WO2023275465A1 - Structure multicouche pour le transport ou le stockage de l'hydrogene - Google Patents

Structure multicouche pour le transport ou le stockage de l'hydrogene Download PDF

Info

Publication number
WO2023275465A1
WO2023275465A1 PCT/FR2022/051248 FR2022051248W WO2023275465A1 WO 2023275465 A1 WO2023275465 A1 WO 2023275465A1 FR 2022051248 W FR2022051248 W FR 2022051248W WO 2023275465 A1 WO2023275465 A1 WO 2023275465A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polymer
multilayer structure
composition
epoxy
Prior art date
Application number
PCT/FR2022/051248
Other languages
English (en)
Inventor
Nicolas Dufaure
Marjorie MARCOURT
Thomas PRENVEILLE
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to EP22743852.0A priority Critical patent/EP4363210A1/fr
Priority to KR1020247003252A priority patent/KR20240027092A/ko
Priority to CA3221459A priority patent/CA3221459A1/fr
Priority to CN202280046262.4A priority patent/CN117615904A/zh
Publication of WO2023275465A1 publication Critical patent/WO2023275465A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10724Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyamide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0675Synthetics with details of composition

Definitions

  • TITLE MULTI-LAYER STRUCTURE FOR THE TRANSPORT OR STORAGE OF
  • This patent application relates to composite multilayer structures for the transport, distribution or storage of hydrogen, in particular for the distribution or storage of hydrogen, and their method of manufacture.
  • Hydrogen tanks are a subject that is currently attracting a lot of interest from many manufacturers, particularly in the automotive field.
  • One of the aims is to offer less and less polluting vehicles.
  • electric or hybrid vehicles comprising a battery aim to gradually replace thermal vehicles, such as gasoline or diesel vehicles.
  • thermal vehicles such as gasoline or diesel vehicles.
  • the battery is a relatively complex component of the vehicle. Depending on where the battery is located in the vehicle, it may need to be protected from impact and the external environment, which may be extreme temperatures and varying humidity. It is also necessary to avoid any risk of flames.
  • the electric vehicle still suffers today from several problems, namely the autonomy of the battery, the use in these rare earth batteries whose resources are not inexhaustible, recharge times much longer than the durations tank filling, as well as a problem of electricity production in the various countries to be able to recharge the batteries.
  • Hydrogen therefore represents an alternative to the electric battery since hydrogen can be transformed into electricity by means of a fuel cell and thus power electric vehicles.
  • Hydrogen tanks generally consist of a metal envelope (liner or sealing layer) which must prevent the permeation of hydrogen.
  • a metal envelope liner or sealing layer
  • the liner or sealing sheath in thermoplastic resin is associated with a reinforcing structure made up of fibers (glass, aramid, carbon) called sheath or reinforcing layer which allows working at much higher pressures while reducing the mass and avoiding the risk of explosive rupture in the event of severe external attacks.
  • a reinforcing structure made up of fibers (glass, aramid, carbon) called sheath or reinforcing layer which allows working at much higher pressures while reducing the mass and avoiding the risk of explosive rupture in the event of severe external attacks.
  • the permeability of the liner is indeed a key factor in limiting hydrogen losses from the tank;
  • the first generation of type IV tanks used a liner based on high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • HDPE has the defect of having too low a melting temperature and a high hydrogen permeability, which represents a problem with the new requirements for thermal resistance and does not allow to increase the speed of tank filling.
  • PA6 and PA66 have the disadvantage of having low cold resistance and high water uptake.
  • PA12 liners have also been developed with good impact resistance, but PA12 has the drawback of having excessive hydrogen permeability.
  • Application EP3112421 describes a polyamide resin composition for a molded article intended for high pressure hydrogen, the composition comprising: a polyamide 6 resin (A); and a polyamide resin (B) having a melting point, as determined by DSC, which is not higher than the melting point of the polyamide 6 resin (A) + 20 0 C and a cooling crystallization temperature, such as determined by DSC, which is higher than the cooling crystallization temperature of the polyamide 6 resin (A).
  • French application FR2923575 describes a reservoir for storing fluid under high pressure comprising at each of its ends along its axis a metal end cap, a liner enveloping said end caps and a structural fiber layer impregnated with thermosetting resin enveloping said liner.
  • Application EP3222668 describes a polyamide resin composition for a molded article intended for high pressure hydrogen, the composition comprising a polyamide resin (A) comprising a unit derived from hexamethylenediamine and a unit derived from an aliphatic dicarboxylic acid of 8 to 12 carbon atoms and an ethylene / a -olefin copolymer (B) modified with an unsaturated carboxylic acid and / or a derivative thereof.
  • A polyamide resin
  • B ethylene / a -olefin copolymer
  • Application US2014/008373 describes a lightweight storage cylinder for high pressure compressed gas, the cylinder having a liner wrapped in a stress layer, the liner comprising: a first inner layer of impact modified polyamide (PA) in contact with the gas, an outer thermoplastic layer in contact with the stress layer; and an adhesive tie layer between the first impact modified inner PA layer and the outer thermoplastic layer.
  • PA impact modified polyamide
  • WO1 855491 describes a hydrogen transport component having a three-layer structure, the inner layer of which is a composition consisting of PA11, 15 to 50% of an impact modifier and 1 to 3% of plasticizer or devoid of plasticizer which has hydrogen barrier properties, good flexibility and durability at low temperatures.
  • this structure is suitable for pipes for the transport of hydrogen but not for the storage of hydrogen.
  • the matrix of the composite in order to optimize its mechanical resistance at high temperature and on the other hand the material composing the sealing sheath, in order to optimize its implementation temperature.
  • the possible modification of the composition of the material making up the sealing sheath, which will be made, must not result in a significant increase in the manufacturing temperature (extrusion-blow molding, injection, rotational molding, etc.) of this liner, compared to what is practiced today.
  • the impact resistance, water uptake and hydrogen permeability of the material making up the sealing sheath must also be optimized.
  • the inventors have therefore unexpectedly found that the use of a polyamide thermoplastic polymer having an average number of carbon atoms per nitrogen atom of between 7 and 9, comprising a limited proportion of impact modifier and plasticizer, for the sealing layer, with a different polymer for the matrix of the composite and in particular an epoxy or epoxy-based resin, or a resin based on polyisocyanates, in particular polyisocyanurates, said composite being wound on the sealing layer , made it possible to obtain a compromise in particular on impact resistance, hydrogen permeability and water uptake compared to polymers polyamide thermoplastic having an average number of carbon atoms per nitrogen atom of less than 7 and greater than 9, and thus made it possible to obtain a structure suitable for the transport, distribution or storage of hydrogen and in particular an increase in the maximum operating temperature of up to 120°C, thus making it possible to increase the filling speed of the tanks.
  • multilayer structure is meant a tank comprising or consisting of several layers, namely several sealing layers and several reinforcing layers, or one sealing layer and several reinforcing layers, or several sealing layers and a reinforcing layer or a sealing layer and a reinforcing layer.
  • the multilayer structure is therefore understood to exclude a pipe or a tube.
  • ie PA6 and PA68 are excluded from the composition of said sealing layers.
  • said multilayer structure consists of two layers, a sealing layer and a reinforcing layer.
  • the sealing layer or layers are the innermost layers compared to the composite reinforcement layers which are the outermost layers.
  • the tank can be a tank for mobile hydrogen storage, i.e. on a truck for transporting hydrogen, on a car for transporting hydrogen and supplying hydrogen to a fuel cell for example, on a train for hydrogen supply or on a drone for hydrogen supply, but it can also be a stationary hydrogen storage tank in a station for hydrogen distribution to vehicles.
  • the sealing layer (1) is impermeable to hydrogen at 23° C., that is to say that the permeability to hydrogen at 23° C. is lower than 100 cc.mm/m2.24h .atm at 23°C under 0% relative humidity (RH).
  • the permeability can also be expressed in (cc.mm/m 2 .24h.Pa).
  • the permeability must then be multiplied by 101325.
  • the copolymers of ethylene and alpha-olefin are excluded from the impact modifier of the composition of said sealing layer or layers.
  • PEBA polyether block amide
  • PEBA polyether block amide
  • the composite reinforcement layer(s) is (are) wound around the sealing layer by means of tapes (or tapes or rovings) of fibers impregnated with polymer which are deposited, for example, by filament winding.
  • the polymers are different.
  • the polymers of the reinforcing layers are identical, there may be several layers present, but advantageously only one reinforcing layer is present and which then has at least one complete winding around the sealing layer.
  • the other layers of composite reinforcement may also adhere or not to each other.
  • the other sealing layers may or may not adhere to each other.
  • only a sealing layer and a reinforcing layer are present and do not adhere to each other.
  • the reinforcement layer consists of a fibrous material in the form of continuous fibers impregnated with a composition mainly comprising at least one polymer P2j , in particular an epoxy resin or epoxy-based or a resin based on polyisocyanates, in particular polyisocyanurates.
  • a sealing layer and a reinforcement layer are present and do not adhere to each other and the reinforcement layer consists of a fibrous material in the form of continuous fibers impregnated with a composition mainly comprising a polymer P2j which is an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • a polymer P2j which is an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • epoxy-based throughout the specification means that the epoxy constitutes at least 50% by weight of the matrix.
  • One or more sealing layers may be present.
  • the term “predominantly” means that said at least one polymer is present at more than 50% by weight relative to the total weight of the composition.
  • said at least one majority polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight, relative to the weight composition total.
  • Said composition may also comprise up to 30% by weight relative to the total weight of the composition of impact modifiers and/or a plasticizer and or additives.
  • Additives can be selected from another polymer, antioxidant, heat stabilizer, UV absorber, light stabilizer, lubricant, inorganic filler, flame retardant, colorant, carbon black and carbon nanofillers, with the exception of a nucleating agent, in particular the additives are chosen from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a colorant, carbon black and carbon nanofillers, with the exception of a nucleating agent.
  • Said other polymer may be another semi-crystalline thermoplastic polymer or a different polymer and in particular an EVOH (ethylene vinyl alcohol).
  • EVOH ethylene vinyl alcohol
  • said composition comprises said thermoplastic polymer P1 i mainly, from 0 to 30% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 9% of impact modifier, from 0 to 1 5% of plasticizer and from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • said composition consists of said thermoplastic polymer P1i mainly from 0 to 30% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 9% of impact modifier, from 0 to 1 5% of plasticizer and from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • Said at least one majority polymer of each layer can be identical or different.
  • a single majority polymer is present at least in the sealing layer which does not adhere to the composite reinforcement layer.
  • said composition comprises an impact modifier of 0.1 to 30% by weight, in particular from 0.1 to less than 15% by weight, in particular from 0.1 to 9% by weight of impact modifier per relative to the total weight of the composition.
  • said composition comprises an impact modifier from 1 to
  • said composition comprises an impact modifier of 2 to 30% by weight,
  • said composition is devoid of plasticizer.
  • said composition comprises an impact modifier from 0.1 to 30% by weight, in particular from 0.1 to less than 15% by weight, in particular from 0.1 to 9% by weight of impact modifier and said composition is devoid of plasticizer relative to the total weight of the composition.
  • said composition comprises an impact modifier of 0.1 to 30% by weight, in particular from 0.1 to less than 15% by weight, in particular from 0.1 to 9% by weight of modifier shock and from 0.1 to 1.5% by weight of plasticizer relative to the total weight of the composition.
  • thermoplastic or semi-crystalline thermoplastic polymer
  • Tg glass transition temperature
  • Tf melting temperature
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2:2013 and 11357-3:2013 respectively.
  • the number-average molecular mass Mn of said semi-crystalline polyamide thermoplastic polymer is preferably in a range ranging from 10,000 to 85,000, in particular from 10,000 to 60,000, preferentially from 10,000 to 50,000, even more preferentially from 12,000 to 50,000. may correspond to inherent viscosities greater than or equal to 0.8 as determined in m-cresol according to ISO 307:2007 but by changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20°C).
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • said polymer P1 i is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512, PA610 and PA612.
  • said polymer P1 i is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512 and PA612.
  • each sealing layer consists of a composition comprising the same type of polyamide.
  • welding elements made of polyamide thermoplastic polymer.
  • it can be used heating blades with or without contact, ultrasound, infrared, application of vibrations, rotation of one element to be welded against another or even laser welding.
  • the impact modifier can be any impact modifier from the moment a polymer with a modulus lower than that of the resin, exhibiting good adhesion with the matrix, so as to dissipate the cracking energy.
  • the impact modifier is advantageously made up of a polymer having a flexural modulus of less than 100 MPa measured according to ISO 178 and a Tg of less than 0°C. (measured according to standard 11357-2 at the inflection point of the DSC thermogram), in particular a polyolefin.
  • PEBAs are excluded from the definition of impact modifiers.
  • the polyolefin of the impact modifier can be functionalized or non-functionalized or be a mixture of at least one functionalized and/or at least one non-functionalized.
  • the polyolefin has been designated by (B) and functionalized polyolefins (B1) and non-functionalized polyolefins (B2) have been described below.
  • a non-functionalized polyolefin (B2) is conventionally a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • alpha olefins or diolefins such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • LDPE low density polyethylene
  • HDPE linear low density polyethylene
  • LLDPE linear low density polyethylene, or linear low density polyethylene
  • VLDPE very low density polyethylene, or very low density polyethylene
  • metallocene polyethylene metallocene polyethylene
  • ethylene/alpha-olefin copolymers such as ethylene/propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene/propylene/diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene/propylene/diene
  • SEBS styrene/ethylene-butene/styrene
  • SBS styrene/butadiene/styrene
  • SIS styrene/isoprene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • the functionalized polyolefin (B1) can be a polymer of alpha olefins having reactive units (the functionalities); such reactive units are acid, anhydride or epoxy functions.
  • polyolefins (B2) grafted or co- or ter-polymerized with unsaturated epoxides such as glycidyl (meth)acrylate, or with carboxylic acids or the corresponding salts or esters such as (meth)acrylic acid (the latter possibly being totally or partially neutralized by metals such as Zn, etc.) or else by carboxylic acid anhydrides such as maleic anhydride.
  • unsaturated epoxides such as glycidyl (meth)acrylate
  • carboxylic acids or the corresponding salts or esters such as (meth)acrylic acid (the latter possibly being totally or partially neutralized by metals such as Zn, etc.) or else by carboxylic acid anhydrides such as maleic anhydride.
  • a functionalized polyolefin is, for example, a PE/EPR mixture, the weight ratio of which can vary widely, for example between 40/60 and 90/10, said mixture being co-grafted with an anhydride, in particular maleic anhydride, according to a degree of grafting for example of 0.01 to 5% by weight.
  • the functionalized polyolefin (B1) can be chosen from the following (co)polymers, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is for example from 0.01 to 5% by weight:
  • ethylene/alpha-olefin copolymers such as ethylene/propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene/propylene/diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene/propylene/diene
  • SEBS styrene/ethylene-butene/styrene
  • SBS styrene/butadiene/styrene
  • SIS styrene/isoprene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • alkyl (meth)acrylate copolymers containing up to 40% by weight of alkyl (meth)acrylate;
  • the functionalized polyolefin (B1) can also be chosen from ethylene/propylene copolymers with a majority of propylene grafted with maleic anhydride then condensed with monoamino polyamide (or a polyamide oligomer) (products described in EP-A-0342066) .
  • the functionalized polyolefin (B1) can also be a co- or ter-polymer of at least the following units: (1) ethylene, (2) alkyl (meth)acrylate or saturated carboxylic acid vinyl ester and (3) anhydride such as maleic anhydride or (meth)acrylic acid or epoxy such as glycidyl (meth)acrylate.
  • the (meth)acrylic acid can be salified with Zn or Li.
  • alkyl (meth)acrylate in (B1) or (B2) denotes C1 to C8 alkyl methacrylates and acrylates, and may be chosen from methyl acrylate, ethyl acrylate , n-butyl acrylate, isobutyl acrylate, ethyl-2-hexyl acrylate, cyclohexyl acrylate, methyl methacrylate and ethyl methacrylate.
  • the aforementioned polyolefins (B1) can also be crosslinked by any appropriate process or agent (diepoxy, diacid, peroxide, etc.); the term functionalized polyolefin also includes mixtures of the aforementioned polyolefins with a difunctional reagent such as diacid, dianhydride, diepoxy, etc. capable of reacting with these or mixtures of at least two functionalized polyolefins capable of reacting with each other.
  • a difunctional reagent such as diacid, dianhydride, diepoxy, etc.
  • copolymers mentioned above, (B1) and (B2) can be randomly or block copolymerized and have a linear or branched structure.
  • the molecular weight, the MFI index, the density of these polyolefins can also vary to a large extent, which those skilled in the art will appreciate.
  • MFI short for Melt Flow Index, is the Melt Flow Index. It is measured according to the ASTM 1238 standard.
  • the non-functionalized polyolefins (B2) are chosen from homopolymers or copolymers of polypropylene and any homopolymer of ethylene or copolymer of ethylene and of a comonomer of the higher alpha olefinic type. such as butene, hexene, octene or 4-methyl 1 -pentene.
  • PP high-density PE
  • medium-density PE linear low-density PE
  • low-density PE very low-density PE.
  • polyethylenes are known to those skilled in the art as being produced according to a “radical” process, according to a “Ziegler” type catalysis or, more recently, according to a so-called “metallocene” catalysis.
  • the functionalized polyolefins (B1) are chosen from any polymer comprising alpha-olefin units and units carrying polar reactive functions such as epoxy, carboxylic acid or carboxylic acid anhydride functions.
  • polymers mention may be made of ter-polymers of ethylene, alkyl acrylate and maleic anhydride or glycidyl methacrylate such as the Applicant's Lotader® or polyolefins grafted with maleic anhydride such as the Applicant's Orevac® as well as ter polymers of ethylene, alkyl acrylate and (meth)acrylic acid.
  • Mention may also be made of polypropylene homopolymers or copolymers grafted with a carboxylic acid anhydride and then condensed with polyamides or monoamino polyamide oligomers.
  • said constituent composition of said sealing layer(s) is devoid of polyether block amide (PEBA).
  • PEBAs are therefore excluded from the impact modifiers.
  • said transparent composition is devoid of core-shell particles or core-shell polymers.
  • core-shell particle it is necessary to understand a particle whose first layer forms the core and the second or all the following layers form the respective shells.
  • the core-shell particle can be obtained by a multi-step process comprising at least two steps. Such a process is described for example in the documents US2009/0149600 or EP0722961.
  • ethylene/alpha-olefin copolymers are excluded from the impact modifiers.
  • the plasticizer can be a plasticizer commonly used in compositions based on polyamide(s).
  • a plasticizer which has good thermal stability so that no fumes are formed during the steps of mixing the various polymers and of converting the composition obtained.
  • this plasticizer can be chosen from: benzene sulfonamide derivatives such as n-butyl benzene sulfonamide (BBSA), ortho and para isomers of ethyl toluene sulfonamide (ETSA), N-cyclohexyl toluene sulfonamide and N-(2-hydroxypropyl) benzene sulfonamide (HP-BSA), esters of hydroxybenzoic acids such as 2-ethylhexyl para-hydroxybenzoate
  • BBSA n-butyl benzene sulfonamide
  • ETSA ethyl toluene sulfonamide
  • HP-BSA N-(2-hydroxypropyl) benzene sulfonamide
  • esters of hydroxybenzoic acids such as 2-ethylhexyl para-hydroxybenzoate
  • EHPB 2-decylhexyl para-hydroxybenzoate
  • HDPB 2-decylhexyl para-hydroxybenzoate
  • esters or ethers of tetrahydrofurfuryl alcohol such as oligoethyleneoxytetrahydrofurfuryl alcohol
  • esters of citric acid or hydroxymalonic acid such as oligoethyleneoxymalonate.
  • a preferred plasticizer is n-butyl benzene sulfonamide (BBSA).
  • Another more particularly preferred plasticizer is N-(2-hydroxy-propyl)benzenesulfonamide (HP-BSA).
  • HP-BSA N-(2-hydroxy-propyl)benzenesulfonamide
  • the polymer P2j can be a thermoplastic polymer or a thermosetting polymer.
  • One or more layers of composite reinforcement may be present.
  • Each of said layers consists of a fibrous material in the form of continuous fibers impregnated with a composition mainly comprising at least one thermoplastic or thermosetting polymer P2j, j corresponding to the number of layers present.
  • said at least one polymer is present at more than 50% by weight relative to the total weight of the composition and of the matrix of the composite.
  • said at least one majority polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight, relative to the weight composition total,
  • Said composition can also comprise impact modifiers and/or additives.
  • the additives can be chosen from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a plasticizer and a colorant, with the exception of a nucleating agent.
  • said composition consists of said thermoplastic polymer P2j mainly, from 0 to 15% by weight of impact modifier, in particular from 0 to 12% by weight of impact modifier, from 0 to 5% by weight of additives, the sum of constituents of the composition being equal to 100% by weight.
  • Said at least one majority polymer of each layer can be identical or different.
  • a single majority polymer is present at least in the composite reinforcement layer and which does not adhere to the sealing layer.
  • each reinforcing layer comprises the same type of polymer, in particular an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • Thermoplastic or thermoplastic polymer is understood to mean a material which is generally solid at room temperature, which may be semi-crystalline or amorphous, in particular semi-crystalline and which softens during an increase in temperature, in particular after passing from its temperature of glass transition (Tg) and flows at a higher temperature when it is amorphous, or which can present a frank melting on passing its so-called melting temperature (Tf) when it is semi-crystalline, and which becomes solid again when 'a decrease in temperature below its crystallization temperature, Te, (for a semi-crystalline) and below its glass transition temperature (for an amorphous).
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2:2013 and 11357-3:2013 respectively.
  • the number-average molecular mass Mn of said thermoplastic polymer is preferably in a range extending from 10,000 to 40,000, preferably from 10,000 to 30,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in the m-cresol according to the ISO 307:2007 standard but changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20°C).
  • suitable semi-crystalline thermoplastic polymers in the present invention include: polyamides, in particular comprising an aromatic and/or cycloaliphatic structure, including copolymers, for example polyamide-polyether copolymers, polyesters, polyaryletherketones (PAEK ), polyetherether ketones (PEEK), polyetherketone ketones (PEKK), polyetherketoneetherketone ketones (PEKEKK), polyimides in particular polyetherimides (PEI) or polyamide-imides, polylsulfones (PSU) in particular polyarylsulfones such as polyphenyl sulfones
  • PPSU polyethersulfones
  • semi-crystalline polymers are more particularly preferred, and in particular polyamides and their semi-crystalline copolymers.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • the semi-crystalline polyamides are semi-aromatic polyamides, in particular a semi-aromatic polyamide of formula X/YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A/XT in which A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (diamine in Ca).
  • (Cb diacid) with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36, advantageously between 9 and 18, the unit (Ca diamine) being chosen from aliphatic diamines, linear or branched, cycloaliphatic diamines and diamines aromatic alkyls and the unit (Cb diacid) being chosen from aliphatic, linear or branched diacids, cycloaliphatic diacids and aromatic diacids;
  • X.T denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 5 and 36, advantageously between 9 and 18, in particular a polyamide of formula A/5T, A/6T, A/9T, A/10T or A/11T, A being as defined above, in particular a polyamide chosen from a PA MPMDT/6T, a PA11/1 OT, one PA 5T/10T, one PA 11/BACT, one PA 11/6T/10T, one PA MXDT/10T, one PA MPMDT/10T, one PA BACT/10T, one PA BACT/6T, PA BACT/10T/6T, one PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/10T, one PA 11/MXDT/1 OT, one 11/5T/10T .
  • T stands for terephthalic acid
  • MXD stands for m-xylylene diamine
  • MPMD stands for methylpentamethylene diamine
  • BAC stands for bis(aminomethyl)cyclohexane.
  • Said semi-aromatic polyamides defined above have in particular a Tg greater than or equal to 80°C.
  • thermosetting polymers are chosen from epoxy or epoxy-based resins, polyesters, vinylesters, resins based on polyisocyanates, in particular polyisocyanurates, and polyurethanes, or a mixture of these, in particular epoxy resins or based on epoxy or a resin based on polyisocyanates, in particular polyisocyanurates.
  • each composite reinforcement layer consists of a composition comprising the same type of polymer, in particular an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • Said composition comprising said polymer P2j can be transparent to radiation suitable for welding.
  • the winding of the composite reinforcement layer around the sealing layer is carried out in the absence of any subsequent welding.
  • Said multilayer structure therefore comprises at least one sealing layer and at least one layer of composite reinforcement which is wound around the sealing layer and which may or may not adhere to each other.
  • sealing and reinforcing layers do not adhere to each other and consist of compositions which respectively comprise different polymers.
  • said different polymers may be of the same type.
  • Said multilayer structure can comprise up to 10 layers of sealing and up to 10 layers of composite reinforcement of different natures. It is obvious that said multilayer structure is not necessarily symmetrical and that it can therefore comprise more sealing layers than composite layers or vice versa, but there cannot be an alternation of layers and reinforcement layer.
  • said multilayer structure comprises one, two, three, four, five, six, seven, eight, nine or ten sealing layers and one, two, three, four, five, six, seven, eight, nine or ten of composite reinforcement.
  • said multilayer structure comprises one, two, three, four or five layers of sealing and one, two, three, four or five layers of composite reinforcement.
  • said multilayer structure comprises one, two or three layers of sealing and one two or three layers of composite reinforcement.
  • compositions which respectively comprise different polymers consist of compositions which respectively comprise different polymers.
  • compositions which respectively comprise polyamides corresponding to polyamides P1i and an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates P2j
  • said multilayer structure comprises a single sealing layer and several reinforcing layers, said adjacent reinforcing layer being wrapped around said sealing layer and the other reinforcing layers being wrapped around the reinforcing layer directly adjacent.
  • said multilayer structure comprises a single reinforcing layer and several sealing layers, said reinforcing layer being wrapped around said adjacent sealing layer.
  • said multilayer structure comprises a single sealing layer and a single composite reinforcement layer, said reinforcement layer being wrapped around said sealing layer.
  • each sealing layer consists of a composition comprising the same type of polymer P1i, in particular a polyamide.
  • said polymer P1 i is a polyamide and said polymer P2j is an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • the PU polyamide is identical for all the sealing layers.
  • said polymer P1 i is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512, PA610 and PA612.
  • said PU polymer is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512 and PA612.
  • each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • each sealing layer consists of a composition comprising the same type of polymer P1i, in particular a polyamide and each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • said polymer P1 i is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512, PA610 and PA612 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from PA MPMDT/6T, a PA11/1 OT, a PA 11/BACT, a PA 5T/10T, a PA 11/6T/10T, a PA MXDT/10T, a PA MPMDT/10T, a PA BACT/10T, a PA BACT/6T, PA BACT/10T/6T, a PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T, a PA and 11/MXDT/10T.
  • said polymer P1 i is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512 and PA612 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT/6T , a PA11/1 OT, a PA 11/BACT, a PA 5T/10T, a PA 11/6T/10T, a PA MXDT/10T, a PA MPMDT/10T, a PA BACT/10T, a PA BACT/6T , PA BACT/10T/6T, a PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T, a PA and 11/MXDT/10T.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1 i is an aliphatic polyamide selected from PA410, PA412, PA510, PA512 , PA610 and PA612 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT/6T, a PA11/10T, a PA 11/BACT, a PA 5T/10T, a PA 11/6T/ 10T, a PA MXDT/10T, a PA MPMDT/10T, a PA BACT/10T, a PA BACT/6T, PA BACT/10T/6T, one PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/1 OT and one PA 11 /MXDT/1 OT.
  • a PA MPMDT/6T a PA11/10T, a PA 11/BACT, a PA 5T/10T, a PA 11/6T/ 10
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1 i is an aliphatic polyamide selected from PA410, PA412, PA510, PA512 and PA612 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT/6T, a PA11/10T, a PA 11/BACT, a PA 5T/10T, a PA 11/6T/10T, a PA MXDT/1 OT, PA MPMDT/10T, PA BACT/1 OT, PA BACT/6T, PA BACT/10T/6T, PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/ MPMDT/10T, PA 11/ BACT/1 OT and a PA 11 /MXDT/1 OT.
  • a PA MPMDT/6T a PA11/10T, a PA 11/BACT
  • PA 5T/10T a PA 11/6T/10T
  • PA MXDT/1 OT PA MP
  • the multilayer structure consists of a single reinforcing layer and a single sealing layer in which said PU polymer is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512, PA610 and PA612 and said polymer P2j is an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • said PU polymer is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512, PA610 and PA612
  • said polymer P2j is an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • the multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1 i is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512 and PA612 and said polymer P2j is an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • said polymer P1 i is an aliphatic polyamide chosen from PA410, PA412, PA510, PA512 and PA612
  • said polymer P2j is an epoxy or epoxy-based resin or a resin based on polyisocyanates, in particular polyisocyanurates.
  • said multilayer structure further comprises at least one outer layer consisting of a fibrous material of continuous fiberglass impregnated with a transparent amorphous polymer, said layer being the outermost layer of said multilayer structure.
  • Said outer layer is a second reinforcement but transparent layer which makes it possible to put an inscription on the structure.
  • said sealing layer comprises, from the inside outwards: a layer (a) consisting of a composition as defined above, optionally a binder layer; a hydrogen barrier layer, in particular in fluoropolymer, in particular in PVDF, or in EVOH, preferably in EVOH; optionally a binder layer; a layer (b) consisting of a composition as defined above.
  • barrier layer denotes a layer having characteristics of low permeability and good resistance to hydrogen, that is to say that the barrier layer slows down the passage of hydrogen into the other layers of the structure or even outside the structure.
  • the barrier layer is therefore a layer making it possible above all not to lose too much hydrogen in the atmosphere by diffusion, thus making it possible to avoid problems of explosion and ignition.
  • barrier materials can be low-carbon polyamides, that is to say whose average number of carbon atoms (C) relative to the nitrogen atom (N) is less than 9, preferably semi- crystalline and with a high melting point, polyphthalamides and/or also non-polyamide barrier materials such as highly crystalline polymers such as the copolymer of ethylene and vinyl alcohol (denoted EVOH below), or even fluorinated materials functionalized such as functionalized polyvinylidene fluoride (PVDF), functionalized ethylene and tetrafluoroethylene copolymer (ETFE), functionalized ethylene, tetrafluoroethylene and hexafluoropropylene copolymer (EFEP), polyphenylene sulfide (PPS ) functionalized, functionalized polybutylene naphthalate (PBN). If these polymers are not functionalized, then an intermediate layer of binder can be added to ensure good adhesion within the MLT structure.
  • PVDF functionalized polyvinylidene flu
  • the EVOHs are particularly interesting, in particular those richest in vivnyl alcohol comonomer as well as those modified shocks because they make it possible to produce less fragile structures.
  • barrier layer means in other words that said barrier layer has very little permeability to hydrogen, in particular the permeability to hydrogen at 23° C. is less than 100, in particular less than 75 cc. mm/m2.24h.atm at 23°C under 0% relative humidity (RH).
  • the permeability can also be expressed in (cc.mm/m 2 .24h.Pa).
  • the permeability must then be multiplied by 101325.
  • these fibers forming said fibrous material are in particular fibers of mineral, organic or plant origin.
  • said fibrous material can be sized or not sized.
  • Said fibrous material may therefore comprise up to 3.5% by weight of a material of organic nature (thermosetting or thermoplastic resin type) called size.
  • fibers of mineral origin mention may be made of carbon fibers, glass fibers, basalt or basalt-based fibers, silica fibers, or silicon carbide fibers for example.
  • fibers of organic origin mention may be made of fibers based on thermoplastic or thermosetting polymer, such as semi-aromatic polyamide fibers, aramid fibers, polyester fibers or fibers in polyolefins for example.
  • they are based on an amorphous thermoplastic polymer and have a glass transition temperature Tg higher than the Tg of the polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is amorphous, or higher than the Tm of the polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is semi-crystalline.
  • thermoplastic polymers are based on a semi-crystalline thermoplastic polymer and have a melting point Tf higher than the Tg of the polymer or thermoplastic polymer mixture constituting the pre-impregnation matrix when the latter is amorphous, or higher than the Tm polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is semi-crystalline.
  • Tf melting point
  • the organic fibers forming the fibrous material during impregnation by the thermoplastic matrix of the final composite there is no risk of melting for the organic fibers forming the fibrous material during impregnation by the thermoplastic matrix of the final composite.
  • the fibers of plant origin mention may be made of natural fibers based on flax, hemp, lignin, bamboo, silk, in particular spider silk, sisal, and other cellulosic fibers, in particular viscose. These fibers of plant origin can be used pure, treated or even coated with a coating layer, in order to facilitate adhesion and impregnation of
  • the fibrous material can also be a fabric, braided or woven with fibers.
  • building fibers can be used alone or in mixtures.
  • organic fibers can be mixed with mineral fibers to be pre-impregnated with thermoplastic polymer powder and form the pre-impregnated fibrous material.
  • Organic fiber rovings can have several grammages. They may also have several geometries.
  • the fibers making up the fibrous material may also be in the form of a mixture of these reinforcing fibers of different geometries.
  • the fibers are continuous fibers.
  • the fibrous material is chosen from glass fibres, carbon fibres, basalt or basalt-based fibres, or a mixture of these, in particular carbon fibres.
  • It is used in the form of a wick or several wicks.
  • the present invention relates to a method for manufacturing a multilayer structure as defined above, characterized in that it comprises a step of preparing the sealing layer by extrusion blow molding, by rotational molding, by injection or extrusion.
  • said method of manufacturing a multilayer structure comprises a step of filament winding of the reinforcement layer as defined above around the sealing layer as defined above.
  • FIG.1 shows the notched Charpy impact at 23 and -40°C according to ISO 179-1:2010 of five liners in KJ/m 2 : from left to right PA12, PA612, PA610, PA6 and PA66 (for each liner : left histogram: 23°C and right histogram: - 40°C)
  • FIG.2 shows the hydrogen permeability at 23°C in cc.mm/m2.d.atm of liners from left to right: PA12, PA6, PA610 and PA612.
  • FIG.3 shows the permeability to hydrogen at 23°C in cc.mm/m2.d.atm of PA610 liners with different proportions of impact modifier (mixture Lotader® 4700 (50%) + Lotader® AX8900 ( 25%) + Lucalène® 3110 (25%)): from left to right: PA610 without impact modifier, PA610 with 8% impact modifier, PA610 with 12% impact modifier, and PA610 with 15% impact modifier.
  • impact modifier mixture Lotader® 4700 (50%) + Lotader® AX8900 ( 25%) + Lucalène® 3110 (25%)
  • the tanks are obtained by rotational molding of the sealing layer (liner) at a temperature adapted to the nature of the thermoplastic resin used.
  • a wet filament winding process is then used which consists in winding fibers around the liner, which fibers being previously pre-impregnated in a liquid epoxy bath or a liquid epoxy-based bath.
  • the reservoir is then polymerized in an oven for 2 hours.
  • a fibrous material previously impregnated with the thermoplastic resin (tape) is then used.
  • This tape is deposited by filament winding using a robot comprising a 1500W power laser heater at a speed of 12m/min and there is no polymerization step.
  • Example 1 Charpy impact notched at -40° C according to IS0179-1:2010
  • a liner having a number of carbon per nitrogen atom greater than 9 (PA12), two liners having a number of carbon per nitrogen atom less than 7 (PA6 and PA66), and two having a number of carbon per nitrogen atom comprised from 7 to 9 (PA610 and PA612) were prepared by rotational molding as above.
  • PA12 Permeability of PA12, PA612, PA610 and PA6 liners without impact modifier.
  • One liner with a carbon number per nitrogen atom greater than 9 (PA12), one liner with a carbon number per nitrogen atom less than 7 (PA6), and two with a carbon number per nitrogen atom including 7 to 9 (PA610 and PA612) were prepared by rotational molding and the permeability to hydrogen at 23° C. was tested. This consists of sweeping the upper face of the film with the test gas (Hydrogen) and measuring by gas phase chromatography the flux which diffuses through the film in the lower part, swept by the carrier gas: Nitrogen. experimental results are presented in Table 1:
  • Figure 3 shows the influence of the impact modifier on the hydrogen permeability of a PA610 liner.
  • Example 3 water uptake
  • Test specimens of PA6, PA66, PA610, PA612 and PA12 are immersed in demineralised water at 23°C. Daily (excluding weekends), the samples are taken out of water, wiped off, weighed, and reintroduced into the water. Once the mass has stabilized (reached a plateau) the value is plotted on the graph. This value corresponds to the maximum mass of water that these products can absorb at 23°C.
  • FIG 4 shows that the water uptake of PA612 and PA610 is much lower than that of PA6 and PA66.
  • PA6, PA6.10, PA6.12 and PA12 liners have been covered with a composite shell, the latter being made by winding T700SC31 E carbon fibers (produced by Toray) impregnated with an epoxy resin. The whole is heated for 5 hours at 110°C to ensure the curing of the epoxy resin. The reservoirs are then cut out and analyzed. The PA6 liner has bubbles on the outer side (side in contact with the composite structure). The PA6.10, PA6.12 and PA12 liners show no defects.
  • Type IV hydrogen storage tank composed of an epoxy composite reinforcement (Tg 120°C) T700SC31 E carbon fiber (produced by Toray) and a PA612 sealing layer.
  • Pressure cycling tests at -40°C are carried out on the tanks.
  • the pressure is applied via glycol or silicone oil, cycles between 20 and 875 bar are applied according to Regulation (EC) No 79/2009, until reaching 100 cycles or the breakage of the tank (deviation from the regulation EC79 which requires 45000 cycles).
  • Type IV hydrogen storage tank composed of an epoxy composite reinforcement (Tg 120°C) T700SC31 E carbon fiber (produced by Toray) and a PA12 sealing layer.
  • Example 6 Type IV hydrogen storage tank, composed of a reinforcement in epoxy composite (Tg 120°C) carbon fiber T7006C31 E (produced by Toray) and a PA6 sealing layer.
  • PA6 liner is much less resistant than a PA612 or PA12 liner.
  • PA612 or PA12 liner present the best compromise for shock resistance, permeability and water uptake compared to PA12, PA6 and PA66.
  • a PA610 or PA612 liner therefore makes it possible to offer a good compromise between mechanical resistance and hydrogen barrier properties while ensuring less moisture uptake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Structure multicouche, destinée au transport, à la distribution et au stockage de l'hydrogène, comprenant, de l'intérieur vers l'extérieur, au moins une couche d'étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite la plus interne étant enroulée autour de la dite couche d'étanchéité (1) adjacente la plus externe, lesdites couches d'étanchéité étant constituées d'une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide aliphatique P1i, i=1 à n, n étant le nombre de couches d'étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 200°C, à l'exclusion d'un polyéther block amide (PEBA), ledit polymère thermoplastique polyamide étant un polyamide présentant un nombre moyen d'atome de carbone par atome d'azote compris de 7 à 9, jusqu'à 30% en poids de modifiant choc par rapport au poids total de la composition, jusqu'à 1,5% en poids de plastifiant par rapport au poids total de la composition, ladite composition étant dépourvue d'agent nucléant, ledit au moins un polymère thermoplastique polyamide de chaque couche d'étanchéité pouvant être identique ou différent, et au moins l'une des dites couches de renfort composite étant constituée d'un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, ladite structure étant dépourvue d'une couche en polymère polyamide, ladite couche en polymère polyamide étant la plus extérieure et adjacente à la couche la plus extérieure de renfort composite.

Description

DESCRIPTION
TITRE : STRUCTURE MULTICOUCHE POUR LE TRANSPORT OU LE STOCKAGE DE
L’HYDROGENE
[Domaine technique]
La présente demande de brevet concerne des structures multicouches composites pour le transport, la distribution ou le stockage de l’hydrogène, en particulier pour la distribution ou le stockage de l’hydrogène, et leur procédé de fabrication.
[Technique antérieure]
Les réservoirs d’hydrogène représentent un sujet qui attire actuellement beaucoup d’intérêt de la part de nombreux industriels, notamment dans le domaine automobile. L’un des buts recherchés est de proposer des véhicules de moins en moins polluants. Ainsi, les véhicules électriques ou hybrides comportant une batterie visent à remplacer progressivement les véhicules thermiques, tels que les véhicules à essence ou bien à gasoil. Or, il s’avère que la batterie est un constituant du véhicule relativement complexe. Selon l’emplacement de la batterie dans le véhicule, il peut être nécessaire de la protéger des chocs et de l’environnement extérieur, qui peut être à des températures extrêmes et à une humidité variable. Il est également nécessaire d’éviter tout risque de flammes.
De plus, il est important que sa température de fonctionnement n’excède pas 55 °C pour ne pas détériorer les cellules de la batterie et préserver sa durée de vie. A l’inverse, par exemple en hiver, il peut être nécessaire d’élever la température de la batterie de manière à optimiser son fonctionnement.
Par ailleurs, le véhicule électrique souffre encore aujourd’hui de plusieurs problèmes à savoir l’autonomie de la batterie, l’utilisation dans ces batteries de terre rares dont les ressources ne sont pas inépuisables, des temps de recharge beaucoup plus long que les durées de remplissage de réservoir, ainsi qu’un problème de production d’électricité dans les différents pays pour pouvoir recharger les batteries.
L’hydrogène représente donc une alternative à la batterie électrique puisque l’hydrogène peut être transformé en électricité au moyen d’une pile à combustible et alimenter ainsi les véhicules électriques.
Les réservoirs à hydrogène sont généralement constitués d'une enveloppe (liner ou couche d’étanchéité) métallique qui doit empêcher la perméation de l'hydrogène. L’un des types de réservoirs envisagés, appelé Type IV, est basé sur un liner thermoplastique autour duquel est enroulé un composite.
Leur principe de base est de séparer les deux fonctions essentielles que sont l'étanchéité et la tenue mécanique pour les gérer l'une indépendamment de l'autre. Dans ce type de réservoir on associe liner (ou gaine d’étanchéité) en résine thermoplastique à une structure de renforcement constituée de fibres (verre, aramide, carbone) encore dénommée gaine ou couche de renfort qui permettent de travailler à des pressions beaucoup plus élevées tout en réduisant la masse et en évitant les risques de rupture explosive en cas d’agressions externes sévères.
Les liners doivent présenter certaines caractéristiques de base :
La possibilité d’être transformé par extrusion soufflage, rotomoulage, injection, ou extrusion
Une faible perméabilité à l’hydrogène, la perméabilité du liner est en effet un facteur clé pour limiter les pertes d’hydrogène du réservoir ;
De bonnes propriétés mécaniques (fatigue) à basses températures (-40 à -70 °C) ;
Une tenue thermique à 120°C.
En effet, il est nécessaire d’augmenter la vitesse de remplissage du réservoir d’hydrogène qui doit être environ équivalente à celle d’un réservoir à essence pour moteur thermique (environ 3 à 5 minutes) mais cette augmentation de vitesse provoque un échauffement du réservoir plus importante qui atteint alors une température d’environ 100°C.
L’évaluation des performances et de la sécurité des réservoirs d’hydrogène peut être déterminée dans un laboratoire de référence Européen (GasTeF : installation de test des réservoirs d’hydrogène) tel que décrit dans Galassi et al. (Word hydrogen energy conférence 2012, Onboard compressed hydrogen storage : fast filing experiments and simulations, Energy Procedia 29, (2012) 192-200).
La première génération de réservoirs de type IV utilisait un liner sur base polyéthylène haute densité (HDPE).
Cependant, l’HDPE présente le défaut d’avoir une température de fusion trop basse et une perméabilité à l’hydrogène élevée, ce qui représente un problème avec les nouvelles exigences en matière de tenue thermique et ne permet pas d’augmenter la vitesse de remplissage du réservoir.
Depuis plusieurs années, des liners sur base polyamide PA6 ou PA66 se sont développés.
Néanmoins, le PA6 et le PA66 présentent le désavantage d’avoir une faible tenue à froid et une forte reprise en eau.
Des liners en PA12 ont également été développés présentant une bonne tenue au choc mais le PA12 présente le défaut d’avoir une perméabilité à l’hydrogène trop importante.
La demande EP3112421 décrit une composition de résine polyamide pour un article moulé destiné à de l'hydrogène haute pression, la composition comprenant: une résine polyamide 6 (A); et une résine polyamide (B) ayant un point de fusion, tel que déterminé par DSC, qui n'est pas supérieur au point de fusion de la résine polyamide 6 (A) + 20 0 C et une température de cristallisationde refroidissement, telle que déterminée par DSC, qui est plus élevée que la température de cristallisation de refroidissement de la résine polyamide 6 (A).
La demande française FR2923575 décrit un réservoir pour le stockage de fluide sous haute pression comportant à chacune de ses extrémités le long de son axe un embout métallique d'extrémité, un liner enveloppant lesdits embouts et une couche structurelle en fibre imprégnée de résine thermodurcissable enveloppant ledit liner.
La demande EP3222668 décrit une composition de résine polyamide pour un article moulé destiné à de l'hydrogène haute pression, la composition comprenant une résine polyamide (A) comprenant un motif dérivé de l'hexaméthylènediamine et un motif dérivé d'un acide dicarboxylique aliphatique de 8 à 12 atomes de carbone et un copolymère éthylène / a -oléfine (B) modifié avec un acide carboxylique insaturé et / ou un de ses dérivés.
La demande US2014/008373 décrit un cylindre de stockage léger pour un gaz comprimé à haute pression, le cylindre ayant un liner enveloppé d'une couche de contrainte, le liner comprenant: une première couche intérieure de polyamide (PA) modifié choc en contact avec le gaz, une couche thermoplastique externe en contact avec la couche de contrainte; et une couche de liaison adhésive entre la première couche de PA interne modifiée aux chocs et la couche thermoplastique externe.
W01 855491 décrit un composant de transport d’hydrogène présentant une structure tricouche dont la couche interne est une composition constituée de PA11 , de 15 à 50% d’un modifiant choc et de 1 à 3% de plastifiant ou dépourvue de plastifiant qui présente des propriétés barrière à l’hydrogène, une bonne flexibilité et durabilité à faible température. Cependant, cette structure est adaptée à des tuyaux pour le transport de l’hydrogène mais pas pour le stockage de l’hydrogène.
Ainsi, il reste à optimiser d’une part, la matrice du composite de façon à optimiser sa résistance mécanique à haute température et d’autre part le matériau composant la gaine d’étanchéité, de façon à optimiser sa température de mise en œuvre. Ainsi, la modification éventuelle de la composition du matériau composant la gaine d’étanchéité, qui sera faite ne doit pas se traduire par une augmentation significative de la température de fabrication (extrusion-soufflage, injection, rotomoulage...) de ce liner, par rapport à ce qui se pratique aujourd’hui.
Par ailleurs, la tenue au choc, la reprise en eau et la perméabilité à l’hydrogène du matériau composant la gaine d’étanchéité doit également être optimisée.
Ces différents problèmes sont résolus par la fourniture d’une structure multicouche de la présente invention destinée au transport, à la distribution ou au stockage de l’hydrogène. Dans toute cette description, les termes « liner » et « gaine d’étanchéité » ont la même signification.
La présente invention concerne donc une structure multicouche destinée au transport, à la distribution et au stockage de l’hydrogène, comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite la plus interne étant enroulée autour de la dite couche d’étanchéité (1) adjacente la plus externe, lesdites couches d’étanchéité étant constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide aliphatique P1i, i=1 à n, n étant le nombre de couches d’étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 200°C, à l’exclusbn d’un polyéther block amide (PEBA), ledit polymère thermoplastique polyamide étant un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote compris de 7 à 9, jusqu’à 30% en poids de modifiant choc, notamment jusqu’à moins de 15% en poids de modifiant choc, en particulier jusqu’à 9% en poids de modifiant choc par rapport au poids total de la composition, jusqu’à 1 ,5% en poids de plastifiant par rapport au poids total de la composition, ladite composition étant dépourvue d’agent nucléant, ledit au moins un polymère thermoplastique polyamide de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, (j=1 à m, m étant le nombre de couches de renfort), en particulier une résine époxyde ou à base d’époxyde, ou une résine à base de polyisocyanates, en particulier les polyisocyanurates, ladite structure étant dépourvue d’une couche en polymère polyamide, ladite couche en polymère polyamide étant la plus extérieure et adjacente à la couche la plus extérieure de renfort composite.
Les Inventeurs ont donc trouvé de manière inattendue que l’utilisation d’un polymère thermoplastique polyamide présentant un nombre moyen d’atome de carbone par atome d’azote compris de 7 à 9, comprenant une proportion de modifiant choc et de plastifiant limitée, pour la couche d’étanchéité, avec un polymère différent pour la matrice du composite et notamment une résine époxyde ou à base d’époxyde, ou une résine à base de polyisocyanates, en particulier les polyisocyanurates, ledit composite étant enroulé sur la couche d’étanchéité, permettait d’obtenir un compromis notamment sur la tenue choc, la perméabilité à l’hydrogène et la reprise en eau par rapport à des polymères thermoplastique polyamide présentant un nombre moyen d’atome de carbone par atome d’azote inférieur à 7 et supérieur à 9, et permettait ainsi l’obtention d’une structure adaptée au transport, à la distribution ou au stockage de l’hydrogène et notamment une augmentation de la température maximale d’utilisation pouvant aller jusqu’à 120°C, permettant ainsi d’augmenter la vitesse de remplissage des réservoirs.
Par « structure multicouche » il faut entendre un réservoir comprenant ou constitué de plusieurs couches, à savoir plusieurs couches d’étanchéité et plusieurs couches de renfort, ou une couche d’étanchéité et plusieurs couches de renfort, ou plusieurs couches d’étanchéité et une couche de renfort ou une couche d’étanchéité et une couche de renfort.
La structure multicouche s’entend donc à l’exclusion d’un tuyau ou d’un tube.
Dans un mode de réalisation, ie PA6 et le PA68 sont exclus de la composition desdites couches d’étanchéité.
Dans un mode de réalisation, ladite structure multicouche est constituée de deux couches, une couche d’étanchéité et une couche de renfort.
La couche ou les couches d’étanchéité sont les couches les plus internes par rapport aux couches de renfort composites qui sont les couches les plus externes.
Le réservoir peut être un réservoir pour le stockage mobile de l’hydrogène, c’est-à-dire sur un camion pour le transport de l’hydrogène, sur une voiture pour le transport de l’hydrogène et l’alimentation en hydrogène d’une pile à combustible par exemple, sur un train pour l’alimentation en hydrogène ou sur un drone pour l’alimentation en hydrogène, mais il peut être également un réservoir de stockage stationnaire de l’hydrogène en station pour la distribution d’hydrogène à des véhicules.
Avantageusement, la couche d’étanchéité (1) est étanche à l’hydrogène à 23 °C, c’est-à- dire que la perméabilité à l’hydrogène à 23 °C est hférieure à 100 cc.mm/m2.24h.atm à 23 °C sous 0% d’humidité relative (RH).
La perméabilité peut également être exprimée en (cc.mm/m2.24h.Pa).
La perméabilité doit alors être multipliée par 101325.
Dans un mode de réalisation, les copolymères d’éthylène et d’alpha-oléfine sont exclus du modifiant choc de la composition de la ou lesdites couches d’étanchéité.
Dans un autre mode de réalisation, la ou lesdites couches d’étanchéité sont constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide aliphatique P1i, i=1 à n, n étant le nombre de couches d’étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 200°C, à l’exclusbn d’un polyéther block amide (PEBA), ledit polymère thermoplastique polyamide étant un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote compris de 7 à 9, à l’exclusion de PA610. Dans encore un autre mode de réalisation, la ou lesdites couches d’étanchéité sont constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide aliphatique P1i, i=1 à n, n étant le nombre de couches d’étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 200°C, à l’exclusbn d’un polyéther block amide (PEBA), ledit polymère thermoplastique polyamide étant un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote compris de 7 à 9, à l’exclusion de PA610, les copolymères d’éthylène et d’alpha-oléfine étant exclus du modifiant choc.
La ou les couches de renfort composite est (sont) enroulée(s) autour de la couche d’étanchéité au moyen de rubans (ou tapes ou rovings) de fibres imprégnés de polymère qui sont déposés par exemple, par enroulement filamentaire.
Lorsque plusieurs couches sont présentes, les polymères sont différents.
Lorsque les polymères des couches de renfort sont identiques, il peut y avoir présence de plusieurs couches mais avantageusement, une seule couche de renfort est présente et qui présente alors au moins un enroulement complet autour de la couche d’étanchéité.
Ce procédé totalement automatisé, bien connu de l’homme du métier permet, couche par couche, de choisir les angles d’enroulement qui vont donner à la structure finale son aptitude à résister au chargement de pression interne.
Lorsque plusieurs couches d’étanchéité sont présentes, seule la couche la plus interne des couches d’étanchéité est en contact direct avec l’hydrogène.
Lorsque seules une couche d’étanchéité et une couche de renfort composite sont présentes, conduisant donc à une structure multicouche à deux couches, alors ces deux couches peuvent adhérer l’une à l’autre, en contact direct l’une avec l’autre, notamment en raison de l’enroulement de la couche de renfort composite sur la couche d’étanchéité. Lorsque plusieurs couches d’étanchéité sont présentes et/ou plusieurs couches de renfort composite, alors la couche la plus externe desdites couches d’étanchéité, et donc à l’opposé de la couche en contact avec l’hydrogène, peut adhérer ou non à la couche la plus interne desdites de renfort composite.
Les autres couches de renfort composite peuvent également adhérer ou non entre elles. Les autres couches d’étanchéité peuvent aussi adhérer ou non entre elles. Avantageusement, seules une couche d’étanchéité et une couche de renfort sont présentes et n’adhèrent pas entre elles.
Avantageusement, seules une couche d’étanchéité et une couche de renfort sont présentes et n’adhèrent pas entre elles et la couche de renfort est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, en particulier une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
Dans un mode de réalisation, seules une couche d’étanchéité et une couche de renfort sont présentes et n’adhèrent pas entre elles et la couche de renfort est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement un polymère P2j qui est une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates. L’expression à base d’époxyde dans toute la description signifie que l’époxyde représente au moins 50% en poids de la matrice.
S’agissant de la ou des couches d’étanchéité et du polymère thermoplastique PI i
Une ou plusieurs couches d’étanchéité peut ou peuvent être présente(s).
Chacune desdites couches est constituée d’une composition comprenant majoritairement au moins un polymère thermoplastique P1i, i correspondant au nombre de couches présentes i est compris de 1 à 10, en particulier de 1 à 5, notamment de 1 à 3, préférentiellement i = 1.
Le terme « majoritairement » signifie que ledit au moins un polymère est présent à plus de 50% en poids par rapport au poids total de la composition.
Avantageusement, ledit au moins un polymère majoritaire est présent à plus de 60% en poids notamment à plus de 70% en poids, particulièrement à plus de 80% en poids, plus particulièrement supérieur ou égal à 90% en poids, par rapport au poids total de la composition.
Ladite composition peut également comprendre jusqu’à 30% en poids par rapport au poids total de la composition de modifiants choc et/ou un plastifiant et ou des additifs.
Les additifs peuvent être choisis parmi un autre polymère, un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un colorant, du noir de carbone et des nanocharges carbonées, à l’exception d’un agent nucléant, en particulier les additifs sont choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un colorant, du noir de carbone et des nanocharges carbonées, à l’exception d’un agent nucléant.
Ledit autre polymère peut être un autre polymère thermoplastique semi-cristallin ou un polymère différent et notamment un EVOH (Ethylène vinyle alcool).
Avantageusement, ladite composition comprend ledit polymère thermoplastique P1 i majoritairement, de 0 à 30% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 9% de modifiant choc, de 0 à 1 ,5% de plastifiant et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%. Avantageusement, ladite composition est constituée dudit polymère thermoplastique P1i majoritairement, de 0 à 30% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 9% de modifiant choc, de 0 à 1 ,5% de plastifiant et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Ledit au moins un polymère majoritaire de chaque couche peut être identique ou différent. Dans un mode de réalisation, un seul polymère majoritaire est présent au moins dans la couche d’étanchéité qui n’adhère pas à la couche de renfort composite.
Dans un mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 30% en poids, notamment de 0,1 à moins de 15% en poids, en particulier de 0,1 à 9% en poids de modifiant choc par rapport au poids total de la composition.
Dans un autre mode de réalisation, ladite composition comprend un modifiant choc de 1 à
Figure imgf000010_0001
En particulier, ladite composition comprend un modifiant choc de 2 à 30% en poids,
Figure imgf000010_0002
Dans un mode de réalisation, ladite composition est dépourvue de plastifiant.
Dans un autre mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 30% en poids, notamment de 0,1 à moins de 15% en poids, en particulier de 0,1 à 9% en poids de modifiant choc et ladite composition est dépourvue de plastifiant par rapport au poids total de la composition.
Dans encore un autre mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 30% en poids, notamment de 0,1 à moins de 15% en poids, en particulier de 0,1 à 9% en poids de modifiant choc et de 0,1 à 1 ,5% en poids de plastifiant par rapport au poids total de la composition.
Polymère thermoplastique PI i On entend par thermoplastique, ou polymère thermoplastique semi-cristallin, un matériau généralement solide à température ambiante, et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg), et pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf), et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation.
La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.
La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique polyamide semi-cristallin est de préférence dans une plage allant de de 10000 à 85000, notamment de 10000 à 60000, préférentiellement de 10000 à 50000, encore plus préférentiellement de 12000 à 50000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C).
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874- 1 :2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Avantageusement, ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512, le PA610 et le PA612.
Dans un mode de réalisation, ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512 et le PA612.
Avantageusement, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polyamide.
Dans le cas où une soudure est nécessaire, il existe diverses méthodes permettant de souder des éléments en polymère thermoplastique polyamide. Ainsi, il peut être utilisé des lames chauffantes avec ou sans contact, des ultrasons, des infra-rouges, une application de vibrations, une rotation d’un élément à souder contre l’autre ou encore la soudure laser.
S’agissant du modifiant choc
Le modifiant choc peut être tout modifiant choc à partir du moment où un polymère de module inférieur à celui de la résine, présentant une bonne adhésion avec la matrice, de manière à dissiper l’énergie de fissuration.
Le modifiant choc est avantageusement constitué par un polymère présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 au niveau du point d’inflexion du thermogramme DSC), en particulier une polyoléfine.
Dans un mode de réalisation, les PEBA sont exclus de la définition des modifiants choc. La polyoléfine du modifiant choc peut être fonctionnalisée ou non fonctionnalisée ou être un mélange d'au moins une fonctionnalisée et/ou d'au moins une non fonctionnalisée. Pour simplifier on a désigné la polyoléfine par (B) et on a décrit ci- dessous des polyoléfines fonctionnalisées (B1) et des polyoléfines non fonctionnalisées (B2).
Une polyoléfine non fonctionnalisée (B2) est classiquement un homo polymère ou copolymère d'alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1 , octène-1 , butadiène. A titre d'exemple, on peut citer :
- les homo polymères et copolymères du polyéthylène, en particulier LDPE, HDPE, LLDPE(linear low density polyéthylène, ou polyéthylène basse densité linéaire), VLDPE(very low density polyéthylène, ou polyéthylène très basse densité) et le polyéthylène métallocène .
-les homopolymères ou copolymères du propylène.
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène- propylène/styrène (SEPS).
- les copolymères de l'éthylène avec au moins un produit choisi parmi les sels ou les esters d'acides carboxyliques insaturés tel que le (méth)acrylate d'alkyle (par exemple acrylate de méthyle), ou les esters vinyliques d'acides carboxyliques saturés tel que l'acétate de vinyle (EVA), la proportion de comonomère pouvant atteindre 40% en poids. La polyoléfine fonctionnalisée (B1) peut être un polymère d'alpha oléfines ayant des motifs réactifs (les fonctionnalités) ; de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d'exemple, on peut citer les polyoléfines précédentes (B2) greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l'acide (méth)acrylique (celui-ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d'acides carboxyliques tels que l'anhydride maléique. Une polyoléfine fonctionnalisée est par exemple un mélange PE/EPR, dont le ratio en poids peut varier dans de larges mesures, par exemple entre 40/60 et 90/10, ledit mélange étant co-greffé avec un anhydride, notamment anhydride maléique, selon un taux de greffage par exemple de 0,01 à 5% en poids. La polyoléfine fonctionnalisée (B1) peut être choisie parmi les (co)polymères suivants, greffés avec anhydride maléique ou méthacrylate de glycidyle, dans lesquels le taux de greffage est par exemple de 0,01 à 5% en poids :
- du PE, du PP, des copolymères de l'éthylène avec propylène, butène, hexène, ou octène contenant par exemple de 35 à 80% en poids d'éthylène ;
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène- propylène/styrène (SEPS).
- des copolymères éthylène et acétate de vinyle (EVA), contenant jusqu'à 40% en poids d'acétate de vinyle ;
- des copolymères éthylène et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de (méth)acrylate d'alkyle ;
- des copolymères éthylène et acétate de vinyle (EVA) et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de comonomères.
La polyoléfine fonctionnalisée (B1) peut être aussi choisie parmi les copolymères éthylène/propylène majoritaires en propylène greffés par de l'anhydride maléique puis condensés avec du polyamide (ou un oligomère de polyamide) mono aminé (produits décrits dans EP-A-0342066).
La polyoléfine fonctionnalisée (B1) peut aussi être un co- ou ter polymère d'au moins les motifs suivants : (1) éthylène, (2) (méth)acrylate d'alkyle ou ester vinylique d'acide carboxylique saturé et (3) anhydride tel que anhydride maléique ou acide (méth)acrylique ou époxy tel que (méth)acrylate de glycidyle.
A titre d'exemple de polyoléfines fonctionnalisées de ce dernier type, on peut citer les copolymères suivants, où l'éthylène représente de préférence au moins 60% en poids et où le ter monomère (la fonction) représente par exemple de 0,1 à 10% en poids du copolymère :
- les copolymères éthylène/(méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle/anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle ou (méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle.
Dans les copolymères qui précèdent, l'acide (méth)acrylique peut être salifié avec Zn ou Li. Le terme "(méth)acrylate d'alkyle" dans (B1) ou (B2) désigne les méthacrylates et les acrylates d'alkyle en C1 à C8, et peut être choisi parmi l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'iso butyle, l'acrylate d'éthyl-2-hexyle, l'acrylate de cyclohexyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.
Par ailleurs, les polyoléfines précitées (B1) peuvent aussi être réticulées par tout procédé ou agent approprié (diépoxy, diacide, peroxyde, etc.) ; le terme polyoléfine fonctionnalisée comprend aussi les mélanges des polyoléfines précitées avec un réactif difonctionnel tel que diacide, dianhydride, diépoxy, etc. susceptible de réagir avec celles-ci ou les mélanges d'au moins deux polyoléfines fonctionnalisées pouvant réagir entre elles.
Les copolymères mentionnés ci-dessus, (B1) et (B2), peuvent être copolymérisés de façon statistique ou séquencée et présenter une structure linéaire ou ramifiée.
Le poids moléculaire, l'indice MFI, la densité de ces polyoléfines peuvent aussi varier dans une large mesure, ce que l'homme de l'art appréciera. MFI, abréviation de Melt Flow Index, est l'indice de fluidité à l'état fondu. On le mesure selon la norme ASTM 1238. Avantageusement les polyoléfines (B2) non fonctionnalisées sont choisies parmi les homopolymères ou copolymères du polypropylène et tout homo polymère de l’éthylène ou copolymère de l’éthylène et d’un comonomère de type alpha oléfinique supérieur tel que le butène, l’hexène, l’octène ou le 4-méthyl 1 -Pentène. On peut citer par exemple les PP, les PE de haute densité, PE de moyenne densité, PE basse densité linéaire, PE basse densité, PE de très basse densité. Ces polyéthylènes sont connus par l’Homme de l’Art comme étant produits selon un procédé « radicalaire », selon une catalyse de type « Ziegler » ou, plus récemment, selon une catalyse dite « métallocène ».
Avantageusement les polyoléfines fonctionnalisées (B1) sont choisies parmi tout polymère comprenant des motifs alpha oléfiniques et des motifs porteurs de fonctions réactives polaires comme les fonctions époxy, acide carboxylique ou anhydride d’acide carboxylique. A titre d’exemples de tels polymères, on peut citer les ter polymères de l’éthylène, d’acrylate d’alkyle et d’anhydride maléique ou de méthacrylate de glycidyle comme les Lotader® de la Demanderesse ou des polyoléfines greffées par de l’anhydride maléique comme les Orevac® de la Demanderesse ainsi que des ter polymères de l’éthylène, d’acrylate d’alkyle et d’acide (meth) acrylique. On peut citer aussi les homopolymères ou copolymères du polypropylène greffés par un anhydride d'acide carboxylique puis condensés avec des polyamides ou des oligomères mono aminés de polyamide.
Avantageusement, ladite composition constitutive de ladite ou desdites couches d’étanchéité est dépourvue de polyéther block amide (PEBA). Dans ce mode de réalisation, les PEBA sont donc exclus des modifiants choc. Avantageusement, ladite composition transparente est dépourvue de particules cœur- écorce ou polymères cœur-écorce « core-shell ».
Par particule cœur-écorce, il faut comprendre une particule dont la première couche forme le cœur et la deuxième ou toutes les couches suivantes forment les écorces respectives.
La particule cœur-écorce « core-shell » peut-être obtenu par un procédé à plusieurs étapes comprenant au moins deux étapes. Un tel procédé est décrit par exemple dans les documents US2009/0149600 ou EP0722961.
Dans un mode de réalisation, les copolymères éthylène/alpha-oléfine sont exclus des modifiants choc.
S’agissant du plastifiant
Le plastifiant peut être un plastifiant couramment utilisé dans les compositions à base de polyamide(s).
Avantageusement, on utilise un plastifiant qui présente une bonne stabilité thermique afin qu'il ne se forme pas de fumées lors des étapes de mélange des différents polymères et de transformation de la composition obtenue.
En particulier, ce plastifiant peut être choisi parmi : les dérivés du benzène sulfonamide tels que le n-butyl benzène sulfonamide (BBSA), les isomères ortho et para de l’éthyl toluène sulfonamide (ETSA), le N-cyclohexyl toluène sulfonamide et le N-(2-hydroxypropyl) benzène sulfonamide (HP-BSA), les esters d’acides hydroxybenzoïques tels que le para-hydroxybenzoate d'éthyl-2 hexyle
(EHPB) et le para-hydroxybenzoate de décyl-2 hexyle (HDPB), les esters ou éthers du tétrahydrofurfuryl alcool comme l’oligoéthylèneoxy- tétrahydrofurfurylalcool, et les esters de l’acide citrique ou de l’acide hydroxymalonique, tels que l’oligoéthylèneoxymalonate.
Un plastifiant préféré est le n-butyl benzène sulfonamide (BBSA).
Un autre plastifiant plus particulièrement préféré est le N-(2-hydroxy-propyl) benzène sulfonamide (HP-BSA). Ce dernier présente en effet l'avantage d'éviter la formation de dépôts au niveau de la vis et/ou de la filière d'extrusion ("larmes de filières"), lors d'une étape de transformation par extrusion.
On peut bien évidemment utiliser un mélange de plastifiants.
S’agissant de la couche de renfort composite et du polymère P2j Le polymère P2j peut être un polymère thermoplastique ou un polymère thermodurcissable.
Une ou plusieurs couches de renfort composite peut ou peuvent être présente(s). Chacune desdites couches est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère thermoplastique ou thermodurcissable P2j, j correspondant au nombre de couches présentes. j est compris de 1 à 10, en particulier de 1 à 5, notamment de 1 à 3, préférentiellement j = 1.
Le terme « majoritairement » signifie que ledit au moins un polymère est présent à plus de 50% en poids par rapport au poids total de la composition et de la matrice du composite. Avantageusement, ledit au moins un polymère majoritaire est présent à plus de 60% en poids notamment à plus de 70% en poids, particulièrement à plus de 80% en poids, plus particulièrement supérieur ou égal à 90% en poids, par rapport au poids total de la composition,
Ladite composition peut également comprendre des modifiants choc et/ou des additifs.
Les additifs peuvent être choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un plastifiant et un colorant, à l’exception d’un agent nucléant. Avantageusement, ladite composition est constituée dudit polymère thermoplastique P2j majoritairement, de 0 à 15% en poids de modifiant choc, en particulier de 0 à 12% en poids de modifiant choc, de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100% en poids.
Ledit au moins un polymère majoritaire de chaque couche peut être identique ou différent. Dans un mode de réalisation, un seul polymère majoritaire est présent au moins dans la couche de renfort composite et qui n’adhère pas à la couche d’étanchéité.
Dans un mode de réalisation, chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
Polymère P2j
Polymère thermoplastique P2j
On entend par thermoplastique, ou polymère thermoplastique, un matériau généralement solide à température ambiante, pouvant être semi-cristallin ou amorphe, en particulier semi-cristallin et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg) et s’écoule à plus haute température lorsqu’il est amorphe, ou pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf) lorsqu’il est semi-cristallin, et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation, Te, (pour un semi-cristallin) et en dessous de sa température de transition vitreuse (pour un amorphe). La Tg, Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.
La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique est de préférence dans une plage allant de 10000 à 40000, de préférence de 10000 à 30000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20 °C).
Comme exemples de polymères thermoplastiques semi-cristallins convenables dans la présente invention, on peut citer : les polyamides, en particulier comprenant une structure aromatique et/ou cycloaliphatique, y compris les copolymères par exemple les copolymères polyamides- polyéthers, polyesters, les polyaryléthercétones (PAEK), les polyétheréther cétones (PEEK), les polyéthercétone cétones (PEKK), les polyéthercétoneéthercétone cétones (PEKEKK), les polyimides en particulier les polyétherimides (PEI) ou les polyamide-imides, les polylsulfones (PSU) en particulier les polyarylsulfones tels que les polyphényl sulfones
(PPSU), les polyéthersulfones (PES). les polymères semi-cristallins sont plus particulièrement préférés, et en particulier les polyamides et leurs copolymères semi-cristallins.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874- 1 :2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Avantageusement, les polyamides semi-cristallins sont des polyamide semi-aromatiques, notamment un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d'un aminoacide, un motif obtenu à partir d’un lactame et un motif répondant à la formule (diamine en Ca). (diacide en Cb), avec a représentant le nombre d’atomes de carbone de la diamine et b représentant le nombre d’atome de carbone du diacide, a et b étant chacun compris entre 4 et 36, avantageusement entre 9 et 18, le motif (diamine en Ca) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cb) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, les diacides cycloaliphatiques et les diacides aromatiques;
X.T désigne un motif obtenu à partir de la polycondensation d'une diamine en Cx et de l’acide téréphtalique, avec x représentant le nombre d’atomes de carbone de la diamine en Cx, x étant compris entre 5 et 36, avantageusement entre 9 et 18, notamment un polyamide de formule A/5T, A/6T, A/9T, A/10T ou A/11T, A étant tel que défini ci-dessus, en particulier un polyamide choisi parmi un PA MPMDT/6T, un PA11/1 OT, un PA 5T/10T, un PA 11/BACT, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/10T, un PA 11/MXDT/1 OT, un 11/5T/10T.
T correspond à l’acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(aminométhyl)cyclohexane. Lesdits polyamides semi-aromatiques ci-dessus définis présentent notamment une Tg supérieure ou égal à 80°C.
Polymère thermodurcissable P2j
Les polymères thermodurcissables sont choisis parmi les résines époxydes ou à base d’époxyde, les polyesters, les vinylesters, les résines à base de polyisocyanates, en particulier les polyisocyanurates, et polyuréthannes, ou un mélange de ceux-ci en particulier les résines époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates. Avantageusement, chaque couche de renfort composite est constituée d’une composition comprenant le même type de polymère, en particulier une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates. Ladite composition comprenant ledit polymère P2j peut être transparente à un rayonnement adapté à la soudure.
Dans un autre mode de réalisation, l’enroulement de la couche de renfort composite autour de la couche d’étanchéité est effectué en l’absence de toute soudure ultérieure.
S’agissant de la structure
Ladite structure multicouche comprend donc au moins une couche d’étanchéité et au moins une couche de renfort composite qui est enroulée autour de la couche d’étanchéité et qui peuvent adhérer ou non entre elles.
Avantageusement, lesdites couches d’étanchéité et de renfort n’adhèrent pas entre elles et sont constituées de compositions qui comprennent respectivement des polymères différents.
Néanmoins, lesdits polymères différents peuvent être du même type.
Ladite structure multicouche peut comprendre jusqu’à 10 couches d’étanchéité et jusqu’à 10 couches de renfort composite de natures différentes. Il est bien évident que ladite structure multicouche n’est pas obligatoirement symétrique et qu’elle peut donc comprendre plus de couches d’étanchéité que de couches composites ou vice et versa mais il ne peut y avoir alternance de couches et de couche de renfort. Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches d’étanchéité et une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches de renfort composite.
Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre ou cinq, couches d’étanchéité et une, deux, trois, quatre ou cinq couches de renfort composite. Avantageusement, ladite structure multicouche comprend une, deux ou trois couches d’étanchéité et une deux ou trois couches de renfort composite.
Avantageusement, elles sont constituées de compositions qui comprennent respectivement des polymères différents.
Avantageusement, elles sont constituées de compositions qui comprennent respectivement des polyamides correspondant aux polyamides P1i et une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates P2j
Dans un mode de réalisation, ladite structure multicouche comprend une seule couche d’étanchéité et plusieurs couches de renfort, ladite couche de renfort adjacente étant enroulée autour de ladite couche d’étanchéité et les autres couches de renfort étant enroulées autour de la couche de renfort directement adjacente.
Dans un autre mode de réalisation, la ladite structure multicouche comprend une seule couche de renfort et plusieurs couches d’étanchéité, ladite couche de renfort étant enroulée à ladite couche d’étanchéité adjacente.
Dans un mode de réalisation avantageux, ladite structure multicouche comprend une seule couche d’étanchéité et une seule couche de renfort composite, ladite couche de renfort étant enroulée autour de ladite couche d’étanchéité.
Toutes les combinaisons de ces deux couches sont donc dans la portée de l’invention, à la condition qu’au moins ladite couche de renfort composite la plus interne soit enroulée autour de ladite couche d’étanchéité adjacente la plus externe, les autres couches adhérant ou non entre elles ou non.
Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère P1i, en particulier un polyamide.
Par l’expression même type de polymère, il faut entendre par exemple un polyamide qui peut être un polyamide identique ou différent en fonction des couches. Avantageusement, ledit polymère P1 i est un polyamide et ledit polymère P2j est une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
Avantageusement, le polyamide PU est identique pour toutes les couches d’étanchéité. Avantageusement, ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512, le PA610 et le PA612.
Dans un mode de réalisation, ledit polymère PU est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512 et le PA612.
Avantageusement, dans ladite structure multicouche, chaque couche de renfort est constituée d’une composition comprenant le même type de polymère P2j, en particulier une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
Avantageusement, le polyamide P2j est identique pour toutes les couches de renfort. Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère P1i, en particulier un polyamide et chaque couche de renfort est constituée d’une composition comprenant le même type de polymère P2j, en particulier une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates. Avantageusement, ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512, le PA610 et le PA612 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/1 OT, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T, un PA et 11/MXDT/10T.
Dans un mode de réalisation, ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512 et le PA612 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/1 OT, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T, un PA et 11/MXDT/10T.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512, le PA610 et le PA612 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/1 OT et un PA 11 /MXDT/1 OT.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512 et le PA612 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/1 OT, un PA MPMDT/10T, un PA BACT/1 OT, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/1 OT et un PA 11 /MXDT/1 OT.
Dans un encore autre mode de réalisation, la structure multicouche, est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère PU est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512, le PA610 et le PA612 et ledit polymère P2j est une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
Dans un autre mode de réalisation, la structure multicouche, est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512 et le PA612 et ledit polymère P2j est une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
Avantageusement, ladite structure multicouche comprend de plus au moins une couche externe constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.
Ladite couche externe est une seconde couche de renfort mais transparente qui permet de pouvoir mettre une inscription sur la structure.
Dans un mode de réalisation, ladite couche d’étanchéité comprend de l’intérieur vers l’extérieur: une couche (a) constituée d’une composition telle que définie ci-dessus, optionnellement une couche de liant ; une couche barrière à l’hydrogène, en particulier en fluoropolymère, notamment en PVDF, ou en EVOH, de préférence en EVOH ; optionnellement une couche de liant ; une couche (b) constituée d’une composition telle que définie ci-dessus.
S’agissant de la couche barrière
L’expression « couche barrière » désigne une couche ayant des caractéristiques de faible perméabilité et de bonne tenue à l’hydrogène, c’est-à-dire que la couche barrière ralentit le passage de l’hydrogène dans les autres couches de la structure ou même à l’extérieure de la structure. La couche barrière est donc une couche permettant avant tout de ne pas trop perdre d’hydrogène dans l’atmosphère par diffusion, permettant ainsi d’éviter des problèmes d’explosion et d’inflammation.
Ces matériaux barrières peuvent être des polyamides faiblement carbonés, c’est- à-dire dont le nombre moyen d'atomes de carbone (C) par rapport à l'atome d'azote (N) est inférieur à 9, de préférence semi-cristallins et de haut point du fusion, des polyphtalamides et/ou aussi des matériaux barrières non polyamides tels que des polymères très cristallins tels que le copolymère d’éthylène et d’alcool vinylique (noté EVOH ci-après), voire même des matériaux fluorés fonctionnalisés tels que le polyfluorure de vinylidène (PVDF) fonctionnalisé, le copolymère d’éthylène et de tétrafluoroéthylène (ETFE) fonctionnalisé, le copolymère d’éthylène, de tétrafluoroéthylène et d’hexafluoro-propylène (EFEP) fonctionnalisé, le polysulfure de phénylène (PPS) fonctionnalisé, le polynaphtalate de butylène (PBN) fonctionnalisé. Si ces polymères ne sont pas fonctionnalisés, alors on peut ajouter une couche intermédiaire de liant pour assurer une bonne adhésion au sein de la structure MLT.
Parmi ces matériaux barrière, les EVOH sont particulièrement intéressants, notamment les plus riches en comonomère alcool vivnylique ainsi que ceux modifiés chocs car ils permettent de réaliser des structures moins fragiles.
L’expression « couche barrière » signifie en d’autre termes que ladite couche barrière est très peu perméable à l’hydrogène, en particulier la perméabilité à l’hydrogène à 23 °C est inférieure à 100, en particulier inférieure à 75 cc.mm/m2.24h.atm à 23 °C sous 0% d’humidité relative (RH).
La perméabilité peut également être exprimée en (cc.mm/m2.24h.Pa).
La perméabilité doit alors être multipliée par 101325.
S’agissant du matériau fibreux
Concernant les fibres de constitution dudit matériau fibreux, ce sont notamment des fibres d’origine minérale, organique ou végétale.
Avantageusement, ledit matériau fibreux peut être ensimé ou non ensimé.
Ledit matériau fibreux peut donc comprendre jusqu'à 3,5% en poids d’un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage.
Parmi les fibres d’origine minérale, on peut citer les fibres de carbone, les fibres de verre, les fibres de basalte ou à base de basalte, les fibres de silice, ou les fibres de carbure de silicium par exemple. Parmi les fibres d’origine organique, on peut citer les fibres à base de polymère thermoplastique ou thermodurcissable, telles que des fibres de polyamides semi-aromatiques, des fibres d’aramide, des fibres de polyester ou des fibres en polyoléfines par exemple. De préférence, elles sont à base de polymère thermoplastique amorphe et présentent une température de transition vitreuse Tg supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Avantageusement, elles sont à base de polymère thermoplastique semi-cristallin et présentent une température de fusion Tf supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Ainsi, il n’y a aucun risque de fusion pour les fibres organiques de constitution du matériau fibreux lors de l’imprégnation par la matrice thermoplastique du composite final. Parmi les fibres d’origine végétale, on peut citer les fibres naturelles à base de lin, de chanvre, de lignine, de bambou, de soie notamment d’araignée, de sisal, et d’autres fibres cellulosiques, en particulier de viscose. Ces fibres d’origine végétale peuvent être utilisées pures, traitées ou bien enduites d’une couche d’enduction, en vue de faciliter l’adhérence et l’imprégnation de la matrice de polymère thermoplastique.
Le matériau fibreux peut également être un tissu, tressé ou tissé avec des fibres.
Il peut également correspondre à des fibres avec des fils de maintien.
Ces fibres de constitution peuvent être utilisées seules ou en mélanges. Ainsi, des fibres organiques peuvent être mélangées aux fibres minérales pour être pré-imprégnées de poudre polymère thermoplastique et former le matériau fibreux pré-imprégné.
Les mèches de fibres organiques peuvent avoir plusieurs grammages. Elles peuvent en outre présenter plusieurs géométries. Les fibres de constitution du matériau fibreux peuvent en outre se présenter sous forme d’un mélange de ces fibres de renfort de différentes géométries. Les fibres sont des fibres continues.
De préférence le matériau fibreux est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.
Il est utilisé sous forme d’une mèche ou de plusieurs mèches.
Selon un autre aspect, la présente invention concerne un procédé de fabrication d’une structure multicouche telle que définie ci-dessus, caractérisé en ce qu’il comprend une étape de préparation de la couche d’étanchéité par extrusion soufflage, par rotomoulage, par injection ou par extrusion. Dans un mode de réalisation, ledit procédé de fabrication d’une structure multicouche comprend une étape d’enroulement filamentaire de la couche de renfort telle que définie ci-dessus autour de la couche de d’étanchéité telle que définie ci-dessus.
Toutes les caractéristiques détaillée ci-dessus s’appliquent également au procédé.
Brève description des figures.
[Fig.1 ] présente le choc Charpy entaillé à 23 et - 40°C selon ISO 179-1 :2010 de cinq liners en KJ/m2 : de gauche à droite PA12, PA612, PA610, PA6 et PA66 (pour chaque liner : histogramme de gauche : 23° C et histogrammede droite : - 40 °C)
[Fig.2] présente la perméabilité à l’hydrogène à 23 °C en cc.mm/m2.j.atm de liners de gauche à droite : PA12, PA6, PA610 et PA612.
[Fig.3] présente la perméabilité à l’hydrogène à 23 °C en cc.mm/m2.j.atm de liners de PA610 avec différentes proportions de modifiant choc (mélange Lotader® 4700 (50%) + Lotader® AX8900 (25%) + Lucalène® 3110 (25%)) : de gauche à droite : PA610 sans modifiant choc, PA610 avec 8% de modifiant choc, PA610 avec 12% de modifiant choc, et PA610 avec 15% de modifiant choc.
[Fig.4] présente la reprise en eau en pourcentage à 23° C et 100% d’humidité relative. EXEMPLES
Dans tous les exemples, les réservoirs sont obtenus par rotomoulage de la couche d’étanchéité (liner) à une température adaptée à la nature de la résine thermoplastique utilisée.
Dans le cas du renfort composite en résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates, on utilise ensuite un procédé d’enroulement filamentaire voie humide qui consiste à enrouler des fibres autour du liner, lesquelles fibres étant préalablement pré-imprégnée dans un bain d’époxyde liquide ou un bain à base d’époxyde liquide. Le réservoir est ensuite polymérisé en étuve pendant 2h.
Dans tous les autres cas, on utilise ensuite un matériau fibreux préalablement imprégné par la résine thermoplastique (tape). Cette tape est déposée par enroulement filamentaire au moyen d’un robot comportant un chauffage laser de puissance 1500W à la vitesse de 12m/min et il n’y a pas d’étape de polymérisation.
Exemple 1 : Choc Charpy entaillé à -40° C selon IS0179-1 :2010 Un liner présentant un nombre de carbone par atome d’azote supérieur à 9 (PA12), deux liners présentant un nombre de carbone par atome d’azote inférieur à 7 (PA6 et PA66), et deux présentant un nombre de carbone par atome d’azote compris de 7 à 9 (PA610 et PA612) ont été préparés par rotomoulage comme ci-dessus.
Ces cinq liners ont été testés en choc Charpy entaillé à -40 °C et les résultats sont présentés dans la figure 1 . La tenue au choc des liners PA610 et PA612 est meilleure comparée à celle de PA6 et PA66.
Exemple 2:
Perméabilité de liners PA12, PA612, PA610 et PA6 sans modifiant choc. Un liner présentant un nombre de carbone par atome d’azote supérieur à 9 (PA12), un liner présentant un nombre de carbone par atome d’azote inférieur à 7 (PA6), et deux présentant un nombre de carbone par atome d’azote compris de 7 à 9 (PA610 et PA612) ont été préparés par rotomoulage et la perméabilité à l’hydrogène à 23 °C a été testée. Cela consiste à balayer la face supérieure du film par le gaz d'essai (Hydrogène) et à mesurer par chromatographie en phase gazeuse le flux qui diffuse à travers le film dans la partie inférieure, balayée par le gaz vecteur : l’Azote Les conditions expérimentales sont présentées dans le tableau 1 :
[Tableaux 1]
Figure imgf000025_0001
Les résultats sont présentés en figure 2 et montrent que le liner en PA610 et PA612 présentent tous deux une perméabilité à l’hydrogène très inférieure à celle d’un liner en PA12.
La figure 3 montre l’influence du modifiant choc sur la perméabilité à l’hydrogène d’un liner PA610. Exemple 3 : reprise en eau
Des éprouvettes de PA6, PA66, PA610, PA612 et PA12 sont immergées dans de l’eau déminéralisée à 23°C. Quotidiennement (hors week-erd), les échantillons sont sortis de l’eau, essuyés, pesés, et réintroduits dans l’eau. Une fois que la masse se stabilisé (atteinte d’un plateau) la valeur est reportée sur le graphique. Cette valeur correspond à la masse maximale d’eau que ces produits peuvent reprendre à 23 °C.
La figure 4 montre que la reprise en eau de PA612 et PA610 est bien inférieure à celle de PA6 et PA66.
Des liners en PA6, PA6.10, PA6.12 et PA12 ont été recouvert d’une coque composite cette dernière est réalisée par enroulement de fibres de carbone T700SC31 E (produite par Toray) imprégnées d’une résine époxy. L’ensemble est chauffé pendant 5h à 110°C pour assurer la cuisson de la résine époxy. Les réservoirs sont ensuite découpés et analysés. Le liner PA6 présente des bulles sur la face externe (face en contact avec la structure composite). Les liners en PA6.10, PA6.12 et PA12 ne présentent aucun défaut. Exemple 4
Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite époxyde (Tg 120°C) fibres de carbone T700SC31 E (produite par Toray) et d’une couche d’étanchéité en PA612.
Des essais de pression cyclée à -40 °C sont effectués sur les réservoirs. La pression est appliquée via du glycol ou une huile siliconée, des cycles entre 20 et 875 bar sont appliqués selon la Régulation (EC) No 79/2009, jusqu’à atteindre 100 cycles ou la casse du réservoir (déviation par rapport à la régulation EC79 qui exige 45000 cycles).
Suite à ces cycles, le réservoir est vidé, un essai de mise de pression d’hydrogène est effectué sur le réservoir immergé. Aucune fuite n’est observée. Une observation de l’intérieur du réservoir ne permet d’identifier de fissure Exemple 5 (contre exemple) :
Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite époxyde (Tg 120°C) fibres de carbone T700SC31 E (produite par Toray) et d’une couche d’étanchéité en PA12.
Le même essai est réalisé avec le même résultat : absence de fissure Exemple 6 : Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite époxyde (Tg 120°C) fibres de carbone T7006C31 E (produite par Toray) et d’une couche d’étanchéité en PA6.
Le même essai de pression cyclée est effectué, mais sur uniquement 2 cycles. Après 2 cycles, le réservoir est vidé, un essai de mise de pression d’hydrogène est effectué sur le réservoir immergé. Un filet de bulles est observé, signe de la casse du réservoir. Une observation de l’intérieur du réservoir confirme cette casse.
Ces essais nous montrent qu’un liner en PA6 est beaucoup moins résistant qu’un liner en PA612 ou PA12. Les quatre figures 1 à 4 montrent que PA610 et PA612 présentent le meilleur compromis pour la tenue choc, la perméabilité et la reprise en eau vis-à-vis de PA12, PA6 et PA66. Un liner en PA610 ou PA612 permet donc d’offrir un bon compromis entre résistance mécanique et propriété barrière à l’hydrogène tout en assurant une moindre reprise en humidité.

Claims

REVENDICATIONS
1 . Structure multicouche destinée au transport, à la distribution et au stockage de l’hydrogène, comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite la plus interne étant enroulée autour de la dite couche d’étanchéité (1) adjacente la plus externe, lesdites couches d’étanchéité étant constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide aliphatique P1 i, i=1 à n, n étant le nombre de couches d’étanchéité, semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est supérieure à 200°C, à l’exdusion d’un polyéther block amide (PEBA), ledit polymère thermoplastique polyamide étant un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote compris de 7 à 9, jusqu’à 30% en poids de modifiant choc, notamment jusqu’à moins de 15% en poids de modifiant choc, en particulier jusqu’à 9% en poids de modifiant choc par rapport au poids total de la composition, jusqu’à 1 ,5% en poids de plastifiant par rapport au poids total de la composition, ladite composition étant dépourvue d’agent nucléant, ledit au moins un polymère thermoplastique polyamide de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, (j=1 à m, m étant le nombre de couches de renfort), en particulier une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates, ladite structure étant dépourvue d’une couche en polymère polyamide, ladite couche en polymère polyamide étant la plus extérieure et adjacente à la couche la plus extérieure de renfort composite.
2. Structure multicouche selon la revendication 1 , caractérisée en ce que les copolymères d’éthylène et d’alpha-oléfine sont exclus du modifiant choc.
3. Structure multicouche selon l’une des revendications 1 ou 2, caractérisée en ce que chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
4. Structure multicouche selon l’une des revendications 1 à 3, caractérisée en ce qu’elle présente une seule couche d’étanchéité et une seule couche de renfort.
5. Structure multicouche selon l’une des revendications 1 à 4, caractérisée en ce que ledit polymère P1i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512, le PA610 et le PA612, en particulier parmi le PA410, le PA412, le PA510, le PA512 et le PA612.
6. Structure multicouche selon l’une des revendications 1 à 5, caractérisée en ce que ledit polymère P2j est une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
7. Structure multicouche selon l’une des revendications 5 ou 6, caractérisée en ce que ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1 i est un polyamide aliphatique choisi parmi le PA410, le PA412, le PA510, le PA512, le PA610 et le PA612, en particulier parmi le PA410, le PA412, le PA510, le PA512 et le PA612. et ledit polymère P2j est une résine époxyde ou à base d’époxyde ou une résine à base de polyisocyanates, en particulier les polyisocyanurates.
8. Structure multicouche selon l’une des revendications 1 à 7, caractérisée en ce que le matériau fibreux de la couche de renfort composite est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.
9. Structure multicouche selon l’une des revendications 1 à 8, caractérisée en ce que ladite structure comprend de plus au moins une couche externe constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.
10. Structure multicouche selon l’une des revendications 1 à 9, caractérisée en ce que ladite couche d’étanchéité comprend de l’intérieur vers l’extérieur: une couche (a) constituée d’une composition telle que définie dans la revendication 1 , optionnellement une couche de liant ; une couche barrière à l’hydrogène, en particulier en fluoropolymère, notamment en PVDF, ou en EVOH, de préférence en EVOH ; optionnellement une couche de liant ; une couche (b) constituée d’une composition telle que définie dans la revendication 1 .
11. Procédé de fabrication d’une structure multicouche telle que définie dans l’une des revendications 1 à 10, caractérisé en ce qu’il comprend une étape de préparation de la couche d’étanchéité par extrusion soufflage, par rotomoulage, par injection ou par extrusion.
12. Procédé de fabrication d’une structure multicouche selon la revendication 11 , caractérisé en ce qu’il comprend une étape d’enroulement filamentaire de la couche de renfort telle que définie dans la revendication 1 autour de la couche d’étanchéité telle que définie dans la revendication 1 .
PCT/FR2022/051248 2021-06-28 2022-06-24 Structure multicouche pour le transport ou le stockage de l'hydrogene WO2023275465A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22743852.0A EP4363210A1 (fr) 2021-06-28 2022-06-24 Structure multicouche pour le transport ou le stockage de l'hydrogene
KR1020247003252A KR20240027092A (ko) 2021-06-28 2022-06-24 수소를 수송 또는 저장하기 위한 다층 구조물
CA3221459A CA3221459A1 (fr) 2021-06-28 2022-06-24 Structure multicouche pour le transport ou le stockage de l'hydrogene
CN202280046262.4A CN117615904A (zh) 2021-06-28 2022-06-24 用于运输或储存氢的多层结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106907A FR3124428A1 (fr) 2021-06-28 2021-06-28 Structure multicouche pour le transport ou le stockage de l’hydrogene
FRFR2106907 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023275465A1 true WO2023275465A1 (fr) 2023-01-05

Family

ID=77411864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051248 WO2023275465A1 (fr) 2021-06-28 2022-06-24 Structure multicouche pour le transport ou le stockage de l'hydrogene

Country Status (6)

Country Link
EP (1) EP4363210A1 (fr)
KR (1) KR20240027092A (fr)
CN (1) CN117615904A (fr)
CA (1) CA3221459A1 (fr)
FR (1) FR3124428A1 (fr)
WO (1) WO2023275465A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117704261A (zh) * 2023-12-25 2024-03-15 沈阳欧施盾新材料科技有限公司 一种高密封性气瓶及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0722961A1 (fr) 1994-12-05 1996-07-24 Rohm And Haas Company Préparation d'agents modifiant la résistance à l'impact à base de butadiène
EP1505099A2 (fr) 2003-08-05 2005-02-09 Arkema Polymides semi aromatiques souples à faible reprise en humidité
FR2923575A1 (fr) 2007-11-13 2009-05-15 Michelin Soc Tech Reservoir de fluide sous pression, methode et appareil pour la fabrication d'un tel reservoir.
US20090149600A1 (en) 2004-11-22 2009-06-11 Arkema Inc. Impact modified thermoplastic resin composition
US20140008373A1 (en) 2011-04-01 2014-01-09 Luxfer Canada Limited Multilayer liner for a high-pressure gas cylinder
EP3112421A1 (fr) 2015-02-27 2017-01-04 Toray Industries, Inc. Composition de résine polyamide pour article moulé destiné à être en contact avec de l'hydrogène haute pression, et article moulé obtenu à partir de celle-ci
EP3222668A1 (fr) 2014-11-20 2017-09-27 Toray Industries, Inc. Composition de résine polyamide pour produit moulé entrant en contact avec de l'hydrogène sous haute pression et produit moulé l'utilisant
WO2018055491A1 (fr) 2016-09-20 2018-03-29 Novartis Ag Procédé de fabrication de lentilles de contact avec des revêtements lubrifiants durables
WO2021019180A1 (fr) * 2019-07-30 2021-02-04 Arkema France Structure multicouche pour le transport ou le stockage du gaz ou pour l'exploitation des gisements de petrole sous la mer
WO2021094686A1 (fr) * 2019-11-14 2021-05-20 Arkema France Procédé de préparation d'un réservoir d'hydrogène comprenant une couche d'étanchéité et une embase
WO2021152255A1 (fr) * 2020-01-28 2021-08-05 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021209718A1 (fr) * 2020-04-16 2021-10-21 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0722961A1 (fr) 1994-12-05 1996-07-24 Rohm And Haas Company Préparation d'agents modifiant la résistance à l'impact à base de butadiène
EP1505099A2 (fr) 2003-08-05 2005-02-09 Arkema Polymides semi aromatiques souples à faible reprise en humidité
US20090149600A1 (en) 2004-11-22 2009-06-11 Arkema Inc. Impact modified thermoplastic resin composition
FR2923575A1 (fr) 2007-11-13 2009-05-15 Michelin Soc Tech Reservoir de fluide sous pression, methode et appareil pour la fabrication d'un tel reservoir.
US20140008373A1 (en) 2011-04-01 2014-01-09 Luxfer Canada Limited Multilayer liner for a high-pressure gas cylinder
EP3222668A1 (fr) 2014-11-20 2017-09-27 Toray Industries, Inc. Composition de résine polyamide pour produit moulé entrant en contact avec de l'hydrogène sous haute pression et produit moulé l'utilisant
EP3112421A1 (fr) 2015-02-27 2017-01-04 Toray Industries, Inc. Composition de résine polyamide pour article moulé destiné à être en contact avec de l'hydrogène haute pression, et article moulé obtenu à partir de celle-ci
WO2018055491A1 (fr) 2016-09-20 2018-03-29 Novartis Ag Procédé de fabrication de lentilles de contact avec des revêtements lubrifiants durables
WO2021019180A1 (fr) * 2019-07-30 2021-02-04 Arkema France Structure multicouche pour le transport ou le stockage du gaz ou pour l'exploitation des gisements de petrole sous la mer
WO2021094686A1 (fr) * 2019-11-14 2021-05-20 Arkema France Procédé de préparation d'un réservoir d'hydrogène comprenant une couche d'étanchéité et une embase
WO2021152255A1 (fr) * 2020-01-28 2021-08-05 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021209718A1 (fr) * 2020-04-16 2021-10-21 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GALASSI ET AL.: "Word hydrogen energy conférence 2012, Onboard compressed hydrogen storage : fast filing experiments and simulations", ENERGY PROCEDIA, vol. 29, 2012, pages 192 - 200

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117704261A (zh) * 2023-12-25 2024-03-15 沈阳欧施盾新材料科技有限公司 一种高密封性气瓶及其制备方法

Also Published As

Publication number Publication date
CA3221459A1 (fr) 2023-01-05
EP4363210A1 (fr) 2024-05-08
CN117615904A (zh) 2024-02-27
KR20240027092A (ko) 2024-02-29
FR3124428A1 (fr) 2022-12-30

Similar Documents

Publication Publication Date Title
FR3099409A1 (fr) Structure multicouche pour le transport ou le stockage de l’hydrogene
EP3969256A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021209718A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
EP4096922A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
EP4097387A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2023275465A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
CA3163649C (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
EP4221975A1 (fr) Structure multicouche pour le stockage de l'hydrogene
WO2023083783A1 (fr) Reservoir pour le stockage de gaz
FR3124516A1 (fr) Compositions de soufflage moulage a base de polyamides branches et leurs utilisations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22743852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3221459

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014613

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2023575842

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18573626

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280046262.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247003252

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003252

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022743852

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022743852

Country of ref document: EP

Effective date: 20240129