die erfindungsgemäße Schmierstoffzusammensetzung enthält als weiteren Bestandteil A) eine Grundölkomponente.
Das Grundöl ist bevorzugt ausgewählt aus synthetischen Estern, insbesondere Neopentylglycolestern wie Neopentylglycoldiisostearat, Pentaerythritestern wie Pentaerythrittetraisostearat, Trimetylolpropanestern wie Trimethylpropantrioleat oder Trimethylolpropantricaprylat, Pentaerythrit- und Trimetylolpropan-Komplexestern, die bevorzugt vollständig verestert oder teilverestert sind in beliebiger Mischung mit gesättigten und/oder einfach oder mehrfach ungesättigten Monocarbonsäuren und/oder Dicarbonsäuren der Kettenlänge von 4 bis 36 Kohlenstoffatomen, die linear oder verzweigt sein können, wie Pentaerythrit-Isostearat-Sebacat-Komplexester oder T rimethyolpropan-lsostearat-Stearat-Sebacat-Komplexester, aliphatischen Carbonsäure- und Dicarbonsäureestern wie Di-(2-ethylhexyl)-sebacat, Diisotridecyl-Adipinsäureester (DITA) oder Isopropyloleat, Triglycerid-Fettsäure-(C8/C10)-estern, Trimellith- und Pyromellithsäureestern, und Estoliden; Kohlenwasserstoffen, insbesondere Polyalphaolefinen (PAOs), Metallocen-Polyalphaolefinen (mPAOs), Weißölen, Mineralölen, Alkylnaphtalinen, Ethylene/a-Olefin-Oligomeren, und Farnesen basierenden Ölen; Etherverbindungen, insbesondere Polyetherpolyolen, Perfluorpolyethern (PFPE), Alkyldiphenylethern, und Polyphenylethern, die bevorzugt wasserlöslich, wassermischbar und/oder öllöslich sind, sowie Polyglycolen, insbesondere Polybutylenglycolen, Polypropylenglycolen, Polyethylenglycol und deren Copolymere, die bevorzugt wasserlöslich, wassermischbar und/oder öllöslich sind; und Silikonölen; sowie Mischungen aus zwei oder mehreren hiervon.
Unter dem Begriff „Komplexester“ werden im Sinne der Erfindung insbesondere Ester verstanden, bei deren Herstellung beispielsweise Dicarbonsäuren (das heißt, zweiwertige Carbonsäuren) neben Monocarbonsäuren (das heißt, einwertige Carbonsäuren) und Polyolen eingesetzt werden.
Gemäß einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Schmierstoffzusammensetzung, insbesondere bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie, ist das Grundöl ausgewählt aus Polyalphaolefinen (PAOs), Metallocen-Polyalphaolefinen (mPAOs), Weißölen, Mineralölen, Neopentylglycolestern, Pentaerythritestern, Trimetylolpropanestern sowie Pentaerythrit- und Trimetylolpropan- Komplexestern, die bevorzugt wie vorstehend definiert sind, aliphatischen Carbonsäure- und Dicarbonsäureestern, Triglycerid-Fettsäure-(C8/C10)-estern, Alkylnaphtalinen, Ethylene/a-Olefin-Oligomeren, und wasserlöslichen, wassermischbaren und/oder öllöslichen Polyglycolen, sowie Mischungen aus zwei oder mehreren hiervon.
Hierbei ist es insbesondere bevorzugt, wenn das Grundöl eine NSF/H1 -Zertifizierung aufweist, um zu ermöglichen, dass die Schmierstoffzusammensetzung als Getriebe-, Wälzlager- und Gleitlageröl für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt in der Lebensmittel verarbeitenden Industrie eingesetzt werden kann.
Gemäß einer anderen besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Grundöl ausgewählt aus Polyalphaolefinen (PAOs), Metallocen- Polyalphaolefinen (mPAOs), Weißölen, Farnesen basierenden Ölen, Estolide und öllöslichen Polyglycolen, sowie Mischungen aus zwei oder mehreren hiervon. Diese Grundöle sind vorteilhaft im Hinblick auf ihre Bioabbaubarkeit (d.h., bioabbaubar z.B. gemäß OECD-Prüfrichtlinie 301 A-F oder OECD 306), und können dementsprechend zu einer verbesserten Bioabbaubarkeit der Schmierstoffzusammensetzung beitragen, so dass diese insbesondere für Anwendungen als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, geeignet ist.
Die Menge des Grundöls oder Grundölgemischs in der Schmierstoffzusammensetzung bestimmt sich in der Regel anhand der Mengen der weiteren in der Zusammensetzung enthaltenen Bestandteile/Komponenten, das heißt, die Schmierstoffzusammensetzung wird mit dem Grundöl auf 100 Gew.% aufgefüllt. Bevorzugt beträgt die Gesamtmenge des Grundöls oder Grundölgemischs mindestens 20 Gew.%, 30 Gew.%, 40 Gew.%, 50 Gew.% oder 60 Gew.%.
Weiterhin bevorzugt weist das erfindungsgemäß eingesetzte Grundöl oder Grundölgemisch eine Viskosität von mindestens 5 mm2/s, mehr bevorzugt von 5 mm2/s bis 20000 mm2/s, besonders bevorzugt von 5 mm2/s bis 10000 mm2/s, und ganz besonders bevorzugt von 5 mm2/s bis 1700 mm2/s, jeweils gemessen nach ASTM D 7042 bei 40 °C, auf.
Die erfindungsgemäße Schmierstoffzusammensetzung enthält zudem als weiteren Bestandteil B) mindestens ein Additiv als Zusatzstoff, der eine gewünschte Eigenschaft des Schmierstoffs verbessert. Üblicherweise verwendete, im Stand der Technik bekannte Additive bzw. Zusatzstoffe sind Antioxidationsmittel, Verschleißschutzadditive, Hochdruckadditive, Reibungsverminderer, Korrosionsschutzmittel,
Buntmetalldesaktivatoren, lonen-Komplexbildner, Festschmierstoffe, Dispergiermittel, Pourpoint- und Viskositätsverbesserer, UV-Stabilisatoren, Emulgatoren, Farbindikatoren und Entschäumer, ohne hierauf beschränkt zu sein.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die Schmierstoffzusammensetzung deshalb mindestens ein Additiv, das ausgewählt ist aus Antioxidationsmitteln, Verschleißschutzadditiven, Hochdruckadditiven,
Reibungsverminderern, Korrosionsschutzmitteln, Buntmetalldesaktivatoren, lonen- Komplexbildnern, Festschmierstoffen, Dispergiermitteln, Pourpoint- und
Viskositätsverbesserern, UV-Stabilisatoren, Emulgatoren, Farbindikatoren und Entschäumern. Besonders bevorzugt enthält die Schmierstoffzusammensetzung ein Additivgemisch aus zwei oder mehr Additiven, die ausgewählt sind aus Antioxidationsmitteln, Verschleißschutzadditiven, Hochdruckadditiven
Reibungsverminderern, Korrosionsschutzmitteln, Buntmetalldesaktivatoren, lonen- Komplexbildnern, Festschmierstoffen, Dispergiermitteln, Pourpoint- und Viskositätsverbesserern, UV-Stabilisatoren, Emulgatoren, Farbindikatoren und Entschäumern.
Durch die gezielte Zugabe eines oder mehrerer Additive kann erreicht werden, dass bestimmte Eigenschaften des Schmierstoffs verbessert und/oder dem Schmierstoff bestimmte Eigenschaften verliehen werden.
Durch die Zugabe von Antioxidationsmitteln kann die Oxidationsstabilität der Schmierstoffzusammensetzung weiter verbessert und somit eine Erhöhung der (thermischen) Stabilität erreicht werden.
Die Antioxidationsmittel sind vorzugsweise ausgewählt aus den folgenden Verbindungen, ohne hierauf beschränkt zu sein: Amin-Verbindungen (aminische Antioxidationsmittel), insbesondere lineare oder verzweigte aliphatische Amin-Verbindungen und aromatische Amin-Verbindungen sowie deren Salze, wobei die aliphatischen und aromatischen Amin- Verbindungen mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl-Resten und Aryl-Resten, substituiert sein können, Phenol- Verbindungen (phenolische Antioxidationsmittel); Propionaten; Phosphiten; schwefelhaltigen Verbindungen, insbesondere schwefelhaltige Phenolverbindungen und schwefelhaltige Carbonsäuren, Phosphorthionate, Thiocarbamate, Thiophosphate, und Thiopropionate; und Mischungen dieser Verbindungen.
Besonders bevorzugte Antioxidationsmittel sind ausgewählt aus aromatischen Diaminen und sekundären aromatischen Aminen, Phenolharzen, Thiophenolharzen, Phosphite, Zinkthiocarbamat, Zinkthiophosphat, butyliertem Hydroxytoluol, butyliertem Hydroxyanisol, Phenyl-alpha-naphthylaminen, Phenyl-beta-naphthylaminen, Diphenylamin und Diphenylamin-Derivaten, insbesondere octylierten Diphenylaminen, butylierten Diphenylaminen und styrolisierten Diphenylaminen, Chinolin und Chinolin-Derivaten, Naphtylamin und Naphtylamin-Derivaten, Di-alpha-Tocopherol, Di-te/f-butyl-
Phenylpropansäure und deren Estern, sowie Mischungen hiervon.
Beispiele erfindungsgemäß besonders geeigneter Antioxidationsmittel sind Benzolamin-, N-Phenyl-, Reaktionsprodukte mit 2,4,4-Trimethylpenten, Octadecyl-3-(3,5-di-tert-butyl-4- hydroxyphenyl)propionat, Bis(4-(1 , 1 ,3,3-tetramethylbutyl)phenyl)amin, N-[(1 ,1,3,3-
Tetramethylbutyl)phenyl]naphthalen-1-amin, Isomerengemische aus 90 % bis 97,5 % C7 bis C9 Alkyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionat und 2,5 % bis 10 % Methyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl)propionat, und Thiodiethylenbis[3-(3,5-di-tert-butyl-4- hydroxyphenyl)propionat], ohne hierauf beschränkt zu sein.
Geeignete Antioxidationsmittel sind kommerziell erhältlich.
Gemäß einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Schmierstoffzusammensetzung, insbesondere bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie, ist das Antioxidationsmittel ausgewählt aus phenolischen Antioxidationsmitteln, aminischen Antioxidationsmitteln, bevorzugt linearen oder verzweigten aliphatischen Amin-Verbindungen und aromatischen Amin-Verbindungen sowie deren Salzen, wobei die aliphatischen und aromatischen Verbindungen mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl-Resten und Aryl-Resten, substituiert sein können, Propionaten und Thiopropionaten, wobei aminische Antioxidationsmittel ganz besonders bevorzugt sind, insbesondere bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Gleitlager- und Wälzlageröl im Bereich der Lebensmittel verarbeitenden Industrie für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt.
Gemäß einer anderen besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Antioxidationsmittel ausgewählt aus phenolischen Antioxidationsmitteln, aminischen Antioxidationsmitteln, bevorzugt linearen oder verzweigten aliphatischen Amin-Verbindungen und aromatischen Amin-Verbindungen sowie deren Salzen, wobei die aliphatischen und aromatischen Verbindungen mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl-Resten und Aryl-Resten, substituiert sein können, Phosphiten, Phosphorthionaten sowie Thiocarbamaten, insbesondere bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Gleitlager- und Wälzlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, wobei aminische Antioxidationsmittel ganz besonders bevorzugt sind.
Erfindungsgemäß kann als Antioxidationsmittel eine Einzelverbindung oder eine Kombination von zwei oder mehreren Verbindungen verwendet werden.
Des Weiteren kann die erfindungsgemäße Schmierstoffzusammensetzung ein oder mehrere Korrosionsschutzmittel enthalten. Der Zusatz von Korrosionsschutzmitteln kann der Schmierstoffzusammensetzung eine korrosions- und rosthemmende Wirkung verleihen.
Geeignete Korrosionsschutzmittel sind, ohne hierauf beschränkt zu sein, bevorzugt ausgewählt aus der Gruppe der Säuresalze, insbesondere Carbonsäure-Metallsalze, Sulfonsäure-Metallsalze, Naphthalinsulfonsäure-Metallsalze, Benzosulfonsäure- Metallsalze, Benzoesäure-Metallsalze, Naphthoesäure-Metallsalze Naphtensäure- Metallsalze, Bernsteinsäure-Metallsalze, Salicylsäure-Metallsalze und Phosphorsäure- Metallsalze, sowie deren Derivate, einschließlich linearer und verzweigter aliphatischer und aromatischer Derivate der Säuren/Säuresalze, die noch dazu mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl-Resten und Aryl- Resten, substituiert sein können, wobei Natrium (Na)-, Calcium (Ca)-, Kalium (K)- und Magnesium (Mg)-Salze besonders bevorzugt sind; Amin-, Imin- und Imid-Verbindungen sowie deren Metallsalze, insbesondere lineare und verzweigte aliphatische Amin-, Imin- und Imid-Verbindungen und aromatische Amin-, Imin- und Imid-Verbindungen sowie deren Metallsalze, wobei die aliphatischen und aromatischen Amin-, Imin- und Imid- Verbindungen mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl-Resten und Aryl-Resten, substituiert sein können, wobei Na-, Ca-, K- und Mg-Salze besonders bevorzugt sind; und teilneutralisierte bzw. nicht neutralisierte Dicarbonsäurederivate, wie Bernsteinsäurehalbester.
Geeignete Korrosionsschutzmittel sind kommerziell erhältlich.
Bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Gleitlager- und Wälzlageröl im Bereich der Lebensmittel verarbeitenden Industrie für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt ist die Verwendung von N-Methylglycin oder deren Derivaten (z.B. Sarcosin) als Korrosionsschutzmittel besonders bevorzugt.
Gemäß einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Schmierstoffzusammensetzung, insbesondere bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie sowie im Bereich der Lebensmittel verarbeitenden Industrie für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt, ist das Korrosionsschutzmittel ausgewählt aus der Gruppe der Carbonsäure-Metallsalze, Sulfonsäure-Metallsalze, Benzosulfonsäure-Metallsalze, Naphthalinsulfonsäure-Metallsalze, Benzoesäure- Metallsalze und Naphtoesäure-Metallsalze und Naphthensäure-Metallsalze, sowie deren Derivate, einschließlich linearer und verzweigter aliphatischer und aromatischer Derivate der Säuresalze, die noch dazu mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl-Resten und Aryl-Resten, substituiert sein können, wobei Na-, Ca-, K- und Mg-Salze besonders bevorzugt sind; und teilneutralisierte bzw. nicht neutralisierte Dicarbonsäurederivate, wie Bernsteinsäurehalbester.
Gemäß einer anderen besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Korrosionsschutzmittel ausgewählt aus neutralisierten bzw. neutralen Säuresalzen, bevorzugt aus neutralen Carbonsäure-, Sulfonsäure-, Naphthalinsulfonsäure-, Benzosulfonsäure-, Benzoesäure-, Naphthoesäure-, Naphtensäure- und Phosphorsäure-Metallsalzen sowie deren Derivate, einschließlich linearer und verzweigter aliphatischer und aromatischer Derivate der Säuresalze, die noch dazu mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl-Resten und Aryl-Resten, substituiert sein können, und bevorzugt den Na-, Ca-, K- und Mg-Salzen, wobei neutralisierte bzw. neutrale Sulfonsäure-, Naphthalinsulfonsäure- und Benzosulfonsäure-Metallsalze ganz besonders bevorzugt sind, und insbesondere die Ca-Salze, und neutrale Calciumsulfonate am meisten bevorzugt sind, insbesondere bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können. Ein Beispiel eines besonders geeigneten Korrosionsschutzmittels dieser Ausführungsform stellen neutrale Alkylnaphthalinsulfonsäure-Calciumsalze dar.
Die Korrosionsschutzmittel können einzeln oder in einer Kombination von zwei oder mehreren verwendet werden.
Unter „neutralen“ bzw. „neutralisierten“ Säuresalzen bzw. Metallsalzen werden im Sinne der vorliegenden Erfindung Säuresalze bzw. Metallsalze verstanden, die eine Säurezahl (TAN) von 30 mg KOH/g oder kleiner aufweisen.
Des Weiteren kann die erfindungsgemäße Schmierstoffzusammensetzung ein oder mehrere Buntmetalldesaktivatoren und/oder lonen-Komplexbildner enthalten.
Durch den Zusatz von Buntmetalldesaktivatoren und/oder lonen-Komplexbildnern können Nichteisenmetallen, wie beispielsweise Cadmium (Cd), Cobalt (Co), Kupfer (Cu), Nickel (Ni), Blei (Pb), Zinn (Sn), und Zink (Zn), die zu den sogenannten Buntmetallen zählen, sowie deren Legierungen, vor Korrosion durch Aktivschwefel geschützt werden.
Geeignete Buntmetalldesaktivatoren sowie lonen-Komplexbildner sind vorzugsweise ausgewählt aus Triazol-Verbindungen, insbesondere Tolyltriazol, Benzotriazol und deren Derivate, Imidazolin-Verbindungen, Diazolen, Mercaptothiadiazolen. Besonders bevorzugte Buntmetalldesaktivatoren bzw. lonen-Komplexbildner sind Triazol- Verbindungen, Salicylate und Mercaptothiadiazole, sowie deren Derivate, wobei Triazol- Verbindungen und Derivate hiervon, insbesondere Benzotriazol und Derivate hiervon, ganz besonders bevorzugt sind, sowohl bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie als auch im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können. Erfindungsgemäß können die Buntmetalldesaktivatoren bzw. lonen-Komplexbildner einzeln oder in einer Kombination von zwei oder mehreren davon verwendet werden.
Beispiele besonders bevorzugter Buntmetalldesaktivatoren bzw. lonen-Komplexbildnern sind Benzotriazol und Tolyltriazol sowie Derivate hiervon, N,N-bis(2-ethylhexyl)-ar-methyl- 1H-Benzotriazol-1-methanamin, und eine Reaktionsmasse aus N,N-bis(2-ethylhexyl)-6- methyl-1H-Benzotriazol-1-methanamin, N,N-bis(2-ethylhexyl)-4-methyl-2H-Benzotriazol-2- methanamin, N,N-bis(2-ethylhexyl)-5-methyl-2H-Benzotriazol-2-methanamin, N,N-Bis(2- ethylhexyl)-4-methyl-1 H-benzotriazol-1-methylamin und N,N-Bis(2-ethylhexyl)-5-methyl- 1H-benzotriazol-1-methylamin, ohne hierauf beschränkt zu sein.
Geeignete Buntmetalldesaktivatoren bzw. lonen-Komplexbildner sind kommerziell erhältlich.
Die erfindungsgemäße Schmierstoffzusammensetzung kann zudem einen oder mehrere Verschleißschutzmittel, Reibungsverminderer und/oder Hochdruckadditive enthalten. Geeignete Verschleißschutzmittel, Reibungsverminderer und Hochdruckadditive sind vorzugsweise ausgewählt aus Aminen, Aminphosphaten, verzweigten und/oder linearen alkylierten Phosphaten, Phosphiten, Thiophosphaten, und Phosphothionaten, Arylphosphaten, Arylthiophosphaten, alkylierten Polysulfiden, geschwefelten Aminverbindungen, geschwefelten Fettsäuremethylestern, Naphthensäuren, Nanopartikeln ausgewählt aus AI2O3, S1O2, T1O2, ZrÜ2, WO3, Ta205, V2O5, CeÜ2, Aluminiumtitanat, BN, MoSh, SiC, S13N4, TiC, TiN, ZrB2, Tonmineralen und deren Gemische, Sulfonsäuresalzen, und thermisch stabilen Carbonaten und Sulfaten, sowie Mischungen von zwei oder mehr hiervon, ohne hierauf beschränkt zu sein. Geeignete kommerziell erhältliche Additive sind beispielsweise nachfolgend genannte Produkte: IRGALUBE® TPPT, IRGALUBE® 232, IRGALUBE® 349, IRGALUBE® 353, IRGALUBE® 211 und ADDITIN® RC3760 Liq 3960, FIRC-SHUN® FG 1505 und FG 1506, NA-LUBE® KR-015FG, LUBEBOND®, FLUORO® FG, SYNALOX® 40-D, ACHESON® FGA 1820 und ACHESON® FGA 1810.
Die erfindungsgemäße Schmierstoffzusammensetzung kann zudem einen oder mehrere Viskositätsverbesserer enthalten. Geeignete Viskositätsverbesserer sind vorzugsweise ausgewählt aus linearen und verzweigten alkylierten, acrylierten und aliphatischen Polymeren und Copolymeren sowie polymerisierten Fettsäureestern, sowie Mischungen aus zwei oder mehr hiervon, ohne hierauf beschränkt zu sein. Beispiele geeigneter Viskositätsverbesserer sind Polymethacrylat, Ethylen-Propylen-Copolymer, Polyisobutylen, Polyalkylstyrol, hydriertes Styrol-Isopren-Copolymer. Geeignete Viskositätsverbesserer sind käuflich zu erwerben.
Die erfindungsgemäße Schmierstoffzusammensetzung kann zudem einen oder mehrere UV-Stabilisatoren enthalten. Geeignete UV-Stabilisatoren sind vorzugsweise ausgewählt aus Stickstoffheterocyclen und substituierten Stickstoffheterocyclen, sowie Mischungen aus zwei oder mehr hiervon, ohne hierauf beschränkt zu sein. Geeignete UV- Stabilisatoren sind käuflich zu erwerben.
Die erfindungsgemäße Schmierstoffzusammensetzung kann zudem einen oder mehrere Festschmierstoffe enthalten. Geeignete Festschmierstoffe sind vorzugsweise ausgewählt aus PTFE, Bornitrid, Zinkoxid, Magnesiumoxid, Pyrophosphaten, Thiosulfaten, Magnesiumcarbonat, Calciumcarbonat, Calciumstearat, Zinksulfid, Molybdänsulfid, Wolframsulfid, Zinnsulfid, Graphit, Graphen, Nano-Röhren, Si02-Modifikationen, sowie Mischungen aus zwei oder mehr hiervon, ohne hierauf beschränkt zu sein. Geeignete Festschmierstoffe sind käuflich zu erwerben.
Die erfindungsgemäße Schmierstoffzusammensetzung kann zudem einen oder mehrere Emulgatoren enthalten. Geeignete Emulgatoren sind vorzugsweise ausgewählt aus verzweigten und/oder linearen ethoxylierten und/oder propoxylierten Alkoholen und deren Salzen, insbesondere Alkoholen mit Kettenlängen von 14-18 C-Atomen, ethoxylierten und/oder propoxylierten Alkylethern, Fettsäureestern, und ionischen Tensiden wie z. B. Natriumsalzen von Alkylsulfonsäuren, sowie Mischungen aus zwei oder mehr hiervon, ohne hierauf beschränkt zu sein. Geeignete Emulgatoren sind käuflich zu erwerben.
Die erfindungsgemäße Schmierstoffzusammensetzung kann zudem einen oder mehrere Entschäumer enthalten, um die Bildung fester Schäume zu unterbinden. Geeignete Entschäumer sind vorzugsweise ausgewählt aus ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Mono- und Diglyceriden von Speisefetten, Acrylaten, propoxylierten und/oder ethoxylierten Alkylethern, Polyolen inklusive Diolen, und Polysiloxanen, wie Silikonöle oder Polydimethylsiloxane, sowie Mischungen aus zwei oder mehr hiervon, ohne hierauf beschränkt zu sein. Erfindungsgemäß besonders bevorzugte Entschäumer sind ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Polyole, Acrylate und Polysiloxane, wobei Polysiloxane ganz besonders bevorzugt sind, sowohl bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, als auch bei Anwendung der Schmierstoffzusammensetzung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie sowie im Bereich der Lebensmittel verarbeitenden Industrie für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt. Geeignete Entschäumer sind käuflich zu erwerben.
Die erfindungsgemäße Schmierstoffzusammensetzung kann zudem einen oder mehrere Farbindikatoren enthalten. Ein geeigneter Farbindikator ist beispielsweise 2,5- thiophenediylbis(5-ter-butyl-1,3-benzoxazole), ohne hierauf beschränkt zu sein. Geeignete Farbindikatoren sind käuflich zu erwerben.
Alle Additive können jeweils als Einzelverbindung oder in einer Kombination von zwei oder mehreren in der erfindungsgemäßen Schmierfettzusammensetzung vorliegen.
Die Gesamtmenge aller Additive bzw. Zusatzstoffe in der Schmierstoffzusammensetzung beträgt bevorzugt 0,01 Gew.% oder mehr, besonders bevorzugt 0,025 Gew.% oder mehr, beispielsweise 0,5 Gew.% oder mehr, und 10 Gew.-% oder weniger, besonders bevorzugt 7,5 Gew.-% oder weniger, beispielsweise 6 Gew.% oder weniger, oder 5 Gew.% oder weniger, bezogen auf die gesamte Schmierstoffzusammensetzung. Beispielsweise ist es in Ausführungsformen der Erfindung, die insbesondere für die Anwendung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie einschließlich im Bereich der Lebensmittel verarbeitenden Industrie für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt geeignet sind, besonders bevorzugt, wenn die Gesamtmenge aller Additive 0,01-7,5 Gew.-%, ganz besonders bevorzugt 0,01-6,0 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung.
Beispielsweise ist es in Ausführungsformen der Erfindung, die insbesondere für die Anwendung als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, geeignet sind, besonders bevorzugt, wenn die Gesamtmenge aller Additive 0, 5-7,0 Gew.-%, ganz besonders bevorzugt 0, 5-5,0 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung.
Da die Additive dazu dienen, bestimmte Eigenschaften des Schmierstoffs zu verbessern und/oder diesem bestimmte Eigenschaften zu verleihen, können sie je nach Bedarf bzw. Anforderung an den Schmierstoff diesem als Einzelsubstanz oder als Gemisch von zwei oder mehr Additiven zugegeben werden, wobei die Menge der einzelnen Additive in einem Additivgemisch nicht beschränkt ist, solange die vorstehend definierte Gesamtmenge aller Additive, bezogen auf die gesamte Schmierstoffzusammensetzung, nicht überschritten wird.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die Schmierstoffzusammensetzung
A) ein Grundöl;
B) 0,01-10 Gew.-% des mindestens einen Additivs, bezogen auf das
Gesamtgewicht der Schmierstoffzusammensetzung; und
C) 0,001-10 Gew.-%, bevorzugt 0,001-5 Gew.%, der organischen
Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen und die Komponenten A), B) und C) wie vorstehend definiert sind. In einer weiteren bevorzugten Ausführungsform der Erfindung, die insbesondere zur Anwendung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie einschließlich dem Bereich der Lebensmittel verarbeitenden Industrie geeignet ist, enthält die Schmierstoffzusammensetzung ein Additivgemisch aus zwei oder mehreren Additiven, das ein oder mehrere Antioxidationsmittel, ein oder mehrere Verschleißschutz- und/oder Hochdruckadditive, ein oder mehrere Entschäumer, optional ein oder mehrere Buntmetalldesaktivatoren, optional ein oder mehrere Korrosionsschutzmittel, und optional einen Farbindikator umfasst.
Gemäß einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Schmierstoffzusammensetzung, die insbesondere für die Verwendung als Getriebe-, Wälzlager- oder Gleitlageröl für die allgemeine Industrie geeignet ist, enthält die Schmierstoffzusammensetzung
A) ein Grundöl;
B) 0,01-7,5 Gew.-% eines Additivgemischs, bezogen auf das
Gesamtgewicht der Schmierstoffzusammensetzung, wobei das Additivgemisch ein oder mehrere Antioxidationsmittel, ein oder mehrere Verschleißschutz- und/oder Hochdruckadditive, ein oder mehrere Entschäumer, optional ein oder mehrere
Buntmetalldesaktivatoren, optional ein oder mehrere Korrosionsschutzmittel, und optional einen Farbindikator umfasst; und
C) 0,001-10 Gew.-%, bevorzugt 0,001-5 Gew.%, der organischen
Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen und die Komponenten A), B) und C) wie vorstehend definiert ist.
Gemäß einer ganz besonders bevorzugten Ausführungsform der erfindungsgemäßen Schmierstoffzusammensetzung, die insbesondere für die Verwendung als Getriebe-, Wälzlager- oder Gleitlageröl für die allgemeine Industrie geeignet ist, enthält die Schmierstoffzusammensetzung
A) ein Grundöl; B) 0,01-6,0 Gew.-% eines Additivgemischs, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei das Additivgemisch umfasst: ein oder mehrere Antioxidationsmittel, ausgewählt aus phenolischen Antioxidationsmitteln, aminischen Antioxidationsmitteln, Propionaten und Thiopropionaten; ein oder mehrere Entschäumer, ausgewählt aus ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Polyolen, Acrylaten und Polysiloxanen; ein oder mehrere Verschleißschutz- und/oder Hochdruckadditive, ausgewählt aus Aminen, Aminphosphaten, verzweigten und/oder linearen alkylierten Phosphaten, Phosphiten, Thiophosphaten, und Phosphothionaten, Arylphosphaten, alkylierten Polysulfiden, geschwefelten Aminverbindungen, geschwefelten Fettsäuremethylestern, Naphthensäuren, Nanopartikeln ausgewählt aus AI2O3, S1O2, T1O2, ZrÜ2, WO3, Ta205, V2O5, Ce02, Aluminiumtitanat, BN, M0S12, SiC, S13N4, TiC, TiN, Zrß2, Tonmineralen und deren Gemische, Sulfonsäuresalzen, und thermisch stabilen Carbonaten und Sulfaten; optional ein oder mehrere Buntmetalldesaktivatoren, ausgewählt aus Triazol-Verbindungen, Salicylaten und Mercaptothiadiazolen, sowie deren Derivate; optional ein oder mehrere Korrosionsschutzmittel ausgewählt aus der Gruppe der Carbonsäure-Metallsalze, Sulfonsäure-Metallsalze, Naphthalinsulfonsäure- Metallsalze, Benzosulfonsäure-Metallsalze, Benzoesäure-Metallsalze, Naphthoesäure- Metallsalze und Naphthensäure-Metallsalze sowie deren Derivate, einschließlich linearer und verzweigter aliphatischer und aromatischer Derivate der Säuresalze, die noch dazu mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl- Resten und Aryl-Resten, substituiert sein können, und insbesondere der Na-, Ca-, K- und Mg-Salze; und optional als Farbindikator 2,5-thiophenediylbis(5-ter-butyl-1,3-benzoxazole); und
C) 0,001-2,5 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen und die Komponenten A) und C) wie vorstehend definiert sind.
Das Grundöl ist gemäß dieser Ausführungsform bevorzugt ausgewählt aus Polyalphaolefinen (PAOs), Metallocen-Polyalphaolefinen (mPAOs), Weißölen, Mineralölen, Neopentylglycolestern, Pentaerythritester, Trimetylolpropanester sowie Pentaerythrit- und Trimetylolpropan-Komplexester, die bevorzugt wie vorstehend definiert sind, aliphatischen Carbonsäure- und Dicarbonsäureestern, Triglycerid-Fettsäure- (C8/C10)-estern, Alkylnaphtalinen, Ethylene/a-Olefin-Oligomeren und wasserlöslichen, wassermischbaren und/oder öllöslichen, sowie Mischungen aus zwei oder mehreren hiervon.
Schmierstoffe dieser Ausführungsform weisen eine hohe Verträglichkeit gegenüber Elastomeren, wie FKM, NBR, HNBR, ACM/AEM und Polyurethanen, die üblicherweise als Dichtungsmaterialien eingesetzt werden, auf. Gleichzeitig zeigen Schmierstoffe dieser Ausführungsform gute tribologische Eigenschaften, so dass sie eine Verbesserung des Gleitverhaltens, eine Reduktion des Haftgleiteffekts („Sti ck-SI i p- Effekts“) , insbesondere im Reibkontakt bei hoher Belastung und niedrigen Lagergeschwindigkeiten und hoher Belastung, sowie einen positiven Einfluss auf die Graufleckentragfähigkeit bewirken, weshalb sie sich insbesondere zur Verwendung als Getriebe-, Wälzlager- und Gleitlageröl für die allgemeine Industrie eignen.
Gemäß einerweiteren Ausführungsform der vorliegenden Erfindung, die insbesondere zur Anwendung als Getriebe-, Wälzlager- und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, geeignet ist, enthält die Schmierstoffzusammensetzung als zusätzlich Bestandteil D) eine Ester-Verbindung wobei auch Gemische aus zwei oder mehr verschiedenen Ester-Verbindung erfindungsgemäß miteingeschlossen sind.
Bevorzugt gemäß dieser Ausführungsform ist die mindestens eine Ester-Verbindung D) ausgewählt aus natürlichen Glyceridestern, insbesondere aus der Gruppe aus Sonnenblumenöl, Rapsöl oder Rüböl, Leinöl, Maisöl, Diestelöl, Sojabohnenöl, Leinsamenöl, Erdnussöl, Lesqueralle-Öl, Palmöl, Olivenöl, die jeweils in der monomeren, oligomeren und/oder polymerisierten Form vorliegen können, sowie Mischungen aus den genannten Ölen; und synthetischen Estern, insbesondere aus der Gruppe aus Polyolestern, Polyol-Komplexestern, Komplexestem aus Dimersäuren, Dimersäureestern, aliphatischen Carbonsäure- und Dicarbonsäureestern, Phosphatestern und Trimellith- und Pyromellithsäureestern; sowie Kombinationen daraus, wobei Polyolester und Polyol- Komplexester besonders bevorzugt sind, und insbesondere solche Polyolester, die durch Reaktion von mehrwertigen Alkoholen (das heißt, Alkohole mit mehr als einer Hydroxygruppe) mit Monocarbonsäuren (das heißt, einwertige Carbonsäuren) erhalten werden, und insbesondere solche Polyol-Komplexester, die durch Reaktion von mehrwertigen Alkoholen mit Monocarbonsäuren und Dicarbonsäuren (das heißt, zweiwertigen Carbonsäuren) in beliebiger Mischung erhalten werden, sowie Kombinationen hiervon.
Es ist bevorzugt gemäß dieser Ausführungsform der Erfindung, dass die Ester- Verbindungen D) gemäß Norm OECD 301 A - F oder OECD 306 biologisch abbaubar ist, um eine verbesserte Bioabbaubarkeit und Ökoverträglichkeit der erfindungsgemäßen Schmierstoffzusammensetzung zu erreichen.
Weiterhin ist es bevorzugt, dass die mindestens eine Ester-Verbindung eine kinematische Viskosität von mindestens 130 mm2/s bei 40°C aufweist. Besonders bevorzugt liegt die kinematische Viskosität der mindestens einen Ester-Verbindung im Bereich von 130-1500 mm2/s bei 40°C, mehr bevorzugt im Bereich von 130-1300 mm2/s bei 40°C, jeweils gemessen gemäß ASTM D 7042.
Es ist weiterhin bevorzugt gemäß dieser Ausführungsform der vorliegenden Erfindung, dass die Ester-Verbindungen in der Schmierstoffzusammensetzung in einer Menge von 0,1-85 Gew.-%, mehr bevorzugt von 5-85 Gew.-%, besonders bevorzugt von 10-85 Gew.- %, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, enthalten ist.
Gemäß einer weiter bevorzugten Ausführungsform der vorliegenden Erfindung enthält die Schmierstoffzusammensetzung der vorliegenden Erfindung:
A) ein Grundöl;
B) 0,5-7 Gew.-% des mindestens einen Additivs, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung;
C) 0,1-10 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung; und D) 0,1-85 Gew.-%, der Ester-Verbindung, bezogen auf das
Gesamtgewicht der Schmierstoffzusammensetzung wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen und die Komponenten A), B), C) und D) wie vorstehend definiert sind.
Ein Schmierstoff dieser Zusammensetzung zeigt neben einer hohen Verträglichkeit gegenüber Dichtungsmaterialien, insbesondere Elastomeren, ein gutes Gleitverhaltens und ist gleichzeitig gut biologisch abbaubar, und eignet sich deshalb insbesondere für die Verwendung als Getriebeöl, Wälzlageröl und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können.
Die vorliegende Erfindung betrifft deshalb in einem weiteren Aspekt eine Schmierstoffzusammensetzung, insbesondere für die Verwendung als Getriebeöl Wälzlageröl und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, enthaltend als Bestandteile:
A) ein Grundöl;
B) 0,5-7 Gew.-% mindestens eines Additivs;
C) 0,1-10 Gew.-% einer organischen Verbindung, die sowohl einen polaren als auch einen unpolaren Teil umfasst; und
D) 0,1-85 Gew.-%, einer Ester-Verbindung, wobei sich die angegebenen Mengen jeweils auf das Gesamtgewicht der Schmierstoffzusammensetzung beziehen und sich zu insgesamt 100 Gew.-% ergänzen, und wobei die organische Verbindung eine relative Permittivität eG im Bereich von 1,5 bis 10, bevorzugt von 1,7 bis 8, insbesondere bevorzugt von 2 bis 7, und am meisten bevorzugt von 2,3 bis 5 aufweist, und wobei ein Quotient ί Si / J-S2 der organischen Verbindung im Bereich von 1 bis 25, bevorzugt von 1,3 bis 22, insbesondere bevorzugt 1,7 bis 17, und am meisten bevorzugt von 2 bis 14 liegt, wobei J s die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 3100- 2750 cnr1 in einem ATR-Spektrum der organischen Verbindung bezeichnet, und J S2“ die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 1800- 1650 cm-1 in einem ATR-Spektrum der organischen Verbindung bezeichnet.
Die Bestandteile A), B), C) und D) sind hierbei bevorzugt wie vorstehend definiert.
Besonders bevorzugt gemäß dieser Ausführungsform ist die Ester-Verbindung D) ausgewählt aus Neopentylglycolestern, Trimethylolpropanestern, und Pentaerythritestern, die insbesondere mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Monocarbonsäuren der Kettenlänge C4-C36, bevorzugt C10-36, besonders bevorzugt C14-C36, und ganz besonders bevorzugt C18-C36 verestert sind; und Neopentylglycol-Komplexestern, Trimethylolpropan-Komplexestern, und Pentaerythrit-Komplexestern, die insbesondere mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Monocarbonsäuren der Kettenlänge C4-C36, bevorzugt C10-36, besonders bevorzugt C14-C36, und ganz besonders bevorzugt C18-C36, und mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Dicarbonsäuren der Kettenlänge C4-C36 bevorzugt C4-C18, besonders bevorzugt C4-C12, in beliebiger Mischung vollständig verestert oder teilverestert (d.h., es liegen noch freie, nicht veresterte Hydroxylgruppen vor) sind; sowie Kombinationen daraus.
Diese Ester-Verbindungen sind im Hinblick auf die Bioverträglichkeit bzw. Bioabbaubarkeit der Schmierstoffzusammensetzung besonders bevorzugt.
Beispiele besonders bevorzugter Ester-Verbindungen sind Pentaerythrit-Tetraisostearat, Pentaerythrit- Isostearat-Sebacat- Komplexester, T rimethylolpropan-T riisostearat,
T rimethylolpropan-T rioleat, T rimethylolpropan-T ricaprylat T rimethyolpropan-lsostearat- Stearat-Sebacat-Komplexester, Neopentylglycol-Diisostearat, ohne hierauf beschränkt zu sein.
Weiterhin ist es besonders bevorzugt gemäß dieser Ausführungsform, dass das Grundöl ausgewählt ist aus öllöslichen Polyglycolen, Polyalphaolefinen (PAOs), Metallocen- Polyalphaolefinen (mPAOs), Weißölen, Farnesen basierenden Ölen, Estoliden, sowie Mischungen aus zwei oder mehreren hiervon, wobei öllösliche Polyglycole, Polyalphaolefine (PAOs) und Metallocen-Polyalphaolefine (mPAOs) ganz besonders bevorzugt sind. Diese Grundöle haben besonders vorteilhafte Eigenschaften im Hinblick auf ihre Bioabbaubarkeit (d.h., bioabbaubar z.B. gemäß OECD-Prüfrichtlinie 301 A-F oder OECD 306) und können dementsprechend zu einer verbesserten biologischen Abbaubarkeit der Schmierstoffzusammensetzung beitragen.
Durch eine sorgfältige Additivauswahl, die optimal auf das Tribosystem aus Elastomermaterial, Schmierstoff und Metall abgestimmt ist, kann eine weitere Verbesserung der Elastomerverträglichkeit der Schmierstoffzusammensetzung erreicht werden. Dementsprechend ist es bevorzugt gemäß dieser Ausführungsform der Erfindung, wenn die Schmierstoffzusammensetzung ein Additivgemisch, das ein oder mehrere Antioxidationsmittel, Buntmetalldesaktivatoren und Korrosionsschutzmittel und gegebenenfalls ein oder mehrere Entschäumer und Verschleißschutz- und/oder Hochdruckadditive umfasst, enthält.
Es ist deshalb besonders bevorzugt gemäß dieser Ausführungsform der Erfindung, dass das mindestens eine Additiv B) ein Additivgemisch ist, das ein oder mehrere Antioxidationsmittel, Buntmetalldesaktivatoren und Korrosionsschutzmittel und gegebenenfalls ein oder mehrere Entschäumer und Verschleißschutzmittel- und/oder Hochdruckadditive enthält. Besonders vorteilhaft haben sich in dieser Hinsicht gezeigt:
Antioxidationsmittel ausgewählt aus phenolischen Antioxidationsmitteln, aminischen Antioxidationsmitteln, bevorzugt linearen oder verzweigten aliphatischen Amin- Verbindungen und aromatischen Amin-Verbindungen sowie deren Salze, wobei die aliphatischen und aromatischen Verbindungen mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl-Resten und Aryl-Resten, substituiert sein können, Phosphiten, Phosphorthionaten sowie Thiocarbamaten, wobei aminische Antioxidationsmittel besonders bevorzugt sind;
Buntmetalldesaktivatoren, ausgewählt aus Triazol-Verbindungen, Salicylaten und Mercaptothiadiazolen, sowie deren Derivate, wobei Triazol-Verbindungen, insbesondere Benzotriazol-Verbindungen, und Derivate hiervon besonders bevorzugt sind;
Korrosionsschutzmittel, ausgewählt aus neutralisierten bzw. neutralen Carbonsäure-, Sulfonsäure-, Naphthalinsulfonsäure-, Benzosulfonsäure-, Benzoesäure-, Naphthoesäure- , Naphtensäure- und Phosphorsäure-Metallsalzen, sowie deren Derivaten, bevorzugt Na-, Ca-, K- und Mg-Salzen, wobei neutralisierte bzw. neutrale Sulfonsäure-, Naphthalinsulfonsäure- und Benzosulfonsäure-Metallsalze besonders bevorzugt sind, insbesondere Ca-Salze, und wobei neutrale Calciumsulfonate, wie neutrale
Alkylnaphthalinsulfonsäure-Calciumsalze, ganz besonders bevorzugt sind;
Entschäumer, ausgewählt aus ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Polyolen inklusive Diolen, Acrylaten und Polysiloxanen, wobei Polysiloxane besonders bevorzugt sind;
Verschleißschutz- und/oder Hochdruckadditive, ausgewählt aus Aminen, Aminphosphaten, verzweigten und/oder linearen alkylierten Phosphaten, Phosphiten, Thiophosphaten, und Phosphothionaten, Arylphosphaten, alkylierten Polysulfiden, geschwefelten Aminverbindungen, geschwefelten Fettsäuremethylestern, Naphthensäuren, Nanopartikeln ausgewählt aus AI2O3, S1O2, T1O2, ZrC>2, WO3, Ta20s, V2O5, CeC>2, Aluminiumtitanat, BN, M0S12, SiC, S13N4, TiC, TiN, Zrß2, Tonmineralen und deren Gemische, Sulfonsäuresalzen, und thermisch stabilen Carbonaten und Sulfaten.
Ein derartiges Additivgemisch eignet sich besonders für Schmierstoffzusammensetzungen zur Verwendung als Getriebe-, Wälzlager- oder Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können.
Weiterhin besonders bevorzugt gemäß dieser Ausführungsform der Erfindung ist deshalb ein Additivgemisch umfassend: ein oder mehrere Antioxidationsmittel, ausgewählt aus aminischen Antioxidationsmitteln, phenolischen Antioxidationsmitteln, Phosphiten, Phosphorthionaten und Thiocarbamaten; ein oder mehrere Buntmetalldesaktivatoren, ausgewählt aus Triazol- Verbindungen, Salicylaten und Mercaptothiadiazolen, sowie deren Derivate; ein oder mehrere Korrosionsschutzmittel, ausgewählt aus neutralisierten/neutralen Carbonsäure-, Sulfonsäure-, Naphthalinsulfonsäure-, Benzosulfonsäure-, Benzoesäure-, Naphthoesäure-, Naphtensäure- und Phosphorsäure- Metallsalzen, sowie deren Derivaten, insbesondere Na-, Ca-, K- und Mg-Salze; optional ein oder mehrere Entschäumer, ausgewählt aus ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Polyolen, Acrylaten und Polysiloxanen; und optional ein oder mehrere Verschleißschutz- und/oder Hochdruckadditive, ausgewählt aus Aminen, Aminphosphaten, verzweigten und/oder linearen alkylierten Phosphaten, Phosphiten, Thiophosphaten, und Phosphothionaten, Arylphosphaten, alkylierten Polysulfiden, geschwefelten Aminverbindungen, geschwefelten Fettsäuremethylestern, Naphthensäuren, Nanopartikeln ausgewählt aus AI2O3, S1O2, T1O2, ZrC>2, WO3, Ta2C>5, V2O5, CeC>2, Aluminiumtitanat, BN, M0S12, SiC, S13N4, TiC, TiN, Zrß2, Tonmineralen und deren Gemische, Sulfonsäuresalzen, und thermisch stabilen Carbonaten und Sulfaten.
Eine Schmierstoffzusammensetzung, die sich insbesondere für die Verwendung als Getriebe-, Wälzlager- oder Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, eignet, enthält deshalb gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung:
A) ein Grundöl;
B) 0,5-7 Gew.-% eines Additivgemischs, bezogen auf das
Gesamtgewicht der Schmierstoffzusammensetzung, wobei das Additivgemisch umfasst: ein oder mehrere Antioxidationsmittel, ausgewählt aus aminischen Antioxidationsmitteln, phenolischen Antioxidationsmitteln, Phosphiten, Phosphorthionaten und Thiocarbamaten; ein oder mehrere Buntmetalldesaktivatoren, ausgewählt aus Triazol- Verbindungen, Salicylaten und Mercaptothiadiazolen, sowie deren Derivate; ein oder mehrere Korrosionsschutzmittel, ausgewählt aus neutralisierten/neutralen Carbonsäure-, Sulfonsäure-, Naphthalinsulfonsäure-, Benzosulfonsäure-, Benzoesäure-, Naphthoesäure-, Naphtensäure- und Phosphorsäure- Metallsalzen, sowie deren Derivaten; optional ein oder mehrere Entschäumer, ausgewählt aus ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Polyolen, Acrylaten und Polysiloxanen; und optional ein oder mehrere Verschleißschutz- und/oder Hochdruckadditive, ausgewählt aus Aminen, Aminphosphaten, verzweigten und/oder linearen alkylierten Phosphaten, Phosphiten, Thiophosphaten, und Phosphothionaten, Arylphosphaten, alkylierten Polysulfiden, geschwefelten Aminverbindungen, geschwefelten Fettsäuremethylestern, Naphthensäuren, Nanopartikeln ausgewählt aus AI2O3, S1O2, T1O2, ZrC>2, WO3, Ta2C>5, V2O5, CeC>2, Aluminiumtitanat, BN, M0S12, SiC, S13N4, TiC, TiN, Zrß2, Tonmineralen und deren Gemische, Sulfonsäuresalzen, und thermisch stabilen Carbonaten und Sulfaten;
C) 0,1-10 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung; und
D) 5-85 Gew.-%, der Ester-Verbindung, bezogen auf das
Gesamtgewicht der Schmierstoffzusammensetzung, wobei die Ester-Verbindung ausgewählt ist aus Neopentylglycolestern, Trimethylolpropanestern, und Pentaerythritestern, die insbesondere mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Monocarbonsäuren der Kettenlänge C4-C36, bevorzugt C10-36, besonders bevorzugt C14-C36, und ganz besonders bevorzugt C18-C36 verestert sind; und Neopentylglycol- Komplexestern, Trimethylolpropan-Komplexestern, und Pentaerythrit-Komplexestern, die insbesondere mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Monocarbonsäuren der Kettenlänge C4-C36, bevorzugt C10-36, besonders bevorzugt C14-C36, und ganz besonders bevorzugt C18-C36, und mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Dicarbonsäuren der Kettenlänge C4-C36 bevorzugt C4-C18, besonders bevorzugt C4- C12, in beliebiger Mischung vollständig verestert oder teilverestert sind; sowie Kombinationen daraus; wobei das Grundöl ausgewählt ist aus öllöslichen Polyglycolen, Polyalphaolefinen (PAOs), Metallocen-Polyalphaolefinen (mPAOs), Weißölen, Farnesen basierende Ölen, Estoliden, sowie Mischungen aus zwei oder mehreren hiervon, und wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen und der Bestandteile C) wie vorstehend definiert ist.
Hierbei ist es insbesondere bevorzugt, dass das Additivgemisch weitestgehend neutral ist bzw. eine möglichst niedrige Gesamtsäurezahl (TAN) aufweist, da sich dies besonders vorteilhaft im Hinblick auf die Elastomerverträglichkeit der Schmierstoffzusammensetzungen auswirkt.
Ganz besonders bevorzugt ist es gemäß dieser Ausführungsform der Erfindung, dass die Schmierstoffzusammensetzung enthält:
A) ein Grundöl, ausgewählt aus öllöslichen Polyglycolen, Polyalphaolefinen (PAOs) und Metallocen-Polyalphaolefinen (mPAOs), sowie Mischungen aus zwei oder mehreren hiervon;
B) 0,5-5 Gew.-% eines Additivgemischs umfassend ein oder mehrere aminische Antioxidationsmittel, ein oder mehrere neutralisierte/neutrale Sulfonsäure-, Naphthalinsulfonsäure- und/oder Benzosulfonsäure-Metallsalze, ein oder mehrere Triazol- Verbindungen, insbesondere Benzotriazol-Verbindungen, und/oder Derivate hiervon, und ein oder mehrere Polysiloxane;
C) 0,1-5 Gew.-% der organischen Verbindung; und
D) 10-85 Gew.-% Pentaerythritester; wobei sich die angegebenen Mengen jeweils auf das Gesamtgewicht der Schmierstoffzusammensetzung beziehen und sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen, und die organische Verbindung C) wie vorstehend definiert ist.
Ein Schmierstoff dieser Zusammensetzung zeigt eine hohe Verträglichkeit gegenüber Dichtungsmaterialien, insbesondere Elastomeren, sowie gute Gleit- bzw. Schmiereigenschaften. Zudem weist ein Schmierstoff dieser Zusammensetzung eine gute Bioverträglichkeit, d.h. gute Bioabbaubarkeit gemäß Norm OECD 301 A - F oder OECD 306 und geringe Aquatoxizität (z.B. nach Norm OECD 201, 202, 203 oder 236), auf und eignet sich deshalb insbesondere für die Verwendung als Getriebeöl Wälzlager- oder Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können.
Gegenstand der vorliegenden Erfindung ist deshalb zudem eine
Schmierstoffzusammensetzung zur Verwendung als Getriebe-, Wälzlager- und
Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, enthaltend als Bestandteile:
A) ein Grundöl, ausgewählt aus öllöslichen Polyglycolen, Polyalphaolefinen (PAOs) und Metallocen-Polyalphaolefinen (mPAOs), sowie Mischungen aus zwei oder mehreren hiervon;
B) 0,5-5 Gew.-% eines Additivgemischs umfassend ein oder mehrere aminische Antioxidationsmittel, ein oder mehrere neutralisierte/neutrale Sulfonsäure-, Naphthalinsulfonsäure- und/oder Benzosulfonsäure-Metallsalze, ein oder mehrere Triazol- Verbindungen und/oder Triazol- Derivate, und ein oder mehrere Polysiloxane;
C) 0,1-5 Gew.-% einer organischen Verbindung, die sowohl einen polaren als auch einen unpolaren Teil umfasst; und
D) 10-85 Gew.-% Pentaerythritester. wobei sich die angegebenen Mengen jeweils auf das Gesamtgewicht der Schmierstoffzusammensetzung beziehen und sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen, und wobei die organische Verbindung eine relative Permittivität eG im Bereich von 1,5 bis 10, bevorzugt von 1,7 bis 8, insbesondere bevorzugt von 2 bis 7, und am meisten bevorzugt von 2,3 bis 5 aufweist, und wobei ein Quotient ί Si / J-S2 der organischen Verbindung im Bereich von 1 bis 25, bevorzugt von 1,3 bis 22, insbesondere bevorzugt 1,7 bis 17, und am meisten bevorzugt von 2 bis 14 liegt, wobei J Si“ die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 3100- 2750 cm-1 in einem ATR-Spektrum der organischen Verbindung bezeichnet, und „J S2“ die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 1800- 1650 cm-1 in einem ATR-Spektrum der organischen Verbindung bezeichnet. Die erfindungsgemäße Schmierstoffzusammensetzung eignet sich gemäß einer Ausführungsform ausgezeichnet für die Verwendung als Getriebeöle, Wälzlageröle und Gleitlageröl für die allgemeine Industrie, einschließlich als Getriebeöl, Wälzlageröl und Gleitlageröl für den gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln.
Generell Anwendungsgebiete, die die Verwendung als Getriebeöle, Wälzlageröle und Gleitlageröl für die allgemeine Industrie miteinschließt, umfassen die Schmierung von Getrieben, insbesondere Stirnrad-, Kegelrad-, Planeten-, Schnecken-, Hypoid- und Zykloidgetrieben, Hydrauliken, Linearführungen, Pneumatikkomponenten, Armaturen, Lagern, insbesondere Gleit- und Wälzlager, Ketten, Seilen, Federn, Schrauben und Kompressoren, und insbesondere auch von Maschinenbauteilen und in Anlagen, die in den gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln kommen, ohne hierauf beschränkt zu sein.
Ketten bestehen aus gleichartigen, miteinander verbundenen Gliedern. Sie dienen der Kraftübertragung und werden als Antriebsketten z.B. bei Fahrrädern, als Steuerketten bei Kfz-Motoren, als Lastketten bei Schleusentoren oder als Transportketten bei Förderanlagen verwendet. Seile lassen sich in laufende Seile wie sie z. B. bei Kränen, Winden, und Aufzügen zu finden sind, in stehende Seile, wie Abspannseile, sowie als Tragseile und Anschlagseile unterteilen. Bei Schrauben handelt es sich um Verbindungselemente, welche mit möglichst geringem Aufwand moniert und demontiert werden sollen und dabei die eingesetzten Werkstoffe nicht beschädigt werden. Federn schließen Blattfederpackungen, Tellerfederpackungen, Ringfederpackungen, Schraubentellerfedern und Schenkelfedern mit ein. Armaturen dienen der Regelung von Feststoff,- Flüssig- und Gasströmen. Zusätzlich können sie auch die Funktion des Stehens, also des Mischens und des Regeins eines oder mehrerer Volumenströme übernehmen. Neben den typischen Anwendungen als Hahn oder Mischbaterie gelten auch alle Arten von Ventilen zu den Armaturen.
Bei Pneumatikkomponenten handelt es sich um Pneumatik-Ventile- und Zylinder, die durch Umwandlung der pneumatischen in mechanische Energie gradlinige Bewegungen zum Verschieben, Heben, oder zurückführen von Werkstücken und Werkzeugen erzeugen. Bei Hydrauliken wird Kraft und Drehmoment mittels Druck und Volumenstrom übertragen. Beispiele sind Axialkolbenmaschinen, Außenzahnradmaschinen und Radialkolbenmotoren.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung der erfindungsgemäßen Schmierstoffzusammensetzungen als Getriebeöl, Wälzlageröl und Gleitlageröl für die allgemeine Industrie, insbesondere zur Schmierung von Getrieben, wie Stirnrad-, Kegelrad-, Planeten-, Schnecken-, Hypoid- und Zykloidgetrieben, Hydrauliken, Linearführungen, Pneumatikkomponenten, Armaturen, Lagern, wie Gleit- und Wälzlagern, Ketten, Seilen, Federn, Schrauben und Kompressoren, und insbesondere von Maschinenbauteilen und in Anlagen, die in den gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln kommen, wobei die Schmierstoffzusammensetzung bevorzugt enthält:
A) ein Grundöl;
B) 0,01-10 Gew.-% des mindestens einen Additivs, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung; und
C) 0,001-10 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen und die Komponenten A), B) und C) wie vorstehend definiert sind.
Besonders bevorzugt ist die Verwendung einer Schmierstoffzusammensetzung, enthaltend:
A) ein Grundöl;
B) 0,01-6,0 Gew.-% eines Additivgemischs, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei das Additivgemisch umfasst: ein oder mehrere Antioxidationsmittel, ausgewählt aus phenolischen Antioxidationsmitteln, aminischen Antioxidationsmitteln, Propionaten und Thiopropionaten; ein oder mehrere Entschäumer, ausgewählt aus ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Polyolen, Acrylaten und Polysiloxanen; ein oder mehrere Verschleißschutz- und/oder Hochdruckadditive, ausgewählt aus Aminen, Aminphosphaten, verzweigten und/oder linearen alkylierten Phosphaten, Phosphiten, Thiophosphaten, und Phosphothionaten, Arylphosphaten, alkylierten Polysulfiden, geschwefelten Aminverbindungen, geschwefelten Fettsäuremethylestern, Naphthensäuren, Nanopartikeln ausgewählt aus AI2O3, S1O2, T1O2, ZrÜ2, WO3, Ta205, V2O5, Ce02, Aluminiumtitanat, BN, M0S12, SiC, S13N4, TiC, TiN, Zrß2, Tonmineralen und deren Gemische, Sulfonsäuresalzen, und thermisch stabilen Carbonaten und Sulfaten; optional ein oder mehrere Buntmetalldesaktivatoren, ausgewählt aus Triazol-Verbindungen, Salicylaten und Mercaptothiadiazolen, sowie deren Derivate; optional ein oder mehrere Korrosionsschutzmittel ausgewählt aus der Gruppe Carbonsäure-Metallsalze, Sulfonsäure-Metallsalze, Naphthalinsulfonsäure- Metallsalze, Benzosulfonsäure-Metallsalze, Benzoesäure-Metallsalze, Naphthoesäure- Metallsalze und Naphthensäure-Metallsalze sowie deren Derivate, einschließlich linearer und verzweigter aliphatischer und aromatischer Derivate der Säuresalze, die noch dazu mit einem oder mehreren Resten, ausgewählt aus linearen und/oder verzweigten Alkyl- Resten und Aryl-Resten, substituiert sein können, und insbesondere der Na-, Ca-, K- und Mg-Salze; und optional als Farbindikator 2,5-thiophenediylbis(5-ter-butyl-1,3-benzoxazole); und
C) 0,001-2,5 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei das Grundöl bevorzugt ausgewählt ist aus Polyalphaolefinen (PAOs), Metallocen- Polyalphaolefinen (mPAOs), Weißölen, Mineralölen, Neopentylglycolestern, Pentaerythritester, Trimetylolpropanester sowie Pentaerythrit- und Trimetylolpropan- Komplexester, die bevorzugt wie vorstehend definiert sind, aliphatischen Carbonsäure- und Dicarbonsäureestern, Triglycerid-Fettsäure-(C8/C10)-estern, Alkylnaphtalinen, Ethylene/a-Olefin-Oligomeren und öllöslichen Polyglycolen, sowie Mischungen aus zwei oder mehreren hiervon, und wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen und die organische Verbindung C) wie vorstehend definiert ist, als Getriebeöl, Wälzlageröl und Gleitlageröl für die allgemeine Industrie sowie im Bereich der Lebensmittel verarbeitenden Industrie für den gelegentlichen, unbeabsichtigten Lebensmittelkontakt.
Die erfindungsgemäße Schmierstoffzusammensetzung eignet sich gemäß einer weiteren Ausführungsform zudem ausgezeichnet für die Verwendung als Getriebeöl, Wälzlageröl und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können.
Anwendungsgebiete im marinen Bereich und im Bereich der Binnengewässer schließen insbesondere die Schmierung von Getrieben, Hydrauliken, Lagern, wie Gleit-, Wälz- oder Stevenrohrlager, Propellerrudern, Propellerwellen, Pneumatikkomponenten Linearführungen, Ketten und Seilen in Maschinen, Maschinenbauteilen und Anlagen, die im marinen Bereich mit Salzwasser, beispielsweise Offshore-Anlagen, bzw. in Binnengewässern mit Wasser und/oder wässrigen Medien in Berührung kommen, mit ein, ohne hierauf beschränkt zu sein.
Im marinen Bereich werden Getriebe beispielsweise in Thrustern und Azipods verwendet. Diese Anwendung dient der Kraftübertragung und Kraftwandlung, welche zwischen Antrieb und Propeller von statten geht. Hier ist sowohl mit einem Eintrag von Wasser ins Innere als auch mit Austritt von Schmierstoff in die Meeresumwelt zu rechnen.
Eine weitere Anwendung im marinen Bereich sind Jack-up-Systeme, die Plattformen, Installationsschiffe für Windräder oder Bohrinseln anheben. Diese Bewegung wird durch offene Getriebe bewerkstelligt.
Hydrauliken im Marinesektor dienen zum Antrieb verstellbarer Propellerruder, sowie in Flossenstabilisatoren und Ruderlagern. In letzteren kommen auch Linearführungen zum Einsatz, die zumeist mit dem gleichen Schmierstoff geschmiert werden. Auch hier findet die Schmierung unterhalb der Wasserlinie statt. Dem entsprechend ist auch in diesen Fall mit Wassereintrag in die Maschinenteile sowie Austritt des Schmierstoffs in die Meeresumwelt zu rechnen.
Bei der Gleitlageranwendung im Marinebereich handelt es sich in erster Linie um ein Propellerwellenlager, welches sich im Stevenrohr befindet, das sogenannte Stevenrohrlager. Primäre Aufgabe der Propellerwelle ist die Übertragung der Antriebsbewegung durch den Schiffsrumpf zur Schraube. Das Lager sorgt dabei für reibungsarme Bewegung.
Des Weiteren werden Maschinen und Maschinenbauteile in Offshore Windkraftanlagen, Öl- und Gasförderplattformen, in Hafenanlagen, Werften und dergleichen geschmiert, die mit Meerwasser, Wasser und wässrigen Medien in Berührung kommen.
Dazu gehören auch Ketten, die beispielsweise in Schleusentoren verwendet werden, Seile, wie der Schiffstau oder Seile die an Netzen Anwendung finden, sowie Armaturen zur Regelung von Feststoff-, Flüssig- und Gasströmen. Ebenso müssen Schrauben, Federn, Ventile in den verschiedensten Apparaturen und Maschinen geschmiert werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung der erfindungsgemäßen Schmierstoffzusammensetzung als Getriebeöl, Wälzlageröl und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, insbesondere zur Schmierung von Getrieben, Hydrauliken, Propellerrudern, Propellerwellen, Linearführungen, Pneumatikkomponenten, Armaturen, Lagern wie Gleit-, Wälz- oder Stevenrohrlager, Ketten, Seilen, Federn und Schrauben in Maschinen, Maschinenbauteilen und Anlagen, die im Marinebereich mit Salzwasser bzw. in Binnengewässern mit Wasser und/oder wässrigen Medien in Berührung kommen, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können, wobei die Schmierstoffzusammensetzung bevorzugt enthält:
A) ein Grundöl;
B) 0,5-7 Gew.-% des mindestens einen Additivs, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung;
C) 0,1-10 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung; und D) 0,1-85 Gew.-%, der Ester-Verbindung, bezogen auf das
Gesamtgewicht der Schmierstoffzusammensetzung wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen und die Komponenten A), B), C) und D) wie vorstehend definiert sind.
Besonders bevorzugt ist die Verwendung einer Schmierstoffzusammensetzung, enthaltend:
A) ein Grundöl, ausgewählt aus öllöslichen Polyglycolen, Polyalphaolefinen (PAOs) und Metallocen-Polyalphaolefinen (mPAOs), sowie Mischungen aus zwei oder mehreren hiervon;
B) 0,5-5 Gew.-% eines Additivgemischs umfassend ein oder mehrere aminische Antioxidationsmittel, ein oder mehrere neutralisierte/neutrale Sulfonsäure-, Naphthalinsulfonsäure- und/oder Benzosulfonsäure-Metallsalze, ein oder mehrere Triazol- Verbindungen und/oder Triazol- Derivate, und ein oder mehrere Polysiloxane;
C) 0,1-5 Gew.-% der organischen Verbindung; und
D) 10-85 Gew.-% Pentaerythritester; wobei sich die angegebenen Mengen jeweils auf das Gesamtgewicht der Schmierstoffzusammensetzung beziehen und sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen, und wobei die organische Verbindung C) wie vorstehend definiert ist, als Getriebeöl, Wälzlageröl und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können.
Die vorliegende Erfindung wird durch die nachfolgenden nicht einschränkenden Beispiele detaillierter beschrieben. Der Fachmann kann, ohne erfinderisch tätig zu werden, weitere erfindungsgemäße Verbindungen hersteilen.
Beispiele Verwendete allgemeine Prüfmethoden
Die Eigenschaften der Schmierstoffzusammensetzung sowie der darin enthaltenen Komponenten werden, sofern nicht von Herstellerseite bekannt, mittels der folgenden Methoden bestimmt:
- Bestimmung der Viskosität: Viskositätsmessungen erfolgen gemäß ASTM D 7042 mittels eines Stabinger Viskosimeters SVM 3000 (Anton Paar).
- Bestimmung Säurezahl (TAN, total acid number [mg KOH / g]):
Zur Bestimmung der Säurezahl wird die Probe in einem Lösemittelgemisch gelöst und anschließend gemäß ASTM D 664-18E02 mit einer alkoholischen Kaliumhydroxid-Lösung titriert. Die Titration wird potentiometrisch mit Hilfe einer Solvotrode an einer Metrohm 905 Titrando Titiriereinheit durchgeführt.
- Bestimmung Molekulargewicht (Mn):
Die Bestimmung des Molekulargewichts erfolgt mittels GPC (Gel-Permeations- Chromatographie) gegen einen Polystyrol-Standard gemäß DIN 55672-1:2016-03 „Gelpermeationschromatographie (GPC) - Teil 1: Tetrahydrofuran (THF) als Elutionsmittel“ unter Verwendung eines SECcure GPC Systems.
- Bestimmung der Integrale J Si und J S2:
ATR-Infrarotspektroskopiemessungen an den Gleitverbesserern werden in Anlehnung an die Norm DIN 51451 (DIN 51451:2020-02) „Prüfung von Mineralölerzeugnissen und verwandten Produkten: Infrarotspektrometrische Analyse - Allgemeine
Arbeitsgrundlagen“, angepasst auf ATR-Messung unter Verwendung eines IR- Spektrometers Bruker Tensor 27 (Software OPUS 7.5) oder Bruker Vertex 70 (Software OPUS 7.0) der Firma Bruker Optik GmbH durchgeführt.
Es werden folgende Bereiche im ATR Spektrum zur Bildung der Integrale J S1 bzw. J S2 herangezogen: f S1: 3100 - 2750 crrr1 iS2: 1800 - 1650 crrr1 Zur Bildung der Basislinie wird bei beiden Integralen folgendermaßen vorgegangen.
Der Integralbereich wird halbiert. In diesen beiden Teilbereichen werden die jeweiligen absoluten Minima bestimmt. Sollte es mehrere absolute Minimalpunkte in einem Teilbereich geben, so wird der Punkt herangezogen, der sich am weitesten im Randbereich des gesamten Integrals befindet. Die Basislinie wird über eine Geradengleichung aus den beiden absoluten Minimalpunkten im gesamten Integral berechnet. Das zu integrierende Spektrum wird um die Basislinie bereinigt. Es folgt das Integrieren des um die Basislinie bereinigten Spektrums.
- Bestimmung der relativen Permittivität eG:
Zur Bestimmung der relativen Permittivität eG wird an einem Labormessgerät des Systems EPSILON+ des Herstellers flucon fluid control GmbH in Anlehnung an die Norm DIN EN 60247 (DIN EN 60247:2005-01) “Isolierflüssigkeiten - Messung der Permittivitätszahl, des dielektrischen Verlustfaktors (tan d) und des spezifischen Gleichstrom-Widerstandes“ die komplexe Fluidimpedanz bestimmt. Für jeden zu untersuchenden Gleitverbesserer wird nach dem Einfüllen der Probe bei Raumtemperatur (ca. 20 °C) eine Messung mit kontinuierlicher Datenerfassung gefahren, und zwar von ca. 18,5 bis 21,5 °C (1. Schritt) und wieder zurück (2. Schritt). Anschließend werden die erhaltenen Daten bei den beauftragten 20,0 °C aus beiden Schritten verglichen und gemittelt.
Übersicht über die in den Beispielen verwendeten Gleitverbesserer (siehe Tabellen 1-a und 1-b):
Tabelle 1-a
Tabelle 1-b
Herstellung der Schmierstoffzusammensetzungen:
Die Herstellung der Schmierstoffzusammensetzungen erfolgt nach einem dem Fachmann bekannten Vorgehen, indem die Grundöle und Additive in einem geeigneten Gefäß, z.B. einem Mischkessel, unter Verwendung eines geeigneten Rührers vermischt werden. Feste Additive bzw. Komponenten werden durch Temperaturerhöhung in Lösung gebracht und untergerührt. Die Herstellung kann auch mittels kontinuierlicher Verfahren erfolgen.
Folgende erfindungsgemäße Schmierstoffzusammensetzungen werden wie vorstehend beschrieben hergestellt (siehe Tabelle 2 - Beispiele 1-15b). Als Kontrolle werden Schmierstoffzusammensetzungen ohne Gleitverbesserer (Basisformulierung) wie vorstehend beschrieben hergestellt (siehe Tabelle 2 - Vergleichsbeispiele 1-5).
Tabelle 2:
Bestandteil Bsp. 4 Bsp. 5 Bsp. 6
Beispiel 16: Wirkung des Gleitverbesserers auf die Gleiteigenschaften von Schmierstoffen
Um die Auswirkung des Gleitverbesserers auf die Gleiteigenschaften von Schmierstoffen zu untersuchen, wird die Änderung der Übergangsgeschwindigkeit (transition speed) an einer Kontaktfläche Weißmetall/Stahl bei geringem Kontaktdruck bestimmt. Die Übergangsgeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich die Kontaktflächen vollständig trennen, das heißt, als die Geschwindigkeit, mit der der Übergang von Mischreibung (d.h. gelegentlicher Kontakt der metallischen Reibpartner / nicht vollständig ausgebildeter Schmierfilm) zum elastohydrodynamischen (EHL) Bereich (d.h. vollständig ausgebildeter Schmierfilm und vollständige Trennung der metallischen Reibpartner durch Schmierfilm) erfolgt.
Die Tests werden unter Verwendung eines Tribometers (KUGEL-SCHEIBE- TRIBOMETER von AC2Tresearch/Austrian Competence Center for Tribology) mit der Prüfkombination Zylinder-auf-Ring durchgeführt. Ein 10 c 10 mm (Durchmesser c Länge) 100Cr6-Stahlzylinder mit einer Rauheit Ra von ca. 0,02 pm wird unter Auflage einer definierten Last gegen einen Weißmetallring mit einer Rauheit Ra von ca. 1,3 pm gerieben. Der Weißmetallring befindet sich dabei in einem Ölreservoir.
Durch Messung von Reibungskoeffizienten durch kontinuierliches Variieren der Geschwindigkeit der Weißmetallring von niedriger zu hoher Geschwindigkeit (0,05 m/s - 2,5 m/s) und umgekehrt (2,5 m/s - 0,05 m/s) werden Stribeck-Kurven (Reibungs- Geschwindigkeits-Kurven) erhalten.
Vor Beginn des Tests wurde ein Einlaufverfahren durchgeführt. Dies beinhaltete Geschwindigkeitsrampen von 0,05 m/s auf 2,5 m/s und anschließend von 2,5 m/s auf 0,05 m/s bei 10 N und 20 N bei Raumtemperatur und bei 10 N bei 40°C
Die Stribeck-Kurve wird anschließend bei 20 N bei 40°C mit einer Geschwindigkeitsrampe von 0,05 m/s bis 2,5 m/s erzeugt. Fig. 1 zeigt die Messung der Stribeck- Kurven für eine Basisformulierung ohne Gleitverbesserer (Vergleichsbeispiel 1) und einen erfindungsgemäßen Schmierstoff mit Gleitverbesserer (Beispiel 8). Es ist zu erkennen, dass sich bei Anwesenheit des Gleitverbesserers die Übergangsgeschwindigkeit deutlich zu einer niedrigeren Geschwindigkeit (A nach B) hin verschiebt.
In Fig. 2 ist die Übergangsgeschwindigkeit aller getesteter Schmierstoffe dargestellt. Wie aus Fig. 2 hervorgeht, weisen alle untersuchten Schmierstoffe mit Gleitverbesserer (Beispiele 2, 5, 8, 9, 11) eine deutlich geringere Übergangsgeschwindigkeit auf als eine Basisformulierung (Vergleichsbeispiel 1) sowie eine Schmierstoffzusammensetzung, die einen nicht erfindungsgemäßen Gleitverbesserer enthält (Vergleichsbeispiel 5), was darauf hinweist, dass die erfindungsgemäßen Schmierstoffe, die den erfindungsgemäßen Gleitverbesserer enthalten, den Schmierfilm viel früher ausbilden als die der Vergleichsbeispiele. Die verbesserten Schmiereigenschaften der erfindungsgemäßen Schmierstoffe mit Gleitverbesserer zeigen, dass sie eine verbesserte Belastungskapazität bewirken, beispielsweise in Gleitlagern und ähnlichen Bauteilen.
Beispiel 17 - Bestimmung des Gleitverhaltens mittels elastomerdynamischer Messungen:
Die Tests werden nach der Prüfvorschrift von Hüttinger, Hermes, Wöppermann (Hüttinger, Hermes, Wöppermann, Prem (2015): Neues Prüfverfahren für dynamische Dichtungen von Getriebemotoren. In: Berger und Kiefer (Hrsg.) Dichtungstechnisches Jahrbuch 2016, Mannheim: lsgatec) auf einem Prüfstand in Anlehnung an DIN 3761-10:1984-10 (Beuth (Hrsg.): DIN 3761, Radial-Wellendichtringe für Kraftfahrzeuge, 1984) durchgeführt.
Die Bedingungen/Messparameter werden wie folgt gewählt: Elastomermaterial: 75 FKM 585; Druck: 0,25 bar; Temperatur: 70°C; Versuchsdauer: 240 h; 10 Zyklen mit Drehzahl 2000rpm (20h) und Orpm (4h); Befettung: Bremer & Leguil Cassida GTS 2.
Mittels elastomerdynamischer Messungen an FKM-Radialwellendichtringen von Freudenberg BAU3 38-90-12 75FKM585 (Art. 49385291/ 49370995) nach der vorstehend beschriebenen Prüfvorschrift wird die dynamische Elastomerverträglichkeit bei Verwendung erfindungsgemäßer Schmierstoffzusammensetzungen (Beispiele 3 und 15b) bestimmt. Anschließend wir die Laufspurbreite sowie der Welleneinlauf gemessen, die ein Maß für das Gleitverhalten bzw. die Elastomerverträglichkeit der Schmierstoffzusammensetzung darstellen. Als Kontrolle dient eine Basisformulierung ohne Gleitverbesserer (Vergleichsbeispiel 2). Die Ergebnisse der Messungen sind in Tabelle 3 zusammengefasst:
Tabelle 3:
Die Messergebnisse zeigen, dass bei den erfindungsgemäßen Schmierstoffzusammensetzungen mit Gleitverbesserer (Beispiel 3: GV 1; Beispiel 15b: GV 2, jeweils im Vergleich zu Vergleichsbeispiel 2) eine Reduzierung der Radialwellendichtring-Laufspur-/Verschleißbreite von 0,66 mm auf 0,35 mm (Beispiel 3) bzw. 0,54 mm (Beispiel 15b) und eine Reduzierung des Welleneinlaufs von 20 pm auf 0 pm (Beispiel 3) bzw. 14 pm (Beispiel 15b) im Vergleich zu der Basisformulierung ohne Gleitverbesserer (Vergleichsbeispiel 2) erreicht wird. Wie die Messergebnisse zu Vergleichsbeispiel 4 zeigen, wird durch Erhöhung der Viskosität der Basisformulierung (mPAO 150/Vergleichsbeispiel 4 im Vergleich zu mPAO 65/Vergleichsbeispiel 2) hingegen keine Verbesserung erreicht.
Beispiel 18 - Bestimmung des Gleitverhaltens bei Elastomer als Reibpartner mittels DES (Dynamisches Elastomer Screening):
Die Tests werden mit einem "Ring-Scheibe-Tribometer" unter Weiterentwicklung des von Sommer M. und Haas W. beschriebenen Aufbaus durchgeführt ([1] Sommer, M., Haas, W. „A new approach on grease tribology in sealing technology: Influence of the thickener particles“, Tribology International (2016), 103, 574-583). Als Testmaterial wird FKM Elastomermaterial verwendet. Der Gegenkörper ist ein Stahlgegenkörper
Die zu untersuchende Schmierstoffzusammensetzung wird an einem Ring-Scheibe- Tribometer, wie in [1] beschrieben ist, bei einer konstanten Geschwindigkeit von 1,5 m/s und einer Temperatur von 60°C bei einer Linienlast von 0,90 N/mm betrachtet, um bei schlechter Schmierfilmbildung ein Zusammenbrechen des Schmierfilms und Festkörperkontakt zu provozieren.
Wie den Figuren 3A bis 3D zu entnehmen ist, zeigen die erfindungsgemäßen Schmierstoffzusammensetzung mit Gleitverbesserer (Beispiel 2: GV 3; Beispiel 5: GV 5; Beispiel 11, GV 2; Beispiel 14; GV 1) ein über die Zeit deutlich ruhigeren und niedrigeren Verlauf des Reibkoeffizienten m, was einen stabilen Schmierfilmaufbau bedeutet und für eine hydrodynamische Schmierung spricht. Dies weist auf ein stabileres Tribosystem Elastomer/Schmierstoff/Stahlgegenkörper mit geringerem Verschleiß hin (siehe Figuren 4A, 4B). Die Basisformulierung ohne Gleitverbesserer (Vergleichsbeispiel 3) zeigt einen instabilen Schmierfilmaufbau, was sich in einer starken Schwankung und einem höheren Verlauf des Reibkoeffizienten äußert. Dies spricht für, zumindest lokalen, Festkörperkontakt und einen ausgeprägten Haftgleiteffekt („Stick-Slip-Effekt“).
Wie in den Figuren 4A und 4B gezeigt ist, wird durch Zugabe des Gleitverbesserers der Verschleiß am Elastomerkörper reduziert, und zwar um 57 % (Beispiel 2: GV 3), 50 % (Beispiel 14, GV 1), 67% (Beispiel 11, GV 2) bzw. 63% (Beispiel 5, GV 5), und der Verschleiß am Stahlgegenkörper reduziert, und zwar um 80 % (Beispiel 2: GV 3), 67 % (Beispiel 14: GV 1), 67% (Beispiel 11: GV 2) bzw. 73% (Beispiel 5: GV 5), jeweils im Vergleich zu der Basisformulierung ohne Gleitverbesserer (Vergleichsbeispiel 3).
Beispiel 19: Wirkung des Gleitverbesserers auf die Beständigkeit gegen Mikropitting
Die Beständigkeit gegen Mikropitting wird an einem Micro-Pitting-Resistance (MPR-) Prüfstand (PCS Instruments, London, UK) überprüft. Mikropittings bezeichnen Schäden an Zahnradkontakten.
Der Prüfstand verwendet eine Dreifachkonfiguration, bei der eine Zentralwalze mit drei Scheiben in Kontakt steht, was zu drei Rollenkontaktzyklen pro Rollenumdrehung führt. Die unteren beiden Scheiben sind partiell in Öl getaucht und transportieren dieses während dem Test in den Kontakt, wodurch eine Tauchschmierung simuliert wird. Die Walze und die Scheiben werden von separaten Motoren angetrieben, was die Simulation von verschiedenen Gleit-Roll-Verhältnissen (SRR) erlaubt. Die Tests werden bei einem Hertzschen Kontaktdruck von 1,7 GPa, einem SRR von 20% bis 30%, einer Öltemperatur von 90°C und 10 Millionen Zyklen durchgeführt. Der Reibungskoeffizient und die Vibration wurden während des Versuchs mit einen Drehmomentmesser bzw. einem Beschleunigungsmesser aufgenommen. Am Ende des Tests wird die Testwalze unter Verwendung eines Lösungsmittels gereinigt, um restliches Öl zu entfernen, und das Gewicht der Walze bestimmt sowie mit einem optischen Mikroskop Aufnahmen der Laufspur gemacht. Die Fähigkeit einer Schmierstoffzusammensetzung hinsichtlich ihrer Beständigkeit gegen Mikropitting wird durch den Gewichtsverlust (Vergleich Gewicht vor bzw. nach Messung) der Walze (siehe Fig. 5A) sowie durch Änderung der Verschleißspurbreite (siehe Fig. 5B) bewertet.
Die Ergebnisse der MPR-Messungen aus Fig. 5A zeigen, dass bei erfindungsgemäßen Schmierstoffzusammensetzungen mit Gleitverbesserer (siehe Beispiele 1, 4, 6, 12) eine deutliche Reduktion des Gewichtsverlusts im Vergleich zu einer Basisformulierung ohne Gleitverbesserer (siehe Vergleichsbeispiel 2) zu erkennen ist.
Die Ergebnisse der MPR-Messungen aus Fig. 5B zeigen, dass bei erfindungsgemäßen Schmierstoffzusammensetzungen mit Gleitverbesserer (siehe Beispiele 4, 7, 10, 15) eine deutliche Reduktion der Laufspurbreite im Vergleich zu einer Basisformulierung ohne Gleitverbesserer (siehe Vergleichsbeispiel 4) zu erkennen ist.

Claims

Patentansprüche
1. Schmierstoffzusammensetzung, enthaltend:
A) ein Grundöl;
B) mindestens ein Additiv; und
C) 0,001-10 Gew.-%, bezogen auf das Gesamtgewicht der
Schmierstoffzusammensetzung, einer organischen Verbindung, die sowohl einen polaren als auch einen unpolarenen Teil umfasst, als Gleitverbesserer, wobei die organische Verbindung eine relative Permittivität eG im Bereich von 1,5 bis 10 aufweist und ein Quotient J Si / J S2 der organischen Verbindung im Bereich von 1 bis 25 liegt, wobei J S1 die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 3100-2750 cm-1 in einem ATR-Spektrum der organischen Verbindung bedeutet, und
/ S2 die Summe der Fläche(n) der IR-Absorptionsbande(n) in dem Wellenzahlenbereich 1800-1650 cm-1 in einem ATR-Spektrum der organischen Verbindung bedeutet.
2. Schmierstoffzusammensetzung nach Anspruch 1, wobei die Menge der organischen Verbindung 0,001-5 Gew.-%, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, beträgt.
3. Schmierstoffzusammensetzung nach Anspruch 1 oder 2, wobei die Menge des mindestens einen Additivs 0,01-10 Gew.-%, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung beträgt.
4. Schmierstoffzusammensetzung nach einem der Ansprüche 1 bis 3, wobei das mindestens eine Additiv ausgewählt ist aus Antioxidationsmitteln,
Verschleißschutzadditiven, Reibungsverminderern, Hochdruckadditiven,
Korrosionsschutzmitteln, Buntmetalldesaktivatoren, lonen-Komplexbildnern, Festschmierstoffen, Dispergiermitteln, Pourpoint- und Viskositätsverbesserern, UV-Stabilisatoren, Emulgatoren, Farbindikatoren und Entschäumern.
5. Schmierstoffzusammensetzung nach einem der Ansprüche 1 bis 4, enthaltend:
A) ein Grundöl;
B) 0,01-10 Gew.-% des mindestens einen Additivs, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung; und
C) 0,001-5 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen.
6. Schmierstoffzusammensetzung nach einem der Ansprüche 1 bis 5, wobei das mindestens eine Additiv ein Additivgemisch ist, das ein oder mehrere Antioxidationsmittel, ein oder mehrere Verschleißschutz- und/oder
Hochdruckadditive, ein oder mehrere Entschäumer, optional ein oder mehrere Buntmetalldesaktivatoren, optional ein oder mehrere Korrosionsschutzmittel, und optional einen Farbindikator umfasst.
7. Schmierstoffzusammensetzung nach einem der Ansprüche 1 bis 6, enthaltend:
A) ein Grundöl;
B) 0,01-6,0 Gew.-% eines Additivgemischs, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei das Additivgemisch umfasst: ein oder mehrere Antioxidationsmittel, ausgewählt aus phenolischen Antioxidationsmitteln, aminischen Antioxidationsmitteln, Propionaten und Thiopropionaten; ein oder mehrere Entschäumer, ausgewählt aus ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Polyolen, Acrylaten und Polysiloxanen; ein oder mehrere Verschleißschutz- und/oder Hochdruckadditive, ausgewählt aus Aminen, Aminphosphaten, verzweigten und/oder linearen alkylierten Phosphaten, Phosphiten, Thiophosphaten, und Phosphothionaten, Arylphosphaten, alkylierten Polysulfiden, geschwefelten Aminverbindungen, geschwefelten Fettsäuremethylestern, Naphthensäuren, Nanopartikeln ausgewählt aus AI2O3, S1O2, T1O2, ZrC>2, WO3, Ta2C>5, V2O5, CeÜ2, Aluminiumtitanat, BN, M0S12, SiC, S13N4, TiC, TiN, ZrB2, Tonmineralen und deren Gemische, Sulfonsäuresalzen, und thermisch stabilen Carbonaten und Sulfaten; optional ein oder mehrere Buntmetalldesaktivatoren, ausgewählt aus Triazol-Verbindungen, Salicylaten und Mercaptothiadiazolen, sowie deren Derivate; optional ein oder mehrere Korrosionsschutzmittel ausgewählt aus der Gruppe der Carbonsäure-Metallsalze, Sulfonsäure-Metallsalze, Naphthalinsulfonsäure-Metallsalze, Benzosulfonsäure-Metallsalze, Benzoesäure- Metallsalze, Naphthoesäure-Metallsalze, Naphthensäure-Metallsalze und N- Methylglycin sowie deren Derivate; und optional als Farbindikator 2,5-thiophenediylbis(5-ter-butyl-1,3-benzoxazole); und
C) 0,001-2,5 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen.
8. Schmierstoffzusammensetzung nach einem der Ansprüche 1 bis 5, wobei die Schmierstoffzusammensetzung als zusätzliche Komponente D) eine Ester- Verbindung enthält.
9. Schmierstoffzusammensetzung nach Anspruch 8, wobei die Ester-Verbindung ausgewählt ist aus natürlichen Glyceridestern, Polyolestern, Polyol- Komplexestern, Dimersäureestern und Dimersäure-Komplexestern, aliphatischen Carbonsäure- und Dicarbonsäureestern, Trimellith- und Pyromellitsäureestern, und Phosphatestern, sowie Mischungen aus zwei oder mehreren hiervon.
10. Schmierstoffzusammensetzung nach Anspruch 8 oder 9, wobei die Menge der Ester-Verbindung 0,1-85 Gew.-%, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung, beträgt.
11. Schmierstoffzusammensetzung nach einem der Ansprüche 8 bis 10, wobei die Schmierstoffzusammensetzung enthält:
A) ein Grundöl;
B) 0,5-7 Gew.-% des mindestens einen Additivs, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung;
C) 0,1-10 Gew.-% der organischen Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung; und
D) 0,1-85 Gew.-%, der Ester-Verbindung, bezogen auf das Gesamtgewicht der Schmierstoffzusammensetzung wobei sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen.
12. Schmierstoffzusammensetzung nach einem der Ansprüche 8 bis 11, wobei die Ester-Verbindung ausgewählt ist aus Neopentylglycolestern, Trimethylolpropanestern, und Pentaerythritestern, die mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Monocarbonsäuren der Kettenlänge C4-C36, verestert sind; und Neopentylglycol- Komplexestern, Trimethylolpropan-Komplexestern, und Pentaerythrit- Komplexestern, die mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Monocarbonsäuren der Kettenlänge C4-C36 und mit gesättigten und/oder einfach oder mehrfach ungesättigten, linearen und/oder verzweigten Dicarbonsäuren der Kettenlänge C4-C36 in beliebiger Mischung vollständig verestert oder teilverestert sind; sowie Mischungen aus zwei oder mehreren hiervon.
13. Schmierstoffzusammensetzung nach einem der Ansprüche 8 bis 12, wobei das Grundöl ausgewählt ist aus öllöslichen Polyglycolen, Polyalphaolefinen, Metallocen-Polyalphaolefinen, Weißölen, Mineralölen, Farnesen basierenden Ölen, Estoliden, sowie Mischungen aus zwei oder mehreren hiervon.
14. Schmierstoffzusammensetzung nach einem der Ansprüche 8 bis 13, wobei das mindestens eine Additiv ein Additivgemisch ist, das umfasst: ein oder mehrere Antioxidationsmittel, ausgewählt aus aminischen Antioxidationsmitteln, phenolischen Antioxidationsmitteln, Phosphiten, Phosphorthionaten und Thiocarbamaten; ein oder mehrere Buntmetalldesaktivatoren, ausgewählt aus Triazol- Verbindungen, Salicylaten und Mercaptothiadiazolen, sowie deren Derivate; ein oder mehrere Korrosionsschutzmittel, ausgewählt aus neutralen Carbonsäure-, Sulfonsäure-, Naphthalinsulfonsäure-, Benzosulfonsäure-, Benzoesäure-, Naphthoesäure-, Naphtensäure-, Phosphorsäure-Metallsalzen und N-Methylglycin sowie deren Derivate; optional ein oder mehrere Entschäumer, ausgewählt aus ethoxylierten und/oder propoxylierten Alkoholen mit Kettenlängen von 10-18 C-Atomen, Polyolen, Acrylaten und Polysiloxanen; und optional ein oder mehrere Verschleißschutz- und/oder Hochdruckadditive, ausgewählt aus Aminen, Aminphosphaten, verzweigten und/oder linearen alkylierten Phosphaten, Phosphiten, Thiophosphaten, und Phosphothionaten, Arylphosphaten, alkylierten Polysulfiden, geschwefelten Aminverbindungen, geschwefelten Fettsäuremethylestern, Naphthensäuren, Nanopartikeln ausgewählt aus AI2O3, S1O2, T1O2, ZrC>2, WO3, Ta2C>5, V2O5, CeC>2, Aluminiumtitanat, BN, M0S12, SiC, S13N4, TiC, TiN, ZrB2, Tonmineralen und deren Gemische, Sulfonsäuresalzen, und thermisch stabilen Carbonaten und Sulfaten.
15. Schmierstoffzusammensetzung nach einem der Ansprüche 8 bis 14, enthaltend
A) ein Grundöl, ausgewählt aus öllöslichen Polyglycolen, Polyalphaolefinen und Metallocen-Polyalphaolefinen, sowie Mischungen aus zwei oder mehreren hiervon;
B) 0,5-5 Gew.-% eines Additivgemischs umfassend ein oder mehrere aminische Antioxidationsmittel, ein oder mehrere neutrale Sulfonsäure-, Naphthalinsulfonsäure-, und/oder Benzosulfonsäure-Metallsalze, ein oder mehrere Triazol-Verbindungen und/oder Derivate hiervon, und ein oder mehrere Polysiloxane;
C) 0,1-5 Gew.-% der organischen Verbindung; und
D) 10-85 Gew.-% Pentaerythritester; wobei sich die angegebenen Mengen jeweils auf das Gesamtgewicht der Schmierstoffzusammensetzung beziehen und sich die enthaltenen Bestandteile zu insgesamt 100 Gew.-% ergänzen.
16. Verwendung einer Schmierstoffzusammensetzung nach einem der Ansprüche 1 bis 15, insbesondere nach einem der Ansprüche 1 bis 7, als Getriebeöl, Wälzlageröl und Gleitlageröl für die allgemeine Industrie, insbesondere zur Schmierung von Getrieben, wie Stirnrad-, Kegelrad-, Planeten-, Schnecken-, Hypoid- und Zykloidgetrieben, Hydrauliken, Linearführungen, Pneumatikkomponenten, Armaturen, Lagern, wie Gleit- und Wälzlagern, Ketten, Seilen, Federn, Schrauben und Kompressoren, und insbesondere von Maschinenbauteilen und in Anlagen, die in den gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln kommen.
17. Verwendung einer Schmierstoffzusammensetzung nach einem der Ansprüche 1 bis 15, insbesondere nach einem der Ansprüche 8 bis 15, als Getriebeöl, Wälzlageröl und Gleitlageröl im marinen Bereich und im Bereich der Binnengewässer, insbesondere zur Schmierung von Getrieben, Hydrauliken, Propellerrudern, Propellerwellen, Linearführungen, Pneumatikkomponenten, Armaturen, Lagern, wie Gleit-, Wälz- oder Stevenrohrlager, Ketten, Seilen, Federn und Schrauben in Maschinen, Maschinenbauteilen und Anlagen, die im Marinebereich mit Salzwasser bzw. in Binnengewässern mit Wasser und/oder wässrigen Medien in Berührung kommen, sowie in Maschinen und Maschinenelementen an Land, die mit Wasser und/oder wässrigen Medien in Kontakt kommen können.
EP21721438.6A 2020-04-27 2021-04-21 Schmierstoffzusammensetzung und deren verwendung Pending EP4143277A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020111392.7A DE102020111392A1 (de) 2020-04-27 2020-04-27 Schmierstoffzusammensetzung und deren Verwendung
PCT/EP2021/060351 WO2021219455A1 (de) 2020-04-27 2021-04-21 Schmierstoffzusammensetzung und deren verwendung

Publications (1)

Publication Number Publication Date
EP4143277A1 true EP4143277A1 (de) 2023-03-08

Family

ID=75674800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21721438.6A Pending EP4143277A1 (de) 2020-04-27 2021-04-21 Schmierstoffzusammensetzung und deren verwendung

Country Status (7)

Country Link
US (1) US20230203396A1 (de)
EP (1) EP4143277A1 (de)
JP (2) JP7425882B2 (de)
KR (1) KR20220112270A (de)
CN (1) CN115443322A (de)
DE (1) DE102020111392A1 (de)
WO (1) WO2021219455A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891552B (zh) * 2022-05-06 2022-12-20 孚迪斯石油化工(葫芦岛)有限公司 一种风电偏航变桨系统防锈齿轮油、生产装置及制备方法
DE102022111794B3 (de) * 2022-05-11 2023-03-30 Fuchs Petrolub Se Basisöl und Schmierfluidzusammensetzung enthaltend das Basisöl

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331481A (ja) * 1992-05-29 1993-12-14 Tonen Corp 2サイクルエンジン用潤滑油組成物
DE19805612A1 (de) * 1998-02-12 1999-08-19 Bayer Ag Verfahren zur kontrollierten Herstellung oder Modifizierung von polymeren Produkten mittels IR-ATR-Spektroskopie
JP4074703B2 (ja) * 1998-03-23 2008-04-09 新日鐵化学株式会社 焼結含油軸受ユニット
JP5136816B2 (ja) * 2005-02-02 2013-02-06 日産自動車株式会社 ナノ粒子含有潤滑油組成物
US7579306B2 (en) * 2005-03-02 2009-08-25 Chemtura Corporation Method for improving the oxidative stability of industrial fluids
RU2451062C2 (ru) * 2006-02-21 2012-05-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Композиция смазочного масла
JP4946868B2 (ja) * 2006-05-16 2012-06-06 Nokクリューバー株式会社 潤滑油組成物
US8535514B2 (en) * 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
JP5255243B2 (ja) * 2006-09-11 2013-08-07 昭和シェル石油株式会社 潤滑油組成物
US20090042752A1 (en) * 2007-08-09 2009-02-12 Malcolm Waddoups Lubricant Compositions with Reduced Phosphorous Content for Engines having Catalytic Converters
US8703677B2 (en) 2007-12-21 2014-04-22 Chevron Japan Ltd Lubricating oil compositions for internal combustion engines
JP5928176B2 (ja) * 2011-06-17 2016-06-01 新日本理化株式会社 潤滑油
JP5925003B2 (ja) * 2012-03-23 2016-05-25 出光興産株式会社 潤滑油組成物およびこれを用いた機器
WO2014134506A1 (en) * 2013-03-01 2014-09-04 VORA Inc. Lubricating compositions and methods of use thereof
JP6035175B2 (ja) * 2013-03-15 2016-11-30 出光興産株式会社 潤滑油組成物
SG10201504239SA (en) * 2014-06-02 2016-01-28 Infineum Int Ltd Lubrication oil compositions
DE102014214512A1 (de) * 2014-07-24 2016-01-28 Schaeffler Technologies AG & Co. KG Unpolare Lauffläche für Ausrücksysteme um Stick-Slip Effekte und Geräusche zu verringern
CN105176638B (zh) * 2015-06-30 2018-05-08 上海禾泰特种润滑科技股份有限公司 链条润滑油复合剂及其制备方法
US20190136147A1 (en) * 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
CN109181816B (zh) * 2018-10-11 2021-09-07 深圳市龙威科技发展有限公司 具有提高油膜强度的润滑剂及其制备方法
CN110643415B (zh) * 2019-10-22 2022-07-29 新疆福克油品股份有限公司 一种利用再生底线油的开式齿轮油组合物及其制备方法

Also Published As

Publication number Publication date
WO2021219455A1 (de) 2021-11-04
DE102020111392A1 (de) 2021-10-28
CN115443322A (zh) 2022-12-06
JP2023512002A (ja) 2023-03-23
US20230203396A1 (en) 2023-06-29
JP7425882B2 (ja) 2024-01-31
KR20220112270A (ko) 2022-08-10
JP2024041988A (ja) 2024-03-27

Similar Documents

Publication Publication Date Title
CA2727157C (en) Lubricant composition based on modified and triglyceride-based oil and oleic acid
EP4143277A1 (de) Schmierstoffzusammensetzung und deren verwendung
DE112009005504B4 (de) Verwendung einer fluorhaltigen Diamid-Verbindung als Rostschutzzusatz einer Schmiermittelzusammensetzung
EP3746529B1 (de) Schmiermittelzusammensetzung
CA2980989C (en) Lubricating grease composition of mixed oils, soap and resin
DE112017003959B4 (de) Schmierfettzusammensetzung und deren Verwendung
DE3876432T2 (de) Hydraulische fluessigkeiten.
EP4294897B1 (de) Basisöl und schmierfluidzusammensetzung enthaltend das basisöl
CN115443325B (zh) 润滑剂组合物及其用途
JP5141079B2 (ja) 潤滑油組成物
CN111684055B (zh) 润滑脂组合物
CN116888245A (zh) 制备低剪切强度基础油的方法
JP2021161298A (ja) グリース組成物
WO2021058868A1 (en) Use of organometallic salt compositions for alleviating the formation of white etching cracks
WO2017045764A1 (de) Biologisch abbaubare schmierstoffzusammensetzungen mit hoher elastomerverträglichkeit zur verwendung im marinebereich, speziell im bereich der stevenrohrschmierung
JP6974216B2 (ja) 船尾管用潤滑油組成物
JP2008285574A (ja) ころ軸受

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240208