EP4189155A1 - Procede d'enduction d'un support textile - Google Patents

Procede d'enduction d'un support textile

Info

Publication number
EP4189155A1
EP4189155A1 EP21755799.0A EP21755799A EP4189155A1 EP 4189155 A1 EP4189155 A1 EP 4189155A1 EP 21755799 A EP21755799 A EP 21755799A EP 4189155 A1 EP4189155 A1 EP 4189155A1
Authority
EP
European Patent Office
Prior art keywords
silicone composition
organopolysiloxane
silicone
textile
per molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21755799.0A
Other languages
German (de)
English (en)
Inventor
Perrine Theil
Emmanuel POUGET
Magali PUILLET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elkem Silicones France SAS
Original Assignee
Elkem Silicones France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Silicones France SAS filed Critical Elkem Silicones France SAS
Publication of EP4189155A1 publication Critical patent/EP4189155A1/fr
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/10Open-work fabrics
    • D04B21/12Open-work fabrics characterised by thread material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B2400/00Functions or special features of shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
    • A41B2400/80Friction or grip reinforcement
    • A41B2400/82Friction or grip reinforcement with the body of the user
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0112One smooth surface, e.g. laminated or coated

Definitions

  • TITLE PROCESS FOR COATING A TEXTILE SUPPORT
  • the present invention relates to a process for coating an openwork or elastic textile support with a crosslinkable silicone composition by polyaddition reactions by irradiation with UV radiation, the source of which is a UV-LED lamp.
  • silicone compositions for coating textile materials to obtain properties of adhesion to the skin and of non-slip, in particular for certain clothing, hygiene articles and medical devices.
  • the textiles thus obtained, as such or transformed into textile articles, can be used in many applications, such as, for example, in the field of clothing, in particular lingerie such as lace for stocking tops or bras. , hygiene articles, and medical devices, such as compression bandages or dressings.
  • Patent applications WO 2007/112982 and WO 2010/139868 describe processes for coating a textile surface with an elastomeric silicone composition crosslinkable by polyaddition.
  • the purpose of said silicone compositions is to give the textile an anti-slip property.
  • the silicone coating is obtained by coating the fibrous support then hardening resulting from the polyaddition of unsaturated groups, typically alkenyl groups, of a polyorganosiloxane on hydrogens of the same or another polyorganosiloxane.
  • unsaturated groups typically alkenyl groups
  • a polyorganosiloxane on hydrogens of the same or another polyorganosiloxane.
  • liquid silicone compositions crosslinking by condensation reactions retain significant appeal in this type of application. They offer the possibility of cross-linking at room temperature when exposed to humidity in the air. Mention may be made, for example, of patent applications WO 2010/146249, WO 2010/146250 and WO 2015/158967 which describe coating processes on a flexible support, in particular a textile, with a silicone elastomer composition crosslinkable by polycondensation.
  • WO 2010/146249, WO 2010/146250 and WO 2015/158967 which describe coating processes on a flexible support, in particular a textile, with a silicone elastomer composition crosslinkable by polycondensation.
  • RTV-1 technologies cold vulcanizable elastomer technologies, or "Room Temperature Vulcanising" according to the Anglo-Saxon terminology, packaged in a single package
  • these compositions generate volatile organic compounds such as alcohol or acetic acid, which can be a prohibitive drawback.
  • silicone formulations crosslinked under UV by polyaddition are described in the literature. Mention may be made, for example, of Japanese patent JP 06-531724 B2, which describes a process for manufacturing an airbag textile coated with a UV-curable silicone elastomer. This process consists of depositing a silicone composition on the textile material and then irradiating the coated surface with UV.
  • a method and the silicone composition used were developed to address the problem of the adhesion of the silicone coating to the textile for the airbag and the problem of the formation of wrinkles on the surface of the coating.
  • the final properties sought for the coating of an airbag fabric are completely different from the properties of adhesion to the skin and anti-slip sought for a clothing or hygiene fabric.
  • One objective of the present invention is to provide a process for coating a silicone composition suitable for a textile support that is fragile in the face of a rise in temperature. Another objective is to propose a coating process whose coating rate is high, which makes it possible to achieve better productivity. In addition, it is desirable for this process to consume little energy, for a better production cost and a reduced environmental impact. Moreover, it is desired that the textile support thus coated with the silicone elastomer has good properties in terms of end use, in particular of adhesion to the skin and of anti-slip. Care must also be taken that, after coating and crosslinking of the silicone composition on the textile, there are no phenomena of release of oily substances which could stain the textile and/or its packaging. This silicone composition must also be non-toxic and odorless. It is also desirable for the coating to be able to resist washing and rubbing, and for it to have good resistance to elongation when the textile material is handled.
  • the subject of the present invention is therefore a process for coating a crosslinkable silicone composition X by polyaddition reactions to form a silicone elastomer on an openwork and/or elastic textile support S comprising steps a), b) and c) following steps: a) a crosslinkable silicone composition X is provided by polyaddition reactions comprising:
  • At least one organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon
  • said silicone composition X is deposited continuously or discontinuously on at least one face of said textile support S, and c) one proceeds to the crosslinking of said silicone composition X by irradiation with UV radiation, the source of which is a UV-LED lamp.
  • the textile support S coated on at least one side with a silicone elastomer obtainable by the method as defined above is also an object of the present invention.
  • another object of the invention is the use of said coated textile support S in the field of clothing, in particular lingerie such as lace for tops, stockings or bras and sportswear, articles hygiene products, and medical devices, such as compression bandages or dressings.
  • UV means ultra-violet.
  • Ultraviolet radiation is defined as electromagnetic radiation whose wavelength is between about 100 nm and about 400 nm, ie below the visible light spectrum.
  • LED is the abbreviation well known to those skilled in the art for “electroluminescent diode” (also DEL in French).
  • the subject of the present invention is therefore a process for coating a crosslinkable silicone composition X by polyaddition reactions to form a silicone elastomer on an openwork and/or elastic textile support S.
  • textile is a generic term encompassing all textile structures. Textiles can be made of yarns, fibers, filaments and/or other materials. They include in particular flexible fabrics, whether woven, glued, knitted, braided, felt, needled, sewn, or made by another method of manufacture.
  • yarn we mean for example a continuous multifilament object, a continuous yarn obtained by assembling several yarns or a continuous yarn of fibers, obtained from a single type of fiber, or from a mixture of fibers.
  • fiber is meant, for example, a short or long fiber, a fiber intended to be worked in spinning or for the manufacture of nonwoven articles or a tow intended to be cut to form short fibers.
  • the textile may well consist of yarns, fibers and/or filaments having undergone one or more treatment steps before the production of the textile surface, such as, for example, texturing, stretching, stretching-texturing, sizing, relaxation, heat setting, twisting, setting, crimping, washing and/or dyeing.
  • any type of textile support can be used.
  • textiles of plant origin such as cotton, linen, hemp, jute, coconut, cellulosic fibers from paper
  • textiles of animal origin such as wool, hair, leather and silks
  • - artificial textiles such as: cellulosic textiles, such as cellulose or its derivatives; and protein textiles of animal or vegetable origin; and
  • Synthetic textiles obtained by polymerization or polycondensation may in particular comprise in their matrix different types of additives, such as pigments, delustrants, matifying agents, catalysts, heat and/or light stabilizers, antistatic agents, flame retardants, antibacterial, anti-fungal and/or anti-mite agents.
  • additives such as pigments, delustrants, matifying agents, catalysts, heat and/or light stabilizers, antistatic agents, flame retardants, antibacterial, anti-fungal and/or anti-mite agents.
  • type of textile surfaces mention may in particular be made of surfaces obtained by rectilinear interlacing of yarns or fabrics, surfaces obtained by curvilinear interlacing of yarns or knits, mixed or tulle surfaces, nonwoven surfaces and composite surfaces.
  • the textile support used in the method of the present invention may consist of one or more textiles, identical or different, assembled in various ways.
  • the textile can be mono- or multi-layer(s).
  • the textile support can for example consist of a multilayer structure that can be produced by different assembly means, such as mechanical means such as sewing, welding, or point or continuous bonding.
  • the textile support can, in addition to the coating process according to the present invention, undergo one or more other subsequent treatments, also called finishing or finishing treatment. These other treatments can be carried out before, after and/or during said coating process of the invention.
  • Other subsequent treatments include: dyeing, printing, laminating, coating, assembly with other materials or textile surfaces, washing, degreasing, preforming or fixing.
  • the textile support S according to the present invention is an openwork and/or elastic textile support.
  • the textile support according to the invention is perforated and elastic.
  • a textile is said to be "openwork" when it includes free spaces not made up of textile.
  • Said free spaces (which may be designated as pores, voids, cells, holes, interstices or orifices) may be evenly distributed or not on the textile. These free spaces can be created in particular during the development of the textile.
  • the smallest of the dimensions of these free spaces it is preferable for the smallest of the dimensions of these free spaces to be less than 5 mm, in particular less than 1 mm.
  • a textile is said to be "elastic" when it has an elasticity rate greater than 5%, preferably greater than 15%.
  • the elasticity rate of a textile can typically go up to 500%.
  • the elasticity rate represents the percentage of elongation of the textile when it is stretched to the maximum. Elongation can be longitudinal only, transverse only, or longitudinal and transverse.
  • the textile support is a lace or an elastic band.
  • a crosslinkable silicone composition X is provided by polyaddition reactions comprising:
  • the organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to the silicon, can in particular be formed:
  • Y is C2-C6 alkenyl, preferably vinyl
  • R 1 groups may be identical to or different from each other.
  • organopolysiloxanes A may have a linear structure, essentially consisting of "D" siloxyl units chosen from the group consisting of the Y2S1O2 / 2, YR 1 Si0 2/2 and R ⁇ SÎOM siloxyl units, and of terminal "M” siloxyl units chosen from the group consisting of the siloxyl units YR ⁇ SiOi ⁇ , Y2R 1 SiOi/2 and R'; S i 01 2.
  • the symbols Y and R 1 are as described above.
  • terminal “M” units mention may be made of the trimethylsiloxy, dimethylphenylsiloxy, dimethylvinylsiloxy or dimethylhexenylsiloxy groups.
  • D units mention may be made of the dimethylsiloxy, methylphenylsiloxy, diphenylsiloxy, methylvinylsiloxy, methylbutenylsiloxy, methylhexenylsiloxy, methyldecenylsiloxy or methyldecadienylsiloxy groups.
  • linear organopolysiloxanes which can be organopolysiloxanes A according to the invention are:
  • the organopolysiloxane A contains terminal dimethylvinylsilyl units and even more preferably the organopolysiloxane A is a poly(dimethylsiloxane) with dimethylvinylsilyl ends.
  • a silicone oil generally has a viscosity between 1 mPa.s and 2,000,000 mPa.s.
  • said organopolysiloxanes A are oils with a dynamic viscosity of between 20 mPa.s and 300,000 mPa.s, preferably between 100 mPa.s and 200,000 mPa.s at 25° C., and more preferably between 600 mPa.s and 150,000 mPa.s.
  • the organopolysiloxanes A may additionally contain “T” (R′SiOs) siloxyl units and/or “Q” (S1O4 / 2) siloxyl units.
  • R 1 are as described above.
  • the organopolysiloxanes A then have a branched structure. Examples of branched organopolysiloxanes which can be organopolysiloxanes A according to the invention are:
  • the silicone composition X does not comprise branched organopolysiloxanes or resins comprising C2-C6 alkenyl units.
  • the organopolysiloxane compound A has a mass content of alkenyl unit of between 0.001% and 30%, preferably between 0.01% and 10%, preferably between 0.02 and 5%.
  • the silicone composition X preferably comprises from 50% to 90% of organopolysiloxane A, more preferably from 60% to 87% by weight of organopolysiloxane A, and even more preferably from 70% to 85% by weight of organopolysiloxane A per relative to the total weight of the silicone composition X.
  • the silicone composition X may comprise a single organopolysiloxane A or a mixture of several organopolysiloxanes A having, for example, different viscosities and/or different structures.
  • the silicone composition X may comprise a mixture:
  • organopolysiloxane compound A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon, as described above;
  • organopolysiloxane compound A′ having, per molecule, a single C2-C6 alkenyl group bonded to silicon.
  • the presence of a monoalkenyl polyorganosiloxane in the silicone composition X can advantageously improve the level of adhesion to the skin of the coated textile according to the invention.
  • monoalkenyl organopolysiloxanes which can be organopolysiloxanes A′ according to the invention are:
  • the silicone composition X preferably comprises from 4% to 20% of monoalkenyl organopolysiloxane A', more preferentially from 8% to 18% by weight of monoalkenyl organopolysiloxane A', and even more preferentially from 10% to 15% by weight of monoalkenyl organopolysiloxane A′ relative to the total weight of the silicone composition X.
  • Organopolysiloxane B is an organohydrogenpolysiloxane compound comprising per molecule at least two, and preferably at least three, hydrogenosilyl functions or Si—H units.
  • the organohydrogenpolysiloxane B can advantageously be an organopolysiloxane comprising at least two, preferably at least three, siloxyl units of the following formula: in which :
  • R 2 radicals which are identical or different, represent a monovalent radical having from 1 to 12 carbon atoms
  • R 2 f SiO (4-f)/2 in which R 2 has the same meaning as above, and f 0, 1, 2, or 3.
  • R 2 can represent a monovalent radical chosen from the group consisting of alkyl groups having 1 to 8 carbon atoms, optionally substituted by at least one halogen atom such as chlorine or fluorine, the cycloalkyl groups having from 3 to 8 carbon atoms and aryl groups having 6 to 12 carbon atoms.
  • R 2 can advantageously be chosen from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl.
  • the organohydrogenpolysiloxane B can have a linear, branched or cyclic structure.
  • the degree of polymerization is preferably greater than or equal to 2. Generally, it is less than 5000.
  • linear polymers these consist essentially of siloxyl units chosen from the following formulae units D: RLSiCf or D': R 2 HSi0 2/2 , and of terminal siloxyl units chosen from the units of following formulas M: R 2 3 SiOi/2 or M': R 2 2HSiOi/2 where R 2 has the same meaning as above.
  • organohydrogenpolysiloxanes which may be organopolysiloxanes B according to the invention comprising at least two hydrogen atoms bonded to a silicon atom are:
  • organohydrogenpolysiloxane B has a branched structure
  • it is preferably chosen from the group consisting of the silicone resins of the following formulas:
  • T siloxyl unit of formula R 2 ;SiO 12 and Q: siloxyl unit of formula S1O4/2 where R 2 has the same meaning as above.
  • the organohydrogenpolysiloxane compound B has a mass content of hydrogenosilyl Si—H functions of between 0.2% and 91%, more preferably between 3% and 80%.
  • the molar ratio of the hydrogenosilyl Si-H functions to the alkene functions can advantageously be between 0.2 and 20, preferably between 0.5 and 15, more preferably between 0.5 and 10, and even more preferably between 0.5 and 5.
  • the viscosity of the organohydrogenpolysiloxane B is between 1 mPa.s and 5000 mPa.s, more preferably between 1 mPa.s and 2000 mPa.s and even more preferably between 5 mPa.s and 1000 mPa.s.
  • the silicone composition X preferably comprises from 0.1% to 10% of organohydrogenpolysiloxane B, and more preferably from 0.5% to 5% by weight, relative to the total weight of the silicone composition X.
  • the silicone composition X can comprise a single organohydrogenpolysiloxane B or a mixture of several organohydrogenpolysiloxanes B having, for example, different viscosities and/or different structures.
  • the silicone composition X may comprise a mixture:
  • At least one organohydrogenpolysiloxane B as described above comprises two SiH functions per molecule
  • At least one organohydrogenpolysiloxane B as described above comprises at least three SiH functions per molecule.
  • Organohydrogenpolysiloxane B comprising two SiH functions per molecule acts as an extender.
  • Organohydrogenpolysiloxane B comprising at least three SiH functions per molecule acts as a crosslinker.
  • the hydrosilylation catalyst C has the particularity of being activatable by UV irradiation. It is an essentially inactive compound in the absence of irradiation. When subjected to UV irradiation, preferably at a wavelength between 200 nm and 400 nm, it activates and becomes a hydrosilylation catalyst, which allows the reaction between the alkenyl groups of the organopolysiloxane A and the hydrogenosilyl functions of the organopolysiloxane B.
  • the hydrosilylation catalyst C according to the present invention is preferably a platinum compound. It may in particular be chosen from platinum b-diketonate complexes, h-5-cyclopentadienyl-trialkyl platinum complexes, or their derivatives.
  • the hydrosilylation catalyst C can be chosen from platinum (II) bis- (acetylacetonate), platinum (IV) trimethyl-(methylcyclopentadienyl), platinum (IV) trimethyl-(trimethylsilyl-cyclopentadienyl) ( IV) and mixtures thereof.
  • the hydrosilylation catalyst C is preferably used previously below in a suitable solvent. Nevertheless, it is not excluded to use it in solid form.
  • the catalytically effective quantity of catalyst C is generally between 2 ppm and 400 ppm by mass, preferably between 5 ppm and 200 ppm by mass, calculated by weight of metal, based on the total weight of the silicone composition X.
  • the presence of an additional hydrosilylation catalyst conventionally thermally activatable is not essential in the silicone composition X.
  • the silicone composition X according to the invention does not contain any catalyst. thermally activatable hydrosilylation. In particular, it does not contain Karstedt's platinum catalyst.
  • the silicone composition X according to the present invention may optionally comprise a photosensitizer.
  • a photosensitizer can be chosen from molecules that absorb different wavelengths from those absorbed by catalyst C in order to extend its spectral sensitivity.
  • photosensitizers well known to those skilled in the art. Mention may be made of: anthracene, pyrene, phenothiazine, Michler's ketone, xanthones, thioxanthones, benzophenone, acetophenone, carbazole derivatives, fluorenone, anthraquinone, camphorquinone or oxides of acylphosphine.
  • the photosensitizer when it is present in the composition can be added at a level of 0.05% to 10%, preferably between 0.1 and 2%, by weight relative to the total weight of the silicone composition X.
  • the presence of a photosensitizer is not essential in the silicone composition X.
  • the silicone composition X according to the invention does not contain a photosensitizer.
  • the silicone composition X according to the present invention may optionally comprise other components.
  • the silicone composition X according to the present invention may optionally comprise a filler D, preferably a reinforcing filler or a filler.
  • the reinforcing fillers are preferably combustion silicas or precipitation silicas.
  • Mineral fillers of silica type preferably have a specific surface, measured according to BET methods, of at least 50 m 2 /g, in particular between 50 m 2 /g and 400 m 2 /g, preferably greater than 70 m 2 / g, an average dimension of the primary particles of less than 0.1 ⁇ m (micrometer) and an apparent density of less than 200 g/litre.
  • Mineral fillers of silica type can be incorporated as such in the silicone composition or optionally be treated with a compatibilizer.
  • these silicas can optionally be treated with one or more organosilicon compounds, for example organosilane or organosilazane, usually used for this use.
  • These compounds include methylpolysiloxanes such as hexamethyldisiloxane, octamethylcyclo-tetrasiloxane, methylpolysilazanes such as hexamethyldisilazane, hexamethylcyclotrisilazane, tetramethyldivinyldisilazane, chlorosilanes such as dimethyl-dichlorosilane, trimethylchlorosilane, methylvinyldichlorosilane, dimethylvinylchlorosilane, alkoxysilanes such as dimethyldimethoxysilane, dimethylvinylethoxysilane, trimethylmethoxysilane. These compounds can be used alone or as a mixture.
  • the silica can optionally be predispersed in a silicone oil, so as to obtain a suspension. It is particularly preferred to use a suspension of fumed silica treated, in particular with hexamethyldisilazane, in a polyorganosiloxane oil, in particular vinyl-coated.
  • the silicone composition X preferably comprises from 5% to 20% of filler D, and more preferably from 8% to 18% by weight of filler D, relative to the total weight of the silicone composition X.
  • filler D it is also possible to add in the silicone composition X other types of fillers, in particular fillers, such as, for example, crushed quartz, diatomaceous earth, calcium carbonate and/or kaolin. .
  • the silicone composition X according to the present invention may optionally comprise at least one non-reactive polyorganosiloxane compound E, in particular in the form of an oil or resin, generally to adjust the viscosity of the composition or to act as a diluent .
  • This polyorganosiloxane compound E does not comprise reactive groups of the alkenylsilyl and/or hydrogenosilyl type.
  • the polyorganosiloxane compound E can advantageously be an organopolysiloxane comprising:
  • the non-reactive polyorganosiloxane compound E is a dimethylpolysiloxane oil with trimethylsilyl ends.
  • the silicone composition X according to the present invention may optionally comprise other additives traditionally used in this technical field by those skilled in the art, for example dyes, pigments, fire resistance agents, bactericides, mineral or organic pigments, etc.
  • a crosslinking inhibitor is present in silicone compositions crosslinking by polyaddition.
  • the function of the cross-linking inhibitor is to slow down the hydrosilylation reaction. Mention may be made, by way of examples, of the following products which are commercially available: 1-ethynyl-l-cyclohexanol, methyl-3-dodecyne-l-ol-3, trimethyl-3,7,ll-dodecyne- l-ol-3, diphenyl-l,l-propyne-2-ol-l, ethyl-3-ethyl-6-nonyne-l-ol-3 and methyl-3-pentadecyne-l-ol- 3.
  • the presence of a crosslinking inhibitor is not essential in the silicone composition X according to the present invention insofar as the hydrosilylation catalyst C is activated by UV irradiation.
  • the silicone composition X according to the invention does not contain any crosslinking inhibitor. In particular, it does not contain 1-ethynyl-l-cyclohexanol (ECH).
  • an adhesion promoter compound may be present in the silicone compositions when these are intended to be used as a coating on smooth and dense surfaces.
  • An adhesion promoter can be an organosilicon compound comprising an adhesion promoter functional group.
  • it may be an organosilicon compound comprising:
  • VTMO vinyltrimethoxysilane
  • GLYMO 3-glycidoxypropyl-trimethoxysilane
  • MEMO methacryloxypropyltrimethoxysilane
  • the silicone composition X according to the present invention does not contain any adhesion-promoting compound.
  • the silicone composition X according to the present invention preferably does not contain any of the adhesion-promoting compounds mentioned individually above.
  • the silicone composition X according to the invention comprises, based on the total weight of the silicone composition X:
  • organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon
  • organopolysiloxane B having, per molecule, at least two SiH units
  • a filler D preferably of silica optionally treated with a compatibilizer.
  • the silicone composition X further comprises:
  • the percentages and ppm are mass percentages and ppm.
  • the quantity by weight of catalyst C is calculated by weight of platinum metal.
  • the silicone composition X has a dynamic viscosity of between 50,000 mPa.s and 300,000 mPa.s, more preferably of between 80,000 mPa.s and 200,000 mPa.s.
  • the silicone composition X can be prepared by mixing all of the different components as described above.
  • the silicone composition X according to the invention can be prepared from a two-component system characterized in that it comes in two separate parts intended to be mixed to form said silicone composition X, and in that one of the parts comprises the catalyst C and does not comprise the organopolysiloxane B, while the other part comprises the organopolysiloxane B and does not comprise the catalyst C.
  • the silicone composition X according to the invention can be a single-component system.
  • said silicone composition X is deposited continuously or discontinuously on at least one face of said textile support S.
  • the deposition can be done typically by transfer, by lick roll or by spraying using a nozzle, a doctor blade, a rotating frame or a reverse roll (or "reverse roll” according to English terminology). -Saxon).
  • the thickness of the layer of silicone composition X deposited on the textile can be between 0.1 mm and 0.8 mm, preferably between 0.3 mm and 0.6 mm and even more preferably between 0.4 mm and 0.5mm.
  • the deposition of the silicone composition X on at least one side of said textile support S can be done by printing, typically using a printer.
  • a person skilled in the art may use any type of printer technology suitable for depositing a silicone composition. Mention may be made, for example, of inkjet printing techniques as described in application WO 2020/249694. Alternatively, extrusion printing technology can be used.
  • the techniques and devices described for the 3D printing of silicone composition are applicable to the deposition of silicone composition according to the present invention, insofar as only a single layer or a small layer is deposited. number of layers. It is possible to repeat the deposition (b) and crosslinking (c) steps of the process that is the subject of the present invention several times if necessary to obtain the desired shape and thickness of deposit.
  • said silicone composition X is crosslinked by irradiation with UV radiation, the source of which is a UV-LED lamp.
  • Said UV-LED lamp can emit radiation of wavelength 365 nm, 385 nm, 395 nm or 405 nm.
  • the UV-LED lamp is a lamp emitting at 365 nm.
  • the power of the UV-LED lamp is preferably between 2 W/cm 2 and 20 W/cm 2 , more preferably between 5 W/cm 2 and 15 W/cm 2 .
  • the irradiation of the silicone composition X is carried out continuously, by scrolling the textile support S under the UV-LED lamp.
  • the running speed and the number of passages can be defined so that the total irradiation of the silicone composition takes place for a period of between 1 s and 60 s, more preferably between 2 s and 40 s, and so even more preferred between 3 s and 15 s.
  • the energy received by the silicone composition X by irradiation is preferably between 100 mJ/cm 2 and 5000 mJ/cm 2 , more preferably between 500 mJ/cm 2 and 3500 mJ/cm 2 , and even more preferably between 1200 mJ/cm 2 and 2500 mJ/cm 2 .
  • step (c) of crosslinking is implemented without inerting. However, it is not excluded to proceed under an inert atmosphere, for example under nitrogen, under argon or under oxygen-depleted air.
  • Crosslinking step (c) is carried out at a temperature between 15°C and 60°C, more preferably between 20°C and 40°C, and even more preferably at room temperature, i.e. typically about 25°C.
  • coated textile supports thus obtained, as such or transformed into textile articles, can be used in many applications, such as, for example, in the field of clothing, in particular lingerie such as lace for tops, stockings or support bra, and sportswear, and hygiene items, such as compression bandages or bandages.
  • DI fumed silica treated with a mixture of hexamethyldisilazane and divinyl-tetramethyl-disilazane
  • Cross-linking inhibitor 1-ethynyl-l-cyclohexanol (ECH).
  • compositions were prepared according to Table 1 below: [Table 1] The compositions have been formatted:
  • compositions thus shaped were subjected at ambient temperature (approximately 25° C.) to UV irradiation on a UV bench from the company IST (operating conditions: speed: 4 m/min; Lamp: 365 nm LED; manufacturer power: 12 W/cm 2 , no inerting of the product; approximately 5 to 10 passages under the lamp). Curing took place for 5 to 10 s under the UV-LED lamp.
  • Hardness The property of hardness was measured on a Bareiss BS61 durometer according to ISO 868
  • Blocking is an application test to determine the force to unstick a coated lace folded back on itself. This test is indicative of the completion of the crosslinking. The blocking was evaluated by lace tensile test with a Zwick dynamometer.
  • Adhesion test is carried out by a lace elongation test. A length of 100 mm is pulled with a Zwick dynamometer with a force of 70N and returned to the initial state. The cycle is repeated 25 times and a macroscopic observation is carried out to evaluate the grip of the silicone on the lace.
  • the results obtained with catalyst C2 are identical to the results obtained with a traditional catalyst C3 (Comparative Examples 1 and 2).
  • the crosslinking took place for 5 to 10 s under the UV-LED lamp in examples 2 and 4, against 1 min at 130° C. in comparative examples 1 and 2, which constitutes a significant advantage in terms of productivity.
  • Examples 1 and 3 show somewhat higher blocking values, but nevertheless still acceptable for the desired application, and could be improved by longer irradiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

La présente invention concerne un procédé d'enduction d'une composition silicone réticulable par des réactions de polyaddition pour former un élastomère silicone sur un support textile ajouré et/ou élastique. La réticulation de la composition silicone est obtenue par irradiation avec un rayonnement UV dont la source est une lampe UV-LED.

Description

DESCRIPTION
TITRE : PROCEDE D’ENDUCTION D’UN SUPPORT TEXTILE
Domaine technique
La présente invention concerne un procédé d’enduction sur un support textile ajouré ou élastique d’une composition silicone réticulable par des réactions de polyaddition par irradiation avec un rayonnement UV dont la source est une lampe UV-LED.
Etat de la technique antérieure
Il est connu d’utiliser des compositions silicones pour l’enduction de matières textiles pour obtenir des propriétés d’adhérence à la peau et d’antiglisse, notamment pour certains vêtements, articles d’hygiène et dispositifs médicaux. Les textiles ainsi obtenus, tels quels ou transformés en articles textiles, peuvent être utilisés dans de nombreuses applications, telles que, par exemple, dans le domaine de l’habillement, notamment la lingerie comme les dentelles de hauts de bas ou de soutien-gorge, les articles d’hygiène, et les dispositifs médicaux, tels que des bandes de contention ou des pansements.
Les demandes de brevets WO 2007/112982 et WO 2010/139868 décrivent des procédés d’enduction d’une surface textile par une composition silicone élastomère réticulable par polyaddition. L’objectif desdites compositions silicones est de conférer au textile une propriété antiglisse. Le revêtement silicone est obtenu par enduction du support fibreux puis durcissement découlant de la polyaddition des groupements insaturés, typiquement des groupements alcényles, d’un polyorganosiloxane sur des hydrogènes du même ou d’un autre polyorganosiloxane. Pour que le durcissement des compositions enduites ait lieu, notamment lorsque des couches minces sont souhaitées, il est nécessaire de fournir un apport énergétique thermique au moyen de fours dont les températures de fonctionnement peuvent atteindre 210°C ou par irradiation au moyen de lampes haute pression émettant un rayonnement électromagnétique ou infrarouge. Ces techniques permettent d’atteindre des temps de réticulation rapide (moins d’une minute pour certaines applications) et ainsi d’utiliser des vitesses d’enduction rapides qui suivant les applications peuvent être de l’ordre de plusieurs dizaines de mètres à la minute.
Cependant, ces techniques d’enduction sont très consommatrices en énergie. De plus, la gamme de température nécessaire pour réticuler ce type de composition liquide de manière à former une couche mince ne permet pas une application sur tous les types de supports souples notamment ceux qui sont sensibles à toute élévation de température du milieu ambiant. Des exemples de supports souples fragiles face à une élévation de température sont les supports souples en matériaux thermoplastiques ayant des températures de transition vitreuse inférieure à 100°C ou des dentelles en textile.
Pour enduire des substrats fragiles, on est donc obligé de limiter la température du traitement de réticulation. La réticulation par polyaddition est donc plus lente ce qui impacte la productivité et les coûts de production.
C’est pour ces raisons que les compositions silicones liquides réticulant par des réactions de condensation conservent un attrait important dans ce type d’application. Elles offrent la possibilité de réticuler à température ambiante quand elles sont exposées à l’humidité de l’air. On peut par exemple citer les demandes de brevet WO 2010/146249, WO 2010/146250 et WO 2015/158967 qui décrivent des procédés d’enduction sur un support souple, notamment textile, par une composition silicone élastomère réticulable par polycondensation. Pour la réticulation à basse température, on peut également utiliser des technologies RTV-1 (technologies d’élastomères vulcanisables à froid, ou « Room Température Vulcanising » selon la terminologie anglosaxonne, conditionnées en un seul emballage) à base d’alcoxysilane ou d’acétoxysilane. Néanmoins, lors de réticulation, ces compositions génèrent des composés volatils organiques comme de l’alcool ou de l’acide acétique, ce qui peut être un inconvénient rédhibitoire.
Par ailleurs, des formulations silicones réticulées sous UV par polyaddition sont décrites dans la littérature. On peut citer par exemple le brevet japonais JP 06-531724 B2, qui décrit un procédé de fabrication d’un textile pour airbag revêtu d’un élastomère silicone réticulable par UV. Ce procédé consiste à déposer une composition silicone sur le matériau textile puis à irradier par UV la surface revêtue. Toutefois, un tel procédé et la composition silicone utilisée ont été développés pour répondre au problème de l’adhésion du revêtement silicone sur le textile pour airbag et au problème de la formation de plis à la surface du revêtement. Les tissus pour airbags, très denses, ne présentent pas du tout les mêmes propriétés techniques que les tissus élastiques ou ajourés tels que les dentelles ou bandes élastiques. D’autre part, les propriétés finales recherchées pour le revêtement d’un tissu pour airbag sont tout à fait différentes des propriétés d’adhérence à la peau et d’antiglisse recherchées pour un tissus d’habillement ou d’hygiène.
Un objectif de la présente invention est de proposer un procédé d’enduction d’une composition silicone adapté à un support textile fragile face à une élévation de température. Un autre objectif est de proposer un procédé d’enduction dont la cadence d’enduction est élevée, ce qui permet d’atteindre une meilleure productivité. De plus, il est souhaitable que ce procédé soit peu consommateur d’énergie, pour un meilleur coût de production et un impact environnemental réduit. Par ailleurs, on souhaite que le support textile ainsi enduit de l’élastomère silicone présente de bonnes propriétés en termes d’utilisation finale, notamment d’adhérence à la peau et d’antiglisse. Il faut également veiller à ce qu’après enduction et réticulation de la composition silicone sur le textile, il ne se produise pas de phénomènes de relargage de substances huileuses qui pourraient tâcher le textile et/ou son emballage. Cette composition silicone doit être également non toxique et dépourvue d’odeur. Il est également souhaité que le revêtement puisse résister au lavage et au frottement, et qu’il présente une bonne résistance à l’allongement lorsque la matière textile est manipulée.
Résumé de l’invention
La présente invention a donc pour objet un procédé d’enduction d’une composition silicone X réticulable par des réactions de polyaddition pour former un élastomère silicone sur un support textile ajouré et/ou élastique S comprenant les étapes a), b) et c) suivantes : a) on fournit une composition silicone X réticulable par des réactions de polyaddition comprenant :
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium,
- au moins un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH, et
- une quantité catalytiquement efficace d’au moins un catalyseur d’hydrosilylation C, activable par irradiation UV, b) on dépose de manière continue ou discontinue ladite composition silicone X sur au moins une face dudit support textile S, et c) on procède à la réticulation de ladite composition silicone X par irradiation avec un rayonnement UV dont la source est une lampe UV-LED.
Le support textile S enduit sur au moins une face d’un élastomère silicone susceptible d’être obtenu par le procédé tel que défini ci-dessus est également un objet de la présente invention. De plus, un autre objet de l’invention est l’utilisation dudit support textile S enduit dans le domaine de l’habillement, notamment la lingerie comme les dentelles de hauts de bas ou de soutien-gorge et les vêtements de sport, les articles d’hygiène, et les dispositifs médicaux, tels que des bandes de contention ou des pansements.
Description détaillée de l’invention
Dans le présent texte, « UV » signifie ultra-violet. Un rayonnement ultra-violet est défini comme un rayonnement électromagnétique dont la longueur d’onde est comprise entre environ 100 nm et environ 400 nm, soit en deçà du spectre de la lumière visible. De plus, dans le présent texte, « LED » est l’abrégé bien connu de rhomme du métier pour « diode électroluminescente » (également DEL en français).
Sauf indication contraire, toutes les viscosités des huiles silicones dont il est question dans le présent exposé correspondent à une grandeur de viscosité dynamique à 25°C dite « Newtonienne », c’est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, avec un viscosimètre Brookfield à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse.
La présente invention a donc pour objet un procédé d’enduction d’une composition silicone X réticulable par des réactions de polyaddition pour former un élastomère silicone sur un support textile ajouré et/ou élastique S.
Dans la présente description, le terme « textile » est un terme générique englobant toutes les structures textiles. Les textiles peuvent être constitués par des fils, fibres, filaments et/ou autres matières. Ils comprennent notamment les étoffes souples, qu’elles soient tissées, collées, tricotées, tressées, en feutre, aiguilletées, cousues, ou réalisées par un autre mode de fabrication. Par « fil », on entend par exemple un objet multifilamentaire continu, un fil continu obtenu par assemblage de plusieurs fils ou un filé de fibres continu, obtenu à partir d’un unique type de fibres, ou d’un mélange de fibres. Par « fibre », on entend par exemple une fibre courte ou longue, une fibre destinée à être travaillée en filature ou pour la fabrication d’articles non tissés ou un câble destiné à être coupés pour former des fibres courtes. Le textile peut parfaitement être constitué de fils, fibres et/ou filaments ayant subi une ou plusieurs étapes de traitements avant la réalisation de la surface textile, tels que par exemple des étapes de texturation, d’étirage, d’étirage-texturation, d’ensimage, de relaxation, de thermofixation, de torsion, de fixation, de frisage, de lavage et/ou de teinture.
Selon l’invention, tout type de support textile peut être utilisé. A titre indicatif, on peut citer :
- les textiles naturels, tels que : les textiles d’origine végétale, comme le coton, le lin, le chanvre, la jute, la coco, les fibres cellulosique du papier ; et les textiles d’origine animale, comme la laine, les poils, le cuir et les soies ;
- les textiles artificiels, tels que : les textiles cellulosiques, comme la cellulose ou ses dérivés ; et les textiles protéiniques d’origine animale ou végétale ; et
- les textiles synthétiques, tels que le polyester, le polyamide, les alcools polymalliques, le chlorure de polyvinyle, le polyacrylonitrile, les polyoléfines, l’acrylonitrile, les copolymères ( m é t h ) a c ry 1 a te -b u ta di c ne - s ty rc ne et le polyuréthane.
Les textiles synthétiques obtenus par polymérisation ou polycondensation peuvent notamment comprendre dans leur matrice différents types d’additifs, tels que des pigments, des délustrants, des matifiants, des catalyseurs, des stabilisants thermiques et/ou lumière, des agents antistatiques, des ignifugeants, des agents anti-bactériens, anti-fongiques, et/ou anti-acariens. Comme type de surfaces textiles, on peut citer notamment les surfaces obtenues par entrecroisement rectiligne des fils ou tissus, les surfaces obtenues par entrelacement curviligne des fils ou tricots, les surfaces mixtilignes ou tulles, les surfaces non tissées et les surfaces composites.
Le support textile utilisé dans le procédé de la présente invention peut être constitué d’un ou plusieurs textiles, identiques ou différents, assemblés par diverses manières. Le textile peut être mono- ou multi-couche(s). Le support textile peut par exemple être constitué d’une structure multicouche pouvant être réalisé par différents moyens d’assemblage, tels que des moyens mécaniques comme la couture, le soudage, ou le collage par point ou continu.
Le support textile peut, outre le procédé d’enduction selon la présente invention, subir un ou plusieurs autres traitements subséquents, également appelés traitement de finition ou d’ennoblissement. Ces autres traitements peuvent être effectués avant, après et/ou pendant ledit procédé d’enduction de l’invention. Comme autres traitements subséquents, on peut notamment citer : la teinture, l’impression, le contrecollage, l’enduction, l’assemblage avec d’autres matériaux ou surfaces textiles, le lavage, le dégraissage, le préformage ou le fixage.
Le support textile S selon la présente invention est un support textile ajouré et/ou élastique. De préférence, le support textile selon l’invention est ajouré et élastique.
Un textile est dit « ajouré » lorsqu’il comprend des espaces libres non constitués de textile. Lesdits espaces libres (pouvant être désignés par pores, vides, alvéoles, trous, interstices ou orifices) peuvent être répartis régulièrement ou non sur le textile. Ces espaces libres peuvent notamment être créés lors de l’élaboration du textile. Pour que l’enduction de la composition silicone de l’invention soit efficace, il est préférable que la plus petite des dimensions de ces espaces libres soient inférieure à 5 mm, notamment inférieurs à 1 mm.
Un textile est dit « élastique » lorsqu’il présente un taux d’élasticité supérieur à 5%, de préférence supérieur à 15%. Le taux d’élasticité d’un textile peut aller jusqu’à typiquement 500%.Le taux d’élasticité représente le pourcentage d’élongation du textile quand on l’étire au maximum. L’élongation peut être uniquement longitudinale, uniquement transversale, ou longitudinale et transversale.
Selon une disposition préférée de réalisation de l’invention, le support textile est une dentelle ou une bande élastique.
Dans une première étape (a) du procédé objet de la présente invention, on fournit une composition silicone X réticulable par des réactions de polyaddition comprenant :
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en Ci-C, liés au silicium,
- au moins un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH, et
- une quantité catalytiquement efficace d’au moins un catalyseur d’hydrosilylation C, activable par irradiation UV.
L’ organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, peut être notamment formé :
- d’au moins deux motifs siloxyle de formule suivante : YaR'bSiOu-a-in’ dans laquelle :
Y est un alcényle en C2-C6, de préférence vinyle,
R1 est un groupe hydrocarboné monovalent ayant de 1 à 12 atomes de carbone, de préférence choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone tels que les groupes méthyle, éthyle, propyle, les groupes cycloalkyles ayant de 3 à 8 atomes de carbone et les groupes aryle ayant de 6 à 12 atomes de carbone, et a=l ou 2, b=0, 1 ou 2 et la somme a+b=l, 2 ou 3 ; et
- éventuellement de motifs de formule suivante : R'cSiOu-o! dans laquelle R1 a la même signification que ci-dessus et c = 0, 1, 2 ou 3.
Il est entendu dans les formules ci-dessus que, si plusieurs groupes R1 sont présents, ils peuvent être identiques ou différents les uns des autres.
Ces organopolysiloxanes A peuvent présenter une structure linéaire, essentiellement constitués de motifs siloxyles « D » choisis parmi le groupe constitué par les motifs siloxyles Y2S1O2/2, YR1Si02/2 et R^SÎOM, et de motifs siloxyles « M » terminaux choisis parmi le groupe constitué par les motifs siloxyles YR^SiOi^, Y2R1SiOi/2 et R ' ; S i 01 2. Les symboles Y et R1 sont tels que décrits ci-dessus.
A titre d’exemples de motifs « M » terminaux, on peut citer les groupes triméthylsiloxy, diméthylphénylsiloxy, diméthylvinylsiloxy ou diméthylhexènylsiloxy.
A titre d’exemples de motifs « D », on peut citer les groupes diméthylsiloxy, méthylphénylsiloxy, diphénylsiloxy, méthylvinylsiloxy, méthylbutènylsiloxy, méthylhexènylsiloxy, méthyldécènylsiloxy ou méthyldécadiènylsiloxy.
Des exemples d’organopolysiloxanes linéaires pouvant être des organopolysiloxanes A selon l’invention sont :
- un poly(diméthylsiloxane) à extrémités diméthylvinylsilyles ;
- un poly(diméthylsiloxane-co-méthylphénylsiloxane) à extrémités diméthyl-vinylsilyles ;
- un poly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités diméthyl-vinylsilyles ;
- un poly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités triméthyl-silyles ; et
- un poly(méthylvinylsiloxane) cyclique. Dans la forme la plus recommandée, l’organopolysiloxane A contient des motifs diméthylvinylsilyles terminaux et encore plus préférentiellement l’organopolysiloxane A est un poly(diméthylsiloxane) à extrémités diméthylvinylsilyles.
Une huile silicone a généralement une viscosité comprise entre 1 mPa.s et 2.000.000 mPa.s. De préférence, lesdits organopolysiloxanes A sont des huiles de viscosité dynamique comprise entre 20 mPa.s et 300.000 mPa.s, de préférence entre 100 mPa.s et 200.000 mPa.s à 25°C, et plus préférentiellement entre 600 mPa.s et 150.000 mPa.s.
Optionnellement, les organopolysiloxanes A peuvent en outre contenir des motifs siloxyles « T » (R'SiOs ) et/ou des motifs siloxyles « Q » (S1O4/2). Les symboles R1 sont tels que décrits ci-dessus. Les organopolysiloxanes A présentent alors une structure branchée. Des exemples d’organopolysiloxanes branchés pouvant être des organopolysiloxanes A selon l’invention sont :
- un poly(diméthylsiloxane)(méthylsiloxane) à extrémités triméthylsilyles et diméthylvinylsilyles, constituée de motifs « M » triméthylsiloxy, « M » diméthylvinylsiloxy, « D » diméthylsiloxy et « T » méthylsiloxy ;
- une résine constituée de motifs « M » triméthylsiloxy, « M » diméthylvinylsiloxy et « Q » ; et
- une résine constituée de motifs « M » triméthylsiloxy, « D » méthylvinylsiloxy et « Q ». Toutefois, selon un mode de réalisation, la composition silicone X ne comprend pas d’organopolysiloxanes branchés ou résines comprenant des motifs alcényles en C2-C6.
De préférence, le composé organopolysiloxane A a une teneur massique en motif alcényle comprise entre 0,001% et 30%, de préférence entre 0,01% et 10%, de préférence entre 0,02 et 5%.
La composition silicone X comprend de préférence de 50% à 90% d’organopolysiloxane A, plus préférentiellement de 60% à 87% en poids d’organopolysiloxane A, et encore plus préférentiellement de 70% à 85% en poids d’organopolysiloxane A par rapport au poids total de la composition silicone X.
La composition silicone X peut comprendre un seul organopolysiloxane A ou un mélange de plusieurs organopolysiloxanes A ayant par exemple des viscosités différentes et/ou des structures différentes.
Selon un mode de réalisation préféré, la composition silicone X peut comprendre un mélange :
- d’au moins un composé organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, tel que décrit ci-dessus ; et
- d’au moins un composé organopolysiloxane A’ présentant, par molécule, un seul groupe alcényle en C2-C6 liés au silicium. La présence d’un polyorganosiloxane monoalcénylé dans la composition silicone X peut avantageusement améliorer le niveau d’adhérence sur la peau du textile enduit selon l’invention. Des exemples d’organopolysiloxanes monoalcénylé pouvant être des organopolysiloxanes A’ selon l’invention sont :
- un poly(diméthylsiloxane) avec une extrémité diméthylvinylsilyle et une extrémité triméthylsilyles ;
- un poly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités triméthylsilyles.
Selon ce mode de réalisation, la composition silicone X comprend de préférence de 4% à 20% d’organopolysiloxane monoalcénylé A’, plus préférentiellement de 8% à 18% en poids d’organopolysiloxane monoalcénylé A’, et encore plus préférentiellement de 10% à 15% en poids d’organopolysiloxane monoalcénylé A’ par rapport au poids total de la composition silicone X.
L’organopolysiloxane B est un composé organohydrogénopolysiloxane comprenant par molécule au moins deux, et de préférence au moins trois, fonctions hydrogénosilyles ou motifs Si-H.
L’organohydrogénopolysiloxane B peut avantageusement être un organopolysiloxane comprenant au moins deux, de préférence au moins trois, motifs siloxyles de formule suivante : dans laquelle :
- les radicaux R2, identiques ou différents, représentent un radical monovalent ayant de 1 à 12 atomes de carbone,
- d=l ou 2, e=0, 1 ou 2 et d+e=l, 2 ou 3 ; et éventuellement d’autres motifs de formule suivante : R2 fSiO(4-f)/2 dans laquelle R2 a la même signification que ci-dessus, et f = 0, 1, 2, ou 3.
II est entendu dans les formules ci-dessus que, si plusieurs groupes R2 sont présents, ils peuvent être identiques ou différents les uns des autres. Préférentiellement R2 peut représenter un radical monovalent choisi dans le groupe constitué par les groupes alkyles ayant 1 à 8 atomes de carbone, éventuellement substitué par au moins un atome d’halogène tel que le chlore ou le fluor, les groupes cycloalkyles ayant de 3 à 8 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone. R2 peut avantageusement être choisi dans le groupe constitué par le méthyle, l’éthyle, le propyle, le 3,3,3-trifluoropropyle, le xylyle, le tolyle et le phényle.
Dans la formule ci-dessus, le symbole d est préférentiellement égal à 1. L’organohydrogénopolysiloxane B peut présenter une structure linéaire, ramifiée, ou cyclique. Le degré de polymérisation est de préférence supérieur ou égal à 2. Généralement, il est inférieur à 5000. Lorsqu’il s’agit de polymères linéaires, ceux-ci sont essentiellement constitués de motifs siloxyles choisis parmi les motifs de formules suivantes D : RLSiCf ou D’ : R2HSi02/2, et de motifs siloxyles terminaux choisis parmi les motifs de formules suivantes M : R2 3SiOi/2 ou M’ : R22HSiOi/2 où R2 a la même signification que ci-dessus.
Des exemples d’organohydrogénopolysiloxanes pouvant être des organopolysiloxanes B selon l’invention comprenant au moins deux atomes d’hydrogène lié à un atome de silicium sont :
- un poly(diméthylsiloxane) à extrémités hydrogénodiméthylsilyles ;
- un poly(diméthylsiloxane-co-méthylhydrogénosiloxane) à extrémités triméthyl-silyles ;
- un poly(diméthylsiloxane-co-méthylhydrogénosiloxane) à extrémités hydrogénodiméthylsilyles ;
- un poly(méthylhydrogénosiloxane) à extrémités triméthylsilyles ; et
- un poly(méthylhydrogénosiloxane) cyclique.
Lorsque l’organohydrogénopolysiloxane B présente une structure ramifiée, il est choisi de préférence parmi le groupe constitué par les résines silicones de formules suivantes :
- M’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par les groupes M,
- MM’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M,
- MD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par les groupes D,
- MDD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des groupes D,
- MM’TQ où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M,
- MM’DD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M et D,
- et leurs mélanges, avec M, M’, D et D’ tels que définis précédemment, T : motif siloxyle de formule R2 ;SiO 1 2 et Q : motif siloxyle de formule S1O4/2 où R2 a la même signification que ci-dessus.
De préférence, le composé organohydrogénopolysiloxane B aune teneur massique en fonctions hydrogénosilyle Si-H comprise entre 0,2% et 91%, plus préférentiellement entre 3% et 80%. En considérant l’ensemble de la composition silicone X, le ratio molaire des fonctions hydrogénosilyles Si-H sur les fonctions alcènes peut avantageusement être compris entre 0,2 et 20, de préférence entre 0,5 et 15, plus préférentiellement entre 0,5 et 10, et encore plus préférentiellement entre 0,5 et 5. De préférence, la viscosité de l’organohydrogénopolysiloxane B est comprise entre 1 mPa.s et 5000 mPa.s, plus préférentiellement entre 1 mPa.s et 2000 mPa.s et encore plus préférentiellement entre 5 mPa.s et 1000 mPa.s.
La composition silicone X comprend de préférence de 0,1% à 10% d’organohydrogénopolysiloxane B, et plus préférentiellement de 0,5% à 5% en poids, par rapport au poids total de la composition silicone X.
La composition silicone X peut comprendre un seul organohydrogénopolysiloxane B ou un mélange de plusieurs organohydrogénopolysiloxanes B ayant par exemple des viscosités différentes et/ou des structures différentes.
Selon un mode de réalisation préféré, la composition silicone X peut comprendre un mélange :
- d’au moins un organohydrogénopolysiloxane B tel que décrit ci-dessus comprend deux fonctions SiH par molécule ; et
- d’au moins un organohydrogénopolysiloxane B tel que décrit ci-dessus comprend au moins trois fonctions SiH par molécule.
La présence d’un polyorganosiloxane monoalcénylé dans la composition silicone X peut avantageusement améliorer le niveau d’adhérence sur la peau du textile enduit selon l’invention. L’organohydrogénopolysiloxane B comprenant deux fonctions SiH par molécule a un rôle d’allongeur. L’organohydrogénopolysiloxane B comprenant au moins trois fonctions SiH par molécule a un rôle de réticulant.
Le catalyseur d’hydrosilylation C, selon la présente invention a la particularité d’être activable par irradiation UV. Il s’agit d’un composé essentiellement inactif en l’absence d’irradiation. Lorsqu’il est soumis à une irradiation UV, de préférence à une longueur d’onde comprise entre 200 nm et 400 nm, il s’active et devient un catalyseur d’hydrosilylation, qui permet la réaction entre les groupes alcényles de l’organopolysiloxane A et les fonctions hydrogénosilyles de l’organopolysiloxane B.
Le catalyseur d’hydrosilylation C selon la présente invention est de préférence un composé du platine. Il peut notamment être choisi parmi les complexes b-dicétonate du platine, les complexes h-5-cyclopentadienyl-trialkyles du platine, ou leurs dérivés. On peut citer par exemple : le triméthyl-(acétylacétonate) de platine (IV), le triméthyl-(3,5-heptanedionate) de platine (IV), le triméthyl-(méthyl-acétoacétate) de platine (IV), le triméthyl-(2,4- pentanedionate) de platine (IV), le bis-(acétylacétonate) de platine (II), le bis-(2,4- pentanedionate) de platine (II), le bis-(2,4-hexane-dionate) de platine (II), le bis-(2,4-heptane- dionate) de platine (II), le bis-(3,5-heptanedionate) de platine (II), le bis-(l-phenyl-l,3- butanedionate) de platine (II), le bis-(l,3-diphenyl-l,3-propane-dionate) de platine (II), le bis- (hexafluoro-acétylacétonate) de platine (II), le triméthyl-(méthylcyclopentadiényle) de platine (IV), le triméthyl-(pentaméthylcyclopentadiényle) de platine (IV), le (cyclopentadienyl)- triméthyle de platine (IV), le triméthyl-(l,2,3,4,5-pentaméthyl-cyclopentadienyle) de platine (IV), le diméthyléthyl-(cyclopentadienyle) de platine (IV), le (cyclopentadienyl)-diméthyl- acétyle de platine (IV), le triméthyl-(triméthylsilyl-cyclopentadienyle) de platine (IV), le (méthoxycarbonyl-cyclopentadienyl)-triméthyle de platine (IV), le (diméthyl-phénylsilyl- cyclopentadienyl)-triméthyl-cyclopentadienyle de platine (IV), ainsi que leurs mélanges. De façon plus préféré, le catalyseur d’hydrosilylation C peut être choisi parmi le bis- (acétylacétonate) de platine (II), le triméthyl-(méthylcyclopentadiényle) de platine (IV), le triméthyl-(triméthylsilyl-cyclopentadiényle) de platine (IV) et leurs mélanges.
Le catalyseur d’hydrosilylation C est de préférence utilisé préalablement dessous dans un solvant approprié. Néanmoins, il n’est exclu de l’utiliser sous forme solide.
La quantité catalytiquement efficace de catalyseur C est généralement comprise entre 2 ppm et 400 ppm massiques, de préférence entre 5 ppm et 200 ppm massiques, calculée en poids de métal, basée sur le poids total de la composition silicone X.
Bien qu’elle ne soit pas exclue, la présence d’un catalyseur additionnel d’hydrosilylation classiquement activable thermiquement n’est pas indispensable dans la composition silicone X. De préférence, la composition silicone X selon l’invention ne contient pas de catalyseur d’hydrosilylation classiquement activable thermiquement. En particulier, elle ne contient pas de catalyseur platine de Karstedt.
Selon un mode de réalisation, la composition silicone X selon la présente invention peut optionnellement comprendre un photosensibilisateur. Un photosensibilisateur peut être choisi parmi les molécules qui absorbent des longueurs d’ondes différentes de celles absorbées par le catalyseur C afin de permettent ainsi d’étendre sa sensibilité spectrale. Il existe un grand nombre de photosensibilisateurs bien connus de l’homme du métier. On peut citer : l’anthracène, le pyrène, la phénothiazine, la cétone de Michler, les xanthones, les thioxanthones, la benzophénone, l’acétophénone, les dérivés du carbazole, la fluorénone, l’anthraquinone, la camphorquinone ou les oxydes d’acylphosphine. Ces photosensibilisateurs et d’autres sont décrits par exemples dans la demande de brevet US 2015/0232700 Al.
Le photosensibilisateur lorsqu’il est présent dans la composition peut être ajouté à hauteur de 0,05% à 10%, de préférence entre 0,1 et 2%, en poids par rapport au poids total de la composition silicone X. Toutefois, la présence d’un photosensibilisateur n’est pas indispensable dans la composition silicone X. De préférence, la composition silicone X selon l’invention ne contient pas de photosensibilisateur.
En plus des composants A, B et C déjà mentionnés ci-dessus, la composition silicone X selon la présente invention peut optionnellement comprendre d’autre composants. Selon un mode de réalisation, la composition silicone X selon la présente invention peut optionnellement comprendre une charge D, préférentiellement une charge de renfort ou une charge de bourrage.
Les charges de renfort sont préférentiellement des silices de combustion ou des silices de précipitation. Les charges minérales de type silice ont préférentiellement une surface spécifique, mesurée selon les méthodes BET, d’au moins 50 m2/g, notamment comprise entre 50 m2/g et 400 m2/g, de préférence supérieure à 70 m2/g, une dimension moyenne des particules primaires inférieure à 0,1 pm (micromètre) et une densité apparente inférieure à 200 g/litre.
Les charges minérales de type silice, de préférence hydrophiles, peuvent être incorporées telles quelles dans la composition silicone ou être éventuellement traitées par un agent de compatibilisation. Selon une variante, ces silices peuvent éventuellement être traitées par un ou des composés organosiliciques, par exemple organosilane ou organosilazane, habituellement utilisés pour cet usage. Parmi ces composés, figurent les méthylpolysiloxanes tels que l’hexaméthyldisiloxane, l’octaméthylcyclo-tétrasiloxane, les méthylpolysilazanes tels que l’hexaméthyldisilazane, l’hexaméthylcyclotrisilazane, le tétraméthyldivinyldisilazane, les chlorosilanes tels que le diméthyl-dichlorosilane, le triméthylchlorosilane, le méthylvinyldichlorosilane, le diméthylvinylchlorosilane, les alcoxysilanes tels que le diméthyl- diméthoxysilane, le diméthylvinyléthoxysilane, le triméthylméthoxysilane. Ces composés peuvent être utilisés seuls ou en mélange.
La silice peut éventuellement être prédispersée dans une huile silicone, de façon à obtenir une suspension. On préfère notamment utiliser une suspension de silice de combustion traitée, notamment par de l’hexaméthyldisilazane, dans une huile polyorganosiloxane, notamment vinylée.
La composition silicone X comprend de préférence de 5% à 20% de charge D, et plus préférentiellement de 8% à 18% en poids de charge D, par rapport au poids total de la composition silicone X.
A la silice préférée comme charge D, on peut en outre ajouter dans la composition silicone X d’autres types de charges notamment de bourrage, telles que par exemple le quartz broyé, les terres de diatomées, le carbonate de calcium et/ou le kaolin.
Selon un mode de réalisation, la composition silicone X selon la présente invention peut optionnellement comprendre au moins un composé polyorganosiloxane non réactif E, notamment sous forme d’huile ou de résine, généralement pour régler la viscosité de la composition ou pour faire office de diluant. Ce composé polyorganosiloxane E ne comprend pas de groupements réactifs de type alcénylsilylés et/ou hydrogénosilylés. Le composé polyorganosiloxane E peut avantageusement être un organopolysiloxane comprenant :
- des motifs siloxyles terminaux de type M = R3 3SiOi/2, et
- des motifs siloxyles, identiques ou différents, de type D = R SSiCL .
- et éventuellement d’autres motifs de formule suivante : R3 fSiO(4-f)/2 dans laquelle les radicaux R3, identiques ou différents, représentent un radical monovalent ayant de 1 à 12 atomes de carbone, et f = 0 ou 1.
Il est entendu dans les formules ci-dessus que, si plusieurs groupes R3 sont présents, ils peuvent être identiques ou différents les uns des autres.
De façon avantageuse, le composé polyorganosiloxane non réactif E est une huile diméthylpolysiloxane à extrémités triméthylsilyles.
Selon un mode de réalisation, la composition silicone X selon la présente invention peut optionnellement comprendre d’autre additifs traditionnellement utilisés dans ce domaine technique par l’homme du métier, par exemple des colorants, des pigments, des agents pour la résistance au feu, des bactéricides, des pigments minéraux ou organiques, etc.
Généralement, un inhibiteur de réticulation est présent dans les compositions silicones réticulant par poly addition. La fonction de l’inhibiteur de réticulation est de ralentir la réaction d’hydrosilylation. On peut citer à titre d’exemples, les produits suivants qui sont disponibles commercialement : le 1-éthynyl-l-cyclohexanol, le méthyl-3-dodécyne-l-ol-3, le triméthyl- 3,7,ll-dodécyne-l-ol-3, le diphényl-l,l-propyne-2-ol-l, l’éthyl-3-éthyl-6-nonyne-l-ol-3 et le méthyl-3-pentadécyne-l-ol-3.
Cependant, la présence d’un inhibiteur de réticulation n’est pas indispensable dans la composition silicone X selon la présente invention dans la mesure où le catalyseur d’hydrosilylation C est activé par irradiation UV. De préférence, la composition silicone X selon l’invention ne contient pas d’inhibiteur de réticulation. En particulier, elle ne continent pas de 1-éthynyl-l-cyclohexanol (ECH).
Typiquement, un composé promoteur d’adhésion peut être présent dans les compositions silicones lorsque celles-ci sont destinées à servir de revêtement sur des surfaces lisses et denses. Un promoteur d’adhérence peut être un composé organosilicique comprenant un groupe fonctionnel promoteur d’adhésion. En particulier, il peut s’agir d’un composé organosilicique comprenant :
- un ou des groupes hydrolysables liés à l’atome de silicium, en général des groupes alcoxy liés aux atomes de silicium, et
- un ou des groupes organiques choisis parmi les groupes mercaptans, le groupe urée, le groupe isocyanurate, les radicaux (méth)acrylate, époxy, et alcényle. On peut citer par exemple les composés suivants pris seul ou en mélange : vinyltriméthoxysilane (VTMO), 3-glycidoxypropyl-triméthoxysilane (GLYMO), méthacryloxypropyltriméthoxysilane (MEMO), [H2N(CH2)3] Si OCLLŒLCLLb,
H2N(CH2)2NH(CH2)3]Si(0CH2CH20CH3)3, [CH3NH(CH2)2NH(CH2)3]Si(OCH3)3,
[H(NHCH2CH2)2NH(CH2)3]Si(OCH3)3, HS(CH2)3Si(OCH3)3, NH2CONH2(CH2)3Si(OCH3), ou des oligomères polyorganosiloxaniques, contenant par exemple de 2 à 100 atomes de silicium, contenant de tels groupes organiques à une teneur supérieure à 20%. On peut également citer spécifiquement les composes organosiliciques comprenant au moins un, de préférence au moins deux, groupe alcoxy lié à un atome de silicium et au moins un groupe époxy.
Selon un mode de réalisation préféré, la composition silicone X selon la présente invention ne contient pas de composé promoteur d’adhésion. En particulier, la composition silicone X selon la présente invention ne contient de préférence aucun des composés promoteur d’adhésion cités individuellement ci-dessus.
Selon un mode de réalisation préféré, la composition silicone X selon l’invention comprend, basée sur le poids total de la composition silicone X :
- de 50% à 90%, de préférence de 60% à 87%, d’un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium,
- de 0,1% à 10%, de préférence de 0,5% à 5%, d’un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH,
- de 2 ppm à 400 ppm, de préférence de 5 ppm à 200 ppm, d’un catalyseur d’hydrosilylation C (calculé en poids de métal),
- de 5% à 20%, de préférence de 8% à 18% d’une charge D, de préférence de silice optionnellement traitée par un agent de compatibilisation.
Selon un mode de réalisation particulier, la composition silicone X comprend en outre :
- de 4% à 20%, de préférence de 8% à 18%, d’un organopolysiloxane monoalcénylé A’.
Les pourcentages et ppm sont des pourcentages et ppm massiques. La quantité pondérale de catalyseur C est calculée en poids de platine-métal.
De préférence, la composition silicone X présente une viscosité dynamique comprise entre 50000 mPa.s et 300000 mPa.s, de façon plus préférée comprise entre 80000 mPa.s et 200000 mPa.s.
La composition silicone X peut être préparée par mélange de l’ensemble des différents composants tels que décrits ci-dessus. Selon un mode de réalisation, la composition silicone X selon l’invention peut être préparée à partir d’un système bi-composant caractérisé en ce qu’il se présente en deux parties distinctes destinées à être mélangées pour former ladite composition silicone X, et en ce que l’une des parties comprend le catalyseur C et ne comprend pas l’organopolysiloxane B, tandis que l’autre partie comprend l’organopolysiloxane B et ne comprend pas le catalyseur C.
Alternativement, la composition silicone X selon l’invention peut être un système monocomposant.
Dans une seconde étape (b) du procédé objet de la présente invention, on dépose de manière continue ou discontinue ladite composition silicone X sur au moins une face dudit support textile S.
Le dépôt peut être fait typiquement par transfert, par rouleau lécheur ou par pulvérisation à l’aide d’une buse, d’une racle, d’un cadre rotatif ou d’un rouleau inverse (ou « reverse roll » selon la terminologie anglo-saxonne). L’épaisseur de la couche de la composition silicone X déposée sur le textile peut être comprise entre 0,1 mm et 0,8 mm, de préférence entre 0,3 mm et 0,6 mm et plus préférentiellement encore entre 0,4 mm et 0,5 mm.
Outre les procédés classiques d’enduction, le dépôt de la composition silicone X sur au moins une face dudit support textile S peut être fait par impression, à l’aide typiquement d’une imprimante. L’homme du métier pourra utiliser tout type de technologie d’imprimante adaptée au dépôt d’une composition silicone. On peut par exemple citer les techniques d’impression jet d’encre telles que décrites dans la demande WO 2020/249694. Alternativement, une technologie d’impression par extrusion peut être utilisée. Les techniques et dispositifs décrits pour l’impression 3D de composition silicone, par exemple dans la demande WO 2018/206689, sont applicables au dépôt de composition silicone selon la présente invention, dans la mesure on ne dépose qu’une seule couche ou un faible nombre de couches. Il est possible de répéter plusieurs fois les étapes de dépôt (b) et de réticulation (c) du procédé objet de la présente invention si nécessaire pour obtenir la forme et l’épaisseur de dépôt désiré.
Enfin, dans une troisième étape (c) du procédé objet de la présente invention, on procède à la réticulation de ladite composition silicone X par irradiation avec un rayonnement UV dont la source est une lampe UV-LED. Ladite lampe UV-LED peut émettre un rayonnement de longueur d’onde 365 nm, 385 nm, 395 nm ou 405 nm. De préférence, la lampe UV-LED est une lampe émettant à 365 nm.
La puissance de la lampe UV-LED est de façon préférée comprise entre 2 W/cm2 et 20 W/cm2, de façon plus préférée entre 5 W/cm2 et 15 W/cm2. Selon un mode de réalisation préféré, l’irradiation de la composition silicone X est effectuée en continu, par défilement du support textile S sous la lampe UV-LED. La vitesse de défilement et le nombre de passage peuvent être définis de sorte que l’irradiation totale de la composition silicone ait lieu pendant une durée comprise entre 1 s et 60 s, de façon plus préférée entre 2 s et 40 s, et de façon encore plus préférée entre 3 s et 15 s. Ainsi, l’énergie reçue par la composition silicone X par irradiation est de façon préférée comprise entre 100 mJ/cm2 et 5000 mJ/cm2, de façon plus préférée entre 500 mJ/cm2 et 3500 mJ/cm2, et de façon encore plus préférée entre 1200 mJ/cm2 et 2500 mJ/cm2.
Selon un mode de réalisation préféré, l’étape (c) de réticulation est mise en œuvre sans inertage. Toutefois, il n’est pas exclu de procéder sous atmosphère inerte, par exemple sous azote, sous argon ou sous air appauvri en oxygène.
L’étape (c) de réticulation est mise en œuvre à une température comprise entre 15°C et 60°C, de façon plus préférée entre 20°C et 40°C, et de façon encore plus préférée à température ambiante, soit typiquement environ 25°C.
Les supports textiles enduits ainsi obtenus, tels quels ou transformés en articles textiles, peuvent être utilisés dans de nombreuses applications, telles que, par exemple, dans le domaine de l’habillement, notamment la lingerie comme les dentelles de hauts de bas ou de soutien-gorge, et les vêtements de sport, et les articles d’hygiène, tels que des bandes de contention ou des pansements.
D’autres détails ou avantages de l’invention apparaîtront plus clairement au vu des exemples donnés ci-dessous uniquement à titre indicatif.
Exemples
Les compositions silicones décrites en exemple ci-dessous ont été obtenues à partir des matières premières suivantes :
Al : Huile polydiméthylsiloxane vinylée bout de chaîne (a/w), ayant une teneur en groupes vinyles de 0,07% en poids, viscosité à 25°C = environ 100 000 mPa.s ;
A2 : Huile polydiméthylsiloxane vinylée bout de chaîne (a/w), ayant une teneur en groupes vinyles de 0,08% en poids, viscosité à 25°C = environ 60 000 mPa.s ;
A3 : Huile polydiméthylsiloxane vinylée bout de chaîne (a/w), ayant une teneur en groupes vinyles de 0, 11% en poids, viscosité à 25°C = environ 20 000 mPa.s ;
A’ : Huile polydiméthylsiloxane monovinylée à une extrémité, ayant une teneur en groupes vinyles de 0,25% en poids, viscosité à 25°C = environ 1000 mPa.s ; B1 : Huile poly(méthylhydrogéno)(diméthyl)siloxane avec des groupes SiH en milieu et bout de chaîne (a/w), ayant une teneur en groupes vinyles de SiH de 7,3% en poids, viscosité à 25°C = environ 30 mPa.s ;
B2 : Huile hydrogéno-diméthylpolysiloxane avec des groupes SiH bout de chaîne (a/w), ayant une teneur en groupes vinyles de SiH de 5,3% en poids, viscosité à 25°C = environ 8,5 mPa.s ; Cl : Prémix de Pt(acac)2, commercialisé par la société Johnson Matthey sous le nom Pt-70 (teneur en platine = 49,0 - 49,8% en poids), à 2% dans un mélange dioxolane/huile polydiméthylsiloxane vinylée bout de chaîne (a/w) (50/50) ;
C2 : Prémix de PtCp* (i.e. trimethyl(methylcyclopentadienyl)platinum(IV)), commercialisé par la société Umicore sous le nom HS161 (teneur en platine = 61% en poids), à 5% dans une huile polydiméthylsiloxane vinylée bout de chaîne (a/w) ;
C3 : catalyseur platine de Karstedt, contenant 10% en poids de platine-métal ;
DI : silice de combustion traitée par un mélange d’hexaméthyldisilazane et de divinyl- tétraméthyl-disilazane ;
D2 : silice de combustion traitée par de l’hexaméthyldisilazane ;
Inhibiteur de réticulation : 1-éthynyl-l-cyclohexanol (ECH).
Exemples 1 à 4 et Exemples comparatifs 1 et 2 :
Des compositions silicones ont été préparées selon le tableau 1 ci-dessous : [Tableau 1] Les compositions ont été mises en forme :
1/ Une partie a été coulée dans un moule en Téflon (dimensions : 13,6* 13,6*0,2 cm) ou un pion en Téflon (d = 60 mm, e = 6 mm) pour obtenir des plaques et pions qui ont servi aux essais mécaniques de dureté.
2/ Une autre partie a été enduite sur une dentelle (couche de 0,4 mm) pour évaluer le blocking et l’adhésion.
Pour les exemples 1 à 4, les compositions ainsi mises en forme ont été soumises à température ambiante (environ 25°C) à une irradiation UV sur un banc UV de la société IST (conditions opératoires : vitesse : 4 m/min ; Lampe : LED 365 nm ; puissance constructeur : 12 W/cm2, pas d’inertage du produit ; environ 5 à 10 passages sous la lampe). La réticulation a eu lieu pendant 5 à 10 s sous la lampe UV-LED.
Pour les exemples comparatifs 1 et 2, les compositions ont été réticulées par chauffage durant 1 min à 130°C.
Essais de caractérisation :
Dureté : La propriété de dureté a été mesurée sur un duromètre Bareiss BS61 selon la norme ISO 868
Blocking : Le blocking est un test applicatif permettant de déterminer la force pour décoller une dentelle enduite repliée sur elle-même. Ce test est indicatif de la finalisation de la réticulation. Le blocking a été évalué par test de traction de la dentelle avec dynamomètre Zwick.
Adhésion : Le test d’adhésion est réalisé par un test d’élongation de la dentelle. Une longueur de 100 mm est tirée avec un dynamomètre Zwick avec une force de 70N et retour à l’état initial. Le cycle est répété 25 fois et une observation macroscopique est réalisée pour évaluer l’accroche du silicone sur la dentelle.
Les résultats sont présentés dans le tableau 2 ci-dessous : [Tableau 2] En terme de dureté et d’adhésion, on constate que les résultats sont équivalents que la réticulation soit thermique (Exemples comparatifs 1 et 2) ou qu’elle soit sous UV-LED (Exemples 1 à 4).
Concernant le blocking, les résultats obtenus avec le catalyseur C2 (Exemples 2 et 4) sont identiques aux résultats obtenus avec un catalyseur traditionnel C3 (Exemples comparatifs 1 et 2). Or, la réticulation a eu heu pendant 5 à 10 s sous la lampe UV-LED dans les exemples 2 et 4, contre 1 min à 130°C dans les exemples comparatifs 1 et 2, ce qui constitue un avantage important en termes de productivité, d’énergie utilisée et de compatibilité avec les supports dentelles. Les exemples 1 et 3 présentent des valeurs de blocking un peu plus élevées, mais néanmoins toujours acceptables pour l’application désirée, et pourraient être améliorées par une plus longue irradiation.

Claims

REVENDICATIONS
1. Procédé d’enduction d’une composition silicone X réticulable par des réactions de polyaddition pour former un élastomère silicone sur un support textile ajouré et/ou élastique S comprenant les étapes a), b) et c) suivantes : a) on fournit une composition silicone X réticulable par des réactions de polyaddition comprenant :
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium,
- au moins un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH, et
- une quantité catalytiquement efficace d’au moins un catalyseur d’hydrosilylation C, activable par irradiation UV, b) on dépose de manière continue ou discontinue ladite composition silicone X sur au moins une face dudit support textile S, et c) on procède à la réticulation de ladite composition silicone X par irradiation avec un rayonnement UV dont la source est une lampe UV-LED.
2. Procédé selon la revendication 1, caractérisé en ce que le support textile S est une dentelle ou une bande élastique.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la composition silicone X comprend en outre au moins un composé organopolysiloxane A’ présentant, par molécule, un seul groupe alcényle en C2-C6 liés au silicium.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que la composition silicone X comprend en outre une charge D, préférentiellement une charge minérale de type silice.
5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la composition silicone X :
- ne contient pas d’inhibiteur de réticulation, en particulier elle ne continent pas de 1-éthynyl- 1-cyclohexanol (ECH) ; et/ou
- ne contient pas de composé promoteur d’adhésion.
6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que la composition silicone X selon l’invention comprend, basée sur le poids total de la composition silicone X :
- de 50% à 90%, de préférence de 60% à 87%, d’un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium,
- de 0,1% à 10%, de préférence de 0,5% à 5%, d’un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH,
- de 2 ppm à 400 ppm, de préférence de 5 ppm à 200 ppm, d’un catalyseur d’hydrosilylation C (calculé en poids de métal),
- de 5% à 20%, de préférence de 8% à 18% d’une charge D, de préférence de silice optionnellement traitée par un agent de compatibilisation
- et optionnellement de 4% à 20%, de préférence de 8% à 18%, d’un organopolysiloxane A’ présentant, par molécule, un seul groupe alcényle en C2-C6 liés au silicium.
7. Procédé selon l’une quelconque des revendications 1 à 6, caractérisé en ce que la lampe UV-LED utilisée lors de l’étape (c) d’irradiation émet un rayonnement de longueur d’onde 365 nm, 385 nm, 395 nm ou 405 nm, de préférence 365 nm.
8. Procédé selon l’une quelconque des revendications 1 à 7, caractérisé en ce que l’étape (c) de réticulation est mise en œuvre à une température comprise entre 15°C et 60°C, de façon plus préférée entre 20°C et 40°C, et de façon encore plus préférée à température ambiante.
9. Support textile S enduit sur au moins une face d’un élastomère silicone susceptible d’être obtenu par le procédé tel que défini selon l’une quelconque des revendications 1 à 8.
10. Utilisation du support textile S enduit selon la revendication 9 dans le domaine de l’habillement, notamment la lingerie comme les dentelles de hauts de bas ou de soutien-gorge et les vêtements de sport, les articles d’hygiène, et les dispositifs médicaux, tels que des bandes de contention ou des pansements.
EP21755799.0A 2020-07-30 2021-07-26 Procede d'enduction d'un support textile Pending EP4189155A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008079 2020-07-30
PCT/FR2021/000081 WO2022023622A1 (fr) 2020-07-30 2021-07-26 Procede d'enduction d'un support textile

Publications (1)

Publication Number Publication Date
EP4189155A1 true EP4189155A1 (fr) 2023-06-07

Family

ID=74758826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21755799.0A Pending EP4189155A1 (fr) 2020-07-30 2021-07-26 Procede d'enduction d'un support textile

Country Status (6)

Country Link
US (1) US20230295869A1 (fr)
EP (1) EP4189155A1 (fr)
JP (1) JP7523666B2 (fr)
KR (1) KR20230041074A (fr)
CN (1) CN116075244A (fr)
WO (1) WO2022023622A1 (fr)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526955A (en) * 1984-01-03 1985-07-02 Sws Silicones Corporation Radiation polymerizable compositions containing organopolysiloxanes having a --N--Si-- or --N--O--Si-- linkage
JPH05222143A (ja) * 1992-02-12 1993-08-31 Three Bond Co Ltd 紫外線硬化型シリコーン組成物
AU2002215713A1 (en) * 2000-12-04 2002-06-18 Bernard Hoste Composite material for counteracting edema
FR2835855B1 (fr) * 2002-02-08 2005-11-11 Rhodia Chimie Sa Utilisation d'une emulsion inverse a base de silicone reticulable pour la realisation de revetements "imper-respirants"
GB2399519B (en) * 2003-03-18 2005-07-13 Finden Coatings Ltd An adhesive fabric
FR2861753B1 (fr) * 2003-11-03 2006-03-03 Rhodia Chimie Sa Composition silicone et procede utile pour ameliorer la resistance a la dechirure et au peinage de sac gonflable, destines a la protection d'un occupant de vehicule.
FR2899248A1 (fr) 2006-03-31 2007-10-05 Rhodia Recherches & Tech Procede d'enduction d'une surface textile
TW200813159A (en) * 2006-04-26 2008-03-16 Dow Corning Korea Ltd A liquid silicone rubber composition for forming breathable coating film on a textile and process for forming a breathable coating film on a textile
PL2053160T3 (pl) * 2006-08-14 2013-03-29 Dow Corning Toray Co Ltd Kompozycja kauczuku silikonowego do powlekania tkanego materiału i powlekany tkany materiał
FR2946365A1 (fr) * 2009-06-05 2010-12-10 Bluestar Silicones France Procede d'enduction d'un support textile
FR2946655A1 (fr) 2009-06-15 2010-12-17 Bluestar Silicones France Procede d'enduction d'une composition silicone ne contenant pas d'etain sur un support souple.
FR2946654A1 (fr) 2009-06-15 2010-12-17 Bluestar Silicones France Procede d'enduction d'une composition silicone ne contenant pas d'etain sur un support souple.
DE102011004789A1 (de) * 2011-02-25 2012-08-30 Wacker Chemie Ag Selbsthaftende, zu Elastomeren vernetzbare Siliconzusammensetzungen
EP2800776B1 (fr) 2012-01-04 2020-04-29 Momentive Performance Materials Inc. Compositions adhésives à base de silicium
KR102073565B1 (ko) 2012-01-04 2020-02-05 모멘티브 퍼포먼스 머티리얼즈 인크. 이온성 실리콘의 경화성 조성물
US10131817B2 (en) 2012-10-02 2018-11-20 Elkem Silicones France Sas Cationically cross-linkable/polymerizable composition comprising an iodonium borate and releasing an acceptable odor
FR3020067A1 (fr) 2014-04-18 2015-10-23 Bluestar Silicones France Procede d'enduction d'un composition silicone sur un support souple
JP2016194028A (ja) 2015-03-31 2016-11-17 アルケア株式会社 皮膚用樹脂組成物及び皮膚用樹脂硬化物並びに該皮膚用樹脂硬化物を用いた貼付材
FR3037800A1 (fr) * 2015-06-26 2016-12-30 Bluestar Silicones France Article adhesif sur la peau
FR3041648A1 (fr) * 2015-09-25 2017-03-31 Bluestar Silicones France Composition silicone et procede utiles pour ameliorer la resistance au froissement et a l'abrasion de sacs gonflables, destines a la protection d'un occupant de vehicule
JP6531724B2 (ja) 2016-07-01 2019-06-19 信越化学工業株式会社 エアーバッグ用シリコーンゴムコーティング基布の製造方法、紫外線硬化型エアーバッグコーティング剤及びエアーバッグ用基布
WO2018206995A1 (fr) 2017-05-10 2018-11-15 Elkem Silicones France Sas Procédé de fabrication d'un article en élastomère de silicone à l'aide d'une imprimante 3d
EP3642192A1 (fr) 2017-06-22 2020-04-29 Elkem Silicones France S.A.S. Photoamorceurs radicalaires et leurs utilisations dans les compositions silicones
FR3097239B1 (fr) 2019-06-11 2022-04-29 Sigvaris Ag Système d’impression par jet de matériau souple sur un élément textile

Also Published As

Publication number Publication date
KR20230041074A (ko) 2023-03-23
JP2023536480A (ja) 2023-08-25
US20230295869A1 (en) 2023-09-21
JP7523666B2 (ja) 2024-07-26
CN116075244A (zh) 2023-05-05
WO2022023622A1 (fr) 2022-02-03

Similar Documents

Publication Publication Date Title
EP2437626B1 (fr) Procédé d'enduction d'un support textile
EP0915937B1 (fr) Composition silicone pour l'enduction de substrats en matiere textile
EP1957585B1 (fr) Vernis silicone polyaddition anti-salissures, application de ce vernis sur un support et support ainsi traite
EP3131991B1 (fr) Procédé d'enduction d'une composition silicone sur un support souple
EP3430086A1 (fr) Gel silicone adhésif à la peau
FR2719598A1 (fr) Composition élastomère silicone et ses applications, notamment pour l'enduction de sac gonflable, destiné à la protection d'un occupant de véhicule.
EP1513667A1 (fr) Procede de traitement de surface d un article comportant du silicone reticule par polyaddition
WO2007065886A1 (fr) Fils, fibres et filaments pour tissage sans encollage
JP2008013768A (ja) 硬化可能なオルガノポリシロキサン材料
EP3353253B1 (fr) Composition silicone et procede utiles pour ameliorer la resistance au froissement et a l'abrasion de sacs gonflables, destines a la protection d'un occupant de vehicule
WO2017051083A1 (fr) Article adhésif à la peau
EP3313459B1 (fr) Article adhésif sur la peau
EP1711654A1 (fr) Composition silicone et procede utile pour ameliorer la resistance a la dechirure et au peignage de sac gonflable, destines a la protection d' un occupant de vehicule
EP4189155A1 (fr) Procede d'enduction d'un support textile
WO2007112982A1 (fr) Procédé d'enduction d'une surface textile
WO2005066412A1 (fr) Composition silicone et procede utile pour ameliorer le coefficient de friction de sac gonflable, destines a la protection d'un occupant de vehicule
WO2023111478A1 (fr) Composition silicone réticulable par irradiation
FR3135086A1 (fr) Composition silicone réticulable par irradiation comprenant du Pt(octane-2,4-dione)2 comme catalyseur
WO2008080867A1 (fr) Procédé pour préparer un support fibreux tissé, tricoté, ou non tissé enduit sur une ou deux faces par au moins une couche silicone élastomérique renforcée
CA2262495C (fr) Composition silicone pour l'enduction de substrats en matiere textile
FR2751979A1 (fr) Composition silicone pour l'enduction de substrats en matiere textile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)