WO2023275464A1 - Compositions de soufflage moulage a base de polyamides branches et leurs utilisations - Google Patents

Compositions de soufflage moulage a base de polyamides branches et leurs utilisations Download PDF

Info

Publication number
WO2023275464A1
WO2023275464A1 PCT/FR2022/051247 FR2022051247W WO2023275464A1 WO 2023275464 A1 WO2023275464 A1 WO 2023275464A1 FR 2022051247 W FR2022051247 W FR 2022051247W WO 2023275464 A1 WO2023275464 A1 WO 2023275464A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
blow molding
weight
polyanhydrides
compounding
Prior art date
Application number
PCT/FR2022/051247
Other languages
English (en)
Inventor
Thomas PRENVEILLE
Marjorie MARCOURT
Bertrand VERBAUWHEDE
Regis Cipriani
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to KR1020247003230A priority Critical patent/KR20240025680A/ko
Priority to CN202280046273.2A priority patent/CN117580892A/zh
Priority to EP22743851.2A priority patent/EP4363485A1/fr
Publication of WO2023275464A1 publication Critical patent/WO2023275464A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/068Copolymers with monomers not covered by C08L33/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L37/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • TITLE BLOW MOLDING COMPOSITIONS BASED ON BRANCHED POLYAMIDES AND THEIR
  • the present invention relates to blow molding or extrusion compositions, in particular blow molding compositions, based on branched polyamide and their use for the preparation of single-layer or multi-layer tubular structures intended for the transport, distribution or storage of gasoline. , in particular alcoholic essence, and the process for preparing said structures.
  • the tube or the tank is a multilayer tube or tank, the delamination of the layers, in particular internal ones, in particular during the fitting insertion (which can lead to leaks); -excessive swelling of the tube or tank after aging in petrol/diesel systems (including for biodiesel or bio petrol), which can lead to leaks or positioning problems under the vehicle.
  • petrol/diesel systems including for biodiesel or bio petrol
  • Application EP 0495363 relates to polyamide compositions based on a polyamide alloy (PA) and special olefin-acid anhydride copolymers and their use for the production of shaped hollow bodies.
  • PA polyamide alloy
  • special olefin-acid anhydride copolymers and their use for the production of shaped hollow bodies.
  • compositions are too fluid to allow large reservoirs to be extruded.
  • PA 6 polyamide 6
  • these structures are based on PA 6 (poor resistance to zinc chloride and fragile when cold) and therefore are not compatible with tank applications for automotive fluids such as gasoline.
  • Application CA3101967 relates to polyamide compositions for blow molding based on PA 6 and impact modifier and consequently they present the same problems as above.
  • Application EP1352934 describes metal surfaces coated with a layer based on polyamide consisting of a mixture of polyamide and of a polyolefin functionalized with an unsaturated carboxylic acid anhydride.
  • Application US2005/228145 describes a transparent multilayer structure comprising a first layer of polyamide consisting of a mixture of polyamide and of a polyolefin functionalized with maleic anhydride.
  • Application FR3078132 describes a flexible tubular structure comprising a layer comprising a mixture of polyamide and of a polyolefin functionalized with an anhydride.
  • compositions for blow molding or extrusion, in particular blow molding, comprising by weight: a) from 88 to 99.95 %, in particular from 89 to 99.9%, in particular from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10%, in particular from 0.1 to 9%, in particular from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, maleic polyanhydrides and polyisocyanates, c) from 0 to 2% of at least one additive, in particular from 0.1 to 2%, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry at a temperature of 250°C, a frequency
  • compositions which, after compounding, have a viscosity at molten state in a range allowing extrusion-blow molding for the constitution of a single-layer or multi-layer tubular structure intended for the transport, distribution or storage of gasoline, in particular alcoholic gasoline.
  • monolayer or multilayer tubular structure a reservoir comprising or consisting of one or more layers.
  • the multilayer structure in the present invention also designates a pipe or a tube intended for transporting gasoline to the tank and from the tank to the engine or located under the engine bonnet and which comprises or consists of one or more layers.
  • compositions of the invention are the good dimensional stability, that is to say low water uptake, good resistance to zinc chloride.
  • non-functionalized impact modifiers are excluded from said composition.
  • non-functionalized impact modifiers and low-functionalized impact modifiers are excluded from said composition.
  • low-functionalized impact modifier an impact modifier having an equivalent weight per reactive function greater than 10,000 g/mol, advantageously greater than 6000 g/mol.
  • the equivalent weight per reactive function is calculated by dividing the average molar mass of the molecule by the number of reactive functions.
  • non-functionalized elastomers are excluded from said composition.
  • the content of plasticizer in the composition is less than 5% by weight, advantageously less than 2%.
  • plasticizers are excluded from said composition.
  • impact modifier a polymer with a modulus lower than that of the resin, exhibiting good adhesion with the matrix, so as to dissipate the cracking energy.
  • the impact modifier is advantageously made up of a polymer having a flexural modulus of less than 100 MPa measured according to the ISO 178 standard and a Tg of less than 0° C. (measured according to the 11357-2 standard at the level of the inflection point of the DSC thermogram ), in particular a polyolefin.
  • the polyolefin of the impact modifier can be functionalized or non-functionalized or be a mixture of at least one functionalized and/or at least one non-functionalized.
  • the polyolefin has been designated by (B) and functionalized polyolefins (B1) and non-functionalized polyolefins (B2) have been described below.
  • a non-functionalized polyolefin (B2) is conventionally a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • alpha olefins or diolefins such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • LDPE low density polyethylene
  • HDPE linear low density polyethylene
  • LLDPE linear low density polyethylene, or linear low density polyethylene
  • VLDPE very low density polyethylene, or very low density polyethylene
  • metallocene polyethylene metallocene polyethylene
  • ethylene/alpha-olefin copolymers such as ethylene/propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene/propylene/diene (EPDM).
  • SEBS styrene/ethylene-butene/styrene
  • SBS styrene/butadiene/styrene
  • SIS styrene/isoprene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • the functionalized polyolefin (B1) can be a polymer of alpha olefins having reactive units (the functionalities); such reactive units are acid, anhydride or epoxy functions.
  • reactive units are acid, anhydride or epoxy functions.
  • a functionalized polyolefin is, for example, a PE/EPR mixture, the weight ratio of which can vary widely, for example from 40/60 to 90/10, said mixture being co-grafted with an anhydride, in particular maleic anhydride, according to a degree of grafting for example from 0.01 to 5% by weight, advantageously from 2.8 to 5% by weight.
  • the functionalized polyolefin (B1) can be chosen from the following (co)polymers, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is for example from 0.01 to 5% by weight:
  • ethylene/alpha-olefin copolymers such as ethylene/propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene/propylene/diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene/propylene/diene
  • SEBS styrene/ethylene-butene/styrene
  • SBS styrene/butadiene/styrene
  • SIS styrene/isoprene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • alkyl (meth)acrylate copolymers containing up to 40% by weight of alkyl (meth)acrylate;
  • the functionalized polyolefin (B1) can also be chosen from ethylene/propylene copolymers with a majority of propylene grafted with maleic anhydride then condensed with monoamine polyamide (or a polyamide oligomer) (products described in EP-A-0342066) .
  • the functionalized polyolefin (B1) can also be a co- or ter-polymer of at least the following units: (1) ethylene, (2) alkyl (meth)acrylate or saturated carboxylic acid vinyl ester and (3) anhydride such as maleic anhydride or (meth)acrylic acid or epoxy such as glycidyl (meth)acrylate.
  • the (meth)acrylic acid can be salified with Zn or Li.
  • alkyl (meth)acrylate in (B1) or (B2) denotes C1 to C8 alkyl methacrylates and acrylates, and may be chosen from methyl acrylate, ethyl acrylate , n-butyl acrylate, isobutyl acrylate, ethyl-2-hexyl acrylate, cyclohexyl acrylate, methyl methacrylate and ethyl methacrylate.
  • the aforementioned polyolefins (B1) can also be crosslinked by any appropriate process or agent (diepoxy, diacid, peroxide, etc.); the term functionalized polyolefin also includes mixtures of the aforementioned polyolefins with a difunctional reagent such as diacid, dianhydride, diepoxy, etc. capable of reacting with these or mixtures of at least two functionalized polyolefins capable of reacting with each other.
  • a difunctional reagent such as diacid, dianhydride, diepoxy, etc.
  • copolymers mentioned above, (B1) and (B2) can be randomly or block copolymerized and have a linear or branched structure.
  • the molecular weight, the MFI index, the density of these polyolefins can also vary to a large extent, which those skilled in the art will appreciate.
  • MFI short for Melt Flow Index, is the Melt Flow Index. It is measured according to the ASTM 1238 or ISO 1133:2011 standard.
  • the non-functionalized polyolefins (B2) are chosen from polypropylene homopolymers or copolymers and any homopolymer of ethylene or copolymer of ethylene and a comonomer of the higher alpha olefinic type such as butene, hexene, octene or 4-methyl 1-pentene.
  • PPs the PEs of high density, medium density PE, linear low density PE, low density PE, very low density PE.
  • These polyethylenes are known to those skilled in the art as being produced according to a “radical” process, according to a catalysis of the “Ziegler” type or, more recently, according to a so-called “metallocene” catalysis.
  • the functionalized polyolefins (B1) are chosen from any polymer comprising alpha olefin units and units carrying polar reactive functions such as epoxy, carboxylic acid or carboxylic acid anhydride functions.
  • polymers mention may be made of ter-polymers of ethylene, alkyl acrylate and maleic anhydride or glycidyl methacrylate such as Lotader ® from SK global Chemical or polyolefins grafted with maleic anhydride such as Orevac ® from SK global Chemical as well as terpolymers of ethylene, alkyl acrylate and (meth)acrylic acid.
  • the blow molding or extrusion composition in particular blow molding, comprises from 88 to 99.95%, in particular from 89 to 99.8% of at least one semi-crystalline aliphatic polyamide having a carbon number per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • Said semi-crystalline aliphatic polyamide is derived from a repeating unit obtained by polycondensation: of at least one C9 to C18 amino acid, preferably CIO to C18, more preferably CIO to C12, or at least one C9 lactam to C18, preferentially in CIO to C18, more preferentially in CIO to C12, or of at least one diamine Ca in C4-C36, preferentially C6-C18, preferentially C6-C12, more preferentially C10-C12, with at least one acid dicarboxylic Cb in C4-C36, preferentially C6-C18, preferentially C6-C12, more preferentially C10-C12, or a mixture thereof, provided that the number of carbon atoms per nitrogen atom of the repeating unit is greater than or equal to 7, in particular greater than or equal to 8.
  • a C9 to C18 amino acid is in particular 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-aminoundecanoic acid as well as its derivatives, in particular acid N-heptyl-ll-aminoundecanoic acid.
  • a C9 to C18 lactam is in particular lauryllactam.
  • Said at least one C4-C36 diamine Ca can be chosen in particular from 1,4-butanediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1, 18-octadecamethylenediamine, octadecenediamine, eicosanediamine, docosanediamine and diamines obtained from fatty acids.
  • said at least one diamine Ca is C6-C18 and chosen from 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine , 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1,18-octadecamethylenediamine.
  • Said at least one Cb C4 to C36 dicarboxylic acid may be chosen from succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, octadecanediamine, eicosanediamine, docosanediamine and diamines obtained from fatty acids .
  • said at least one Cb dicarboxylic acid is C6 to C18 and is chosen from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid.
  • said semi-crystalline aliphatic polyamide is chosen from PA610, PA612, PA 614, PA 10, PAU and PA12, in particular PA610, PA612 and PAU.
  • said semi-crystalline aliphatic polyamide is a mixture of two semi-crystalline aliphatic polyamides having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, in a range of proportion by weight of 5/95 to 95/5.
  • the polyamide has a concentration at the end of the amine chains comprised from 5 to 60 peq/g, very advantageously from 10 to 50 peq/g.
  • the polyamide has a concentration at the end of the acid chains comprised from 5 to 60 peq/g, very advantageously from 10 to 50 peq/g.
  • the ends of the amine chains are measured according to the following method: a sample of polyamide is dissolved in metacresol. Then, this sample is assayed by potentiometry with a 0.02 perchloric acid solution
  • the ends of acid chains are measured according to the following method.
  • a sample of polyamide is dissolved in benzyl alcohol. Then, this sample is assayed by potentiometry with a solution of tetrabutylammonium hydroxide at 0.02N.
  • the MFI of said polyamide or of said polyamide blend ranges from 0.01 to 10, advantageously from 0.01 to 5 g/10 min at 235° C., 5 kg.
  • the polyamide according to the invention has an inherent viscosity in m-cresol greater than 1.45, advantageously greater than 1.55, very advantageously greater than 1.6 as determined according to standard ISO 307:2007 but using m -cresol instead of sulfuric acid, a temperature of 20°C and a concentration of 0.5% by weight.
  • the branching agent is present in the composition from 0.05% to 10%, in particular from 0.1 to 9%, in particular from 0.1 to 5% by weight and is chosen from polyepoxy, polyanhydrides, and polyisocyanates in particular maleic polyanhydrides and polyepoxy.
  • the branching agent is present in the composition at 0.1 to 2% by weight.
  • the branching agent may be an impact modifier, in particular a polyolefin functionalized or different from an impact modifier.
  • the impact modifier is different from the impact modifier. That is to say, it has a Tg greater than -30°C, very advantageously greater than 0°C.
  • the equivalent weight per reactive function of the branching agent is comprised from 100 to 10000 g/mol, advantageously from 120 to 6000 g/mol, very advantageously from 140 to 3300 g/mol.
  • said branching agent has an average functionality in terms of epoxy, anhydride or isocyanate functions of from 1.8 to 200, preferably from 2.1 to 150.
  • the equivalent weight per reactive function of the branching agents ranges from 100 to 10000 g/mol, advantageously from 120 to 6000 g/mol, very advantageously from 140 to 3300 g/mol.
  • the molar mass of the branching agents is between 300 and 120,000 g/mol, preferably between 400 and 100,000 g/mol.
  • the molar mass is measured by gas chromatography (GPC).
  • the equivalent weight per reactive functions of the branching agents is measured as follows: Isocyanates: The equivalent weight per isocyanate function is measured according to the AFNOR standard referenced NF T52-132.
  • Epoxides The equivalent weight per epoxy function is measured according to standard ASTM D1652-11 (2019).
  • Maleic anhydride The mass content of maleic anhydride is measured by FTIR using the method of De Roovers et al. [J Polym Sci, Part A: Polym Chem 1995;33:829]
  • the equivalent weight is often given by the supplier on the TDS.
  • the average functionality is calculated by dividing the molar mass measured by GPC by the average equivalent weight.
  • the polyepoxy can be copolymers made from glycidyl maleic anhydride (GMA) or any other monomer comprising an epoxy function.
  • GMA glycidyl maleic anhydride
  • Examples of commercial polyepoxy are, for example, Xibond® 920 marketed by Polyscope or Joncryl® ADR 4400 marketed by BASF or lotader® AX 8900 marketed by SK Global Chemical.
  • the polyanhydrides can be copolymers comprising a copolymerized or grafted anhydride, such as maleic anhydride or itaconic anhydride.
  • polyanhydrides are maleic polyanhydrides.
  • the other monomer of the copolymers comprising a copolymerized anhydride can be a vinyl aromatic monomer, such as styrene or styrenes in which the aromatic ring contains a halogen or an alkyl substituent.
  • the other monomer of the copolymers comprising a copolymerized anhydride can be a vinyl monomer, such as ethylene or octadecene.
  • maleic polyanhydrides are copolymers of styrene and maleic anhydride.
  • Examples of commercial maleic polyanhydrides are for example Xibond ® 125 (copolymer of styrene and maleic anhydride) marketed by Polyscope or Orevac IM 800 marketed by SK global Chemical or PA 18 (copolymer of 1-octadecene and maleic anhydride) marketed by Chevron Phillips Chemical Company.
  • the polyisocyanates are preferably oligomers of isocyanates such as isocyanurates or allophanates.
  • isocyanurates or allophanates.
  • commercial polyisocyanates are for example Desmodur 3300 marketed by Covestro.
  • the additives may be present up to 2% by weight relative to the total weight of the composition, in particular they are present from 0.1 to 2% by weight relative to the total weight of the composition.
  • the additive can be chosen from a catalyst, an antioxidant, a heat stabilizer, a UV stabilizer, a light stabilizer, a lubricant, a flame retardant, a nucleating agent, a chain extender and a colorant.
  • the additive is selected from catalyst, antioxidant, heat stabilizer, UV stabilizer, light stabilizer, lubricant, flame retardant, chain extender, and colorant.
  • catalyst denotes a polycondensation catalyst such as an inorganic or organic acid.
  • the proportion by weight of catalyst is comprised from approximately 50 ppm to approximately 5000 ppm, in particular from approximately 100 to approximately 3000 ppm relative to the total weight of the composition.
  • the catalyst is chosen from phosphoric acid (H3P04), phosphorous acid (H3P03), hypophosphorous acid (H3P02), or a mixture of these.
  • the antioxidant can in particular be an antioxidant based on a copper complex of 0.05 to 5% by weight, preferably 0.05 to 1% by weight, preferably 0.1 to 1%.
  • copper complex denotes in particular a complex between a monovalent or divalent salt of copper with an organic or inorganic acid and an organic ligand.
  • the copper salt is chosen from cupric salts (Cu(II)) of hydrogen halide, cuprous salts (Cu(II)) of hydrogen halide and salts of aliphatic carboxylic acids.
  • the copper salts are chosen from CuCl, CuBr, Cul, CuCN, CuCl2, Cu(OAc)2, cupric stearate.
  • Said copper-based complex may further comprise a ligand chosen from phosphines, in particular triphenylphosphines, mercaptobenzimidazole, EDTA, acetylacetonate, glycine, ethylene diamine, oxalate, diethylene diamine, triethylene tetraamine, pyridine, tetrabromobisphenyl-A, tetrabisphenyl-A derivatives, such as epoxy derivatives, and chloro dimethanedibenzo(a,e)cyclooctene derivatives and mixtures thereof.
  • Phosphines refer to alkylphosphines, such as tributylphosphine or arylphosphines such as triphenylphosphine (TPP).
  • said ligand is triphenylphosphine.
  • the amount of copper in the composition of the invention is between 10 ppm to 1000 ppm by weight, especially from 50 to 150 ppm relative to the total weight of the composition.
  • said copper-based complex further comprises a halogenated organic compound.
  • the halogenated organic compound can be any halogenated organic compound.
  • said halogenated organic compound is a bromine-based compound and/or an aromatic compound.
  • said aromatic compound is chosen in particular from decabromediphenyl, decabromodiphenyl ether, bromo or chlorostyrene oligomers and polydibromostyrene.
  • said halogenated organic compound is a bromine-based compound.
  • Said halogenated organic compound is added to the composition in a proportion of 50 to 30,000 ppm by weight of halogen relative to the total weight of the composition, in particular from 100 to 10,000 in particular from 500 to 1500 ppm.
  • the copper:halogen molar ratio is comprised from 1:1 to 1:3000, in particular from 1:2 to 1:100.
  • said ratio is comprised from 1:1.5 to 1:15.
  • the copper complex antioxidant is provided.
  • the thermal stabilizer can be an organic stabilizer or more generally a combination of organic stabilizers, such as a primary antioxidant of the phenol type (for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba), a secondary antioxidant of phosphite type.
  • a primary antioxidant of the phenol type for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba
  • a secondary antioxidant of phosphite type such as a primary antioxidant of the phenol type (for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba), a secondary antioxidant of phosphite type.
  • the UV stabilizer can be a HALS, which means Hindered Amine Light Stabilizer or an anti-UV (for example Tinuvin 312 from the company Ciba).
  • the light stabilizer can be of the hindered amine type (for example Tinuvin 770 from the company Ciba), a phenolic or phosphorus-based stabilizer.
  • the lubricant can be a fatty acid type lubricant such as stearic acid.
  • the flame retardant may be a halogen-free flame retardant, as described in US 2008/0274355 and in particular a phosphorus-based flame retardant, for example a metal salt chosen from a metal salt of phosphinic acid, in particular salts dialkyl phosphinate, in particular diethylphosphinate aluminum salt or aluminum diethylphosphinate, a metal salt of diphosphinic acid, a mixture of aluminum phosphinate flame retardant and a nitrogen synergist or a mixture of aluminum phosphinate flame retardant and a phosphorus synergist, a polymer containing at least one metal salt of phosphinic acid, in particular on an ammonium base such as an ammonium polyphosphate, sulfamate or pentaborate, or on a melamine base such as melamine, melamine salts, melamine pyrophosphates and melamine cyanurates, or based on cyanuric acid, further a
  • the nucleating agent can be silica, alumina, clay or talc, in particular talc.
  • chain regulators are monoamines, monocarboxylic acids, diamines, triamines, dicarboxylic acids, tricarboxylic acids, tetraamines, tetracarboxylic acids and, oligoamines or oligocarboxylic acids having respectively in each case 5 to 8 amino or carboxy groups and in particular dicarboxylic acids, tricarboxylic acids or a mixture of dicarboxylic acids and tricarboxylic acids.
  • dodecanedicarboxylic acid in the form of the dicarboxylic acid and trimellitic acid as the tricarboxylic acid.
  • the blow molding or extrusion composition comprises by weight: a) from 88 to 99.95%, in particular from 89 to 99.9%, in particular from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10%, in particular from 0.1 to 9%, in particular from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, c) from 0 to 2% of at least one additive, in particular from 0.1 to 2%, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in geometry plan- plane according to standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/
  • the blow molding or extrusion composition in particular blow molding, consists by weight of: a) from 88 to 99.95%, in particular from 89 to 99.9%, in particular from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a carbon number per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10%, in particular from 0.1 to 9%, in particular from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 to 2% of at least one additive, in particular from 0.1 to 2%, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferentially from 15,000 to 220,000 Pa.
  • said composition comprises: a) from 88 to 99.95% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, the composition exhibiting, after compounding, a viscosity in the molten state ranging from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy
  • said composition consists of: a) from 88 to 99.95% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition comprises: a) from 88 to 99.85% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0.1 to 2% of at least one additive, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to the standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) being 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular male
  • said composition consists of: a) from 88 to 99.85% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.05% to 10% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, c) from 0, 1 to 2% of at least one additive, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/set a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular poly
  • said composition comprises: a) from 89 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides, and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 to 2% d at least one additive, in particular from 0.1 to 2%, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • branching agent chosen from polyepoxy, polyan
  • said composition comprises: a) from 89 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, the composition having after compounding a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably between 15,000 and 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250°C , a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy
  • the composition consists of: a) from 89 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition comprises: a) from 89 to 99.8% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 9%, by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0.1 to 2% of at least one additive, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular
  • the composition consists of: a) from 89 to 99.8% of at least one semi-crystalline aliphatic polyamide having a higher number of carbon per nitrogen atom or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 9%, by weight, of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0.1 to 2% of at least one additive, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, such as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) being 100 % in weight.
  • said composition comprises: a) from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 to 2% of at least one additive, in particular from 0.1 to 2%, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in geometry plan-plan according to standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight .
  • branching agent chosen from polyepoxy, polyanhydrides and
  • said composition comprises: a) from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition consists of: a) from 93 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to to 7, in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition comprises: a) from 93 to 99.8% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 , 1 to 2% of at least one additive, the composition having, after compounding, a viscosity in the molten state comprised from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates,
  • said composition consists of: a) from 93 to 99.8% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 5% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy , c) from 0.1 to 2% of at least one additive, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% in weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates,
  • said composition comprises: a) from 98 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) from 0 to 2% of at least one additive, in particular from 0.1 to 2%, the composition exhibiting, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in geometry plane-plane at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 10%, the sum of the constituents a) + b) + c) being 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular male
  • said composition comprises: a) from 98 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, the composition having after compounding a melt viscosity of 10,000 to 300,000 Pa.s, preferably 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy
  • said composition consists of: a) from 98 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to to 7, in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy, the composition having, after compounding, a viscosity in the molten state comprised from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250° C., a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) making 100% by weight.
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular polymaleic anhydrides and polyepoxy
  • said composition comprises: a) from 96 to 99.8% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy, c) of 0.1 to 2% of at least one additive, the composition exhibiting, after compounding, a viscosity in the molten state comprised from 10,000 to 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane geometry - plan according to ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) making 100% by weight .
  • branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in
  • said composition consists of: a) from 96 to 99.8% of at least one semi-crystalline aliphatic polyamide having a higher number of carbon per nitrogen atom or equal to 7, in particular greater than or equal to 8, b) from 0.1 to 2% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides and polyisocyanates, in particular maleic polyanhydrides and polyepoxy , c) from 0.1 to 2% of at least one additive, the composition having, after compounding, a viscosity in the molten state of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, such as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%, the sum of the constituents a) + b) + c) being 100% by weight.
  • the MVR volume melt index
  • ISO 1133:2011 with a weight of 21.6 Kg and at a temperature of 275°C is included from 2 to 25 cm 3 /10 min, advantageously from 5 to 20 cm 3 /10 min, very advantageously comprised from 6 to 18 cm 3 /10 min.
  • the MF! of the composition is comprised from 0 to 5, advantageously from 0 to 0.1 g/10 min at 235° C., 1 kg according to ISO 1133: 2011.
  • branching agent and the polyamide are linked by means of a covalent bond, advantageously the branching agent and the polyamide are linked by an amide, ester or urea function.
  • the ratio of the viscosities in the molten state as measured in plane-plane geometry at 0.292 rad. s 7292 rad.s 1 of said compositions is between 10 and 200, advantageously between 25 and 150.
  • This ratio makes it possible to determine the degree of branching of the polyamide of said composition. The higher the ratio, the more the polyamide is connected in the composition. Consequently, the polyamide must be fluid at 292 rad.s 1 and viscous at 0.292 rad.s 1 ; the viscosity at 292 rad.s ⁇ 1 is between 400 and 2000 and preferably between 600 and 1550;
  • the rheotensive force at 250° C. of the composition after compounding is between 22 mN and 200 mN, in particular between 25 mN and 150 mN; this force determines the molten strength of the polyamide, the greater the force, the less the polyamide flows;
  • the Rheotens force can for example be determined using a Rheotens 71.97 apparatus from Gottfert.
  • the swelling rate is carried out according to the following procedure: a 25 cm tubular parison is extruded using a blow molding extrusion line equipped with an accumulator. The expulsion speed is fixed at 0.1m/s, the temperature of the extrudate is checked manually using a thermal probe. The measurement of the diameter of the parison is carried out 10 cm below the die. 5 measurements are taken to obtain an average. The temperature is chosen according to the flow characteristics of the polymer to limit the creep of the parison as much as possible.
  • the behavior of the parison makes it possible to analyze the capacity of the material to counterbalance the effect of gravity. Under its weight, a parison extruded horizontally or vertically will creep, thus modifying its dimensions.
  • the hold of the vertical parison of the composition after compounding is between 15 and 50 s, in particular from 20 to 45 s.
  • the present invention relates to a single-layer or multi-layer tubular structure intended for the transport, distribution or storage of gasoline, in particular alcoholic gasoline, comprising at least one sealing layer (1) comprising a composition as defined above.
  • gasoline designates a mixture of hydrocarbons resulting from the distillation of petroleum to which additives or alcohols such as methanol and ethanol may be added, alcohols being able to be major components in certain cases.
  • alcoholic gasoline designates a gasoline in which methanol or ethanol has been added. It also designates an E95 type gasoline which does not contain any petroleum distillation product.
  • said tubular structure is excluding a partially corrugated flexible tubular structure located at least partially inside the fuel tank of a motor vehicle.
  • said sealing layer has during the first fuel storage, at most 1 g/m2, preferably 0.5 g/m2 of insoluble extract as well as at most 15 g /m2, preferably 10 g/m2 of soluble extract being removed by washing the monolayer or multilayer tubular structure as an overall system, determined according to the protocol described below, on a 20 x 4 x 4 cm3 tank having a wall thickness of 2 mm.
  • composition of the invention in the sealing layer makes it possible to greatly reduce the proportion of extractables as determined by a test as defined above and in particular by a test which consists in filling a tubular structure (reservoir) of FAM-B type alcoholic gasoline and heating the assembly at 60°C for 96 hours, then emptying it by filtering it into a beaker, then allowing the filtrate in the beaker to evaporate at room temperature to finally weigh this residue, the proportion of which must be less than or equal to approximately 15 g/m2, preferably 10 g/m2 of internal tank surface.
  • the insoluble extracts present during the filtration on the beaker are also weighed and represent a maximum of 1 g/m 2 , preferably 0.5 g/m2
  • FAM B alcoholic gasoline is described in DIN 51604-1:1982, DIN 51604-2:1984 and DIN
  • alcoholic gasoline FAM A is first prepared with a mixture of 50% Toluene, 30% isooctane, 15% di-isobutylene and 5% ethanol then FAM B is prepared by mixing 84.5% FAM A with 15% methanol and 0.5% water.
  • FAB consists of 42.3% toluene, 25.4% isooctane, 12.7% di-isobutylene, 4.2% ethanol, 15% methanol and 0.5% water.
  • said structure is monolayer. In yet another embodiment of this second aspect, said structure is multilayered and comprises a barrier layer (3).
  • carrier layer means a layer that is not very permeable to fuels, in particular to alcoholic gasolines and which consequently allows very little fuel, in particular alcoholic gasolines, to pass into the atmosphere.
  • carrier layer means that the proportion of gasoline, in particular alcoholic gasoline, which passes into the atmosphere is less than 20 g.mm/m2.day as determined with a CE 10 fuel at 60°C.
  • the instantaneous permeability is zero during the induction period, then it gradually increases to a value at equilibrium which corresponds to the steady-state permeability value. This value obtained in steady state is considered to be the permeability of the material.
  • This barrier property is essential for pipes or tanks in contact with the atmosphere.
  • said barrier layer (3) is made of ethylene vinyl alcohol (EVOH).
  • the present invention relates to the use of 0.05% to 10%, in particular from 0.1 to 9% by weight of at least one branching agent chosen from polyepoxy, polyanhydrides, and polyisocyanates , in particular maleic polyanhydrides and polyepoxys, with 88 to 99.95%, in particular from 89 to 99.9% of at least one semi-crystalline aliphatic polyamide having a number of carbon per nitrogen atom greater than or equal to to 7, in particular greater than or equal to 8, and optionally an additive for the constitution of a blow molding composition, as defined above, whose viscosity in the molten state after compounding is between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to standard ISO 6721-10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a deformation of 2%.
  • branching agent chosen from polyepoxy, polyanhydrides, and polyisocyanates , in particular male
  • a tank comprising or consisting of one or more layers, namely a sealing layer and optionally one or more reinforcing layers, or several sealing layers and optionally several layers reinforcement, or several sealing layers and a reinforcing layer or else a sealing layer and a reinforcing layer.
  • the monolayer or multilayer tubular structure in the present invention also designates a pipe or a tube intended for the transport of hydrogen from the tank to the fuel cell and which comprises or consists of one or more layers, as defined above. .
  • the present invention relates to a method for preparing a composition for blow molding or extrusion, in particular blow molding, as defined above, characterized in that it comprises a step of compounding said composition.
  • the compounding step is carried out in a special way so that the alloys have melt viscosities of between 10,000 and 300,000 Pa.s, preferably from 15,000 to 220,000 Pa.s, as measured in plane-plane geometry according to ISO 6721- 10:2015 at a temperature of 250°C, a frequency of 0.292 rad/s and a strain of 2%.
  • These viscosities can for example be obtained by compounding at a temperature of the molten polymer greater than 280° C., preferably greater than 300° C. by increasing the residence time in the compounder.
  • This branching reaction is advantageously catalyzed with, for example, phosphonium salts or hindered amines.
  • the average residence time being advantageously comprised from 20 seconds to 10 minutes, very advantageously from 45 seconds to 6 minutes.
  • said compounding is carried out at a temperature of the molten polymer greater than 280° C., preferably greater than 300° C. with an average residence time ranging from 20 seconds to 10 minutes, very advantageously from 45 seconds to 6 minutes .
  • the present invention relates to a process for preparing a single-layer or multi-layer tubular structure as defined above, characterized in that it comprises a step of blow-molding or extrusion, in particular blow-molding , of a composition as defined above.
  • the method comprises a prior step of compounding a composition as defined above.
  • the prior compounding step is in particular carried out as defined above.
  • the alloys were fabricated using a 40 mm ZSK twin-screw extruder (Coperion).
  • the barrel temperature was set at 280°C and the screw speed was 300 rpm with a throughput of 60 kg/h.
  • the PA6 used is a polyamide 6 having a concentration at the end of the acid chain of 25 peq/g and a concentration at the end of the amine chain of 22 peq/g.
  • the PA610 used is a polyamide 610 having a concentration of acid chain ends of 27 peq/g and a concentration of amine chain ends of 19 peq/g.
  • the PA612 used is a polyamide 612 having a concentration of acid chain ends of 22 peq/g and a concentration of amine chain ends of 20 peq/g.
  • the PAU used is a phosphoric acid-catalyzed polyamide 11 having a concentration of acid chain ends of 30 peq/g and a concentration of amine chain ends of 33 peq/g.
  • the Joncryl ADR 4400 is from BASF.
  • the Xibond 125 is from Polyscope.
  • the Lotader 3410 is from SK functional polymer.
  • Anox NBD TL 89 stabilizer is from SI group.
  • melt viscosity was measured using an Ares G2 Rotational Rheometer equipped with a 25mm plane-plane geometry at a temperature of 250°C, at 0.292 rad/s (residence time before launch 5 min under nitrogen, deformation of 2%, scanning from 628rad/s to 0.062rad/s and 3 points per decade, taking of a point over 3 cycles, gap of 1.5mm )
  • the Rheotens force is determined using a Rheotens 71.97 apparatus from Gottfert.
  • the water uptake is determined either in an oven under a controlled atmosphere at 100% Rh or in water, in all cases after saturation at 70°C and the measurement of this water uptake is made by weighing the sample at 23°C, for regular sampling times, spaced out by several days, until a state of equilibrium is observed , which is reached when the mass of the sample becomes constant (at the uncertainty of the measurement near) for three consecutive sampling times.
  • ZnCI2 / CaCI2 stress cracking resistance was determined according to the protocol below: IA specimens with a thickness of 4 mm were clamped on a mandrel with a radius of 32.5 mm and then immersed for 300 h at 23 °C in a 50% ZnCh solution. The specimen is then dried at 23° C. for 72 h. The specimens are then analyzed to observe the presence of cracking and a rating of resistance to cracking has been assigned to each sample. 0: very low resistance, very cracked sample.
  • the CE10 permeability measurement consists of putting 30ml of CE10 in a dish, then sealing it with the 3 mm plate to be evaluated.
  • the assembly is placed in a temperature-regulated chamber. Periodic weighings make it possible to determine the quantity of solvent vapor which diffuses through the plate.
  • the flow normalized with the surface of the sample, is obtained thanks to the slope of the curve of the follow-up of the evolution of the weight (solvent) as a function of time.
  • compositions of the invention and the comparative compositions were tested on several parameters.
  • MFI short for Melt Flow Index
  • compositions according to the invention have an MFI equal to 0, which means that nothing flows into the machine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

La présente invention concerne une composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, comprenant en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10 000 à 300 000 Pa.s, préférentiellement de 15 000 à 220 000 Pa.s, telle que mesurée en géométrie plan-plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.

Description

DESCRIPTION
TITRE : COMPOSITIONS DE SOUFFLAGE MOULAGE A BASE DE POLYAMIDES BRANCHES ET LEURS
UTILISATIONS
[Domaine technique]
La présente invention concerne des compositions de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, à base de polyamide branché et leur utilisation pour la préparation de structures tubulaires monocouches ou multicouches destinées au transport, à la distribution ou au stockage d'essence, notamment de l'essence alcoolisée, et le procédé de préparation desdites structures.
[Art antérieur]
Pour le transport et le stockage de l'essence et en particulier de bio-essence, il faut satisfaire de nombreux critères, en particulier de bonnes propriétés en barrière (pour des raisons de protection de l’environnement), de choc à froid, de tenue pression, etc.
Pour des raisons de sécurité et de préservation de l’environnement, notamment avec l'arrivée de nouveaux bio-carburants, les constructeurs automobiles imposent aux tubes précédemment cités des caractéristiques mécaniques particulières, ainsi que des caractéristiques de très faible perméabilité et de bonne tenue aux différents constituants des carburants, ceux-ci variant selon le pays (hydrocarbures, additifs, alcools comme le méthanol et l’éthanol, les alcools pouvant être des composants majoritaires dans certains cas), aux huiles de lubrification du moteur et aux autres produits chimiques susceptibles d’être rencontrés dans cet environnement (acide de batteries, liquides de frein, liquides de refroidissement, sels métalliques tels que le chlorure de calcium ou de zinc).
Les caractéristiques des cahiers des charges couramment requises par les constructeurs automobiles pour qu’un tube ou un réservoir soit jugé satisfaisant sont cumulativement les suivantes :
- bonne et pérenne adhésion entre les couches, si le tube ou le réservoir est un tube ou un réservoir multicouche, tout particulièrement après avoir été exposé au carburant ;
- bonne intégrité des liaisons (tubes avec raccords) après circulation du carburant, c'est-à-dire ne conduisant à aucune fuite ;
- bonne stabilité dimensionnelle du tube ou du réservoir, lorsqu'il est utilisé avec de l’essence ;
- bonne tenue aux chocs à froid (de -30°C à -40°C environ), de manière à ce que le tube ou le réservoir ne se brise pas ;
- bonne tenue à chaud (environ 150°C), de manière à ce que le tube ou le réservoir ne se déforme pas ; - bonne tenue au vieillissement en milieu oxydatif chaud (par exemple : air chaud du compartiment moteur, de 100 à 150°C environ) ;
- bonne tenue aux carburants et à leurs produits de dégradation et notamment avec de fortes teneurs en peroxyde ;
- très faible perméabilité aux carburants, et plus particulièrement de bonnes propriétés barrière aux bio-carburants, tant pour ses composants polaires (comme l'éthanol) que pour ses composants apolaires (hydrocarbures) ;
- bonne souplesse du tube ou du réservoir pour faciliter le montage notamment de la tubulure d'alimentation en carburant ;
- bonne résistance au ZnCI2 (par exemple, en hiver, lorsque les routes sont salées, l'extérieur du tube étant exposé à cet environnement) ;
- une viscosité suffisamment élevée à faible taux de cisaillement pour avoir une bonne tenue de paraison lors de l'extrusion soufflage.
De plus, les tubes ou réservoirs recherchés doivent éviter les inconvénients suivants :
-si le tube ou le réservoir est un tube ou un réservoir multicouche, le délaminage des couches, notamment internes, notamment lors de l'insertion de raccord (ce qui peut conduire à des fuites) ; -un gonflement excessif du tube ou du réservoir après vieillissement dans les systèmes essence/diesel (y compris pour les biodiesels ou bio essences), qui peut conduire à des fuites ou des problèmes de positionnement sous le véhicule.
La demande EP 0495363 concerne des compositions de polyamides à base d'un alliage de polyamide (PA) et de copolymères spéciaux oléfine-anhydride d’acide et leur utilisation pour la production de corps creux façonnés.
Néanmoins, les compositions exemplifiées sont trop fluides pour permettre d'extruder des grands réservoirs.
Ces structures sont de plus à base de polyamide 6 (PA 6) (mauvaise tenue au chlorure de Zinc et fragile à froid) et ne sont donc pas compatibles avec les applications réservoirs de fluides automobiles (essences)
La demande internationale W020027031 concerne une composition à base de PA 6, de modifiant choc et d'halogénure métallique.
Comme ci-dessus, ces structures sont à base PA 6 (mauvaise tenue au chlorure de Zinc et fragile à froid) et donc ne sont pas compatibles avec les applications réservoirs de fluides automobiles tels que l'essence.
La demande CA3101967 concerne des compositions de polyamide pour le moulage soufflage à base de PA 6 et de modifiant choc et par conséquent, elles présentent les mêmes problèmes que ci- dessus. La demande EP1352934 décrit des surfaces métalliques revêtues d'une couche à base de polyamide constituée d'un mélange de polyamide et d'une polyoléfine fonctionnalisée par un anhydride d'acide carboxylique insaturé.
La demande US2005/228145 décrit une structure multicouche transparente comprenant une première couche de polyamide constituée d'un mélange de polyamide et d'une polyoléfine fonctionnalisée par un anhydride maléique.
La demande FR3078132 décrit une structure tubulaire flexible comprenant une couche comprenant un mélange de polyamide et d'une polyoléfine fonctionnalisée par un anhydride.
Il est donc nécessaire de fournir des compositions palliant les problèmes ci-dessus présentés et la présente invention concerne donc une composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, comprenant en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides maléique et les polyisocyanates, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Les inventeurs ont donc trouvé de manière inattendue que l'utilisation de polyamide aliphatiques semi-cristallins particulier avec une gamme particulière d'agent branchant et la présence ou non d'additifs permettait l'obtention de compositions qui après compoundage présente une viscosité à l'état fondu dans une gamme permettant l'extrusion-soufflage pour la constitution d'une structure tubulaire monocouche ou multicouche destinée au transport, à la distribution ou au stockage d'essence, notamment de l'essence alcoolisée.
Par « structure tubulaire monocouche ou multicouche » il faut entendre un réservoir comprenant ou constitué d'une ou plusieurs couches.
La structure multicouche dans la présente invention désigne également un tuyau ou un tube destiné au transport de l'essence jusqu'au réservoir et du réservoir vers le moteur ou situé sous capot moteur et qui comprend ou est constitué d'une ou plusieurs couches.
Un autre avantage des compositions de l'invention est la bonne stabilité dimensionnelle, c'est-à- dire une faible reprise en eau, une bonne résistance au chlorure de zinc. Dans un mode de réalisation, les modifiants chocs non fonctionnalisés sont exclus de ladite composition.
Dans un autre mode de réalisation, les modifiants chocs non fonctionnalisés et les modifiants chocs peu fonctionnalisés sont exclus de ladite composition.
Par modifiant choc peu fonctionnalisé, on entend un modifiant choc ayant un poids équivalent par fonction réactive supérieur à 10 OOOg/mol, avantageusement supérieur à 6000 g/mol.
Le poids équivalent par fonction réactive se calcule en divisant la masse molaire moyenne de la molécule par le nombre de fonctions réactives.
Dans encore un autre mode de réalisation, les modifiants chocs fonctionnalisés ou non sont exclus de ladite composition.
Dans encore un autre mode de réalisation, les élastomères non fonctionnalisés sont exclus de ladite composition.
Dans un autre mode de réalisation, la teneur en plastifiant dans la composition est inférieure à 5 % en poids, avantageusement inférieur à 2%.
Dans encore un autre mode de réalisation, les plastifiants sont exclus de ladite composition.
S'agissant du modifiant choc optionnellement exclu
Par l'expression « modifiant choc », il faut entendre un polymère de module inférieur à celui de la résine, présentant une bonne adhésion avec la matrice, de manière à dissiper l'énergie de fissuration.
Le modifiant choc est avantageusement constitué par un polymère présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 au niveau du point d'inflexion du thermogramme DSC), en particulier une polyoléfine.
La polyoléfine du modifiant choc peut être fonctionnalisée ou non fonctionnalisée ou être un mélange d’au moins une fonctionnalisée et/ou d’au moins une non fonctionnalisée. Pour simplifier on a désigné la polyoléfine par (B) et on a décrit ci- dessous des polyoléfines fonctionnalisées (Bl) et des polyoléfines non fonctionnalisées (B2).
Une polyoléfine non fonctionnalisée (B2) est classiquement un homo polymère ou copolymère d’alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1, octène-1, butadiène. A titre d’exemple, on peut citer :
- les homo polymères et copolymères du polyéthylène, en particulier LDPE, HDPE, LLDPE (linear low density polyéthylène, ou polyéthylène basse densité linéaire), VLDPE (very low density polyéthylène, ou polyéthylène très basse densité) et le polyéthylène métallocène .
-les homopolymères ou copolymères du propylène. - les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR (abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).
- les copolymères de l'éthylène avec au moins un produit choisi parmi les sels ou les esters d'acides carboxyliques insaturés tel que le (méth)acrylate d'alkyle (par exemple acrylate de méthyle), ou les esters vinyliques d'acides carboxyliques saturés tel que l'acétate de vinyle (EVA), la proportion de comonomère pouvant atteindre 40% en poids.
La polyoléfine fonctionnalisée (Bl) peut être un polymère d'alpha oléfines ayant des motifs réactifs (les fonctionnalités) ; de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d'exemple, on peut citer les polyoléfines précédentes (B2) greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l'acide (méth)acrylique (celui-ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d'acides carboxyliques tels que l'anhydride maléique. Une polyoléfine fonctionnalisée est par exemple un mélange PE/EPR, dont le ratio en poids peut varier dans de larges mesures, par exemple de 40/60 à 90/10, ledit mélange étant co-greffé avec un anhydride, notamment anhydride maléique, selon un taux de greffage par exemple de 0,01 à 5% en poids, avantageusement de 2,8 à 5 % en poids.
La polyoléfine fonctionnalisée (Bl) peut être choisie parmi les (co)polymères suivants, greffés avec anhydride maléique ou méthacrylate de glycidyle, dans lesquels le taux de greffage est par exemple de 0,01 à 5% en poids :
- du PE, du PP, des copolymères de l'éthylène avec propylène, butène, hexène, ou octène contenant par exemple de 35 à 80% en poids d'éthylène ;
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR (abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).
- des copolymères éthylène et acétate de vinyle (EVA), contenant jusqu'à 40% en poids d'acétate de vinyle ;
- des copolymères éthylène et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de (méth)acrylate d'alkyle ;
- des copolymères éthylène et acétate de vinyle (EVA) et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de comonomères. La polyoléfine fonctionnalisée (Bl) peut être aussi choisie parmi les copolymères éthylène/propylène majoritaires en propylène greffés par de l'anhydride maléique puis condensés avec du polyamide (ou un oligomère de polyamide) mono aminé (produits décrits dans EP-A- 0342066).
La polyoléfine fonctionnalisée (Bl) peut aussi être un co- ou ter polymère d'au moins les motifs suivants : (1) éthylène, (2) (méth)acrylate d'alkyle ou ester vinylique d'acide carboxylique saturé et (3) anhydride tel que l'anhydride maléique ou acide (méth)acrylique ou époxy tel que (méth)acrylate de glycidyle.
A titre d’exemple de polyoléfines fonctionnalisées de ce dernier type, on peut citer les copolymères suivants, où l’éthylène représente de préférence au moins 60% en poids et où le ter monomère (la fonction) représente par exemple de 0,1 à 13% en poids du copolymère :
- les copolymères éthylène/(méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle/anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle ou (méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle.
Dans les copolymères qui précèdent, l'acide (méth)acrylique peut être salifié avec Zn ou Li.
Le terme "(méth)acrylate d'alkyle" dans (Bl) ou (B2) désigne les méthacrylates et les acrylates d'alkyle en Cl à C8, et peut être choisi parmi l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'iso butyle, l'acrylate d'éthyl-2-hexyle, l'acrylate de cyclohexyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.
Par ailleurs, les polyoléfines précitées (Bl) peuvent aussi être réticulées par tout procédé ou agent approprié (diépoxy, diacide, peroxyde, etc.) ; le terme polyoléfine fonctionnalisée comprend aussi les mélanges des polyoléfines précitées avec un réactif difonctionnel tel que diacide, dianhydride, diépoxy, etc. susceptible de réagir avec celles-ci ou les mélanges d'au moins deux polyoléfines fonctionnalisées pouvant réagir entre elles.
Les copolymères mentionnés ci-dessus, (Bl) et (B2), peuvent être copolymérisés de façon statistique ou séquencée et présenter une structure linéaire ou ramifiée.
Le poids moléculaire, l'indice MFI, la densité de ces polyoléfines peuvent aussi varier dans une large mesure, ce que l'homme de l'art appréciera. MFI, abréviation de Melt Flow Index, est l'indice de fluidité à l'état fondu. On le mesure selon la norme ASTM 1238 ou ISO 1133 :2011. Avantageusement les polyoléfines (B2) non fonctionnalisées sont choisies parmi les homopolymères ou copolymères du polypropylène et tout homo polymère de l'éthylène ou copolymère de l'éthylène et d'un comonomère de type alpha oléfinique supérieur tel que le butène, l'hexène, l'octène ou le 4-méthyl 1-Pentène. On peut citer par exemple les PP, les PE de haute densité, PE de moyenne densité, PE basse densité linéaire, PE basse densité, PE de très basse densité. Ces polyéthylènes sont connus par l'Homme de l'Art comme étant produits selon un procédé « radicalaire », selon une catalyse de type « Ziegler » ou, plus récemment, selon une catalyse dite « métallocène ».
Avantageusement les polyoléfines fonctionnalisées (Bl) sont choisies parmi tous polymère comprenant des motifs alpha oléfiniques et des motifs porteurs de fonctions réactives polaires comme les fonctions époxy, acide carboxylique ou anhydride d'acide carboxylique. A titre d'exemples de tels polymères, on peut citer les ter polymères de l'éthylène, d'acrylate d'alkyle et d'anhydride maléique ou de méthacrylate de glycidyle comme les Lotader® de SK global Chemical ou des polyoléfines greffées par de l'anhydride maléique comme les Orevac® de SK global Chemical ainsi que des ter polymères de l'éthylène, d'acrylate d'alkyle et d'acide (meth) acrylique. On peut citer aussi les homopolymères ou copolymères du polypropylène greffés par un anhydride d’acide carboxylique puis condensés avec des polyamides ou des oligomères mono aminés de polyamide. S'agissant du polyamide aliphatique semi-cristallin
La composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, comprend de 88 à 99,95%, en particulier de 89 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1:2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l'homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. L'expression « semi-cristallin », au sens de l'invention, désigne un (co)polyamide qui présente une température de fusion (Tf) en DSC selon la norme ISO 11357-3 :2013, et une enthalpie de cristallisation lors de l'étape de refroidissement à une vitesse de 20K/min en DSC mesurée selon la norme ISO 11357-3 de 2013 supérieure à 20 J/g, de préférence supérieure à 30 J/g.
Ledit polyamide aliphatique semi-cristallin est issu d'un motif répétitif obtenu par polycondensation : d'au moins un aminoacide en C9 à C18, préférentiellement en CIO à C18, plus préférentiellement en CIO à C12, ou d'au moins un lactame en C9 à C18, préférentiellement en CIO à C18, plus préférentiellement en CIO à C12, ou d'au moins une diamine Ca en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, avec au moins un acide dicarboxylique Cb en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, ou un mélange de ceux-ci, à condition que le nombre d'atome de carbone par atome d'azote du motif répétitif soit supérieur ou égal à 7, en particulier supérieur ou égal à 8.
Un aminoacide C9 à C18 est notamment l’acide 9-aminononanoïque, l’acide 10-aminodécanoïque, l’acide 10-aminoundécanoïque, l’acide 12-aminododécanoïque et l’acide 11-aminoundécanoïque ainsi que ses dérivés, notamment l’acide N-heptyl-ll-aminoundécanoïque.
Un lactame en C9 à C18 est notamment le lauryllactame.
Ladite au moins une diamine Ca en C4-C36 peut être en particulier choisi parmi la 1,4- butanediamine, 1,5-pentaméthylènediamine, la 1,6-hexaméthylènediamine la 1,7- heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9-nonaméthylènediamine, la 1,10- décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12-dodécaméthylènediamine, la 1,13- tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16-hexadécaméthylènediamine et la 1,18-octadécaméthylènediamine, l’octadécènediamine, l’eicosanediamine, la docosanediamine et les diamines obtenues à partir d’acides gras.
Avantageusement, ladite au moins une diamine Ca est en C6-C18 et choisi parmi la 1,6- hexaméthylènediamine, la 1,7-heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9- nonaméthylènediamine, la 1,10-décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12- dodécaméthylènediamine, la 1,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16-hexadécaméthylènediamine et la 1,18-octadécaméthylènediamine.
Ledit au moins un acide dicarboxylique Cb en C4 à C36 peut être choisi parmi l'acide succinique, l'acide glutarique, l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque, l’octadécènediamine, l’eicosanediamine, la docosanediamine et les diamines obtenues à partir d’acides gras. Avantageusement, ledit au moins un acide dicarboxylique Cb est en C6 à C18 et est choisi parmi l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque.
Dans un mode de réalisation, ledit polyamide aliphatique semi-cristallin est choisi parmi le PA610, le PA612, le PA 614, le PA 10, le PAU et le PA12, en particulier le PA610, le PA612 et le PAU.
Dans un mode de réalisation, ledit polyamide aliphatique semi-cristallin est un mélange de deux polyamides aliphatiques semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, dans une gamme de proportion en poids de 5/95 à 95/5. Avantageusement, le polyamide a une concentration en fin de chaînes amines comprise de 5 à 60 peq/g, très avantageusement de 10 à 50 peq/g.
Avantageusement, le polyamide a une concentration en fin de chaînes acides comprise de 5 à 60 peq/g, très avantageusement de 10 à 50 peq/g.
Les fins de chaînes amines sont mesurées selon la méthode suivante : un échantillon de polyamide est dissout dans du métacrésol. Puis, cet échantillon est dosé par potentiométrie par une solution d'acide perchlorique 0.02
Les fins de chaînes acide sont mesurées selon la méthode suivante. Un échantillon de polyamide est dissout dans de l'alcool benzylique. Puis, cet échantillon est dosé par potentiométrie par une solution d'hydroxyde de tétrabutylammonium à 0.02N.
Dans un mode de réalisation, le MFI dudit polyamide ou dudit mélange de polyamide est compris de 0,01 à 10, avantageusement de 0,01 à 5 g/10 min à 235°C, 5kg.
Le polyamide selon l'invention a une viscosité inhérente dans le m-crésol supérieure à 1,45, avantageusement supérieure à 1,55, très avantageusement supérieure à 1,6 telle que déterminée selon la norme ISO 307 :2007 mais en utilisant du m-crésol à la place de l'acide sulfurique, une température de 20°C et une concentration de 0,5% massique.
S'agissant de l'agent branchant
L'agent branchant est présent dans la composition de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids et est choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates en particulier les polyanhydrides maléiques et les polyepoxy.
Dans un mode de réalisation, l'agent branchant est présent dans la composition de 0,1 à 2% en poids.
L'agent branchant peut-être un modifiant choc, notamment une polyoléfine fonctionnalisée ou différent d'un modifiant choc.
Avantageusement, il est différent du modifiant choc. C'est-à-dire qu'il a une Tg supérieure à -30°C, très avantageusement supérieure à 0°C.
Avantageusement, le poids équivalent par fonction réactive de l'agent branchant est compris de 100 à 10000 g/mol, avantageusement de 120 à 6000 g/mol, très avantageusement de 140 à 3300 g/mol.
Dans un mode de réalisation, ledit agent branchant présente une fonctionnalité moyenne en fonctions epoxy, anhydride ou isocyanate comprise de 1,8 à 200, préférablement de 2,1 à 150.
Dans un autre mode de réalisation, le poids équivalent par fonction réactive des agents branchants est comprise de 100 à 10000 g/mol, avantageusement de 120 à 6000 g/mol, très avantageusement de 140 à 3300 g/mol. Dans encore un autre mode de réalisation, la masse molaire des agents branchants est comprise de 300 à 120000 g/mol, de préférence de 400 à 100000 g/mol.
La masse molaire est mesurée par chromatographie en phase gazeuse (GPC).
Le poids équivalent par fonctions réactives des agents branchants est mesurée de la façon suivante: Isocyanates : Le poids équivalent par fonction isocyanate est mesuré selon la norme AFNOR référencée NF T52-132.
Epoxydes : Le poids équivalent par fonction époxydes est mesuré selon la norme ASTM D1652- 11(2019).
Anhydride maléique : La teneur massique en anhydride maléique est mesurée par FTIR en suivant la méthode de De Roovers et al. [J Polym Sci, Part A: Polym Chem 1995;33:829]
Le poids équivalent est souvent donné par le fournisseur sur les TDS.
La fonctionnalité moyenne est calculée en divisant la masse molaire mesurée par GPC par le poids équivalent moyen.
Les polyepoxy peuvent être des copolymères fabriqués à partir d'anhydride maléique de glycidyle (GMA) ou tout autre monomère comportant une fonction epoxy.
Des exemples de polyepoxy commerciaux sont par exemple le Xibond® 920 commercialisé par Polyscope ou le Joncryl® ADR 4400 commercialisé par BASF ou le lotader® AX 8900 commercialisé par SK global Chemical.
Les polyanhydrides peuvent être des copolymères comprenant un anhydride copolymérisé ou greffé, tel que l'anhydride maléique ou l'anhydride itaconique.
En particulier, les polyanhydrides sont des polyanhydrides maléiques.
L'autre monomère des copolymères comprenant un anhydride copolymérisé peut être un monomère aromatique vinylique, tel que le styrène ou des styrènes dans lesquels le noyau aromatique contient un halogène ou un substituant alkyle.
Dans un mode de réalisation, l'autre monomère des copolymères comprenant un anhydride copolymérisé peut être un monomère vinylique, tel que l'éthylène ou l'octadecene.
En particulier, les polyanhydrides maléiques sont des copolymères de styrène et d'anhydride maléique.
Des exemples de polyanhydrides maléiques commerciaux sont par exemple le Xibond® 125 (copolymère de styrène et d'anhydride maléique) commercialisé par Polyscope ou l'Orevac IM 800 commercialisé par SK global Chemical ou le PA 18 (copolymère de 1-octadecene et d'anhydride maléique) commercialisé par Chevron Phillips Chemical Company.
Les polyisocyanates sont préférablement des oligomères d'isocyanates tel que les isocyanurates ou les allophanates. Des exemples de polyisocyanates commerciaux sont par exemple le Desmodur 3300 commercialisé par Covestro.
S'agissant de l'additif
Les additifs peuvent être présents jusqu'à 2% en poids par rapport au poids total de la composition, en particulier ils sont présents de 0,1 à 2% en poids par rapport au poids total de la composition. L'additif peut être choisi parmi un catalyseur, un antioxydant, un stabilisant thermique, un stabilisant UV, un stabilisant à la lumière, un lubrifiant, un agent ignifugeant, un agent nucléant, un allongeur de chaîne et un colorant.
Dans un mode de réalisation, l'additif est choisi parmi un catalyseur, un antioxydant, un stabilisant thermique, un stabilisant UV, un stabilisant à la lumière, un lubrifiant, un agent ignifugeant, un allongeur de chaîne et un colorant.
Le terme « catalyseur » désigne un catalyseur de polycondensation tel qu'un acide minéral ou organique.
Avantageusement, la proportion en poids de catalyseur est comprise d'environ 50 ppm à environ 5000 ppm, en particulier d'environ 100 à environ 3000 ppm par rapport au poids total de la composition.
Avantageusement, le catalyseur est choisi parmi l'acide phosphorique (H3P04), l'acide phosphoreux (H3P03), l'acide hypophosphoreux (H3P02), ou un mélange de ceux-ci.
L'antioxydant peut notamment être un antioxydant à base de complexe de cuivre de 0,05 à 5% en poids, de préférence de 0,05 à 1% en poids de préférence de 0,1 à 1%.
L'expression complexe de cuivre désigne notamment un complexe entre un sel monovalent ou divalent de cuivre avec un acide organique ou inorganique et un ligand organique. Avantageusement, le sel de cuivre est choisi parmi les sels cuivriques (Cu(ll)) d'halogénure d'hydrogène, les sels cuivreux (Cu(l)) d'halogénure d'hydrogène et les sels d'acides carboxyliques aliphatiques.
En particulier, les sels de cuivre sont choisis parmi CuCI, CuBr, Cul, CuCN, CuCI2, Cu(OAc)2, le stéarate cuivrique.
Des complexes de cuivre sont notamment décrits dans US3505285.
Ledit complexe à base de cuivre peut de plus comprendre un ligand choisi parmi les phosphines, en particulier les triphenylphosphines, le mercaptobenzimidazole, l'EDTA, l'acétylacétonate, la glycine, l'éthylène diamine, l'oxalate, la diéthylène diamine, la triéthylène tetraamine, la pyridine, la tetrabromobisphenyl-A, les dérivés de tetrabisphenyl-A, tels que les dérivés epoxy, et les dérivés de chloro dimethanedibenzo(a,e)cyclooctène et leurs mélanges. diphosphone et le dipyridyl ou leurs mélanges, en particulier la triphénylphosphine et/ou le mercaptobenzimidazole. Les phosphines désignent les alkylphosphines, telle que la tributylphosphine ou les arylphosphines telle que la triphénylphosphine (TPP).
Avantageusement, ledit ligand est la triphénylphosphine.
Des exemples de complexes ainsi que leur préparation sont décrits dans le brevet CA 02347258. Avantageusement, la quantité de cuivre dans la composition de l'invention est comprise de 10 ppm à 1000 ppm en poids, notamment de 20 ppm à 70 ppm, en particulier de 50 à 150 ppm par rapport au poids total de la composition.
Avantageusement, ledit complexe à base de cuivre comprend de plus un composé organique halogéné.
Le composé organique halogéné peut être tout composé organique halogéné.
Avantageusement, ledit composé organique halogéné est un composé à base de brome et/ou un composé aromatique.
Avantageusement, ledit composé aromatique est notamment choisi parmi le decabromediphenyl, decabromodiphenyl ether, les oligomères de bromo ou chloro styrène et le polydibromostyrene. Avantageusement, ledit composé organique halogéné est un composé à base de brome.
Ledit composé organique halogéné est ajouté à la composition en une proportion de 50 à 30000 ppm en poids d'halogène par rapport au poids total de la composition, notamment de 100 à 10000 en particulier de 500 à 1500 ppm.
Avantageusement, le ratio molaire cuivre:halogène est compris de 1 :1 à 1 :3000, notamment de 1 :2 à 1 :100.
En particulier, ledit ratio est compris de 1 :1,5 à 1:15.
Avantageusement, l'antioxydant à base de complexe de cuivre.
Le stabilisant thermique peut être un stabilisant organique ou plus généralement une combinaison de stabilisants organiques, tel un antioxydant primaire de type phénol (par exemple du type de celle de l’irganox 245 ou 1098 ou 1010 de la société Ciba), un antioxydant secondaire de type phosphite.
Le stabilisant UV peut être un HALS, ce qui signifie Hindered Amine Light Stabiliser ou un anti-UV (par exemple le Tinuvin 312 de la société Ciba).
Le stabilisant à la lumière peut être de type amine encombrée (par exemple le Tinuvin 770 de la société Ciba), un stabilisant phénolique ou à base de phosphore.
Le lubrifiant peut être un lubrifiant de type acide gras tel que l'acide stéarique.
L'agent ignifugeant peut être un agent ignifugeant sans halogène, tels que décrit dans US 2008/0274355 et notamment un agent ignifugeant à base de phosphore, par exemple un sel métallique choisi parmi un sel métallique de l'acide phosphinique, en particulier des sels de phosphinate de dialkyle, notamment du diéthylphosphinate sel d'aluminium ou du diéthylphosphinate d'aluminium, un sel métallique de l'acide diphosphinique, un mélange d'agent ignifugeant à base de phosphinate d'aluminium et d'un synergiste d'azote ou un mélange d'agent ignifugeant à base phosphinate d'aluminium et d'un synergiste de phosphore, un polymère contenant au moins un sel métallique de l'acide phosphinique, notamment sur base ammonium tels qu'un ammonium polyphosphate, sulfamate ou pentaborate, ou sur base mélamine tels que de la mélamine, des sels de mélamine, des pyrophosphates de mélamine et des cyanurates de mélamine, ou sur base d'acide cyanurique, encore un polymère contenant au moins un sel métallique de l'acide diphosphinique ou du phosphore rouge, un oxyde d'antimoine, un oxyde de zinc, un oxyde de fer, un oxyde de magnésium ou des borates métalliques tels que un borate de zinc, ou des phosphazene, un phospham ou un phosphoxynitride ou un mélange de ceux-ci. Ils peuvent également être des agents ignifugeants halogénés tels qu'un polystyrène bromé ou polybromé, un polycarbonate bromé ou un phénol bromé.
L'agent nucléant peut être de la silice, de l’alumine, de l’argile ou du talc, en particulier du talc.
Des exemples de régulateurs de chaîne appropriés sont des monoamines, des acides monocarboxyliques, des diamines, des triamines, des acides dicarboxyliques, des acides tricarboxyliques, des tétraamines, des acides tétracarboxyliques et, des oligoamines ou des acides oligocarboxyliques ayant respectivement dans chaque cas 5 à 8 groupes amino ou carboxy et en particulier des acides dicarboxyliques, des acides tricarboxyliques ou un mélange d’acides dicarboxyliques et d’acides tricarboxyliques. A titre d’exemple, il est possible d’utiliser l’acide dodécanedicarboxylique sous forme d’acide dicarboxylique et de l’acide triméllitique comme acide tricarboxylique.
S'agissant de la composition
Dans toute la description, tous les pourcentages sont indiqués en poids.
La composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, comprend en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanate, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation, la composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, est constituée en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanate, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation, ladite composition comprend : a) de 88 à 99,95% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) faisant 100% en poids.
Avantageusement dans ce mode de réalisation, ladite composition est constituée de : a) de 88 à 99,95% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) faisant 100% en poids.
Dans un autre mode de réalisation, ladite composition comprend : a) de 88 à 99,85% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Avantageusement dans ce mode de réalisation, ladite composition est constituée de : a) de 88 à 99,85% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/set une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans une première variante, ladite composition comprend : a) de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation de cette première variante, ladite composition comprend : a) de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) faisant 100% en poids.
Avantageusement dans ce mode de réalisation de cette première variante, la composition est constituée de : a) de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) faisant 100% en poids.
Dans un autre mode de réalisation de cette première variante, ladite composition comprend : a) de 89 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Avantageusement, dans cet autre mode de réalisation de cette première variante, la composition est constituée de : a) de 89 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 9%, en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyantes, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans une seconde variante, ladite composition comprend : a) de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation de cette seconde variante, ladite composition comprend : a) de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) faisant 100% en poids.
Avantageusement, dans ce mode de réalisation de cette seconde variante, ladite composition est constituée de : a) de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) faisant 100% en poids.
Dans un autre mode de réalisation de cette seconde variante, ladite composition comprend : a) de 93 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et polyisocyantes, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Avantageusement, dans cet autre mode de réalisation de cette seconde variante, ladite composition est constituée de : a) de 93 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans une troisième variante, ladite composition comprend : a) de 98 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 10 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans un mode de réalisation de cette troisième variante, ladite composition comprend : a) de 98 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et le polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) faisant 100% en poids.
Avantageusement, dans ce mode de réalisation de cette troisième variante, ladite composition est constituée de : a) de 98 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) faisant 100% en poids.
Dans un autre mode de réalisation de cette troisième variante, ladite composition comprend : a) de 96 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
Avantageusement, dans cet autre mode de réalisation de cette troisième variante, ladite composition est constituée de : a) de 96 à 99,8% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,1 à 2% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0,1 à 2% d'au moins un additif, la composition présentant après compoundage une viscosité à l'état fondu comprise de 10000 à 300000 Pa.s, préférentiellement de 15 000 à 220000 Pa.s, telle que mesurée en géométrie plan- plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%, la somme des constituants a) + b) + c) faisant 100% en poids.
Dans toutes les variantes et modes de réalisation des compositions décrites ci-dessus : le MVR (indice de fluidité en volume) tel que déterminé selon ISO 1133 :2011 avec un poids de 21,6 Kg et à une température de 275°C est compris de 2 à 25 cm3/10 min, avantageusement de 5 à 20 cm3/10 min , très avantageusement compris de 6 à 18 cm3/10 min.
Dans toutes les variantes et modes de réalisation des compositions décrites ci-dessus : Le MF! de ia composition est compris de 0 à 5. avantageusement de 0 à 0,1 g/ 10 min à 235°C, 1kg selon ISO 1133 : 2011.
L'agent branchant et le polyamide sont liés grâce à une liaison covalente, avantageusement l'agent branchant et le polyamide sont liés par une fonction amide, ester ou urée.
Avantageusement au moins 5 % en poids, très avantageusement au moins 15 % en poids du polyamide est lié de façon covalente à l'agent branchant, le ratio des viscosités à l'état fondu telles que mesurées en géométrie plan-plan à 0,292 rad.s 7292 rad.s 1 desdites compositions est compris de 10 à 200, avantageusement compris de 25 à 150. Ce ratio permet de déterminer le taux de branchement du polyamide de ladite composition. Plus le ratio est élevé et plus le polyamide est branché dans la composition. En conséquence, le polyamide doit être fluide à 292 rad.s 1 et visqueux à 0,292 rad.s 1; la viscosité à 292 rad.s-1 est comprise de 400 à 2000 et préférentiellement comprise de 600 à 1550 ;
La force de rhéotens à 250 °C de la composition après compoundage est comprise de 22 mN à 200 mN, en particulier comprise de 25 mN à 150 mN ; cette force détermine la tenue fondue du polyamide, plus la force est importante, moins le polyamide flue ;
La force Rhéotens peut par exemple être déterminée à l'aide d'un appareil Rheotens 71.97 de chez Gottfert. Un appareil Rheotens est un dispositif muni de roues crantées capables de tirer sur un jonc en sortie d'un Rhéometre capillaire Rheotester 2000 de chez Gottfert : cisaillement au niveau du capillaire 100s 1, filière de L/D=30 et D=lmm, température 250°C, distance entre sortie du jonc et axe des roues crantées 105mm, accélération des roues 2.4mm/s 2 le taux de gonflement en sortie d'extrudeuse de la composition après compoundage, est supérieur à 1,15, préférablement supérieur à 1,2. Le taux de gonflement est réalisé suivant le mode opératoire suivant: une paraison tubulaire de 25 cm est extrudée à l'aide d'une ligne d'extrusion soufflage équipée d'un accumulateur. La vitesse d'expulsion est fixée à 0,lm/s, la température de l'extrudat est vérifiée manuellement à l'aide d'une sonde thermique. La mesure du diamètre de la paraison est réalisée à 10 cm en dessous de la filière. 5 mesures sont réalisées pour obtenir une moyenne. La température est choisie en fonction des caractéristiques d'écoulement du polymère pour limiter au maximum le fluage de la paraison.
La tenue de la paraison permet d'analyser la capacité du matériau à contrebalancer l'effet de la gravité. Sous son poids, une paraison extrudée horizontalement ou verticalement va fluer modifiant ainsi ses dimensions. La tenue de la paraison verticale de la composition après compoundage est comprise de 15 à 50 s, en particulier de 20 à 45 s. Ces mesures ont été réalisées comme suit : Une paraison 1.2kg et de longueur 190mm est extrudée avec une vitesse d'expulsion fixée à O.lm/s. Le temps nécessaire pour que la longueur de la paraison augmente de 40% par fluage est mesurée. Un temps long sera représentatif d'un matériau visqueux. La température est choisie en fonction des caractéristiques d'écoulement du polymère pour limiter au maximum le fluage de la paraison.
Selon un deuxième aspect, la présente invention concerne une structure tubulaire monocouche ou multicouche destinée au transport, à la distribution ou au stockage d'essence, notamment de l'essence alcoolisée, comprenant au moins une couche d'étanchéité (1) comprenant une composition telle que définie ci-dessus.
Le terme « essence » désigne un mélange d'hydrocarbures issus de la distillation du pétrole auxquels peuvent être ajoutés des additifs ou des alcools comme le méthanol et l’éthanol, les alcools pouvant être des composants majoritaires dans certains cas.
L'expression « essence alcoolisée » désigne une essence dans laquelle du méthanol ou de l'éthanol ont été ajoutés. Elle désigne également une essence de type E95 qui ne contient pas de produit de distillation du pétrole.
Dans un mode de réalisation de ce deuxième aspect, ladite structure tubulaire est à l'exclusion d'une structure tubulaire flexible en partie annelée se situant au moins partiellement à l'intérieur du réservoir de carburant d'un véhicule à moteur.
Dans un autre mode de réalisation de ce deuxième aspect, ladite couche d'étanchéité présente lors du premier stockage de carburant, au maximum 1 g/m2, de préférence 0,5 g/m2 d’extrait insoluble ainsi qu’au maximum 15 g/m2, de préférence 10 g/m2 d’extrait soluble étant éliminés par lavage de la structure tubulaire monocouche ou multicouche en tant que système global, déterminés selon le protocole décrit ci-dessous, sur un réservoir de 20 x 4 x 4 cm3 présentant une épaisseur de paroi de 2 mm.
L'utilisation de la composition de l'invention dans la couche d'étanchéité permet de diminuer fortement la proportion d'extractibles tel que déterminée par un test tel que défini ci-dessus et en particulier par un test qui consiste à remplir une structure tubulaire (réservoir) d’essence alcoolisée type FAM-B et à chauffer l’ensemble à 60°C pendant 96 heures, puis à le vider en le filtrant dans un bêcher, puis à laisser le filtrat du bêcher s'évaporer à température ambiante pour enfin peser ce résidu dont la proportion doit être inférieure ou égale à environ 15g/m2 , de préférence 10 g/m2 de surface interne de réservoir.
Les extraits insolubles présent lors de la filtration sur le bêcher sont également pesés et représentent au maximum 1 g/m2, de préférence 0,5 g/m2
L'essence alcoolisée FAM B est décrite dans la norme DIN 51604-1 :1982, DIN 51604-2 :1984 et DIN
51604-3 :1984. Succinctement, de l'essence alcoolisée FAM A est tout d'abord préparée avec un mélange de 50% de Toluène, 30% d'isooctane, 15% de di-isobutylène et 5% d'éthanol puis FAM B est préparé par mélange de 84.5% FAM A avec 15% de méthanol et 0,5% eau.
Au total, FAB est constitué de 42,3% de toluène, 25,4% d'isooctane, 12,7% de di-isobutylène, 4,2% d'éthanol, 15% de méthanol et 0,5% d'eau.
Dans encore un autre mode de réalisation de ce deuxième aspect, ladite structure est monocouche. Dans encore un autre mode de réalisation de ce deuxième aspect, ladite structure est multicouche et comprend une couche barrière (3).
L'expression « couche barrière » signifie une couche très peu perméable aux carburants, notamment aux essences alcoolisées et qui par conséquent ne laisse que très peu passer le carburant, notamment les essences alcoolisées dans l'atmosphère.
En particulier, l'expression « couche barrière » signifie que la proportion d'essence, en particulier d'essence alcoolisée qui passe dans l'atmosphère est inférieure à 20 g.mm/m2.jour telle que déterminée avec un carburant CE 10 à 60°C.
Les mesures de perméabilité aux essences sont déterminées à 60°C selon une méthode gravimétrique avec le CE10 : isooctane/toluène/éthanol = 45/45/10 vol.% et le CE85 : isooctane/toluène/éthanol = 7,5/7,5/85 vol.% sur des plaques constituées d'un matériau polymère. La perméabilité instantanée est nulle pendant la période d'induction, puis elle augmente progressivement jusqu'à une valeur à l'équilibre qui correspond à la valeur de perméabilité en régime permanent. Cette valeur obtenue en régime permanent est considérée comme étant la perméabilité du matériau.
Cette propriété barrière est indispensable pour des tuyaux ou réservoirs en contact avec l'atmosphère.
Avantageusement, ladite couche barrière (3) est en éthylène alcool vinylique (EVOH).
Selon un troisième aspect, la présente invention concerne l'utilisation de 0,05% à 10%, en particulier de 0,1 à 9% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, avec 88 à 99,95%, en particulier de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, et optionnellement un additif pour la constitution d'une composition de soufflage-moulage, telle que définie ci-dessus, dont la viscosité à l'état fondue après compoundage est comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220 000 Pa.s, telle que mesurée en géométrie plan-plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%. Par « structure tubulaire mono ou multicouche » il faut donc entendre un réservoir comprenant ou constitué d'une ou plusieurs couches, à savoir une couche d'étanchéité et optionnellement une ou plusieurs couches de renfort, ou plusieurs couches d'étanchéité et optionnellement plusieurs couches de renfort, ou plusieurs couches d'étanchéité et une couche de renfort ou encore une couche d'étanchéité et une couche de renfort.
La structure tubulaire monocouche ou multicouche dans la présente invention désigne également un tuyau ou un tube destiné au transport de l'hydrogène du réservoir vers la pile à combustible et qui comprend ou est constitué d'une ou plusieurs couches, telle que définies ci-dessus.
Toutes les caractéristiques définies ci-dessus pour le premier aspect concernant la composition sont valables pour ce troisième aspect.
Selon un quatrième aspect, la présente invention concerne un procédé de préparation d'une composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, telle que définie ci-dessus, caractérisée en ce qu'il comprend une étape de compoundage de ladite composition.
Toutes les caractéristiques définies ci-dessus pour le premier aspect concernant la composition sont valables pour ce quatrième aspect.
L'étape de compoundage est effectuée de façon particulière afin que les alliages aient des viscosités fondues comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan-plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2%.
Ces viscosités peuvent par exemple être obtenues en compoundant à une température du polymère fondu supérieure à 280 °C, préférablement supérieure à 300 °C en augmentant le temps de séjours dans le compounder. Cette réaction de branchement est avantageusement catalysée avec par exemple des sels de phosphonium ou des amines encombrées. Le temps de séjour moyen étant avantageusement compris de 20 secondes à 10 minutes, très avantageusement de 45 secondes à 6 minutes.
Dans un mode de réalisation, ledit compoundage est effectué à une température du polymère fondu supérieure à 280 °C, préférablement supérieure à 300 °C avec un temps de séjour moyen compris de 20 secondes à 10 minutes, très avantageusement de 45 secondes à 6 minutes.
Selon un cinquième aspect, la présente invention concerne un procédé de préparation d'une structure tubulaire monocouche ou multicouche telle que définie ci-dessus, caractérisé en ce qu'il comprend une étape de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, d'une composition telle que définie ci-dessus.
Dans un mode de réalisation de ce cinquième aspect, le procédé comprend une étape préalable de compoundage d'une composition telle que définie ci-dessus. L'étape préalable de compoundage est notamment effectuée telle que définie ci-dessus.
Toutes les caractéristiques définies ci-dessus pour le premier aspect concernant la composition sont valables pour ce cinquième aspect.
EXEMPLES
Les compositions comparatives (CEI à CE4) et de l'invention (Cil à CI6) du tableau 2 ci-dessous ont été préparées par compoundage dans les conditions suivantes :
Les alliages ont été fabriqués à l'aide d'une extrudeuse bi-vis ZSK 40 mm (Coperion). La température des fourreaux était réglée à 280 °C et la vitesse des vis était de 300 rpm avec un débit de 60 kg/h.
Le PA6 utilisé est un polyamide 6 ayant une concentration en fins de chaîne acide de 25peq/g et une concentration en fin de chaîne amine de 22 peq/g.
Le PA610 utilisé est un polyamide 610 ayant une concentration en fins de chaîne acide de 27 peq/g et une concentration en fins de chaîne amine de 19 peq/g.
Le PA612 utilisé est un polyamide 612 ayant une concentration en fins de chaîne acide de 22 peq/g et une concentration en fins de chaîne amine de 20 peq/g.
Le PAU utilisé est un polyamide 11 catalysé à l'acide phosphorique ayant une concentration en fins de chaîne acide de 30 peq/g et une concentration en fins de chaîne amine de 33 peq/g.
Le Joncryl ADR 4400 est de BASF.
Le Xibond 125 est de Polyscope.
Le Lotader 3410 est de SK functional polymer.
Le stabilisant Anox NBD TL 89 est de SI group.
La viscosité à l'état fondue a été mesurée à l'aide d'un rhéomètre Rotationnel Ares G2 équipé d'une géométrie plan-plan 25mm à une température de 250°C, à 0,292 rad/s (temps de séjour avant lancement 5 min sous azote, déformation de 2%, balayage de 628rad/s à 0.062rad/s et 3 points par décade, prise d'un point sur 3 cycles, gap de 1.5mm )
La force Rhéotens est déterminée à l'aide d'un appareil Rheotens 71.97 de chez Gottfert. Un appareil Rheotens est un dispositif muni de roues crantées capables de tirer sur un jonc en sortie d'un Rhéometre capillaire Rheotester 2000 de chez Gottfert cisaillement au niveau du capillaire lOOs-1 filiere de L/D=30 et D=lmm température 250°C, distance entre sortie du jonc et axe des roues crantées 105mm, accélération des roues 2.4mm/s 2 La reprise en eau est déterminée soit en étuve sous atmosphère contrôlée à 100%Rh soit dans l'eau, dans tous les cas après saturation à 70°C et la mesure de cette reprise en eau est faite par pesée à 23°C de l'échantillon, pour des temps de prélèvement réguliers, espacés de plusieurs jours, jusqu'à l'observation d'un état d'équilibre, qui est atteint lorsque la masse de l'échantillon devient constante (à l'incertitude de la mesure près) pour trois temps de prélèvement consécutifs. Dans le cas d'un conditionnement dans l'eau, l'équilibre atteint correspond à la saturation en eau du polymère, à la température de 70°C. La résistance à la fissuration (stress cracking) ZnCI2 / CaCI2 a été déterminée selon le protocole ci- dessous : Des éprouvettes IA ayant une épaisseur de 4 mm ont été bridées sur un mandrin de rayon 32.5 mm puis immergées pendant 300 h à 23 °C dans une solution à 50 % de ZnCh. L'éprouvette est ensuite séchée à 23 °C pendant 72 h. Les éprouvettes sont ensuite analysées pour observer la présence de fissuration et une note de résistance à la fissuration a été attribuée à chaque échantillon. 0 : très faible résistance, échantillon très fissuré.
5 : très bonne résistance, échantillon intact.
La mesure de perméabilité au CE10 consiste à mettre 30ml de CE10 dans une coupelle, puis à l'obturer avec la plaque de 3 mm à évaluer. L’ensemble est placé dans une enceinte régulée en température. Des pesées périodiques permettent de déterminer la quantité de vapeur de solvant qui diffuse au travers de la plaque.
Le flux, normalisé avec la surface de l'échantillon, est obtenu grâce à la pente de la courbe du suivi de l'évolution du poids (solvant) en fonction du temps.
Les compositions de l'invention et les compositions comparatives ont été testées sur plusieurs paramètres.
Le MFI, abréviation de Melt Flow Index, a été mesuré selon la norme ISO 1133 :2011.
Les résultats sont détaillés au tableau 1.
[Tableau 1]
Figure imgf000027_0001
Figure imgf000028_0001
Les résultats montrent que l'utilisation d'un agent branchant dans une gamme particulière et d'un polyamide avec un nombre moyen d'atome de carbone par atome d'azote supérieur ou égal à 7 permet d'obtenir des compositions présentant le meilleur compromis sur les différentes caractéristiques telles que la viscosité à 250 °C, la perméabilité aux essences et la tenue au chlorure de zinc.
Toutes les compositions selon l'invention présentent un MFI égal à 0, ce qui signifie que rien ne s'écoule dans la machine.

Claims

REVENDICATIONS
1. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, comprenant en poids : a) de 88 à 99,95%, en particulier de 89 à 99,9%, notamment de 93 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, b) de 0,05% à 10%, en particulier de 0,1 à 9%, notamment de 0,1 à 5% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, et les polyisocyanates, en particulier les polyanhydrides maléiques et les polyepoxy, c) de 0 à 2% d'au moins un additif, en particulier de 0,1 à 2%, la composition présentant après compoundage une viscosité à l'état fondue comprise de 10 000 à 300000 Pa.s, préférentiellement de 15000 et 220000 Pa.s, telle que mesurée en géométrie plan-plan selon la norme ISO 6721-10:2015 à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %, la somme des constituants a) + b) + c) faisant 100% en poids.
2. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon la revendication 1, caractérisée en ce que ledit compoundage est effectué à une température du polymère fondu supérieure à 280 °C, préférablement supérieure à 300 °C avec un temps de séjour moyen compris de 20 secondes à 10 minutes, très avantageusement de 45 secondes à 6 minutes.
3. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon la revendication 1 ou 2, caractérisée en ce que les modifiants chocs sont exclus de ladite composition.
4. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon l'une des revendications 1 à 3, caractérisée en ce que le ratio des viscosités telles que mesurées en géométrie plan-plan à l'état fondu à 0,292 rad.s 7292 rad.s 1 est compris de 10 à 200, en particulier compris de 25 à 150.
5. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon l'une des revendications 1 à 4, caractérisée en ce que ledit agent branchant présente une fonctionnalité moyenne en fonctions epoxy, anhydride ou isocyanate comprise de 1,8 à 200, préférablement de 2,1 à 150.
6. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon l'une des revendications 1 à 4, caractérisée en ce que ledit agent branchant présente un poids équivalent moyen en fonctions epoxy, anhydride ou isocyanate comprise de 100 à 10000 g/mol, préférablement de 120 à 6000 g/mol, préférentiellement de 140 à 3300 g/mol.
7. Composition de soufflage-moulage selon l'une des revendications 1 à 6, caractérisée en ce que la force de rhéotens de la composition après compoundage est comprise de 22 mN à 200 mN, en particulier comprise de 25 mN à 150 mN.
8. Composition de soufflage-moulage ou d'extrusion, notamment de soufflage-moulage, selon l'une des revendications 1 à 7, caractérisée en ce que ledit polyamide aliphatique semi- cristallin est choisi parmi le PA610, le PA612, le PA 614, le PA 10, le PAU et le PA12, en particulier le PA610, le PA612 et le PAU.
9. Structure tubulaire monocouche ou multicouche destinée au transport, à la distribution ou au stockage d'essence, notamment de l'essence alcoolisée, comprenant au moins une couche d'étanchéité (1) comprenant une composition telle que définie dans l'une des revendications 1 à 8.
10. Structure tubulaire monocouche ou multicouche selon la revendication 9, caractérisée en ce que ladite couche d'étanchéité présente lors du premier stockage d'essence, notamment d'essence alcoolisée, au maximum 1 g/m2, de préférence 0,5 g/m2 d’extrait insoluble ainsi qu’au maximum 15 g/m2, de préférence 10 g/m2 d’extrait soluble étant éliminés par lavage de la structure tubulaire monocouche ou multicouche en tant que système global, déterminés sur un réservoir de 20 x 4 x 4 cm3 présentant une épaisseur de paroi de 2 mm.
11. Structure tubulaire monocouche ou multicouche selon la revendication 9 ou 10, caractérisée en ce que ladite structure est monocouche.
12. Structure tubulaire monocouche ou multicouche selon la revendication 9 ou 10, caractérisée en ce que ladite structure est multicouche et comprend une couche barrière (3).
13. Structure tubulaire monocouche ou multicouche selon la revendication 12, caractérisée en ce que ladite couche barrière (3) est en EVOH.
14. Utilisation de 0,05% à 10%, en particulier de 0,1 à 9% en poids d'au moins un agent branchant choisi parmi les polyepoxy, les polyanhydrides, en particulier les polyanhydrides maléiques et les polyepoxy, avec 88 à 99,95%, en particulier de 89 à 99,9% d'au moins un polyamide aliphatique semi-cristallin présentant un nombre de carbone par atome d'azote supérieur ou égal à 7, en particulier supérieure ou égale à 8, et optionnellement un additif pour la constitution d'une composition de soufflage-moulage, telle que définie dans l'une des revendications 1 à 8, dont la viscosité à l'état fondue après compoundage est comprise de 10000 à 300000 Pa.s, préférentiellement de 15000 à 220000 Pa.s, telle que mesurée en géométrie plan-plan à une température de 250°C, une fréquence de 0,292 rad/s et une déformation de 2 %.
15. Procédé de préparation d'une composition de soufflage-moulage ou d'extrusion, notamment de soufflage moulage, telle que définie dans l'une des revendications 1 à 8, caractérisée en ce qu'il comprend une étape de compoundage de ladite composition.
16. Procédé de préparation d'une structure tubulaire monocouche ou multicouche telle que définie dans la revendication 9, caractérisé en ce qu'il comprend une étape de soufflage- moulage ou d'extrusion, notamment de soufflage-moulage, d'une composition telle que définie dans l'une des revendications 1 à 6.
17. Procédé de préparation d'une structure tubulaire monocouche ou multicouche selon la revendication 16, caractérisé en ce qu'il comprend une étape préalable de compoundage d'une composition telle que définie dans l'une des revendications 1 à 8.
PCT/FR2022/051247 2021-06-28 2022-06-24 Compositions de soufflage moulage a base de polyamides branches et leurs utilisations WO2023275464A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247003230A KR20240025680A (ko) 2021-06-28 2022-06-24 분지형 폴리아미드에 기반한 블로우 몰딩 조성물 및 이의 용도
CN202280046273.2A CN117580892A (zh) 2021-06-28 2022-06-24 基于支化聚酰胺的吹塑组合物及其用途
EP22743851.2A EP4363485A1 (fr) 2021-06-28 2022-06-24 Compositions de soufflage moulage a base de polyamides branches et leurs utilisations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106903A FR3124517A1 (fr) 2021-06-28 2021-06-28 Compositions de soufflage moulage a base de polyamides branches et leurs utilisations
FRFR2106903 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023275464A1 true WO2023275464A1 (fr) 2023-01-05

Family

ID=77411862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051247 WO2023275464A1 (fr) 2021-06-28 2022-06-24 Compositions de soufflage moulage a base de polyamides branches et leurs utilisations

Country Status (5)

Country Link
EP (1) EP4363485A1 (fr)
KR (1) KR20240025680A (fr)
CN (1) CN117580892A (fr)
FR (1) FR3124517A1 (fr)
WO (1) WO2023275464A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505285A (en) 1965-09-11 1970-04-07 Bayer Ag Stabilised polyamides containing a copper salt and a phosphine
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0495363A1 (fr) 1991-01-15 1992-07-22 Bayer Ag Procédé de préparation de polyamides à haut poids moléculaire
CA2347258A1 (fr) 1998-10-15 2000-04-20 L. Bruggemann Kg Composition de polyamide stabilisee avec des complexes de cuivre et des composes halogenes organiques
EP1352934A1 (fr) 2002-04-08 2003-10-15 Atofina Surfaces métalliques revêtues de polyamide
US20050228145A1 (en) 2004-01-26 2005-10-13 Christophe Lacroix Polyamide 1/interlayer/polyamide 2 multilayer structures for decorated articles
US20080274355A1 (en) 2007-05-03 2008-11-06 Ems-Patent Ag Semiaromatic polyamide molding compositions and their use
FR3078132A1 (fr) 2018-02-21 2019-08-23 Arkema France Structure tubulaire annelee destinee au transport de carburant dans le reservoir
WO2020027031A1 (fr) 2018-07-31 2020-02-06 東レ株式会社 Composition de résine de polyamide pour produits moulés par soufflage exposés à de l'hydrogène à haute pression, et produit moulé par soufflage

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505285A (en) 1965-09-11 1970-04-07 Bayer Ag Stabilised polyamides containing a copper salt and a phosphine
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0495363A1 (fr) 1991-01-15 1992-07-22 Bayer Ag Procédé de préparation de polyamides à haut poids moléculaire
CA2347258A1 (fr) 1998-10-15 2000-04-20 L. Bruggemann Kg Composition de polyamide stabilisee avec des complexes de cuivre et des composes halogenes organiques
EP1352934A1 (fr) 2002-04-08 2003-10-15 Atofina Surfaces métalliques revêtues de polyamide
US20050228145A1 (en) 2004-01-26 2005-10-13 Christophe Lacroix Polyamide 1/interlayer/polyamide 2 multilayer structures for decorated articles
US20080274355A1 (en) 2007-05-03 2008-11-06 Ems-Patent Ag Semiaromatic polyamide molding compositions and their use
FR3078132A1 (fr) 2018-02-21 2019-08-23 Arkema France Structure tubulaire annelee destinee au transport de carburant dans le reservoir
WO2020027031A1 (fr) 2018-07-31 2020-02-06 東レ株式会社 Composition de résine de polyamide pour produits moulés par soufflage exposés à de l'hydrogène à haute pression, et produit moulé par soufflage
CA3101967A1 (fr) 2018-07-31 2020-02-06 Toray Industries, Inc. Composition de resine de polyamide pour produits moules par soufflage exposes a de l'hydrogene a haute pression, et produit moule par soufflage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE ROOVERS ET AL., J POLYM SCI, vol. 33, 1995, pages 829

Also Published As

Publication number Publication date
CN117580892A (zh) 2024-02-20
FR3124517A1 (fr) 2022-12-30
EP4363485A1 (fr) 2024-05-08
KR20240025680A (ko) 2024-02-27

Similar Documents

Publication Publication Date Title
EP2098580B1 (fr) Composition adhésive et structure comprenant au moins une couche de ladite composition.
EP2697055B1 (fr) Structure multicouche comprenant une couche d'un copolyamide particulier et une couche barrière
EP2948514B1 (fr) Composition adhésive et structure comprenant au moins une couche de ladite composition
FR2892173A1 (fr) Tube multicouche antistatique a base de polyamide pour le transfert de fluides
EP1314758A1 (fr) Tube multicouche conducteur à base de polyamides et d'evoh pour le transport d'essence
FR3046826A1 (fr) Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
EP3259132A1 (fr) Structure tubulaire multicouche possédant une meilleure résistance a l'extraction dans la bio-essence et son utilisation
EP4153683A1 (fr) Structure multicouche a base de polyamide recycle
EP1331091B1 (fr) Structure multicouche à base de polyamides et d'un liant en mélange de copolyamides
EP3663081B1 (fr) Structure tubulaire multicouche destinee au transport d'un fluide de climatisation
EP1496299B1 (fr) Tube multicouche a base de polyamides pour le transport de fluides
EP4363485A1 (fr) Compositions de soufflage moulage a base de polyamides branches et leurs utilisations
EP4363191A1 (fr) Compositions de soufflage moulage a base de polyamides branches et leurs utilisations
EP4153684A1 (fr) Structure multicouche a base de polyamide recycle
EP3466681B1 (fr) Matériau multicouche ayant une tenue au vieillissement et à l'éclatement à chaud, pour applications haute température dans le domaine automobile
WO2023170367A1 (fr) Structure tubulaire multicouche destinee au transport d'un fluide de transfert de chaleur
WO2023170366A1 (fr) Structure tubulaire multicouche ignifugee pour le refroidissement de batteries de vehicule electrique ou de systeme de stockage stationnaire de l'energie
WO2024009034A1 (fr) Structure multicouche recyclable pour des applications de transport, de distribution ou de stockage de fluides
WO2024009042A1 (fr) Structure tubulaire a faible conductivite ionique
FR3116020A1 (fr) Structure multicouche a base de polyamide recycle
FR2832485A1 (fr) Tube multicouche conducteur a base de polyamides et d'evoh pour le transport d'essence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22743851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023576340

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18573664

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280046273.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247003230

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003230

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022743851

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022743851

Country of ref document: EP

Effective date: 20240129