EP4158083A1 - Procédé pour faire fonctionner un système d'électrolyse et système d'électrolyse - Google Patents

Procédé pour faire fonctionner un système d'électrolyse et système d'électrolyse

Info

Publication number
EP4158083A1
EP4158083A1 EP21755704.0A EP21755704A EP4158083A1 EP 4158083 A1 EP4158083 A1 EP 4158083A1 EP 21755704 A EP21755704 A EP 21755704A EP 4158083 A1 EP4158083 A1 EP 4158083A1
Authority
EP
European Patent Office
Prior art keywords
gas
product
electrolysis system
product gas
secondary gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21755704.0A
Other languages
German (de)
English (en)
Inventor
Thomas Purucker
Erik Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP4158083A1 publication Critical patent/EP4158083A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/029Concentration
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/085Removing impurities
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/087Recycling of electrolyte to electrochemical cell
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a method for operating an electrolysis system comprising an electrolyzer for generating hydrogen and oxygen as product gases, with the product gas streams being discharged from the electrolyzer.
  • the invention also relates to an electrolysis system comprising an electrolyzer for generating hydrogen and oxygen as product gases, at least one product gas line for discharging the product gases from the electrolyzer, with a gas separation device being arranged on the at least one product gas line.
  • Hydrogen is nowadays produced, for example, by means of PEM electrolysis.
  • a component of a PEM electrolytic cell is a proton-permeable polymer membrane (proton exchange membrane), which is contacted on both sides by porous platinum electrodes (anode and cathode).
  • An external voltage is applied to this and water is supplied to the anode side of the electrolyser.
  • the water on the anode side is decomposed by the catalytic effect of the platinum.
  • the hydrogen ions H+ diffuse through the proton-conducting membrane to the cathode side, where they combine with the electrons from the external circuit to form hydrogen molecules H2.
  • the electrolytic cells described above are combined in stacks. Water is introduced into the stack, which is under DC voltage, and after passing through the electrolysis cells, two product streams emerge, consisting of water and gas bubbles as oxygen or hydrogen f . It is inherent in the system that in the product stream of one product gas only small quantities of the other product gas are present. In practice, the oxygen contains f- gas stream small amounts of hydrogen and in the hydrogen gas stream small amounts of oxygen. The quantity of the respective foreign gas depends on the electrolysis cell design and also varies under the influence of current density, catalyst composition, aging and, in the case of a PEM electrolysis system, the membrane material. Under certain circumstances, it may be necessary to reduce the concentration of foreign gases, namely immediately before or after. directly after the electrolysis cell or . the electrolysis stack, e.g. B. in a gas separation device downstream of the electrolyzer.
  • both product gas streams are fed to a respective, catalytically activated recombiner in which a catalyst allows the hydrogen to recombine with the oxygen, so that the respective product stream recombines in water.
  • the gas flow must first be heated to at least 80 °C so that the conversion rates of the recombiner are sufficiently high.
  • a further possibility for treating the foreign gas problem is to produce recombination-active surfaces inside the electrolytic cell by means of special treatment measures, which, however, can be economically disadvantageous.
  • the invention is therefore based on the object of proposing a novel method for reducing the foreign gas in a product gas stream of a hydrogen electrolysis plant.
  • the object is achieved according to the invention by a method for operating an electrolysis system comprising an electrolyzer for generating hydrogen and oxygen as product gases, the product gas streams being discharged from the electrolyzer and a secondary gas being mixed with at least one of the product gas streams.
  • the electrolysis system can be a high-pressure electrolysis system or a low-pressure electrolysis system that is laid for a PEM electrolysis or for alkaline electrolysis.
  • the oxygen or hydrogen produced in the electrolysis plant is referred to as product gas.
  • the product gas stream is the oxygen soapy or hydrogen soapy stream which, in addition to the respective product gas and a. may also contain other components, e.g. B. Water or the respective product foreign gas.
  • the invention is based on the idea of supplying an additional gas stream containing the secondary gas, which is either provided externally or comes from the electrolysis system's own production, with the aim of reducing the foreign gas concentration in the product gas stream to be treated by increasing the total volume flow.
  • the secondary gas can be fed to the electrolysis system at several points, e.g. B. in a gas separation device and/or in the exit area of the electrolysis stack and/or in the entry area of the electrolysis cell. Depending on the position of the feed point, the secondary gas mixes with the product gas either immediately or later when the product gas is produced.
  • the method according to the invention is essential for trouble-free and safe operation of the electrolytic system and represents a technical measure that does not require changes to the electrolytic cell that are relevant to aging and efficiency.
  • the secondary gas contains the same product gas as in the product gas stream with which it is mixed, and/or it contains an inert gas.
  • the inert gas is intended in particular for the oxygen product side.
  • the secondary gas consists in particular of hydrogen.
  • the secondary gas is a gas produced in the electrolysis system, which is cleaned and recycled. This means that only oxygen is used on the oxygen product side and/or only hydrogen is used as secondary gas on the hydrogen product side. This design has the significant advantage that no external gas is provided or must be stored for use in the electrolysis plant.
  • At least part of the product gas flow is preferably cleaned after a gas separation device and used as secondary gas.
  • a gas separation device is understood here to mean a liquid/gaseous phase separator for gas separation. This procedure requires a minimum structural outlay, in that part of a product gas generated during the electrolysis is branched off after the gas separation device and fed back into the electrolysis plant.
  • the secondary gas is returned to the gas separation device under pressure, i. H .
  • the pressure of the secondary gas is at least higher than the pressure in the gas separation device.
  • a blower or a compressor is used in particular.
  • a foreign gas concentration in the product gas flow which is mixed with the secondary gas is advantageously determined and the volume flow of the secondary gas is adjusted as a function of the foreign gas concentration.
  • the foreign gas concentration can be determined by calculation or by measurements using gas sensors.
  • the gas sensors measure z. B. via the thermal conductivity, in particular the distance from the ignition limit.
  • the degree of foreign gas concentration and thus the amount of secondary gas supply required can be determined and optimally adjusted via a differential temperature measurement via the recombiner.
  • the gas composition can also be determined via thermal conductivity, speed of sound and gas chroma tographs are determined.
  • the foreign gas concentration is determined on the outlet side of the gas separation device.
  • At least part of a product gas is preferably branched off and temporarily stored in a gas reservoir, the stored product gas being fed back as secondary gas when the electrolysis system is started up.
  • the branch is z. B. from or after the gas separation device.
  • the product gas is also cleaned, e.g. B. in a recombiner. In order to be able to start the electrolysis system, the cleaned product gas is fed back and mixed with the product gas flow at a point in time at which the recycling of the product gases is not yet active, since no product gases have yet been produced.
  • an electrolysis system comprising an electrolyzer for generating hydrogen and oxygen as product gases, at least one first product gas line and a second product gas line for discharging the product gases from the electrolyzer, with a secondary gas line being provided , Through which a secondary gas is mixed with at least one of the product gas streams in one of the product gas lines.
  • the secondary gas line preferably opens into a gas separation device downstream of the electrolyzer.
  • the secondary gas line is preferably branched off from the at least one product gas line after the gas separation device.
  • a recombiner is preferably arranged on the at least one product gas line for the purification of the product gas before it is fed back as secondary gas.
  • the secondary gas line expediently contains a blower.
  • the electrolysis system also includes a measuring device for measuring a foreign gas concentration in the product gas stream, which is mixed with the secondary gas, and a control device that is suitable for adjusting the volume flow of the secondary gas depending on the foreign gas concentration.
  • the secondary gas line is fluidically connected to a gas reservoir for the secondary gas.
  • an electrolysis system 1 comprising an electrolyzer 2 .
  • the electrolysis system 1 also has an oxygen soapy, first gas separation device 4 and a hydrogen soapy, second gas separation device 6 .
  • the electrolyzer 2 is connected to the first gas separation device 4 via a first product gas line 8 and to the second gas separation device 6 via a second product gas line 10 . Accordingly, a mixture of water and oxygen is transported via the first product gas line 8 .
  • a mixture of water and hydrogen is conducted out of the electrolyzer 2 through the second product gas line 10 .
  • a liquid/gas separation then takes place in the respective gas separation device 4 , 6 .
  • water is returned from the first gas separation device 4 to the electrolyzer 2 via a water return line 12 .
  • the water from the second gas separation device 6 is fed into a water supply line 14 of the electrolyzer 2 .
  • the oxygen gas flow in the first product gas line 8 contains small amounts of hydrogen and the hydrogen gas flow in the second product gas line 8 contains small amounts of oxygen.
  • oxygen 16 and hydrogen 18 are cleaned in the respective gas separation device 4 , 6 Recombiner 20, 22 downstream, in which the gaseous hydrogen is oxidized catalytically with the gaseous oxygen to form water.
  • a portion of the respective product gas 16, 18 processed in this way is returned to the respective gas separation device 4, 6 via a secondary gas line 24.
  • a fan 26 is integrated in the secondary gas line 24, with the aid of which the pressure of the purified oxygen or hydrogen product gas upstream of the gas separation device 4, 6 is increased. Due to the branched off, pure product gas, the foreign gas concentration in the product gas flow to be treated in the product gas lines 8, 12 is reduced by increasing the total volume flow.
  • measuring devices are attached to the product gas lines 8, 12, which, however, are not shown in the figure.
  • Another option is to temporarily store the cleaned product gas, which is intended as a secondary gas, in a gas reservoir and return it to the gas separator when the electrolysis system is started up.
  • the gas reservoir not shown in detail, is fluidically connected in particular to the respective secondary gas line 24 .
  • the secondary gas can be fed into the outlet area from the electrolyzer 2 and/or into the inlet area of the electrolyzer 2 .
  • an internet gas such as nitrogen
  • the product gas stream is mixed with a secondary gas on both the oxygen and hydrogen side.
  • the secondary gas can only be fed in on one side of the product, e.g. only on the oxygen side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un système d'électrolyse (1) comprenant un électrolyseur (2) pour générer de l'hydrogène et de l'oxygène en tant que produits gazeux, les flux de produits gazeux étant évacués de l'électrolyseur (2). Un gaz secondaire est mélangé avec au moins l'un des flux de produits gazeux dans le but de réduire la concentration de gaz étranger dans le flux de produit gazeux à traiter au moyen d'une augmentation du débit volumique global.
EP21755704.0A 2020-09-16 2021-07-28 Procédé pour faire fonctionner un système d'électrolyse et système d'électrolyse Pending EP4158083A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20196417.8A EP3971324A1 (fr) 2020-09-16 2020-09-16 Procédé de fonctionnement d'une installation d'électrolyse ainsi qu'installation d'électrolyse
PCT/EP2021/071131 WO2022058078A1 (fr) 2020-09-16 2021-07-28 Procédé pour faire fonctionner un système d'électrolyse et système d'électrolyse

Publications (1)

Publication Number Publication Date
EP4158083A1 true EP4158083A1 (fr) 2023-04-05

Family

ID=72521518

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20196417.8A Withdrawn EP3971324A1 (fr) 2020-09-16 2020-09-16 Procédé de fonctionnement d'une installation d'électrolyse ainsi qu'installation d'électrolyse
EP21755704.0A Pending EP4158083A1 (fr) 2020-09-16 2021-07-28 Procédé pour faire fonctionner un système d'électrolyse et système d'électrolyse

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20196417.8A Withdrawn EP3971324A1 (fr) 2020-09-16 2020-09-16 Procédé de fonctionnement d'une installation d'électrolyse ainsi qu'installation d'électrolyse

Country Status (4)

Country Link
US (1) US20230349060A1 (fr)
EP (2) EP3971324A1 (fr)
CN (1) CN116157554A (fr)
WO (1) WO2022058078A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022213507A1 (de) 2022-12-13 2024-06-13 Siemens Energy Global GmbH & Co. KG Elektrolyseanlage mit einem Druckelektrolyseur und Verfahren zum Betrieb einer Elektrolyseanlage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457306B1 (ja) * 2002-12-13 2003-10-14 スガ試験機株式会社 水安定同位体比測定用水電解装置及び水安定同位体比質量分析方法
DE10258525A1 (de) * 2002-12-14 2004-07-01 GHW Gesellschaft für Hochleistungselektrolyseure zur Wasserstofferzeugung mbH Druckelektrolyseur und Verfahren zur Abschaltung eines Druckelektrolyseurs
JP5912878B2 (ja) * 2012-05-31 2016-04-27 株式会社神鋼環境ソリューション 水素酸素発生装置及び水素酸素発生装置の操作方法
JP6948384B2 (ja) * 2017-03-23 2021-10-13 旭化成株式会社 水電解システム、水電解方法、水素の製造方法
EP3581683A1 (fr) * 2018-06-15 2019-12-18 Siemens Aktiengesellschaft Dispositif d'électrolyse pourvu d'un recombinateur et procédé de fonctionnement du dispositif d'électrolyse
DE102018222388A1 (de) * 2018-12-20 2020-06-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Elektrolyseanlage und Elektrolyseanlage

Also Published As

Publication number Publication date
CN116157554A (zh) 2023-05-23
WO2022058078A1 (fr) 2022-03-24
US20230349060A1 (en) 2023-11-02
EP3971324A1 (fr) 2022-03-23

Similar Documents

Publication Publication Date Title
EP0596366B1 (fr) Procédé et dispositif pour évacuation de l'eau et des gaz inertes dans une batterie de piles à combustible
DE69109326T2 (de) Verfahren zum Betrieb eines Systems zur Energiegewinnung mittels Brennstoffzellen.
DE112005003296B4 (de) Dekontaminationsprozedur für einen Brennstoffzellenstromerzeuger
DE69107992T2 (de) Verfahren zur elektrolytischen Herstellung von Ozon und Vorrichtung dazu.
DE102004060564A1 (de) Anhalteverfahren für ein Brennstoffzellensystem und Brennstoffzellensystem
DE102020212178A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems
DE102013011298A1 (de) Vorrichtung und Verfahren zum Betrieb einer Elektrolyse mit einer Sauerstoff-Verzehr Kathode
EP3714082A1 (fr) Production électrochimique d'un gaz comprenant du co avec refroidissement intermédiaire du courant électrolytique
DE1442965A1 (de) Verfahren zur Gewinnung von Wasserstoff auf elektrolytischem Wege
EP4158083A1 (fr) Procédé pour faire fonctionner un système d'électrolyse et système d'électrolyse
WO1998011617A1 (fr) Procede permettant de faire fonctionner une installation a piles a combustible, et installation a piles a combustible concernee
WO2022022849A1 (fr) Maintien de pression dans un système d'électrolyse
AT523373B1 (de) Sensorvorrichtung für ein Brennstoffzellensystem
DE102019219302A1 (de) Verfahren und Elektrolyseur zur Kohlenstoffdioxidreduktion
EP1746678B1 (fr) Procédé pour évacuation de l'eau et des gaz inertes dans un assemblage de piles à combustible et assemblage de piles à combustible
EP4334500A1 (fr) Procédé d'exploitation d'une installation d'électrolyse et installation d'électrolyse
EP1481436B1 (fr) Procede d'inertisation des anodes de piles a combustible
WO2017167605A1 (fr) Dispositif et procédé pour produire un gaz, en particulier un gaz de synthèse
EP4108807A1 (fr) Procédé de fonctionnement d'une installation d'électrolyse et installation d'électrolyse
DE102016207420A1 (de) Vorrichtung und Verfahren zur Herstellung eines Produktgases, insbesondere Synthesegases
DE102020109016B4 (de) Verfahren und Vorrichtung zur Synthese von Ammoniak
DE102019215891A1 (de) Verfahren und Vorrichtung zur elektrochemischen Wasserstoffkomprimierung
DE102018222338A1 (de) Elektrolyseur zur Kohlenstoffdioxidreduktion
WO2024068185A2 (fr) Électrolyseur et procédé pour faire fonctionner un électrolyseur
DE102022212446A1 (de) Verfahren zum Inertisieren einer Kathode und einer Anode eines Brennstoffzellenstapels, Steuergerät

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)