EP4363191A1 - Compositions de soufflage moulage a base de polyamides branches et leurs utilisations - Google Patents

Compositions de soufflage moulage a base de polyamides branches et leurs utilisations

Info

Publication number
EP4363191A1
EP4363191A1 EP22743850.4A EP22743850A EP4363191A1 EP 4363191 A1 EP4363191 A1 EP 4363191A1 EP 22743850 A EP22743850 A EP 22743850A EP 4363191 A1 EP4363191 A1 EP 4363191A1
Authority
EP
European Patent Office
Prior art keywords
composition
blow molding
weight
equal
compounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22743850.4A
Other languages
German (de)
English (en)
Inventor
Thomas PRENVEILLE
Marjorie MARCOURT
Bertrand VERBAUWHEDE
Regis Cipriani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4363191A1 publication Critical patent/EP4363191A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L37/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric

Definitions

  • TITLE BLOW MOLDING COMPOSITIONS BASED ON BRANCHED POLYAMIDES AND THEIR
  • the present invention relates to blow molding or extrusion compositions, in particular blow molding compositions, based on branched polyamide and their use for the preparation of single-layer or multi-layer tubular structures intended for the transport, distribution or storage of hydrogen and the process for preparing said structures.
  • electric or hybrid vehicles comprising a battery aim to gradually replace thermal vehicles, such as gasoline or diesel vehicles.
  • thermal vehicles such as gasoline or diesel vehicles.
  • the battery is a relatively complex constituent of the vehicle. Depending on where the battery is located in the vehicle, it may need to be protected from impact and the external environment, which may be extreme temperatures and varying humidity. It is also necessary to avoid any risk of flames.
  • the electric vehicle still suffers today from several problems, namely battery autonomy, the use in these batteries of rare earths whose resources are not inexhaustible, as well as a problem of electricity production in different countries to be able to recharge the batteries.
  • Hydrogen therefore represents an alternative to the electric battery since hydrogen can be transformed into electricity by means of a fuel cell and thus power electric vehicles.
  • Hydrogen tanks generally consist of a metal envelope (liner) which must prevent the permeation of hydrogen.
  • This first casing must itself be protected by a second casing (in general made of composite materials) intended to withstand the internal pressure of the reservoir (for example, 700 bars) and resistant to possible shocks or sources of heat.
  • the valve system must also be safe.
  • Application EP 0495363 relates to polyamide compositions based on a polyamide alloy (PA) and special olefin-acid anhydride copolymers and their use for the production of shaped hollow bodies.
  • PA polyamide alloy
  • special olefin-acid anhydride copolymers and their use for the production of shaped hollow bodies.
  • compositions are too fluid to allow large reservoirs to be extruded.
  • PA 6 polyamide 6
  • these structures are based on PA 6 (poor resistance to zinc chloride and fragile when cold) and therefore are not compatible with reservoir applications for automotive fluids such as hydrogen.
  • Application FR2996556 relates to a liner for the storage of gas, in particular compressed natural gas (CNG), methane or hydrogen comprising a composition based on branched polyamide and impact modifier.
  • CNG compressed natural gas
  • methane methane or hydrogen
  • compositions exemplified are based on PA6 and therefore present the same problems as above.
  • the compositions contain too much impact modifier, which creates a risk of cavitation (blistering).
  • Application CA3101967 relates to polyamide compositions for blow molding based on PA 6 and impact modifier and consequently they present the same problems as above.
  • Application EP1352934 describes metal surfaces coated with a layer based on polyamide consisting of a mixture of polyamide and of a polyolefin functionalized with an unsaturated carboxylic acid anhydride.
  • Application US2005/228145 describes a transparent multilayer structure comprising a first layer of polyamide consisting of a mixture of polyamide and of a polyolefin functionalized with maleic anhydride.
  • Application FR3078132 describes a flexible tubular structure comprising a layer comprising a mixture of polyamide and of a polyolefin functionalized with an anhydride.
  • Application EP2649130 describes a liner for storing gas comprising a composition comprising a mixture of polyamide and of a polyolefin functionalized with an anhydride.
  • compositions for blow molding or extrusion, in particular blow molding, comprising by weight: a) from 88 to 99.95% , in particular from 89 to 99.9%, in particular from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10%, in particular from 0.1 to 9%, in particular from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 to 2% of at least one additive, in particular from 0.1 to 2%, the composition exhibiting after compounding a melt viscosity of between 10,000 at 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10
  • compositions which, after compounding, have a viscosity at molten state in a range allowing extrusion-blow molding or extrusion, in particular extrusion-blow molding for the constitution of a monolayer or multilayer tubular structure intended for the transport, distribution or storage of hydrogen.
  • compositions of the invention are good dimensional stability, that is to say low water uptake, good resistance to zinc chloride.
  • monolayer or multilayer tubular structure a reservoir comprising or consisting of one or more layers.
  • the monolayer or multilayer structure in the present invention also designates a pipe or a tube intended for transporting hydrogen to the tank or from the tank to the fuel cell and which comprises or consists of one or more layers.
  • non-functionalized impact modifiers are excluded from said composition.
  • non-functionalized impact modifiers and low-functionalized impact modifiers are excluded from said composition.
  • low-functionalized impact modifier is meant an impact modifier having an equivalent weight per reactive function greater than 10,000 g/mol, advantageously greater than 6000 g/mol.
  • non-functionalized elastomers are excluded from said composition.
  • plasticizers are excluded from said composition.
  • impact modifier a polymer with a modulus lower than that of the resin, exhibiting good adhesion with the matrix, so as to dissipate the cracking energy.
  • the impact modifier is advantageously made up of a polymer having a flexural modulus of less than 100 MPa measured according to the ISO 178 standard and a Tg of less than 0° C. (measured according to the 11357-2 standard at the level of the inflection point of the DSC thermogram ), in particular a polyolefin.
  • the polyolefin of the impact modifier can be functionalized or non-functionalized or be a mixture of at least one functionalized and/or at least one non-functionalized.
  • the polyolefin has been designated by (B) and functionalized polyolefins (B1) and non-functionalized polyolefins (B2) have been described below.
  • a non-functionalized polyolefin (B2) is conventionally a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • alpha olefins or diolefins such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • LDPE low density polyethylene
  • HDPE linear low density polyethylene
  • LLDPE linear low density polyethylene, or linear low density polyethylene
  • VLDPE very low density polyethylene, or very low density polyethylene
  • metallocene polyethylene metallocene polyethylene
  • ethylene/alpha-olefin copolymers such as ethylene/propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene/propylene/diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene/propylene/diene
  • SEBS styrene/ethylene-butene/styrene
  • SBS styrene/butadiene/styrene
  • SIS styrene/isoprene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • the functionalized polyolefin (B1) can be a polymer of alpha olefins having reactive units (the functionalities); such reactive units are acid, anhydride or epoxy functions.
  • polyolefins (B2) grafted or co- or ter-polymerized with unsaturated epoxides such as glycidyl (meth)acrylate, or with carboxylic acids or the corresponding salts or esters such as (meth)acrylic acid (the latter possibly being totally or partially neutralized by metals such as Zn, etc.) or else by carboxylic acid anhydrides such as maleic anhydride.
  • unsaturated epoxides such as glycidyl (meth)acrylate
  • carboxylic acids or the corresponding salts or esters such as (meth)acrylic acid (the latter possibly being totally or partially neutralized by metals such as Zn, etc.) or else by carboxylic acid anhydrides such as maleic anhydride.
  • a functionalized polyolefin is, for example, a PE/EPR mixture, the weight ratio of which can vary widely, for example from 40/60 to 90/10, said mixture being co-grafted with an anhydride, in particular maleic anhydride, according to a degree of grafting for example from 0.01 to 5% by weight, advantageously from 2.8 to 5% by weight.
  • the functionalized polyolefin (B1) can be chosen from the following (co)polymers, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is for example from 0.01 to 5% by weight:
  • ethylene/alpha-olefin copolymers such as ethylene/propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene/propylene/diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene/propylene/diene
  • SEBS styrene/ethylene-butene/styrene
  • SBS styrene/butadiene/styrene
  • SIS styrene/isoprene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • alkyl (meth)acrylate copolymers containing up to 40% by weight of alkyl (meth)acrylate;
  • the functionalized polyolefin (B1) can also be chosen from ethylene/propylene copolymers with a majority of propylene grafted with maleic anhydride then condensed with monoamine polyamide (or a polyamide oligomer) (products described in EP-A-0342066) .
  • the functionalized polyolefin (B1) can also be a co- or ter-polymer of at least the following units: (1) ethylene, (2) alkyl (meth)acrylate or saturated carboxylic acid vinyl ester and (3) anhydride such as maleic anhydride or (meth)acrylic acid or epoxy such as glycidyl (meth)acrylate.
  • anhydride such as maleic anhydride or (meth)acrylic acid or epoxy such as glycidyl (meth)acrylate.
  • the ethylene preferably represents at least 60% by weight and in which the ter monomer (the function) represents, for example, from 0.1 to 13% by weight of the copolymer:
  • the (meth)acrylic acid can be salified with Zn or Li.
  • alkyl (meth)acrylate in (B1) or (B2) denotes C1 to C8 alkyl methacrylates and acrylates, and may be chosen from methyl acrylate, ethyl acrylate , n-butyl acrylate, isobutyl acrylate, ethyl-2-hexyl acrylate, cyclohexyl acrylate, methyl methacrylate and ethyl methacrylate.
  • the aforementioned polyolefins (B1) can also be crosslinked by any appropriate process or agent (diepoxy, diacid, peroxide, etc.); the term functionalized polyolefin also includes mixtures of the aforementioned polyolefins with a difunctional reagent such as diacid, dianhydride, diepoxy, etc. capable of reacting with these or mixtures of at least two functionalized polyolefins capable of reacting with each other.
  • a difunctional reagent such as diacid, dianhydride, diepoxy, etc.
  • copolymers mentioned above, (B1) and (B2) can be randomly or block copolymerized and have a linear or branched structure.
  • the molecular weight, the MFI index, the density of these polyolefins can also vary to a large extent, which those skilled in the art will appreciate.
  • MFI short for Melt Flow Index, is the Melt Flow Index. It is measured according to the ASTM 1238 or ISO 1133:2011 standard.
  • the non-functionalized polyolefins (B2) are chosen from polypropylene homopolymers or copolymers and any homopolymer of ethylene or copolymer of ethylene and a comonomer of the higher alpha olefinic type such as butene, hexene, octene or 4-methyl 1-pentene.
  • PP high-density PE
  • medium-density PE linear low-density PE
  • low-density PE very low-density PE.
  • polyethylenes are known to those skilled in the art as being produced according to a “radical” process, according to a catalysis of the “Ziegler” type or, more recently, according to a so-called “metallocene” catalysis.
  • the functionalized polyolefins (B1) are chosen from any polymer comprising alpha olefin units and units carrying polar reactive functions such as epoxy, carboxylic acid or carboxylic acid anhydride functions.
  • polymers mention may be made of the terpolymers of ethylene, of alkyl acrylate and maleic anhydride or glycidyl methacrylate such as Lotader ® from SK global Chemical or polyolefins grafted with maleic anhydride such as Orevac ® from SK global Chemical as well as terpolymers of ethylene, acrylate alkyl and (meth)acrylic acid.
  • the blow molding or extrusion composition in particular blow molding, comprises from 88 to 99.95%, in particular from 89 to 99.8% of at least one semi-crystalline aliphatic polyamide having a carbon number per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • Said semi-crystalline aliphatic polyamide is derived from a repeating unit obtained by polycondensation: of at least one C9 to C18 amino acid, preferably CIO to C18, more preferably CIO to C12, or at least one C9 lactam to C18, preferentially in CIO to C18, more preferentially in CIO to C12, or of at least one diamine Ca in C4-C36, preferentially C6-C18, preferentially C6-C12, more preferentially C10-C12, with at least one acid C4-C36, preferably C6-C18, preferably C6-C12, more preferably C10-C12 dicarboxylic acid Cb, or a mixture thereof, provided that the number of carbon atoms per nitrogen atom of the repeating unit is greater than or equal to 7, in particular greater than or equal to 8.
  • a C9 to C18 amino acid is in particular 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-aminoundecanoic acid as well as its derivatives, in particular acid N-heptyl-ll-aminoundecanoic acid.
  • a C9 to C18 lactam is in particular lauryllactam.
  • Said at least one C4-C36 diamine Ca can be chosen in particular from 1,4-butanediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1, 18-octadecamethylenediamine, octadecenediamine, eicosanediamine, docosanediamine and diamines obtained from fatty acids.
  • said at least one diamine Ca is C6-C18 and chosen from 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine , 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1,18-octadecamethylenediamine.
  • Said at least one Cb C4 to C36 dicarboxylic acid may be chosen from succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, octadecanediamine, eicosanediamine, docosanediamine and diamines obtained from fatty acids .
  • said at least one Cb dicarboxylic acid is C6 to C18 and is chosen from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid.
  • said semi-crystalline aliphatic polyamide is chosen from PA610, PA612, PA 614, PA 10, PAU and PA12, in particular PA610, PA612 and PAU.
  • said semi-crystalline aliphatic polyamide is a mixture of two semi-crystalline aliphatic polyamides having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, in a range of proportion by weight of 5/95 to 95/5.
  • the polyamide has a concentration at the end of the amine chains of 5 to 60 peq/g, very advantageously between 10 and 50 peq/g.
  • the polyamide has a concentration at the end of the acid chains comprised from 5 to 60 peq/g, very advantageously from 10 to 50 peq/g.
  • the ends of the amine chains are measured according to the following method: a sample of polyamide is dissolved in metacresol. Then, this sample is assayed by potentiometry with a 0.02N perchloric acid solution. The ends of acid chains are measured according to the following method. A sample of polyamide is dissolved in benzyl alcohol. Then, this sample is assayed by potentiometry with a solution of tetrabutylammonium hydroxide at 0.02N.
  • the MFI of said polyamide or of said polyamide blend ranges from 0.01 to 10, advantageously from 0.01 to 5 g/10 min at 235° C., 5 kg.
  • the polyamide according to the invention has an inherent viscosity in m-cresol greater than 1.45, advantageously greater than 1.55, very advantageously greater than 1.6 as determined according to standard ISO 307:2007 but using m -cresol instead of sulfuric acid, a temperature of 20°C and a concentration of 0.5% by weight.
  • the branching agent is present in the composition from 0.05% to 10%, in particular from 0.1 to 9%, in particular from 0.1 to 5% by weight and is chosen from polyepoxy, polyanhydrides, and polyisocyanates in particular maleic polyanhydrides and polyepoxy.
  • the branching agent is present in the composition at 0.1 to 2% by weight.
  • the branching agent may be an impact modifier, in particular a polyolefin functionalized or different from an impact modifier.
  • the impact modifier is different from the impact modifier. That is to say, it has a Tg greater than -30°C, very advantageously greater than 0°C.
  • the equivalent weight per reactive function of the branching agent is comprised from 100 to 10000 g/mol, advantageously from 120 to 6000 g/mol, more advantageously from 140 to 3300 g/mol.
  • said branching agent has an average functionality in terms of epoxy, anhydride or isocyanate functions of between 1.8 and 200, preferably between 2.1 and 150.
  • the molar mass of the branching agents is between 300 and 120,000 g/mol, preferably between 400 and 100,000 g/mol.
  • the molar mass is measured by gas chromatography (GPC).
  • the equivalent weight per reactive functions of the branching agents is measured as follows: Isocyanates: The equivalent weight per isocyanate function is measured according to the AFNOR standard referenced NF T52-132.
  • Epoxides The equivalent weight per epoxy function is measured according to standard ASTM D1652-11 (2019).
  • Maleic anhydride The mass content of maleic anhydride is measured by FTIR using the method of De Roovers et al. [J Polym Sci, Part A: Polym Chem 1995;33:829] The equivalent weight is often given by the supplier on the TDS.
  • the average functionality is calculated by dividing the molar mass measured by GPC by the average equivalent weight.
  • the polyepoxy can be copolymers made from glycidyl maleic anhydride (GMA) or any other monomer comprising an epoxy function.
  • GMA glycidyl maleic anhydride
  • Examples of commercial polyepoxy are, for example, Xibond® 920 marketed by Polyscope or Joncryl® ADR 4400 marketed by BASF or lotader® AX 8900 marketed by SK Chemical.
  • the polyanhydrides can be copolymers comprising a copolymerized or grafted anhydride, such as maleic anhydride or itaconic anhydride.
  • polyanhydrides are maleic polyanhydrides.
  • the other monomer of the copolymers comprising a copolymerized anhydride can be a vinyl aromatic monomer, such as styrene or styrenes in which the aromatic ring contains a halogen or an alkyl substituent.
  • the other monomer of the copolymers comprising a copolymerized anhydride can be a vinyl monomer, such as ethylene or octadecene.
  • maleic polyanhydrides are copolymers of styrene and maleic anhydride.
  • Examples of commercial maleic polyanhydrides are for example Xibond ® 125 (copolymer of styrene and maleic anhydride) marketed by Polyscope or Orevac IM 800 marketed by SK Chemicals or PA 18 (copolymer of 1-octadecene and anhydride maleic acid) marketed by Chevron Phillips Chemical Company.
  • the polyisocyanates are preferably oligomers of isocyanates such as isocyanurates or allophanates.
  • Examples of commercial polyisocyanates are for example Desmodur 3300 marketed by Covestro.
  • the additives may be present up to 2% by weight relative to the total weight of the composition, in particular they are present from 0.1 to 2% by weight relative to the total weight of the composition.
  • the additive can be chosen from a catalyst, an antioxidant, a heat stabilizer, a UV stabilizer, a light stabilizer, a lubricant, a flame retardant, a nucleating agent, a chain extender and a colorant.
  • the additive is selected from catalyst, antioxidant, heat stabilizer, UV stabilizer, light stabilizer, lubricant, flame retardant, chain extender, and colorant.
  • catalyst denotes a polycondensation catalyst such as an inorganic or organic acid.
  • the proportion by weight of catalyst is comprised from approximately 50 ppm to approximately 5000 ppm, in particular from approximately 100 to approximately 3300 ppm relative to the total weight of the composition.
  • the catalyst is chosen from phosphoric acid (H3P04), phosphorous acid (H3P03), hypophosphorous acid (H3P02), or a mixture of these.
  • the antioxidant can in particular be an antioxidant based on a copper complex of 0.05 to 5% by weight, preferably 0.05 to 1% by weight, preferably 0.1 to 1%.
  • copper complex denotes in particular a complex between a monovalent or divalent salt of copper with an organic or inorganic acid and an organic ligand.
  • the copper salt is chosen from cupric salts (Cu(II)) of hydrogen halide, cuprous salts (Cu(II)) of hydrogen halide and salts of aliphatic carboxylic acids.
  • the copper salts are chosen from CuCl, CuBr, Cul, CuCN, CuCl2, Cu(OAc)2, cupric stearate.
  • Said copper-based complex may further comprise a ligand chosen from phosphines, in particular triphenylphosphines, mercaptobenzimidazole, EDTA, acetylacetonate, glycine, ethylene diamine, oxalate, diethylene diamine, triethylene tetraamine, pyridine, tetrabromobisphenyl-A, tetrabisphenyl-A derivatives, such as epoxy derivatives, and chloro dimethanedibenzo(a,e)cyclooctene derivatives and mixtures thereof. diphosphone and dipyridyl or their mixtures, in particular triphenylphosphine and/or mercaptobenzimidazole.
  • phosphines in particular triphenylphosphines, mercaptobenzimidazole, EDTA, acetylacetonate, glycine, ethylene diamine, oxalate, diethylene diamine
  • Phosphines refer to alkylphosphines, such as tributylphosphine or arylphosphines such as triphenylphosphine (TPP).
  • alkylphosphines such as tributylphosphine or arylphosphines such as triphenylphosphine (TPP).
  • TPP triphenylphosphine
  • said ligand is triphenylphosphine.
  • the amount of copper in the composition of the invention is between 10 ppm to 1000 ppm by weight, especially from 50 to 150 ppm relative to the total weight of the composition.
  • said copper-based complex further comprises a halogenated organic compound.
  • the halogenated organic compound can be any halogenated organic compound.
  • said halogenated organic compound is a bromine-based compound and/or an aromatic compound.
  • said aromatic compound is chosen in particular from decabromediphenyl, decabromodiphenyl ether, bromo or chlorostyrene oligomers and polydibromostyrene.
  • said halogenated organic compound is a bromine-based compound.
  • Said halogenated organic compound is added to the composition in a proportion of 50 to 30,000 ppm by weight of halogen relative to the total weight of the composition, in particular from 100 to 10,000 in particular from 500 to 1500 ppm.
  • the copper:halogen molar ratio is comprised from 1:1 to 1:3000, in particular from 1:2 to 1:100.
  • said ratio is comprised from 1:1.5 to 1:15.
  • the copper complex antioxidant is provided.
  • the thermal stabilizer can be an organic stabilizer or more generally a combination of organic stabilizers, such as a primary antioxidant of the phenol type (for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba), a secondary antioxidant of phosphite type.
  • a primary antioxidant of the phenol type for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba
  • a secondary antioxidant of phosphite type such as a primary antioxidant of the phenol type (for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba), a secondary antioxidant of phosphite type.
  • the UV stabilizer can be a HALS, which means Hindered Amine Light Stabilizer or an anti-UV (for example Tinuvin 312 from the company Ciba).
  • the light stabilizer can be of the hindered amine type (for example Tinuvin 770 from the company Ciba), a phenolic or phosphorus-based stabilizer.
  • the lubricant can be a fatty acid type lubricant such as stearic acid.
  • the flame retardant may be a halogen-free flame retardant, as described in US 2008/0274355 and in particular a phosphorus-based flame retardant, for example a metal salt chosen from a metal salt of phosphinic acid, in particular salts dialkyl phosphinate, in particular diethyl phosphinate aluminum salt or diethyl phosphinate aluminum, a metal salt of diphosphinic acid, a mixture of flame retardant agent based on aluminum phosphinate and a nitrogen synergist or a mixture of an aluminum phosphinate-based flame retardant and a phosphorus synergist, a polymer containing at least one metal salt of phosphinic acid, in particular on an ammonium base, such as an ammonium polyphosphate, sulfamate or pentaborate, or on a melamine base such as melamine, melamine salts, melamine pyrophosphates and melamine cyanurates, or on
  • the nucleating agent can be silica, alumina, clay or talc, in particular talc.
  • chain regulators are monoamines, monocarboxylic acids, diamines, triamines, dicarboxylic acids, tricarboxylic acids, tetraamines, tetracarboxylic acids and, oligoamines or oligocarboxylic acids having respectively in each case 5 to 8 amino or carboxy groups and in particular dicarboxylic acids, tricarboxylic acids or a mixture of dicarboxylic acids and tricarboxylic acids.
  • dodecanedicarboxylic acid in the form of the dicarboxylic acid and trimellitic acid as the tricarboxylic acid.
  • the blow molding or extrusion composition comprises by weight: a) from 88 to 99.95%, in particular from 89 to 99.9%, in particular from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10%, in particular from 0.1 to 9%, in particular from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy.
  • composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferentially from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • the blow molding or extrusion composition in particular blow molding, consists by weight of: a) from 88 to 99.95%, in particular from 89 to 99.9%, in particular from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a carbon number per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10%, in particular from 0.1 to 9%, especially from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy.
  • composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferentially from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • said composition comprises: a) from 88 to 99.95% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having, after compounding, a viscosity of the molten state comprised from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition consists of: a) from 88 to 99.95% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having after compounding a melt viscosity of from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292. rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition comprises: a) from 88 to 99.85% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy c) from 0.1 to 2% of at least one additive, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry at a temperature of 250° C., a frequency of 0.292 rad/s and a strain of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy
  • said composition consists of: a) from 88 to 99.85% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0, 1 to 2% of at least one additive, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in
  • said composition comprises: a) from 89 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 to 2% of at least one additive, in particular from 0.1 to 2%, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured by plane-plane geometry according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) being 100% in weight.
  • said composition comprises: a) from 89 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having after compounding a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably between 15,000 and 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250° C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • the composition consists of: a) from 89 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a)+b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy
  • said composition comprises: a) from 89 to 99.8% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) of 0.1 to 2% of at least one additive, the composition exhibiting, after compounding, a viscosity in the molten state comprised from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane geometry - plan according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight .
  • the composition consists of: a) from 89 to 99.8% of at least one semi-crystalline aliphatic polyamide having a higher number of carbon per nitrogen atom or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy , c) from 0.1 to 2% of at least one additive, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, such as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) being 100% by weight.
  • said composition comprises: a) from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 to 2% of au least one additive, in particular from 0.1 to 2%, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane geometry - plan according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight .
  • branching agent chosen from polyepoxy, polyanhydrides
  • said composition comprises: a) from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having after compounding a melt viscosity of from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition consists of: a) from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to to 7, in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane geometry according to standard ISO 6721-10:2015 at a temperature of 250 °C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy
  • said composition comprises: a) from 93 to 99.8% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, c) from 0.1 to 2% of au least one additive, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10: 2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) being 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular
  • said composition consists of: a) from 93 to 99.8% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, c) from 0.1 to 2% of at least one additive, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) being 100% in weight.
  • said composition comprises: a) from 98 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 to 2% of au least one additive, in particular from 0.1 to 2%, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane geometry - plan according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight .
  • branching agent chosen from polyepoxy, polyanhydrides
  • said composition comprises: a) from 98 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in individual greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having, after compounding, a viscosity in the molten state ranging from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition consists of: a) from 98 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to to 7, in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a)+b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy
  • said composition comprises: a) from 96 to 99.8% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 , 1 to 2% of at least one additive, the composition having, after compounding, a viscosity in the molten state comprised from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates,
  • said composition consists of: a) from 96 to 99.8% of at least one semi-crystalline aliphatic polyamide having a higher number of carbon per nitrogen atom or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, c) from 0.1 to 2% of at least one additive, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) being 100% in weight.
  • the MVR volume melt index
  • ISO 1133:2011 with a weight of 21.6 Kg and at a temperature of 275°C is included from 2 to 25 cm 3 /10 min, advantageously from 5 to 20 cm 3 /10 min, very advantageously comprised from 6 to 18 cm 3 /10 min.
  • the R of the composition is comprised from 0 to 5, advantageously from 0 to 0.1 g/10 min at 235° C., 1 kg according to ISO 1133: 2011.
  • branching agent and the polyamide are linked by means of a covalent bond, advantageously the branching agent and the polyamide are linked by an amide, ester or urea function.
  • the ratio of the viscosities in the molten state as measured in plane-plane geometry at 0.292 rad. s 7292 rad.s 1 of said compositions is between 10 and 200, advantageously between 25 and 150.
  • This ratio makes it possible to determine the degree of branching of the polyamide of said composition. The higher the ratio, the more the polyamide is connected in the composition. Consequently, the polyamide must be fluid at 292 rad.s 1 and viscous at 0.292 rad.s 1 ; the viscosity at 292 rad.s ⁇ 1 is between 400 and 2000 and preferably between 600 and 1550;
  • the rheotensive force at 250° C. of the composition after compounding is between 22 mN and 200 mN, in particular between 25 mN and 150 mN; this force determines the melt strength of the polyamide, the greater the force, the less the polyamide flows;
  • the Rheotens force can for example be determined using a Rheotens 71.97 apparatus from Gottfert.
  • the swelling rate is carried out according to the procedure: a 25 cm tubular parison is extruded using an extrusion blow molding line equipped with an accumulator.
  • the expulsion speed is fixed at 0.1m/s, the temperature of the extrudate is checked manually using a thermal probe.
  • the measurement of the diameter of the parison is carried out 10 cm below the die. 5 measurements are taken to obtain an average.
  • the temperature is chosen according to the flow characteristics of the polymer to limit the creep of the parison as much as possible.
  • the behavior of the parison makes it possible to analyze the capacity of the material to counterbalance the effect of gravity. Under its weight, a parison extruded horizontally or vertically will creep, thus modifying its dimensions.
  • the hold of the vertical parison of the composition after compounding is between 15 and 50 s, in particular from 20 to 45 s.
  • Decompression tests under Hydrogen have shown that a quantity of impact modifier in the composition of the material less than or equal to 10% by weight makes it possible to avoid and limit cavitation mechanisms (blistering).
  • the sample undergoes a rise in pressure from 1 to 40 MPa with a speed of lMPa.min-1, the latter is maintained at 40 MPa for 7 days so that it reaches a saturated state.
  • the decompression phase is carried out with a speed of 5 MPa.min-1.
  • the samples are observed under a scanning electron microscope in order to observe any cavitations.
  • compositions according to the invention are resistant to decompression tests under hydrogen.
  • the present invention relates to a single-layer or multi-layer tubular structure intended for the transport, distribution or storage of hydrogen, comprising at least one sealing layer (1) comprising a composition as defined above.
  • said structure is intended for transporting hydrogen, said sealing layer having a total proportion of contaminants present in the hydrogen and extracted from said sealing layer after contact with the hydrogen therewith, less than or equal to 3% by weight, in particular less than 2% by weight of the sum of the constituents of the composition of said sealing layer, the total proportion of contaminants being determined according to a contaminant test as defined in CSA/ANSI CH MC 2:19.
  • said structure further comprises at least one composite reinforcement layer (2), said innermost composite reinforcement layer being welded or not, to said outermost adjacent sealing layer .
  • Said composite reinforcing layer is therefore above said sealing layer which is in contact with the hydrogen.
  • the number of composite reinforcement layers is between 1 and m.
  • the polymer P2j can be thermoplastic or thermosetting.
  • Thermoplastic polymer P2j is a thermoplastic polymer
  • Thermoplastic or thermoplastic polymer is understood to mean a material which is generally solid at room temperature, which may be semi-crystalline or amorphous, in particular semi-crystalline and which softens during an increase in temperature, in particular after passing from its temperature of glass transition (Tg) and flows at a higher temperature when it is amorphous, or which can present a frank melting on passing its so-called melting temperature (Tf) when it is semi-crystalline, and which becomes solid again when 'a decrease in temperature below its crystallization temperature, Te, (for a semi-crystalline) and below its glass transition temperature (for an amorphous).
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2:2013 and 11357-3:2013 respectively.
  • the number-average molecular mass Mn of said thermoplastic polymer is preferably in a range extending from 10,000 to 40,000, preferably from 10,000 to 30,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in the m-cresol according to the ISO 307:2007 standard but changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20°C).
  • suitable semi-crystalline thermoplastic polymers in the present invention include: polyamides, in particular comprising an aromatic and/or cycloaliphatic structure, including copolymers, for example polyamide-polyether copolymers, polyesters, polyaryletherketones (PAEK ), polyetherether ketones (PEEK), polyetheretherketone ketones (PEKK), polyetherketoneetherketoneketones (PEKEKK), polyimides in particular polyetherimides (PEI) or polyamide-imides, polylsulfones (PSU) in particular polyarylsulfones such as polyphenylsulfones (PPSU), polyethersulfones (PES).
  • semi-crystalline polymers are more particularly preferred, and in particular polyamides and their semi-crystalline copolymers.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • the semi-crystalline polyamides are semi-aromatic polyamides, in particular a semi-aromatic polyamide of formula X/YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A/XT in which A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (diamine in Ca).
  • (Cb diacid) with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being comprised from 4 to 36, advantageously from 9 to 18, the unit (Ca diamine) being chosen from aliphatic, linear or branched diamines, cycloaliphatic diamines and alkylaromatic diamines and the unit (Cb diacid) being chosen from aliphatic, linear or branched diacids, cycloaliphatic diacids and aromatic diacids ;
  • X.T denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 5 and 36, advantageously 9 to 18, in particular a polyamide of formula A/5T, A/6T, A/9T, A/10T or A/11T, A being as defined above, in particular a polyamide chosen from a PA MPMDT/6T, a PA11/10T, PA 5T/10T, PA 11/BACT, PA 11/6T/10T, PA MXDT/10T, PA MPMDT/10T, PA BACT/10T, PA BACT/6T, PA BACT /10T/6T, one PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/10T, one PA 11/MXDT/10T, one 11/5T/10T.
  • T stands for terephthalic acid
  • MXD stands for m-xylylene diamine
  • MPMD stands for methylpentamethylene diamine
  • BAC stands for bis(aminomethyl)cyclohexane.
  • Said semi-aromatic polyamides defined above have in particular a Tg greater than or equal to 80°C.
  • thermosetting polymer
  • thermosetting polymers are chosen from epoxy or epoxy-based resins, polyesters, vinyl esters, resins based on polyisocyanates, in particular polyisocyanurates, and polyurethanes, or a mixture of these in particular epoxy or epoxy-based resins or a resin based on polyisocyanates, in particular polyisocyanurates.
  • each composite reinforcement layer consists of a composition comprising the same type of polymer, in particular an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • Said composition comprising said polymer P2j can be transparent to radiation suitable for welding.
  • these fibers forming said fibrous material are in particular fibers of mineral, organic or vegetable origin.
  • said fibrous material can be sized or not sized.
  • Said fibrous material can therefore comprise up to 3.5% by weight of a material of organic nature (thermosetting or thermoplastic resin type) called size.
  • fibers of mineral origin mention may be made of carbon fibers, glass fibers, basalt or basalt-based fibers, silica fibers, or silicon carbide fibers for example.
  • fibers of organic origin mention may be made of fibers based on a thermoplastic or thermosetting polymer, such as semi-aromatic polyamide fibers, aramid fibers, polyester fibers or polyolefin fibers for example.
  • they are based on an amorphous thermoplastic polymer and have a glass transition temperature Tg higher than the Tg of the polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is amorphous, or higher than the Tm polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is semi-crystalline.
  • they are based on a semi-crystalline thermoplastic polymer and have a melting point Tf higher than the Tg of the polymer or thermoplastic polymer mixture constituting the pre-impregnation matrix when the latter is amorphous, or higher than the Tm polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is semi-crystalline.
  • the organic fibers forming the fibrous material during impregnation by the thermoplastic matrix of the final composite.
  • the fibers of plant origin mention may be made of natural fibers based on flax, hemp, lignin, bamboo, silk, in particular spider silk, sisal, and other cellulosic fibers, in particular viscose. These fibers of plant origin can be used pure, treated or even coated with a coating layer, in order to facilitate adhesion and impregnation of the thermoplastic polymer matrix.
  • the fibrous material can also be a fabric, braided or woven with fibers.
  • Organic fiber rovings can have several grammages. They may also have several geometries.
  • the fibers making up the fibrous material may also be in the form of a mixture of these reinforcing fibers of different geometries.
  • the fibers are continuous fibers.
  • the fibrous material is chosen from glass fibres, carbon fibres, basalt or basalt-based fibres, or a mixture of these, in particular carbon fibres.
  • It is used in the form of a wick or several wicks.
  • the present invention relates to the use of 0.05% to 10%, in particular from 0.1 to 9% by weight, of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, with 88 to 99.95%, in particular from 89 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, and optionally an additive for the constitution of a composition for blow molding or extrusion, in particular for blow molding, as defined above, whose viscosity in the molten state after compounding is between 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a strain of 2%.
  • branching agent chosen from polyepoxy, polyanhydrides and polyiso
  • a tank comprising or consisting of one or more layers, namely a sealing layer and optionally one or more reinforcing layers, or several sealing layers and optionally several layers reinforcement, or several sealing layers and a reinforcing layer or else a sealing layer and a reinforcing layer.
  • the monolayer or multilayer tubular structure in the present invention also designates a pipe or a tube intended for the transport of hydrogen from the tank to the fuel cell and which comprises or consists of one or more layers, as defined above. .
  • the present invention relates to a process for preparing a composition for blow molding or extrusion, in particular blow molding, such as defined above, characterized in that it comprises a step of compounding said composition.
  • the compounding step is carried out in a special way so that the alloys have melt viscosities of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane geometry according to ISO 6721-10. :2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a strain of 2%.
  • These viscosities can for example be obtained by compounding at a temperature of the molten polymer greater than 280° C., preferably greater than 300° C. by increasing the residence time in the compounder.
  • This branching reaction is advantageously catalyzed with, for example, phosphonium salts or hindered amines.
  • the average residence time being advantageously from 20 seconds to 10 minutes, more advantageously from 45 seconds to 6 minutes.
  • said compounding is carried out at a temperature of the molten polymer greater than 280° C., preferably greater than 300° C. with an average residence time ranging from 20 seconds to 10 minutes, very advantageously from 45 seconds to 6 minutes .
  • the present invention relates to a process for preparing a single-layer or multi-layer tubular structure as defined above, characterized in that it comprises a step of blow-molding or extrusion, in particular blow-molding , of a composition as defined above.
  • the method comprises a prior step of compounding a composition as defined above.
  • the prior compounding step is in particular carried out as defined above.
  • the alloys were fabricated using a 40 mm ZSK twin-screw extruder (Coperion).
  • the barrel temperature was set at 280°C and the screw speed was 300 rpm with a throughput of 60 kg/h.
  • the PA6 used is a polyamide 6 having a concentration at the end of the acid chain of 25 peq/g and a concentration at the end of the amine chain of 22 peq/g.
  • the PA610 used is a polyamide 610 having a concentration of acid chain ends of 27 peq/g and a concentration of amine chain ends of 19 peq/g.
  • the PA612 used is a polyamide 612 having a concentration of acid chain ends of 22 peq/g and a concentration of amine chain ends of 20 peq/g.
  • the PAU used is a phosphoric acid-catalyzed polyamide 11 having a concentration of acid chain ends of 30 peq/g and a concentration of amine chain ends of 33 peq/g.
  • the Joncryl ADR 4400 is from BASF.
  • the Xibond 125 is from Polyscope.
  • the Lotader 3410 is from SK functional polymer.
  • Anox NBD TL 89 stabilizer is from SI group.
  • melt viscosity was measured using an Ares G2 Rotational Rheometer equipped with a 25mm plane-plane geometry at a temperature of 250°C, at 0.292 rad/s (dwell time before launch 5 min under nitrogen, deformation of 2%, scanning from 628rad/s to 0.062rad/s and 3 points per decade, taking of a point over 3 cycles, gap of 1.5mm )
  • the Rheotens force is determined using a Rheotens 71.97 apparatus from Gottfert.
  • the water uptake is determined either in an oven under a controlled atmosphere at 100% Rh or in water, in all cases after saturation at 70°C and the measurement of this water uptake is made by weighing the sample at 23°C, for regular sampling times, spaced out by several days, until a state of equilibrium is observed , which is reached when the mass of the sample becomes constant (within the uncertainty of the measurement) for three consecutive sampling times. In the case of conditioning in water, the equilibrium reached corresponds to the water saturation
  • MFI short for Melt Flow Index
  • Liners with a thickness of 2 mm according to the compositions of the invention were prepared by blow molding and the hydrogen permeability at 15° C. was tested.
  • compositions according to the invention have an MFI equal to 0, which means that nothing flows into the machine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

La présente invention concerne une composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage comprenant en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10 000 à 300 000 Pa.s, préférentiellement de 15 000 à 220 000 Pa.s, telle que mesurée en géométrie plan-plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.

Description

DESCRIPTION
TITRE : COMPOSITIONS DE SOUFFLAGE MOULAGE A BASE DE POLYAMIDES BRANCHES ET LEURS
UTILISATIONS
[Domaine technique]
La présente invention concerne des compositions de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, à base de polyamide branché et leur utilisation pour la préparation de structures tubulaires monocouches ou multicouches destinées au transport, à la distribution ou au stockage d'hydrogène et le procédé de préparation desdites structures.
[Art antérieur]
L'un des buts recherchés dans le domaine automobile est de proposer des véhicules de moins en moins polluants. Ainsi, les véhicules électriques ou hybrides comportant une batterie visent à remplacer progressivement les véhicules thermiques, tels que les véhicules à essence ou bien à gasoil. Or, il s'avère que la batterie est un constituant du véhicule relativement complexe. Selon l'emplacement de la batterie dans le véhicule, il peut être nécessaire de la protéger des chocs et de l'environnement extérieur, qui peut être à des températures extrêmes et à une humidité variable. Il est également nécessaire d'éviter tout risque de flammes.
De plus, il est important que sa température de fonctionnement n'excède pas 55°C pour ne pas détériorer les cellules de la batterie et préserver sa durée de vie. A l'inverse, par exemple en hiver, il peut être nécessaire d'élever la température de la batterie de manière à optimiser son fonctionnement.
Par ailleurs, le véhicule électrique souffre encore aujourd'hui de plusieurs problèmes à savoir l'autonomie de la batterie, l'utilisation dans ces batteries de terres rares dont les ressources ne sont pas inépuisables ainsi qu'un problème de production d'électricité dans les différents pays pour pouvoir recharger les batteries.
L'hydrogène représente donc une alternative à la batterie électrique puisque l'hydrogène peut être transformé en électricité au moyen d'une pile à combustible et alimenter ainsi les véhicules électriques.
Néanmoins, le stockage de l'hydrogène est techniquement difficile et coûteux du fait de sa très faible masse molaire et de sa très basse température de liquéfaction, tout particulièrement quand il s'agit d'un stockage mobile. Or le stockage pour être efficace doit s'effectuer sous faible volume, ce qui impose de maintenir l'hydrogène sous forte pression, compte tenu des températures d'utilisation des véhicules. C'est le cas, en particulier, des véhicules routiers hybrides à pile à combustible pour lesquels on vise une autonomie de l'ordre de 600 à 700 km, voire moins pour des usages essentiellement urbains en complément d’une base électrique sur batteries. Les réservoirs à hydrogène sont généralement constitués d'une enveloppe (liner) métallique qui doit empêcher la perméation de l'hydrogène. Cette première enveloppe doit elle-même être protégée par une seconde enveloppe (en matériaux composites en général) destinée à supporter la pression interne du réservoir (par exemple, 700 bars) et résistant à d'éventuels chocs ou sources de chaleur. Le système de vanne doit également être sûr.
La demande EP 0495363 concerne des compositions de polyamides à base d'un alliage de polyamide (PA) et de copolymères spéciaux oléfine-anhydride d’acide et leur utilisation pour la production de corps creux façonnés.
Néanmoins, les compositions exemplifiées sont trop fluides pour permettre d'extruder des grands réservoirs.
Ces structures sont de plus à base de polyamide 6 (PA 6) (mauvaise tenue au chlorure de Zinc et fragile à froid) et ne sont donc pas compatibles avec les applications réservoirs de fluides automobiles tels que l'hydrogène.
La demande internationale W020027031 concerne une composition à base de polyamide 6 (PA6), de modifiant choc et d'halogénure métallique.
Comme ci-dessus, ces structures sont à base de PA 6 (mauvaise tenue au chlorure de Zinc et fragile à froid) et donc ne sont pas compatibles avec les applications réservoirs de fluides automobiles tels que l'hydrogène.
La demande FR2996556 concerne un liner pour le stockage de gaz, notamment le gaz naturel compressé (CNG), méthane ou hydrogène comprenant une composition à base de polyamide branché et de modifiant choc.
Les compositions exemplifiées sont à base de PA6 et présentent donc les mêmes problèmes que ci- dessus. De plus, les compositions contiennent trop de modifiant choc ce qui crée un risque de cavitation (blistering).
La demande CA3101967 concerne des compositions de polyamide pour le soufflage-moulage à base de PA 6 et de modifiant choc et par conséquent, elles présentent les mêmes problèmes que ci- dessus.
La demande EP1352934 décrit des surfaces métalliques revêtues d'une couche à base de polyamide constituée d'un mélange de polyamide et d'une polyoléfine fonctionnalisée par un anhydride d'acide carboxylique insaturé.
La demande US2005/228145 décrit une structure multicouche transparente comprenant une première couche de polyamide constituée d'un mélange de polyamide et d'une polyoléfine fonctionnalisée par un anhydride maléique.
La demande FR3078132 décrit une structure tubulaire flexible comprenant une couche comprenant un mélange de polyamide et d'une polyoléfine fonctionnalisée par un anhydride. La demande EP2649130 décrit un liner pour le stockage de gaz comprenant une composition comprenant un mélange de polyamide et d'une polyoléfine fonctionnalisée par un anhydride.
Il est donc nécessaire de fournir des compositions palliant les problèmes ci-dessus présentés et la présente invention concerne donc une composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, comprenant en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Les inventeurs ont donc trouvé de manière inattendue que l'utilisation de polyamide aliphatiques semi-cristallins particuliers avec une gamme particulière d'agent branchant et la présence ou non d'additifs permettait l'obtention de compositions qui après compoundage présente une viscosité à l'état fondu dans une gamme permettant l'extrusion-soufflage ou l'extrusion, en particulier l'extrusion-soufflage pour la constitution d'une structure tubulaire monocouche ou multicouche destinée au transport, à la distribution ou au stockage d'hydrogène.
Un autre avantage des compositions de l'invention est la bonne stabilité dimensionnelle, c'est-à- dire une faible reprise en eau, une bonne résistance au chlorure de zinc.
Par « structure tubulaire monocouche ou multicouche » il faut entendre un réservoir comprenant ou constitué d'une ou plusieurs couches.
La structure monocouche ou multicouche dans la présente invention désigne également un tuyau ou un tube destiné au transport de l'hydrogène jusqu'au réservoir ou du réservoir vers la pile à combustible et qui comprend ou est constitué d'une ou plusieurs couches.
Dans un mode de réalisation, les modifiants chocs non fonctionnalisés sont exclus de ladite composition.
Dans un autre mode de réalisation, les modifiants chocs non fonctionnalisés et les modifiants chocs peu fonctionnalisés sont exclus de ladite composition. Par modifiant choc peu fonctionnalisé, on entend un modifiant choc ayant un poids équivalent par fonction réactive supérieur à 10 OOOg/mol, avantageusement supérieur à 6000 g/mol.
Dans encore un autre mode de réalisation, les modifiants chocs fonctionnalisés ou non sont exclus de ladite composition.
Dans encore un autre mode de réalisation, les élastomères non fonctionnalisés sont exclus de ladite composition.
Dans encore un autre mode de réalisation, les plastifiants sont exclus de ladite composition.
S'agissant du modifiant choc optionnellement exclu
Par l'expression « modifiant choc », il faut entendre un polymère de module inférieur à celui de la résine, présentant une bonne adhésion avec la matrice, de manière à dissiper l'énergie de fissuration.
Le modifiant choc est avantageusement constitué par un polymère présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 au niveau du point d'inflexion du thermogramme DSC), en particulier une polyoléfine.
La polyoléfine du modifiant choc peut être fonctionnalisée ou non fonctionnalisée ou être un mélange d’au moins une fonctionnalisée et/ou d’au moins une non fonctionnalisée. Pour simplifier on a désigné la polyoléfine par (B) et on a décrit ci- dessous des polyoléfines fonctionnalisées (Bl) et des polyoléfines non fonctionnalisées (B2).
Une polyoléfine non fonctionnalisée (B2) est classiquement un homo polymère ou copolymère d’alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1, octène-1, butadiène. A titre d’exemple, on peut citer :
- les homo polymères et copolymères du polyéthylène, en particulier LDPE, HDPE, LLDPE (linear low density polyéthylène, ou polyéthylène basse densité linéaire), VLDPE (very low density polyéthylène, ou polyéthylène très basse densité) et le polyéthylène métallocène .
-les homopolymères ou copolymères du propylène.
- les copolymères éthylène/alpha-oléfine tels qu’éthylène/propylène, les EPR (abréviation d’éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).
- les copolymères de l’éthylène avec au moins un produit choisi parmi les sels ou les esters d’acides carboxyliques insaturés tel que le (méth)acrylate d’alkyle (par exemple acrylate de méthyle), ou les esters vinyliques d’acides carboxyliques saturés tel que l’acétate de vinyle (EVA), la proportion de comonomère pouvant atteindre 40% en poids. La polyoléfine fonctionnalisée (Bl) peut être un polymère d'alpha oléfines ayant des motifs réactifs (les fonctionnalités) ; de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d'exemple, on peut citer les polyoléfines précédentes (B2) greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l'acide (méth)acrylique (celui-ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d'acides carboxyliques tels que l'anhydride maléique. Une polyoléfine fonctionnalisée est par exemple un mélange PE/EPR, dont le ratio en poids peut varier dans de larges mesures, par exemple de 40/60 à 90/10, ledit mélange étant co-greffé avec un anhydride, notamment anhydride maléique, selon un taux de greffage par exemple de 0,01 à 5% en poids, avantageusement de 2,8 à 5 % en poids.
La polyoléfine fonctionnalisée (Bl) peut être choisie parmi les (co)polymères suivants, greffés avec anhydride maléique ou méthacrylate de glycidyle, dans lesquels le taux de greffage est par exemple de 0,01 à 5% en poids :
- du PE, du PP, des copolymères de l'éthylène avec propylène, butène, hexène, ou octène contenant par exemple de 35 à 80% en poids d'éthylène ;
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).
- des copolymères éthylène et acétate de vinyle (EVA), contenant jusqu'à 40% en poids d'acétate de vinyle ;
- des copolymères éthylène et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de (méth)acrylate d'alkyle ;
- des copolymères éthylène et acétate de vinyle (EVA) et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de comonomères.
La polyoléfine fonctionnalisée (Bl) peut être aussi choisie parmi les copolymères éthylène/propylène majoritaires en propylène greffés par de l'anhydride maléique puis condensés avec du polyamide (ou un oligomère de polyamide) mono aminé (produits décrits dans EP-A- 0342066).
La polyoléfine fonctionnalisée (Bl) peut aussi être un co- ou ter polymère d'au moins les motifs suivants : (1) éthylène, (2) (méth)acrylate d'alkyle ou ester vinylique d'acide carboxylique saturé et (3) anhydride tel que anhydride maléique ou acide (méth)acrylique ou époxy tel que (méth)acrylate de glycidyle. A titre d'exemple de polyoléfines fonctionnalisées de ce dernier type, on peut citer les copolymères suivants, où l'éthylène représente de préférence au moins 60% en poids et où le ter monomère (la fonction) représente par exemple de 0,1 à 13% en poids du copolymère :
- les copolymères éthylène/(méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle/anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle ou (méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle.
Dans les copolymères qui précèdent, l'acide (méth)acrylique peut être salifié avec Zn ou Li.
Le terme "(méth)acrylate d'alkyle" dans (Bl) ou (B2) désigne les méthacrylates et les acrylates d'alkyle en Cl à C8, et peut être choisi parmi l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'iso butyle, l'acrylate d'éthyl-2-hexyle, l'acrylate de cyclohexyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.
Par ailleurs, les polyoléfines précitées (Bl) peuvent aussi être réticulées par tout procédé ou agent approprié (diépoxy, diacide, peroxyde, etc.) ; le terme polyoléfine fonctionnalisée comprend aussi les mélanges des polyoléfines précitées avec un réactif difonctionnel tel que diacide, dianhydride, diépoxy, etc. susceptible de réagir avec celles-ci ou les mélanges d'au moins deux polyoléfines fonctionnalisées pouvant réagir entre elles.
Les copolymères mentionnés ci-dessus, (Bl) et (B2), peuvent être copolymérisés de façon statistique ou séquencée et présenter une structure linéaire ou ramifiée.
Le poids moléculaire, l'indice MFI, la densité de ces polyoléfines peuvent aussi varier dans une large mesure, ce que l'homme de l'art appréciera. MFI, abréviation de Melt Flow Index, est l'indice de fluidité à l'état fondu. On le mesure selon la norme ASTM 1238 ou ISO 1133 :2011. Avantageusement les polyoléfines (B2) non fonctionnalisées sont choisies parmi les homopolymères ou copolymères du polypropylène et tout homo polymère de l'éthylène ou copolymère de l'éthylène et d'un comonomère de type alpha oléfinique supérieur tel que le butène, l'hexène, l'octène ou le 4-méthyl 1-Pentène. On peut citer par exemple les PP, les PE de haute densité, PE de moyenne densité, PE basse densité linéaire, PE basse densité, PE de très basse densité. Ces polyéthylènes sont connus par l'Homme de l'Art comme étant produits selon un procédé « radicalaire », selon une catalyse de type « Ziegler » ou, plus récemment, selon une catalyse dite « métallocène ».
Avantageusement les polyoléfines fonctionnalisées (Bl) sont choisies parmi tous polymère comprenant des motifs alpha oléfiniques et des motifs porteurs de fonctions réactives polaires comme les fonctions époxy, acide carboxylique ou anhydride d'acide carboxylique. A titre d'exemples de tels polymères, on peut citer les ter polymères de l'éthylène, d'acrylate d'alkyle et d'anhydride maléique ou de méthacrylate de glycidyle comme les Lotader® de SK global Chemical ou des polyoléfines greffées par de l'anhydride maléique comme les Orevac® de SK global Chemical ainsi que des ter polymères de l'éthylène, d'acrylate d'alkyle et d'acide (meth) acrylique. On peut citer aussi les homopolymères ou copolymères du polypropylène greffés par un anhydride d’acide carboxylique puis condensés avec des polyamides ou des oligomères mono aminés de polyamide. S'agissant du polyamide aliphatique semi-cristallin
La composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, comprend de 88 à 99,95%, en particulier de 89 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1:2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l'homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. L'expression « semi-cristallin », au sens de l'invention, désigne un (co)polyamide qui présente une température de fusion (Tf) en DSC selon la norme ISO 11357-3 :2013, et une enthalpie de cristallisation lors de l'étape de refroidissement à une vitesse de 20K/min en DSC mesurée selon la norme ISO 11357-3 de 2013 supérieure à 20 J/g, de préférence supérieure à 30 J/g.
Ledit polyamide aliphatique semi-cristallin est issu d'un motif répétitif obtenu par polycondensation : d'au moins un aminoacide en C9 à C18, préférentiellement en CIO à C18, plus préférentiellement en CIO à C12, ou d'au moins un lactame en C9 à C18, préférentiellement en CIO à C18, plus préférentiellement en CIO à C12, ou d'au moins une diamine Ca en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, avec au moins un acide dicarboxylique Cb en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, ou un mélange de ceux-ci, à condition que le nombre d'atome de carbone par atome d'azote du motif répétitif soit supérieur ou égal à 7, en particulier supérieur ou égal à 8.
Un aminoacide C9 à C18 est notamment l’acide 9-aminononanoïque, l’acide 10-aminodécanoïque, l’acide 10-aminoundécanoïque, l’acide 12-aminododécanoïque et l’acide 11-aminoundécanoïque ainsi que ses dérivés, notamment l’acide N-heptyl-ll-aminoundécanoïque.
Un lactame en C9 à C18 est notamment le lauryllactame. Ladite au moins une diamine Ca en C4-C36 peut être en particulier choisi parmi la 1,4- butanediamine, 1,5-pentaméthylènediamine, la 1,6-hexaméthylènediamine la 1,7- heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9-nonaméthylènediamine, la 1,10- décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12-dodécaméthylènediamine, la 1,13- tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16-hexadécaméthylènediamine et la 1,18-octadécaméthylènediamine, l'octadécènediamine, l'eicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras.
Avantageusement, ladite au moins une diamine Ca est en C6-C18 et choisi parmi la 1,6- hexaméthylènediamine, la 1,7-heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9- nonaméthylènediamine, la 1,10-décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12- dodécaméthylènediamine, la 1,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16-hexadécaméthylènediamine et la 1,18-octadécaméthylènediamine.
Ledit au moins un acide dicarboxylique Cb en C4 à C36 peut être choisi parmi l'acide succinique, l'acide glutarique, l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque, l'octadécènediamine, l'eicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras. Avantageusement, ledit au moins un acide dicarboxylique Cb est en C6 à C18 et est choisi parmi l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque.
Dans un mode de réalisation, ledit polyamide aliphatique semi-cristallin est choisi parmi le PA610, le PA612, le PA 614, le PA 10, le PAU et le PA12, en particulier le PA610, le PA612 et le PAU.
Dans un mode de réalisation, ledit polyamide aliphatique semi-cristallin est un mélange de deux polyamides aliphatiques semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, dans une gamme de proportion en poids de 5/95 à 95/5.
Avantageusement, le polyamide a une concentration en fin de chaînes amines comprise de 5 à 60 peq/g, très avantageusement entre 10 et 50 peq/g.
Avantageusement, le polyamide a une concentration en fin de chaînes acides comprise de 5 à 60 peq/g, très avantageusement de 10 à 50 peq/g.
Les fins de chaînes amines sont mesurées selon la méthode suivante : un échantillon de polyamide est dissout dans du métacrésol. Puis, cet échantillon est dosé par potentiométrie par une solution d'acide perchlorique 0.02N. Les fins de chaînes acide sont mesurées selon la méthode suivante. Un échantillon de polyamide est dissout dans de l'alcool benzylique. Puis, cet échantillon est dosé par potentiométrie par une solution d'hydroxyde de tétrabutylammonium à 0.02N.
Dans un mode de réalisation, le MFI dudit polyamide ou dudit mélange de polyamide est compris de 0,01 à 10, avantageusement de 0,01 à 5 g/10 min à 235°C, 5kg.
Le polyamide selon l'invention a une viscosité inhérente dans le m-crésol supérieure à 1,45, avantageusement supérieure à 1,55, très avantageusement supérieure à 1,6 telle que déterminée selon la norme ISO 307 :2007 mais en utilisant du m-crésol à la place de l'acide sulfurique, une température de 20°C et une concentration de 0,5% massique.
S'agissant de l'agent branchant
L'agent branchant est présent dans la composition de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids et est choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates en particulier les polyanhydrides maléiques et les polyepoxy.
Dans un mode de réalisation, l'agent branchant est présent dans la composition de 0,1 à 2% en poids.
L'agent branchant peut-être un modifiant choc, notamment une polyoléfine fonctionnalisée ou différent d'un modifiant choc.
Avantageusement, il est différent du modifiant choc. C'est-à-dire qu'il a une Tg supérieure à -30°C, très avantageusement supérieure à 0°C.
Avantageusement, le poids équivalent par fonction réactive de l'agent branchant est compris de 100 à 10000 g/mol, avantageusement de 120 à 6000 g/mol, plus avantageusement de 140 à 3300 g/mol.
Dans un mode de réalisation, ledit agent branchant présente une fonctionnalité moyenne en fonctions epoxy, anhydride ou isocyanate comprise entre 1,8 et 200, préférablement entre 2,1 et 150.
Dans encore un autre mode de réalisation, la masse molaire des agents branchants est comprise de 300 à 120000 g/mol, de préférence de 400 à 100000 g/mol.
La masse molaire est mesurée par chromatographie en phase gazeuse (GPC).
Le poids équivalent par fonctions réactives des agents branchants est mesurée de la façon suivante: Isocyanates : Le poids équivalent par fonction isocyanate est mesuré selon la norme AFNOR référencée NF T52-132.
Epoxydes : Le poids équivalent par fonction époxydes est mesuré selon la norme ASTM D1652- 11(2019).
Anhydride maléique : La teneur massique en anhydride maléique est mesurée par FTIR en suivant la méthode de De Roovers et al. [J Polym Sci, Part A: Polym Chem 1995;33:829] Le poids équivalent est souvent donné par le fournisseur sur les TDS.
La fonctionnalité moyenne est calculée en divisant la masse molaire mesurée par GPC par le poids équivalent moyen.
Les polyepoxy peuvent être des copolymères fabriqués à partir d'anhydride maléique de glycidyle (GMA) ou tout autre monomère comportant une fonction epoxy.
Des exemples de polyepoxy commerciaux sont par exemple le Xibond® 920 commercialisé par Polyscope ou le Joncryl® ADR 4400 commercialisé par BASF ou le lotader® AX 8900 commercialisé par SK Chemical.
Les polyanhydrides peuvent être des copolymères comprenant un anhydride copolymérisé ou greffé, tel que l'anhydride maléique ou l'anhydride itaconique.
En particulier, les polyanhydrides sont des polyanhydrides maléiques.
L'autre monomère des copolymères comprenant un anhydride copolymérisé peut être un monomère aromatique vinylique, tel que le styrène ou des styrènes dans lesquels le noyau aromatique contient un halogène ou un substituant alkyle.
Dans un mode de réalisation, l'autre monomère des copolymères comprenant un anhydride copolymérisé peut être un monomère vinylique, tel que l'éthylène ou l'octadecene.
En particulier, les polyanhydrides maléiques sont des copolymères de styrène et d'anhydride maléique.
Des exemples de polyanhydrides maléiques commerciaux sont par exemple le Xibond® 125 (copolymère de styrène et d'anhydride maléique) commercialisé par Polyscope ou l'Orevac IM 800 commercialisé par SK Chemicals ou le PA 18 (copolymère de 1-octadecene et d'anhydride maléique) commercialisé par Chevron Phillips Chemical Company.
Les polyisocyanates sont préférablement des oligomères d'isocyanates tel que les isocyanurates ou les allophanates.
Des exemples de polyisocyanates commerciaux sont par exemple le Desmodur 3300 commercialisé par Covestro.
S'agissant de l'additif
Les additifs peuvent être présents jusqu'à 2% en poids par rapport au poids total de la composition, en particulier ils sont présents de 0,1 à 2% en poids par rapport au poids total de la composition. L'additif peut être choisi parmi un catalyseur, un antioxydant, un stabilisant thermique, un stabilisant UV, un stabilisant à la lumière, un lubrifiant, un agent ignifugeant, un agent nucléant, un allongeur de chaîne et un colorant.
Dans un mode de réalisation, l'additif est choisi parmi un catalyseur, un antioxydant, un stabilisant thermique, un stabilisant UV, un stabilisant à la lumière, un lubrifiant, un agent ignifugeant, un allongeur de chaîne et un colorant. Le terme « catalyseur » désigne un catalyseur de polycondensation tel qu'un acide minéral ou organique.
Avantageusement, la proportion en poids de catalyseur est comprise d'environ 50 ppm à environ 5000 ppm, en particulier d'environ 100 à environ 3300 ppm par rapport au poids total de la composition.
Avantageusement, le catalyseur est choisi parmi l'acide phosphorique (H3P04), l'acide phosphoreux (H3P03), l'acide hypophosphoreux (H3P02), ou un mélange de ceux-ci.
L'antioxydant peut notamment être un antioxydant à base de complexe de cuivre de 0,05 à 5% en poids, de préférence de 0,05 à 1% en poids de préférence de 0,1 à 1%.
L'expression complexe de cuivre désigne notamment un complexe entre un sel monovalent ou divalent de cuivre avec un acide organique ou inorganique et un ligand organique. Avantageusement, le sel de cuivre est choisi parmi les sels cuivriques (Cu(ll)) d'halogénure d'hydrogène, les sels cuivreux (Cu(l)) d'halogénure d'hydrogène et les sels d'acides carboxyliques aliphatiques.
En particulier, les sels de cuivre sont choisis parmi CuCI, CuBr, Cul, CuCN, CuCI2, Cu(OAc)2, le stéarate cuivrique.
Des complexes de cuivre sont notamment décrits dans US3505285.
Ledit complexe à base de cuivre peut de plus comprendre un ligand choisi parmi les phosphines, en particulier les triphenylphosphines, le mercaptobenzimidazole, l'EDTA, l'acétylacétonate, la glycine, l'éthylène diamine, l'oxalate, la diéthylène diamine, la triéthylène tetraamine, la pyridine, la tetrabromobisphenyl-A, les dérivés de tetrabisphenyl-A, tels que les dérivés epoxy, et les dérivés de chloro dimethanedibenzo(a,e)cyclooctène et leurs mélanges. diphosphone et le dipyridyl ou leurs mélanges, en particulier la triphénylphosphine et/ou le mercaptobenzimidazole.
Les phosphines désignent les alkylphosphines, telle que la tributylphosphine ou les arylphosphines telle que la triphénylphosphine (TPP).
Avantageusement, ledit ligand est la triphénylphosphine.
Des exemples de complexes ainsi que leur préparation sont décrits dans le brevet CA 02347258. Avantageusement, la quantité de cuivre dans la composition de l'invention est comprise de 10 ppm à 1000 ppm en poids, notamment de 20 ppm à 70 ppm, en particulier de 50 à 150 ppm par rapport au poids total de la composition.
Avantageusement, ledit complexe à base de cuivre comprend de plus un composé organique halogéné.
Le composé organique halogéné peut être tout composé organique halogéné. Avantageusement, ledit composé organique halogéné est un composé à base de brome et/ou un composé aromatique.
Avantageusement, ledit composé aromatique est notamment choisi parmi le decabromediphenyl, decabromodiphenyl ether, les oligomères de bromo ou chloro styrène et le polydibromostyrene. Avantageusement, ledit composé organique halogéné est un composé à base de brome.
Ledit composé organique halogéné est ajouté à la composition en une proportion de 50 à 30000 ppm en poids d'halogène par rapport au poids total de la composition, notamment de 100 à 10000 en particulier de 500 à 1500 ppm.
Avantageusement, le ratio molaire cuivre :halogène est compris de 1 :1 à 1 :3000, notamment de 1 :2 à 1 :100.
En particulier, ledit ratio est compris de 1 :1,5 à 1:15.
Avantageusement, l'antioxydant à base de complexe de cuivre.
Le stabilisant thermique peut être un stabilisant organique ou plus généralement une combinaison de stabilisants organiques, tel un antioxydant primaire de type phénol (par exemple du type de celle de l’irganox 245 ou 1098 ou 1010 de la société Ciba), un antioxydant secondaire de type phosphite.
Le stabilisant UV peut être un HALS, ce qui signifie Hindered Amine Light Stabiliser ou un anti-UV (par exemple le Tinuvin 312 de la société Ciba).
Le stabilisant à la lumière peut être de type amine encombrée (par exemple le Tinuvin 770 de la société Ciba), un stabilisant phénolique ou à base de phosphore.
Le lubrifiant peut être un lubrifiant de type acide gras tel que l'acide stéarique.
L'agent ignifugeant peut être un agent ignifugeant sans halogène, tels que décrit dans US 2008/0274355 et notamment un agent ignifugeant à base de phosphore, par exemple un sel métallique choisi parmi un sel métallique de l'acide phosphinique, en particulier des sels de phosphinate de dialkyle, notamment du diéthylphosphinate sel d'aluminium ou du diéthylphosphinate d'aluminium, un sel métallique de l'acide diphosphinique, un mélange d'agent ignifugeant à base de phosphinate d'aluminium et d'un synergiste d'azote ou un mélange d'agent ignifugeant à base phosphinate d'aluminium et d'un synergiste de phosphore, un polymère contenant au moins un sel métallique de l'acide phosphinique, notamment sur base ammonium tels qu'un ammonium polyphosphate, sulfamate ou pentaborate, ou sur base mélamine tels que de la mélamine, des sels de mélamine, des pyrophosphates de mélamine et des cyanurates de mélamine, ou sur base d'acide cyanurique, encore un polymère contenant au moins un sel métallique de l'acide diphosphinique ou du phosphore rouge, un oxyde d'antimoine, un oxyde de zinc, un oxyde de fer, un oxyde de magnésium ou des borates métalliques tels que un borate de zinc, ou des phosphazene, un phospham ou un phosphoxynitride ou un mélange de ceux-ci. Ils peuvent également être des agents ignifugeants halogénés tels qu'un polystyrène bromé ou polybromé, un polycarbonate bromé ou un phénol bromé.
L'agent nucléant peut être de la silice, de l’alumine, de l’argile ou du talc, en particulier du talc.
Des exemples de régulateurs de chaîne appropriés sont des monoamines, des acides monocarboxyliques, des diamines, des triamines, des acides dicarboxyliques, des acides tricarboxyliques, des tétraamines, des acides tétracarboxyliques et, des oligoamines ou des acides oligocarboxyliques ayant respectivement dans chaque cas 5 à 8 groupes amino ou carboxy et en particulier des acides dicarboxyliques, des acides tricarboxyliques ou un mélange d’acides dicarboxyliques et d’acides tricarboxyliques. A titre d’exemple, il est possible d’utiliser l’acide dodécanedicarboxylique sous forme d’acide dicarboxylique et de l’acide triméllitique comme acide tricarboxylique.
S'agissant de la composition
Dans toute la description, tous les pourcentages sont indiqués en poids.
La composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, comprend en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates en particulier les polyanhydrides maléiques et les polyepoxy. c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation, la composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, est constituée en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates en particulier les polyanhydrides maléiques et les polyepoxy. c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation, ladite composition comprend : a) de 88 à 99,95% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) faisant 100% en poids.
Avantageusement dans ce mode de réalisation, ladite composition est constituée de : a) de 88 à 99,95% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0.292. rad/s et une déformation de 2 %, la somme des constituants a) + b) faisant 100% en poids.
Dans un autre mode de réalisation, ladite composition comprend : a) de 88 à 99,85% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Avantageusement dans ce mode de réalisation, ladite composition est constituée de : a) de 88 à 99,85% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans une première variante, ladite composition comprend : a) de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation de cette première variante, ladite composition comprend : a) de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) faisant 100% en poids.
Avantageusement dans ce mode de réalisation de cette première variante, la composition est constituée de : a) de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) faisant 100% en poids.
Dans un autre mode de réalisation de cette première variante, ladite composition comprend : a) de 89 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Avantageusement, dans cet autre mode de réalisation de cette première variante, la composition est constituée de : a) de 89 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids. Dans une seconde variante, ladite composition comprend : a) de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation de cette seconde variante, ladite composition comprend : a) de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) faisant 100% en poids.
Avantageusement, dans ce mode de réalisation de cette seconde variante, ladite composition est constituée de : a) de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) faisant 100% en poids.
Dans un autre mode de réalisation de cette seconde variante, ladite composition comprend : a) de 93 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Avantageusement, dans cet autre mode de réalisation de cette seconde variante, ladite composition est constituée de : a) de 93 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans une troisième variante, ladite composition comprend : a) de 98 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation de cette troisième variante, ladite composition comprend : a) de 98 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) faisant 100% en poids.
Avantageusement, dans ce mode de réalisation de cette troisième variante, ladite composition est constituée de : a) de 98 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) faisant 100% en poids.
Dans un autre mode de réalisation de cette troisième variante, ladite composition comprend : a) de 96 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Avantageusement, dans cet autre mode de réalisation de cette troisième variante, ladite composition est constituée de : a) de 96 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans toutes les variantes et modes de réalisation des compositions décrites ci-dessus : le MVR (indice de fluidité en volume) tel que déterminé selon ISO 1133 :2011 avec un poids de 21,6 Kg et à une température de 275°C est compris de 2 à 25 cm3/10 min, avantageusement de 5 à 20 cm3/10 min , très avantageusement compris de 6 à 18 cm3/10 min.
Dans toutes les variantes et modes de réalisation des compositions décrites ci-dessus :
Le R de la composition est compris de 0 à 5, avantageusement de 0 à 0,1 g/ 10 min à 235°C, 1kg selon ISO 1133 : 2011.
L'agent branchant et le polyamide sont liés grâce à une liaison covalente, avantageusement l'agent branchant et le polyamide sont liés par une fonction amide, ester ou urée.
Avantageusement au moins 5 % en poids, très avantageusement au moins 15 % en poids du polyamide est lié de façon covalente à l'agent branchant, le ratio des viscosités à l'état fondu telles que mesurées en géométrie plan-plan à 0,292 rad.s 7292 rad.s 1 desdites compositions est compris de 10 à 200, avantageusement compris de 25 à 150. Ce ratio permet de déterminer le taux de branchement du polyamide de ladite composition. Plus le ratio est élevé et plus le polyamide est branché dans la composition. En conséquence, le polyamide doit être fluide à 292 rad.s 1 et visqueux à 0,292 rad.s 1; la viscosité à 292 rad.s-1 est comprise de 400 à 2000 et préférentiellement comprise de 600 à 1550 ;
La force de rhéotens à 250 °C de la composition après compoundage est comprise de 22 mN à 200 mN, en particulier comprise de 25 mN à 150 mN ; cette force détermine la tenue à l'état fondu du polyamide, plus la force est importante, moins le polyamide flue ;
La force Rhéotens peut par exemple être déterminée à l'aide d'un appareil Rheotens 71.97 de chez Gottfert. Un appareil Rheotens est un dispositif muni de roues crantées capables de tirer sur un jonc en sortie d'un Rhéometre capillaire Rheotester 2000 de chez Gottfert : cisaillement au niveau du capillaire 100s-l filière de L/D=30 et D=lmm température 250°C, distance entre sortie du jonc et axe des roues crantées 105mm, accélération des roues 2.4mm/s 2 le taux de gonflement en sortie d'extrudeuse de la composition après compoundage, est supérieur à 1,15, préférablement supérieur à 1,2 . Le taux de gonflement est réalisé suivant le mode opératoire : une paraison tubulaire de 25 cm est extrudée à l'aide d'une ligne d'extrusion soufflage équipée d'un accumulateur. La vitesse d'expulsion est fixée à 0,lm/s, la température de l'extrudat est vérifiée manuellement à l'aide d'une sonde thermique. La mesure du diamètre de la paraison est réalisée à 10 cm en dessous de la filière. 5 mesures sont réalisées pour obtenir une moyenne. La température est choisie en fonction des caractéristiques d'écoulement du polymère pour limiter au maximum le fluage de la paraison.
La tenue de la paraison permet d'analyser la capacité du matériau à contrebalancer l'effet de la gravité. Sous son poids, une paraison extrudée horizontalement ou verticalement va fluer modifiant ainsi ses dimensions. La tenue de la paraison verticale de la composition après compoundage est comprise de 15 à 50 s, en particulier de 20 à 45 s. Ces mesures ont été réalisées comme suit : une paraison pesant 1.2kg et de longueur 190mm est extrudée avec une vitesse d'expulsion fixée à O.lm/s. Le temps nécessaire pour que la longueur de la paraison augmente de 40% par fluage est mesurée. Un temps long sera représentatif d'un matériau visqueux. La température est choisie en fonction des caractéristiques d'écoulement du polymère pour limiter au maximum le fluage de la paraison.
Des essais de décompression sous Hydrogène ont montré qu'une quantité de modifiant choc dans la composition du matériau inférieure ou égale à 10% massique permettait d'éviter et limiter les mécanismes de cavitation (blistering). L'échantillon subit une montée en pression de 1 à 40 MPa avec une vitesse de lMPa.min-1, ce dernier est maintenu à 40MPa pendant 7 jours pour qu'il atteigne un état saturé. La phase de décompression est réalisée avec une vitesse de 5 MPa.min-1. Les échantillons sont observés au microscope électronique à balayage afin d'observer les éventuelles cavitations.
Les compositions selon l'invention résistent aux essais de décompression sous hydrogène.
Selon un deuxième aspect, la présente invention concerne une structure tubulaire monocouche ou multicouche destinée au transport, à la distribution ou au stockage d'hydrogène, comprenant au moins une couche d'étanchéité (1) comprenant une composition telle que définie ci-dessus.
Dans un mode de réalisation de ce deuxième aspect, ladite structure est destinée au transport de l'hydrogène, ladite couche d'étanchéité présentant une proportion totale de contaminants présents dans l'hydrogène et extraits de ladite couche d'étanchéité après contact de l'hydrogène avec celle-ci, inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de la composition de ladite couche d'étanchéité, la proportion totale de contaminants étant déterminée selon un test de contaminants tel que défini dans la norme CSA/ANSI CH MC 2 :19.
Ladite couche d'étanchéité est donc en contact avec l'hydrogène. Dans un autre mode de réalisation de ce deuxième aspect, ladite structure comprend de plus au moins une couche de renfort composite (2), ladite couche de renfort composite la plus interne étant soudée ou non, à ladite couche d'étanchéité adjacente la plus externe.
Ladite couche de renfort composite est donc au-dessus de ladite couche d'étanchéité qui est en contact avec l'hydrogène.
Le nombre de couche de renfort composite est compris de 1 à m.
La couche de renfort composite peut être constituée d'un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, j=l à m, m étant le nombre de couches de renfort, en particulier une résine époxyde ou à base d'époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates,
Polymère P2j :
Le polymère P2j peut être thermoplastique ou thermodurcissable.
Polymère thermoplastique P2j :
On entend par thermoplastique, ou polymère thermoplastique, un matériau généralement solide à température ambiante, pouvant être semi-cristallin ou amorphe, en particulier semi-cristallin et qui se ramollit lors d'une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg) et s'écoule à plus haute température lorsqu'il est amorphe, ou pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf) lorsqu'il est semi-cristallin, et qui redevient solide lors d'une diminution de température en dessous de sa température de cristallisation, Te, (pour un semi-cristallin) et en dessous de sa température de transition vitreuse (pour un amorphe).
La Tg, Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.
La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique est de préférence dans une plage allant de 10000 à 40000, de préférence de 10000 à 30000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l'acide sulfurique et la température étant de 20°C).
Comme exemples de polymères thermoplastiques semi-cristallins convenables dans la présente invention, on peut citer : les polyamides, en particulier comprenant une structure aromatique et/ou cycloaliphatique, y compris les copolymères par exemple les copolymères polyamides-polyéthers, polyesters, les polyaryléthercétones (PAEK), les polyétheréther cétones (PEEK), les polyéthercétone cétones (PEKK), les polyéthercétoneéthercétone cétones (PEKEKK), les polyimides en particulier les polyétherimides (PEI) ou les polyamide-imides, les polylsulfones (PSU) en particulier les polyarylsulfones tels que les polyphényl sulfones (PPSU), les polyéthersulfones (PES). les polymères semi-cristallins sont plus particulièrement préférés, et en particulier les polyamides et leurs copolymères semi-cristallins.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1:2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l'homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Avantageusement, les polyamides semi-cristallins sont des polyamide semi-aromatiques, notamment un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d’un aminoacide, un motif obtenu à partir d'un lactame et un motif répondant à la formule (diamine en Ca). (diacide en Cb), avec a représentant le nombre d'atomes de carbone de la diamine et b représentant le nombre d'atome de carbone du diacide, a et b étant chacun compris de 4 à 36, avantageusement de 9 à 18, le motif (diamine en Ca) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cb) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, les diacides cycloaliphatiques et les diacides aromatiques;
X.T désigne un motif obtenu à partir de la polycondensation d’une diamine en Cx et de l'acide téréphtalique, avec x représentant le nombre d'atomes de carbone de la diamine en Cx, x étant compris de 5 à 36, avantageusement de 9 à 18, notamment un polyamide de formule A/5T, A/6T, A/9T, A/10T ou A/11T, A étant tel que défini ci-dessus, en particulier un polyamide choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 5T/10T, un PA 11/BACT, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/10T, un PA 11/MXDT/10T, un 11/5T/10T.
T correspond à l'acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(aminométhyl)cyclohexane. Lesdits polyamides semi-aromatiques ci-dessus définis présentent notamment une Tg supérieure ou égal à 80°C.
Polymère thermodurcissable P2j :
Les polymères thermodurcissables sont choisis parmi les résines époxydes ou à base d'époxyde, les polyesters, les vinylesters, les résines à base de polyisocyanates, en particulier les polyisocyanurates, et polyuréthannes, ou un mélange de ceux-ci en particulier les résines époxyde ou à base d'époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates. Avantageusement, chaque couche de renfort composite est constituée d'une composition comprenant le même type de polymère, en particulier une résine époxyde ou à base d'époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
Ladite composition comprenant ledit polymère P2j peut être transparente à un rayonnement adapté à la soudure.
Concernant les fibres de constitution dudit matériau fibreux, ce sont notamment des fibres d'origine minérale, organique ou végétale.
Avantageusement, ledit matériau fibreux peut être ensimé ou non ensimé.
Ledit matériau fibreux peut donc comprendre jusqu'à 3,5% en poids d'un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage.
Parmi les fibres d'origine minérale, on peut citer les fibres de carbone, les fibres de verre, les fibres de basalte ou à base de basalte, les fibres de silice, ou les fibres de carbure de silicium par exemple. Parmi les fibres d'origine organique, on peut citer les fibres à base de polymère thermoplastique ou thermodurcissable, telles que des fibres de polyamides semi-aromatiques, des fibres d'aramide, des fibres de polyester ou des fibres en polyoléfines par exemple. De préférence, elles sont à base de polymère thermoplastique amorphe et présentent une température de transition vitreuse Tg supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Avantageusement, elles sont à base de polymère thermoplastique semi-cristallin et présentent une température de fusion Tf supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi- cristallin. Ainsi, il n'y a aucun risque de fusion pour les fibres organiques de constitution du matériau fibreux lors de l'imprégnation par la matrice thermoplastique du composite final. Parmi les fibres d'origine végétale, on peut citer les fibres naturelles à base de lin, de chanvre, de lignine, de bambou, de soie notamment d'araignée, de sisal, et d'autres fibres cellulosiques, en particulier de viscose. Ces fibres d'origine végétale peuvent être utilisées pures, traitées ou bien enduites d'une couche d'enduction, en vue de faciliter l'adhérence et l'imprégnation de la matrice de polymère thermoplastique.
Le matériau fibreux peut également être un tissu, tressé ou tissé avec des fibres.
Il peut également correspondre à des fibres avec des fils de maintien. Ces fibres de constitution peuvent être utilisées seules ou en mélanges. Ainsi, des fibres organiques peuvent être mélangées aux fibres minérales pour être pré-imprégnées de poudre polymère thermoplastique et former le matériau fibreux pré-imprégné.
Les mèches de fibres organiques peuvent avoir plusieurs grammages. Elles peuvent en outre présenter plusieurs géométries. Les fibres de constitution du matériau fibreux peuvent en outre se présenter sous forme d'un mélange de ces fibres de renfort de différentes géométries. Les fibres sont des fibres continues.
De préférence le matériau fibreux est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.
Il est utilisé sous forme d'une mèche ou de plusieurs mèches.
Selon un troisième aspect, la présente invention concerne l'utilisation de 0,05% à 10%, en particulier de 0,1 à 9% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, avec 88 à 99,95%, en particulier de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, et optionnellement un additif pour la constitution d'une composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, telle que définie ci-dessus, dont la viscosité à l'état fondu après compoundage est comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan-plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %.
Par « structure tubulaire mono ou multicouche » il faut donc entendre un réservoir comprenant ou constitué d'une ou plusieurs couches, à savoir une couche d'étanchéité et optionnellement une ou plusieurs couches de renfort, ou plusieurs couches d'étanchéité et optionnellement plusieurs couches de renfort, ou plusieurs couches d'étanchéité et une couche de renfort ou encore une couche d'étanchéité et une couche de renfort.
La structure tubulaire monocouche ou multicouche dans la présente invention désigne également un tuyau ou un tube destiné au transport de l'hydrogène du réservoir vers la pile à combustible et qui comprend ou est constitué d'une ou plusieurs couches, telle que définies ci-dessus.
Toutes les caractéristiques définies ci-dessus pour le premier aspect concernant la composition sont valables pour ce troisième aspect.
Selon un quatrième aspect, la présente invention concerne un procédé de préparation d'une composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, telle que définie ci-dessus, caractérisée en ce qu'il comprend une étape de compoundage de ladite composition.
Toutes les caractéristiques définies ci-dessus pour le premier aspect concernant la composition sont valables pour ce quatrième aspect.
L'étape de compoundage est effectuée de façon particulière afin que les alliages aient des viscosités fondues comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %.
Ces viscosités peuvent par exemple être obtenues en compoundant à une température du polymère fondu supérieure à 280 °C, préférablement supérieure à 300 °C en augmentant le temps de séjours dans le compounder. Cette réaction de branchement est avantageusement catalysée avec par exemple des sels de phosphonium ou des amines encombrées. Le temps de séjour moyen étant avantageusement compris de 20 secondes à 10 minutes, plus avantageusement de 45 secondes à 6 minutes.
Dans un mode de réalisation, ledit compoundage est effectué à une température du polymère fondu supérieure à 280 °C, préférablement supérieure à 300 °C avec un temps de séjour moyen compris de 20 secondes à 10 minutes, très avantageusement de 45 secondes à 6 minutes.
Selon un cinquième aspect, la présente invention concerne un procédé de préparation d'une structure tubulaire monocouche ou multicouche telle que définie ci-dessus, caractérisé en ce qu'il comprend une étape de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, d'une composition telle que définie ci-dessus.
Dans un mode de réalisation de ce cinquième aspect, le procédé comprend une étape préalable de compoudage d'une composition telle que définie ci-dessus.
L'étape préalable de compoundage est notamment effectuée telle que définie ci-dessus.
Toutes les caractéristiques définies ci-dessus pour le premier aspect concernant la composition sont valables pour ce cinquième aspect.
EXEMPLES
Les compositions comparatives (CEI à CE4) et de l'invention (Cil à CI6) du tableau 2 ci-dessous ont été préparées par compoudage dans les conditions suivantes :
Les alliages ont été fabriqués à l'aide d'une extrudeuse bi-vis ZSK 40 mm (Coperion). La température des fourreaux était réglée à 280 °C et la vitesse des vis était de 300 rpm avec un débit de 60 kg/h.
Le PA6 utilisé est un polyamide 6 ayant une concentration en fins de chaîne acide de 25peq/g et une concentration en fin de chaîne amine de 22 peq/g. Le PA610 utilisé est un polyamide 610 ayant une concentration en fins de chaîne acide de 27 peq/g et une concentration en fins de chaîne amine de 19 peq/g.
Le PA612 utilisé est un polyamide 612 ayant une concentration en fins de chaîne acide de 22 peq/g et une concentration en fins de chaîne amine de 20 peq/g.
Le PAU utilisé est un polyamide 11 catalysé à l'acide phosphorique ayant une concentration en fins de chaîne acide de 30 peq/g et une concentration en fins de chaîne amine de 33 peq/g.
Le Joncryl ADR 4400 est de BASF.
Le Xibond 125 est de Polyscope.
Le Lotader 3410 est de SK functional polymer.
Le stabilisant Anox NBD TL 89 est de SI group.
La viscosité à l'état fondu a été mesurée à l'aide d'un rhéomètre Rotationnel Ares G2 équipé d'une géométrie plan-plan 25mm à une température de 250°C, à 0,292 rad/s (temps de séjour avant lancement 5 min sous azote, déformation de 2%, balayage de 628rad/s à 0.062rad/s et 3 points par décade, prise d'un point sur 3 cycles, gap de 1.5mm )
La force Rhéotens est déterminée à l'aide d'un appareil Rheotens 71.97 de chez Gottfert. Un appareil Rheotens est un dispositif muni de roues crantées capables de tirer sur un jonc en sortie d'un Rhéometre capillaire Rheotester 2000 de chez Gottfert cisaillement au niveau du capillaire lOOs-1 filiere de L/D=30 et D=lmm température 250°C, distance entre sortie du jonc et axe des roues crantées 105mm, accélération des roues 2.4mm/s 2 La reprise en eau est déterminée soit en étuve sous atmosphère contrôlée à 100% Rh soit dans l'eau, dans tous les cas après saturation à 70°C et la mesure de cette reprise en eau est faite par pesée à 23°C de l'échantillon, pour des temps de prélèvement réguliers, espacés de plusieurs jours, jusqu'à l'observation d'un état d'équilibre, qui est atteint lorsque la masse de l'échantillon devient constante (à l'incertitude de la mesure près) pour trois temps de prélèvement consécutifs. Dans le cas d'un conditionnement dans l'eau, l'équilibre atteint correspond à la saturation en eau du polymère, à la température de 70°C.
Le MFI, abréviation de Melt Flow Index, a été mesuré selon la norme ISO 1133 :2011.
Des liners d'une épaisseur de 2 mm selon les compositions de l'invention ont été préparés par soufflage-moulage et la perméabilité à l'hydrogène à 15°C a été testée.
Cela consiste à balayer la face supérieure du film par le gaz d’essai (Hydrogène) et à mesurer par chromatographie en phase gazeuse le flux qui diffuse à travers le film dans la partie inférieure, balayée par le gaz vecteur : l'Azote
Les conditions expérimentales sont présentées dans le tableau 1 :
[Tableau 1]
Appareil Couplage LYSSY GPM500 / GC
Les résultats obtenus sont ensuite comparés aux exigences de la norme CSA/ANSI CHMC 2.19 décrites dans le tableau 2 « material compatibility qualification rating »:
[Tableau 2]
Les compositions de l'invention et les compositions comparatives ont été testées sur plusieurs paramètres. Les résultats sont détaillés au tableau 3. [Tableau 3]
Les résultats montrent que l'utilisation d'un agent branchant dans une gamme particulière et d'un polyamide avec un nombre moyen d'atome de carbone par atome d'azote supérieur ou égal à 7 permet d'obtenir des compositions présentant le meilleur compromis sur les différentes caractéristiques telles que la force de rhéotens, la reprise en eau, la viscosité à 0,292 rad/s et la perméabilité à l'hydrogène.
Toutes les compositions selon l'invention présentent un MFI égal à 0, ce qui signifie que rien ne s'écoule dans la machine.

Claims

REVENDICATIONS
1. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, comprenant en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10 000 à 300000 Pa.s, préférentiellement de 15000 et 220000 Pa.s, telle que mesurée en géométrie plan-plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
2. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon la revendication 1, caractérisée en ce que ledit compoundage est effectué à une température du polymère fondu supérieure à 280 °C, préférablement supérieure à 300 °C avec un temps de séjour moyen compris de 20 secondes à 10 minutes, très avantageusement de 45 secondes à 6 minutes.
3. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon la revendication 1 ou 2, caractérisée en ce que les modifiants chocs sont exclus de ladite composition.
4. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, selon l'une des revendications 1 à 3, caractérisée en ce que ledit agent branchant présente une fonctionnalité moyenne en fonctions epoxy, anhydride ou isocyanate comprise de 1,8 à 200, préférablement de 2,1 à 150.
5. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, selon la revendication 4, caractérisée en ce que ledit agent branchant présente un poids équivalent moyen en fonctions epoxy, anhydride ou isocyanate comprise de 100 à 10000 g/mol, préférentiellement de 120 à 6000 g/mol, notamment de 140 à 3300 g/mol.
6. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, selon l'une des revendications 1 à 5, caractérisée en ce que la force de rhéotens de la composition après compoundage est comprise de 22 mN à 200 mN, en particulier comprise de 25 mN à 150 mN.
7. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon l'une des revendications 1 à 6, caractérisée en ce que ledit polyamide aliphatique semi- cristallin est choisi parmi le PA610, le PA612, le PA 614, le PA 10, le PAU et le PA12, en particulier le PA610, le PA612 et le PAU.
8. Structure tubulaire monocouche ou multicouche destinée au transport, à la distribution ou au stockage d'hydrogène, notamment d'hydrogène, comprenant au moins une couche d'étanchéité (1) comprenant une composition telle que définie dans l'une des revendications 1 à 7.
9. Structure tubulaire monocouche ou multicouche selon la revendication 8, caractérisée en ce que ladite couche d'étanchéité présente une proportion totale de contaminants présents dans l'hydrogène et extraits de ladite couche d'étanchéité après contact de l'hydrogène avec celle-ci, inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de la composition de ladite couche d'étanchéité, la proportion totale de contaminants étant déterminée selon un test de contaminants tel que défini dans la norme CSA/ANSI CHMC 2 :19.
10. Structure tubulaire monocouche ou multicouche selon la revendication 8 ou 9, caractérisée en ce qu'elle comprend de plus au moins une couche de renfort composite (2), ladite couche de renfort composite la plus interne étant soudée ou non, à ladite couche d'étanchéité adjacente la plus externe.
11. Utilisation de 0,05% à 10%, en particulier de 0,1 à 9% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, avec 88 à 99,95%, en particulier de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, et optionnellement un additif pour la constitution d'une composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, telle que définie dans l'une des revendications 1 à 7, dont la viscosité à l'état fondu après compoundage est comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan-plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %.
12. Procédé de préparation d'une composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, telle que définie dans l'une des revendications 1 à 7, caractérisée en ce qu'il comprend une étape de compoundage de ladite composition.
13. Procédé de préparation d'une structure tubulaire monocouche ou multicouche telle que définie dans la revendication 8, caractérisé en ce qu'il comprend une étape de soufflage- moulage ou d'extrusion, notamment de soufflage moulage, d'une composition telle que définie dans l'une des revendications 1 à 5.
14. Procédé de préparation d'une structure tubulaire monocouche ou multicouche selon la revendication 11, caractérisé en ce qu'il comprend une étape préalable de compoundage d'une composition telle que définie dans l'une des revendications 1 à 7.
EP22743850.4A 2021-06-28 2022-06-24 Compositions de soufflage moulage a base de polyamides branches et leurs utilisations Pending EP4363191A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106906A FR3124516A1 (fr) 2021-06-28 2021-06-28 Compositions de soufflage moulage a base de polyamides branches et leurs utilisations
PCT/FR2022/051246 WO2023275463A1 (fr) 2021-06-28 2022-06-24 Compositions de soufflage moulage a base de polyamides branches et leurs utilisations

Publications (1)

Publication Number Publication Date
EP4363191A1 true EP4363191A1 (fr) 2024-05-08

Family

ID=77411863

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22743850.4A Pending EP4363191A1 (fr) 2021-06-28 2022-06-24 Compositions de soufflage moulage a base de polyamides branches et leurs utilisations

Country Status (8)

Country Link
EP (1) EP4363191A1 (fr)
JP (1) JP2024524894A (fr)
KR (1) KR20240026512A (fr)
CN (1) CN117580700A (fr)
CA (1) CA3221469A1 (fr)
FR (1) FR3124516A1 (fr)
MX (1) MX2023014617A (fr)
WO (1) WO2023275463A1 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1237309B (de) 1965-09-11 1967-03-23 Bayer Ag Verfahren zur Herstellung waermestabilisierter Polyamide
FR2629090B1 (fr) 1988-03-24 1990-11-23 Atochem Copolymere greffe a base d'alpha-mono-olefine, son procede de fabrication, son application a la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
DE4100912A1 (de) 1991-01-15 1992-07-16 Bayer Ag Verfahren zur herstellung hochmolekularer polyamide
DE19847627A1 (de) 1998-10-15 2000-04-20 Brueggemann L Kg Mit Kupferkomplexen und organischen Halogenverbindungen stabilisierte Polyamidzusammensetzung
FR2838127A1 (fr) * 2002-04-08 2003-10-10 Atofina Surfaces metalliques revetues de polyamide
FR2858626B1 (fr) 2003-08-05 2005-10-07 Atofina Polyamides semi aromatiques souple a faible reprise en humidite
US20050228145A1 (en) * 2004-01-26 2005-10-13 Christophe Lacroix Polyamide 1/interlayer/polyamide 2 multilayer structures for decorated articles
DE502008000140D1 (de) 2007-05-03 2009-11-26 Ems Patent Ag Teilaromatische Polyamidformmassen und deren Verwendungen
WO2012076677A2 (fr) * 2010-12-09 2012-06-14 Dsm Ip Assets B.V. Revêtement intérieur pour réservoir de stockage de gaz
FR2996556A1 (fr) 2012-10-10 2014-04-11 Rhodia Operations Liner pour reservoir cng
FR3078132B1 (fr) * 2018-02-21 2020-05-22 Arkema France Structure tubulaire annelee destinee au transport de carburant dans le reservoir
CA3101967A1 (fr) 2018-07-31 2020-02-06 Toray Industries, Inc. Composition de resine de polyamide pour produits moules par soufflage exposes a de l'hydrogene a haute pression, et produit moule par soufflage

Also Published As

Publication number Publication date
MX2023014617A (es) 2024-01-30
FR3124516A1 (fr) 2022-12-30
JP2024524894A (ja) 2024-07-09
KR20240026512A (ko) 2024-02-28
CA3221469A1 (fr) 2023-01-05
CN117580700A (zh) 2024-02-20
WO2023275463A1 (fr) 2023-01-05

Similar Documents

Publication Publication Date Title
EP1331091B1 (fr) Structure multicouche à base de polyamides et d'un liant en mélange de copolyamides
WO2021209718A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2010061128A1 (fr) Composition thermoplastique a base de polyamide et de polyolefine
EP1496299B1 (fr) Tube multicouche a base de polyamides pour le transport de fluides
WO2020115420A1 (fr) Structure tubulaire multicouche destinee au transport d'un fluide de climatisation
EP4363191A1 (fr) Compositions de soufflage moulage a base de polyamides branches et leurs utilisations
WO2023275465A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2023275464A1 (fr) Compositions de soufflage moulage a base de polyamides branches et leurs utilisations
FR3072047B1 (fr) Multicouche combinant et vieillissement et eclatement a chaud, utile pour les applications automobile haute temperature
EP4221975A1 (fr) Structure multicouche pour le stockage de l'hydrogene
WO2023170366A1 (fr) Structure tubulaire multicouche ignifugee pour le refroidissement de batteries de vehicule electrique ou de systeme de stockage stationnaire de l'energie
EP3390493A1 (fr) STRUCTURE BARRIÈRE A BASE DE COPOLYAMIDE MPMDT/XT DE HAUTE Tg
WO2023170367A1 (fr) Structure tubulaire multicouche destinee au transport d'un fluide de transfert de chaleur
FR3096836A1 (fr) Dispositif de refroidissement et/ou de chauffage d’une batterie de véhicule électrique
WO2024009042A1 (fr) Structure tubulaire a faible conductivite ionique
WO2021250352A1 (fr) Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation
EP3390494A1 (fr) STRUCTURE BARRIÈRE A BASE DE COPOLYAMIDE MXDT/XT DE HAUTE Tg

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)