EP4146714A1 - Polyvinylalkohol-stabilisierte (meth)acrylsäureesterpolymere - Google Patents

Polyvinylalkohol-stabilisierte (meth)acrylsäureesterpolymere

Info

Publication number
EP4146714A1
EP4146714A1 EP20725120.8A EP20725120A EP4146714A1 EP 4146714 A1 EP4146714 A1 EP 4146714A1 EP 20725120 A EP20725120 A EP 20725120A EP 4146714 A1 EP4146714 A1 EP 4146714A1
Authority
EP
European Patent Office
Prior art keywords
meth
acrylic acid
acid ester
ester polymers
stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20725120.8A
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Weitzel
Ulf Dietrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP4146714A1 publication Critical patent/EP4146714A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F263/00Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00
    • C08F263/02Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00 on to polymers of vinyl esters with monocarboxylic acids
    • C08F263/04Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00 on to polymers of vinyl esters with monocarboxylic acids on to polymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2623Polyvinylalcohols; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00637Uses not provided for elsewhere in C04B2111/00 as glue or binder for uniting building or structural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C

Definitions

  • the invention relates to polyvinyl alcohol-stabilized (meth) acrylic acid ester polymers in the form of aqueous dispersions or water-redispersible powders, processes for their manufacture and their use in construction chemical products such as tile adhesives, leveling compounds, powder paints or thermal insulation composite systems.
  • Aqueous dispersions or water-redispersible powders of polymers based on ethylenically unsaturated monomers are used in a wide variety of applications, for example in adhesives, coating applications, as binders in carpet, textile and paper applications and in construction chemical products such as tile adhesives, plasters and sealants.
  • Such polymer dispersions are usually prepared by aqueous emulsion polymerization of ethylenically unsaturated monomers, for example batchwise (discontinuously) in stirred polymerization reactors or else continuously, for example in stirred tank cascades.
  • Dispersion powders can be prepared by spray drying aqueous polymer dispersions with the addition of drying aids, such as polyvinyl alcohol, as described, for example, in DE-A 2049114. Free-flowing powders obtainable in this way with particle sizes between 10 and 250 gm redisperse in water again to form dispersions with particle sizes between 0.1 and 5 gm. H. they must not tend to sit down.
  • drying aids such as polyvinyl alcohol
  • Aqueous polymer dispersions are usually stabilized with protective colloids, such as polyvinyl alcohol, or emulsifiers with a variety of chemicals.
  • protective colloids such as polyvinyl alcohol, or emulsifiers with a variety of chemicals.
  • polyvinyl alcohol is often used as a protective colloid in order to obtain both stable polymer dispersions and redispersible dispersion powders with the desired powder properties.
  • conventional acrylic acid ester copolymers the stabilization with conventional polyvinyl alcohols have not been tried and tested, since dispersions of this type are not sufficiently stable or coarse polymer particles are often formed, which must be prevented.
  • emulsifiers were often used as stabilizers.
  • emulsifiers can be problematic from an ecological or health point of view, for example because of their irritating or sensitizing effect, so that end products containing appropriate emulsifiers can harm consumers or even have to be labeled as hazardous substances. There is therefore a desire to dispense with emulsifiers as stabilizers.
  • modified polyvinyl alcohols have been used as protective colloids for stabilizing (meth) acrylic acid esters.
  • JP2004 339291, JP2004323571, JP2004331785, JP07070989 and JP05059106 describe mercapto-functional polyvinyl alcohols.
  • WO2006095524 teaches polyvinyl alcohols with a defined proportion of 1.2 glycol groups. With the special synthesis strategies of DE19928933 stable, but only coarse (meth) acrylic acid ester polymer dispersions could be obtained.
  • Such special, modified polyvinyl alcohols are on the one hand complex to produce and expensive.
  • such functional groups introduced into polyvinyl alcohol can have a negative effect on the processability or other properties of the application products.
  • the object was to provide finely divided, stable, protective colloid-stabilized aqueous dispersions of (meth) acrylic acid ester polymers and corresponding powders redispersible in water
  • the protective colloids used should be as conventional, unmodified polyvinyl alcohols as possible.
  • aqueous dispersions or powders redispersible in water should be accessible by established methods that are as simple as possible.
  • the invention relates to polyvinyl alcohol-stabilized (meth) acrylic ester polymers with particle sizes Dw from 100 to 900 nm in the form of aqueous dispersions or powders redispersible in water, characterized in that the (meth) acrylic ester polymers are based on a) 1 to 30 wt.
  • % of one or more vinyl esters of carboxylic acids with 5 to 15 carbon atoms b) 20 to 80% by weight of one or more (meth) acrylic acid esters, the homopolymer of which has a glass transition temperature Tg of ⁇ 20 ° C, c) 10 to 70% by weight of one or more (meth) acrylic acid esters whose homopolymers have a glass transition temperature Tg of> 50 ° C., and optionally one or more other ethylenically unsaturated monomers, the data being in% by weight refer to the total weight of the (meth) acrylic acid ester polymers.
  • (Meth) acrylic acid ester polymers generally include acrylic acid ester polymers or methacrylic acid ester polymers, and preferably copolymers of acrylic acid esters and methacrylic acid esters.
  • (Meth) acrylic acid esters generally stand for acrylic acid esters and methacrylic acid esters.
  • Vinyl esters of carboxylic acids having 9 to 12 carbon atoms are preferred as vinyl esters a).
  • vinyl esters a) are vinyl 2-ethylhexanoate, vinyl laurate, vinyl pivalate and vinyl esters of alpha-branched monocarboxylic acids with 5 to 13 carbon atoms, such as VeoVa9R, VeoValOR, VeoVallR or VeoVal2R (trade names of the company Hexion). Vinyl esters of alpha-branched monocarboxylic acids having 9 to 13 carbon atoms and in particular vinyl laurate are preferred.
  • the (meth) acrylic ester polymers are preferably based on 3 to 25% by weight, particularly preferably 5 to 20% by weight and most preferably 10 to 15% by weight on vinyl ester a), based on the total weight of the (meth) Acrylic acid ester polymers.
  • (Meth) acrylic acid esters b) whose homopolymers have a glass transition temperature Tg of ⁇ 10 ° C. are preferred.
  • (Meth) acrylic acid esters b) can be, for example, (meth) acrylic acid esters of linear or branched, Ci- to Cis-alkanols, in particular Ci- to Cis-alkanols.
  • alkanols are n-propyl, n-butyl, iso-butyl, n-pentyl, n-hexyl, n-nonyl or n-decyl alkanols.
  • Preferred (meth) acrylic acid esters b) are n-butyl acrylate, n-hexyl acrylate, n-hexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate and stearyl acrylate. Most preferred is butyl acrylate, especially n-butyl acrylate.
  • the (meth) acrylic acid ester polymers are preferably based on (meth) acrylic acid esters b) to the extent of 25 to 70% by weight, particularly preferably 30 to 65% by weight and most preferably 40 to 60% by weight, based on the total weight of the (Meth) acrylic acid ester polymers.
  • (Meth) acrylic acid esters c) can be, for example, (meth) acrylic acid esters of linear or branched, Ci- to Cio-alkanols, in particular Ci- to Cio-alkanols.
  • Preferred (meth) acrylic acid esters c) are methyl methacrylate, tert-butyl methacrylate and tert-butyl acrylate. Methyl methacrylate is particularly preferred.
  • the (meth) acrylic acid ester polymers are preferably based on (meth) acrylic acid esters c) to the extent of 15 to 60% by weight, particularly preferably 20 to 55% by weight and most preferably 25 to 50% by weight, based on the total weight of the (Meth) acrylic acid ester polymers
  • the (meth) acrylic ester polymers are preferably based to 50 to 99 wt .-%, particularly preferably 65 to 97 wt .-% and most preferably 80 to 95 wt .-% on (meth) acrylic acid esters b) and (meth) acrylic acid esters c ), each based on the total weight of the (meth) acrylic acid ester polymers.
  • the other monomers are generally different from the monomers a) to c).
  • the silicon atom Si is known to be tetravalent.
  • g-acrylic or g-methacryloxypropyltri (alkoxy) silanes Preferred are g-acrylic or g-methacryloxypropyltri (alkoxy) silanes, a-methacryloxymethyltri (alkoxy) silanes, g-methacryloxypropylmethyldi (alkoxy) silanes, vinylalkyldi (alkoxy) silanes and vinyltri (alkoxy) silanes, methoxy, ethoxy, isopropoxy, methoxyethylene, ethoxyethylene, methoxypropylene glycol ether or ethoxypropylene glycol ether radicals, for example, can be used as alkoxy groups.
  • vinyltrimethoxysilane Vinylmethyldime- thoxysilan, vinyltriethoxysilane, vinylmethyldiethoxysilane, nyltripropoxysilan Vi, vinyltriisopropoxysilane, vinyltris (1-me thoxy) -isopropoxysilan, vinyltributoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, methacryloxymethyltrimethoxysilane, 3-methacryloxypropyl-tris ( 2- methoxyethoxy) silane, vinyltris- (2-methoxyethoxy) silane, allylvi- nyltrimethoxysilane, allyltrimethoxysilane, vinyldimethylmethoxysilane, vinyldimethylethoxysilane, vinylisobutyldimethoxysilane, vinyltriisopropyloxysilane, vinyl
  • vinyltrimethoxysilane vinylmethyldimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinylmethyldiethoxysilane, vinyltris- (1-methoxy) -isopoxysilane, methacryloxypropyl-tris (2-methoxyethoxy) silane, methacryloxypropyl-tris (2-methoxyethoxy) silane, 3-methoxy-methoxy-silane, 3-methoxyethoxy-silane, 3-methoxyethoxy-silane, 3-methoxyethoxy-silane, 3-methoxyethoxy-silane, 3-methoxyethoxy-silane, 3-methoxyethoxy-silane, 3-methoxyethoxy-silane, 3-methoxyethoxy-silane, 3-methoxyethoxy-silane, 3-methoxy-ethoxy-silane, 3-methoxy-ethoxy-s
  • the (meth) acrylic ester polymers are preferably based on 0 to 5% by weight, particularly preferably 0.1 to 3% by weight and most preferably 0.5 to 1% by weight, based on ethylenically unsaturated silanes d) the total weight of the (meth) acrylic acid ester polymers.
  • monomers are, for example, epoxy-functional, ethylenically unsaturated monomers e), in particular glycidyl methacrylate and glycidyl acrylate.
  • the (meth) acrylic acid ester polymers are based preferably from 0 to 5% by weight, particularly preferably from 0.1 to 3% by weight and most preferably from 0.5 to 2% by weight, based on monomers e), based on the total weight of (meth) acrylic acid ester polymers.
  • Examples of further monomers are also one or more ethylenically unsaturated monomers f) selected from the group comprising vinyl esters of carboxylic acids having 2 to 4 carbon atoms, olefins, dienes, vinyl aromatics and vinyl halides.
  • vinyl esters f) are vinyl propionate, vinyl butyrate, 1-methyl vinyl acetate and, in particular, vinyl acetate.
  • Preferred olefins or dienes are ethylene, propylene and 1,3-butadiene.
  • Preferred vinyl aromatics are styrene and vinyl toluene.
  • a preferred vinyl halide is vinyl chloride.
  • Monomers f), in particular vinyl esters of carboxylic acids having 2 to 4 carbon atoms and / or ethylene are preferably 0 to 20% by weight and particularly preferably 0.1 to 10% by weight in the (meth) acrylic acid ester polymers , based on the total weight of the (meth) acrylic acid ester polymers.
  • the (meth) acrylic acid ester polymers contain no monomer unit f), in particular no vinyl ester unit f) and / or no ethylene unit.
  • the further monomers optionally also comprise 0 to 20% by weight, preferably 0.5 to 10% by weight, based on the total weight of the (meth) acrylic acid ester polymers, of one or more auxiliary monomers g).
  • auxiliary monomers g) are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid, fumaric acid and maleic acid; ethylenically unsaturated carboxamides and nitriles, preferably acrylamide and acrylonitrile; Mono- and diesters of fumaric acid and maleic acid such as the diethyl and diisopropyl esters, as well as maleic anhydride, ethylenically unsaturated sulfonic acids or their salts, preferably vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid.
  • pre-crosslinking comonomers such as multiply ethylenically unsaturated comonomers, for example divinyl adipate, diallyl maleate, allyl methacrylate or triallyl cyanurate, or postcrosslinking comonomers, for example acrylamidoglycolic acid (AGA), methylacrylamidoglycol, methyl acrylamide (N-methacrylamide), methyl-methyl-ester (MAGME) -methacrylamide (N-methylol) (NMMA), N-methylol allyl carbamate, alkyl ethers such as isobutoxy ether or esters of N-methylol acrylamide, N-methylol methacrylamide and N-methylol allyl carbamate.
  • AGA acrylamidoglycolic acid
  • MAGME methyl-methacrylamide
  • NMMA N-methylol allyl carbamate
  • alkyl ethers such as isobutoxy ether or esters
  • Monomers with hydroxy or CO groups may also be mentioned, for example methacrylic acid and acrylic acid hydroxyalkyl esters such as hydroxyethyl, hydroxypropyl or hydroxybutyl acrylate or methacrylate, and compounds such as diacetone acrylamide and acetoxyethyl acrylate or methacrylate. Further examples are also vinyl ethers, such as methyl, ethyl or isobutyl vinyl ether.
  • the (meth) acrylic ester polymers preferably contain no carboxamide unit g), in particular no acrylamide unit.
  • the (meth) acrylic ester polymers particularly preferably contain no unit of monomers from the group comprising acrylamidoglycolic acid (AGA), methyl acrylamidoglycolic acid (MAGME), N-methylolacrylamide (NMA), N-methylol methacrylamide (NMMA), N-methylol allyl carbamate, alkyl ethers such as the isobutoxy ether or ester of N-methylol acrylamide, N-methylol methacrylamide and N-methylol allyl carbamate.
  • AGA acrylamidoglycolic acid
  • MAGME methyl acrylamidoglycolic acid
  • NMA N-methylolacrylamide
  • NMMA N-methylol methacrylamide
  • alkyl ethers such as the isobutoxy ether or ester of N-methylol acrylamide, N-methylol methacrylamide and N-methylol allyl carbamate.
  • Preferred further monomers are ethylenically unsaturated silanes d) and epoxy-functional, ethylenically unsaturated monomers e).
  • Further monomers are preferably 0 to 20% by weight, particularly preferably 0.1 to 10% by weight and most preferably 1 to 5% by weight, polymerized into the (meth) acrylic acid ester polymers, based on the total weight of the ( Meth) acrylic acid ester polymers.
  • the (meth) acrylic acid ester polymers have weight-average particle diameters Dw between 100 nm and 900 nm, preferably 200 nm to 800 nm and particularly preferably 250 nm and 800 nm.
  • the polydispersity PD of the (meth) acrylic acid ester polymers is preferably ⁇ 3, particularly preferably ⁇ 2.5 and most preferably ⁇ 2.
  • the parameters Dw and Dn or the particle size distribution are determined by means of laser light diffraction and laser light scattering using the (meth) acrylic acid ester polymers with the measuring device LS13320 with the optical model PVAC.RF780D, including PIDS, from Beckmann-Coulter and taking into account the instructions of the device manufacturer after sufficient dilution of the aqueous polymer dispersions with deionized water.
  • the selection of monomers or the selection of the proportions by weight of the comonomers is carried out in such a way that, for the (meth) acrylic acid ester polymers, generally glass transition temperatures Tg of ⁇ + 120 ° C, preferably -50 ° C to + 60 ° C, even more preferably - 30 ° C to + 40 ° C and most preferably -15 ° C to + 20 ° C result.
  • the glass transition temperature Tg can be determined in a known manner by means of differential scanning calorimetry (DSC).
  • the polyvinyl alcohols can be, for example, partially saponified or fully saponified polyvinyl alcohols, preferably with a degree of hydrolysis of 80 to 100 mol%, particularly preferably partially saponified polyvinyl alcohols with a degree of hydrolysis of 80 to 95 mol%, in particular 86 to 90 Mol%.
  • the Höppler viscosity of the polyvinyl alcohols, in 4% aqueous solution is preferably 1 to 30 mPas, and particularly preferably 2 to 20 mPas and most preferably 3 to 15 mPas (Höppler method at 20 ° C., DIN 53015).
  • Polyvinyl alcohols are contained in an amount of preferably 1 to 30% by weight, particularly preferably 3 to 20% by weight and most preferably 5 to 15% by weight, based on the total weight of the (meth) acrylic acid ester polymers.
  • Partially saponified, hydrophobically modified polyvinyl alcohols in particular partly saponified, hydrophobically modified polyvinyl alcohols with a degree of hydrolysis of 80 to 95 mol%, in particular with a 4% Höppler viscosity, are also preferred aqueous solution from 1 to 30 mPas.
  • Examples of these are partially saponified copolymers of vinyl acetate with hydrophobic comonomers such as isopropenyl acetate, vinyl pivalate, vinyl ethyl hexanoate, vinyl esters of saturated alpha-branched monocarboxylic acids with 5 or 9 to 11 carbon atoms, dialkyl maleate and dialkyl fumarates such as diisopropyl maleate, such as vinyl chloride, vinyl fumarate and diisopropyl fumarate , Olefins such as ethene and decene.
  • the proportion of the hydrophobic units is preferably 0.1 to 10% by weight, based on the total weight of the partially saponified polyvinyl alcohol. Mixtures of the polyvinyl alcohols mentioned can also be used. It is particularly preferred not to contain any hydrophobically modified polyvinyl alcohols.
  • the polyvinyl alcohols preferably contain no mercapto groups and / or no 1,2-glycol groups.
  • the polyvinyl alcohols consist of preferably> 80% by weight, more preferably> 90% by weight and particularly preferably> 95% by weight of vinyl alcohol and vinyl acetate units, based on the total weight of the polyvinyl alcohols. Most preferably, the polyvinyl alcohols consist exclusively of vinyl alcohol and vinyl acetate units.
  • one or more further protective colloids can be contained, such as, for example, polyvinyl acetals; Polyvinyl pyrrolidones; Polysaccharides in water-soluble form such as starches (amylose and amylopectin), cellulosene and their carboxymethyl, methyl, hydroxyethyl, hydroxypropyl derivatives, dextrins and cyclodextrins; Proteins such as casein or caseinate, soy protein, gelatin; Lignosulfonates; synthetic polymers such as poly (meth) acrylic acid, copolymers of (meth) acrylates with carboxyl-functional comonomer units, poly (meth) acrylamide, polyvinyl sulfonic acids and their water-soluble copolymers; Melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates, styrene maleic acid and vinyl ether
  • the further protective colloids can be contained, for example, in an amount of 0 to 20% by weight, in particular 0.1 to 10% by weight. Further protective colloids are preferably contained in an amount of ⁇ 20% by weight, particularly preferably ⁇ 10% by weight.
  • the data in% by weight relate to the total weight of the (meth) acrylic acid ester polymers. Most preferably, no further protective colloids are included. Preferably, only polyvinyl alcohols are contained as protective colloids.
  • one or more emulsifiers can also be contained, such as anionic, cationic or nonionic emulsifiers, in particular anionic surfactants, such as alkyl sulfates with a chain length of 8 to 18 carbon atoms, alkyl or alkyl ether sulfates with 8 to 18 carbon atoms hydrophobic radical and up to 40 ethylene or propylene oxide units, alkyl or alkylarylsulfonates with 8 to 18 carbon atoms, esters and half esters of sulfosuccinic acid with monohydric alcohols or alkylphenols, or nonionic surfactants such as alkyl polyglycol ethers or alkylaryl polyglycol ethers with 8 to 40 ethylene oxide Units.
  • anionic surfactants such as alkyl sulfates with a chain length of 8 to 18 carbon atoms, alkyl or alkyl ether sulfates with 8 to 18 carbon atoms hydrophobic radical
  • Emulsifiers can be present in an amount of, for example, 0 to 10% by weight, in particular 0.1 to 5% by weight, based on the total weight of the (meth) acrylic acid ester polymers. It is particularly preferred not to contain any emulsifiers.
  • Another object of the invention are processes for the Her position of polyvinyl alcohol-stabilized (meth) acrylic acid ester polymers with particle sizes Dw from 100 to 900 nm in the form of aqueous dispersions or water-redispersible powders by means of free-radically initiated emulsion polymerization of ethylenically unsaturated monomers in the presence of polyvinyl alcohol in aqueous medium and optionally subsequent drying, characterized in that a) 1 to 30% by weight of one or more vinyl esters of carboxylic acids having 5 to 15 carbon atoms, b) 20 to 80% by weight of one or more (meth) acrylic acid esters whose homopolymer has a glass transition temperature Tg of ⁇ 20 ° C, c) 10 to 70% by weight of one or more (meth) acrylic acid esters, the homopolymer of which has a glass transition temperature Tg of> 50 ° C, and optionally one or more further ethylenically unsaturated monomers are polymerized,
  • the polymerization temperature is generally from 40 ° C to 150 ° C, preferably from 60 ° C to 90 ° C.
  • the polymerization can be initiated using the redox initiator combinations customary for emulsion polymerization.
  • suitable oxidation initiators are the sodium, potassium and ammonium salts of peroxodisulfuric acid, hydrogen peroxide, t-butyl peroxide, t-butyl hydroperoxide, potassium peroxodiphosphate, t-butyl peroxopivalate, cumene hydroperoxide, isopropylbenzene monohydroperoxide, azobilisisobutyronitrile.
  • the sodium, potassium and ammonium salts of peroxodisulfuric acid and hydrogen peroxide are preferred.
  • the initiators mentioned are generally used in an amount of from 0.01 to 2.0% by weight, based on the total weight of the ethylenically unsaturated monomers.
  • Suitable reducing agents are, for example, the sulfites and bisulfites of the alkali metals and of ammonium, such as sodium sulfate, the derivatives of sulfoxylic acid such as zinc or alkali formaldehyde sulfoxylates, for example sodium hydroxymethanesulfinate (Bruggolite) and (iso-) ascorbic acid. Sodium hydroxymethanesulfinate and (iso-) ascorbic acid are preferred.
  • the amount of reducing agent is preferably 0.015 to 3% by weight, based on the total weight of the ethylenically unsaturated monomers.
  • the oxidizing agents mentioned, in particular the salts of peroxodisulfuric acid can also be used on their own as thermal initiators.
  • regulating substances can be used during the polymerization. If regulators are used, they are usually used in amounts between 0.01 to 5.0% by weight, based on the monomers to be polymerized, and are dosed separately or premixed with reaction components. Examples of such substances are n-dodecyl mercaptan, tert-dodecyl mercaptan, mercaptopropionic acid, methyl mercaptopropionate, isopropanol and acetaldehyde. Preferably no regulating substances are used.
  • polyvinyl alcohol is used in the emulsion polymerization in an amount of preferably a total of 1 to 20% by weight, based on the total weight of the ethylenically unsaturated monomers.
  • batch processes can be used, with all components of the Polymerisationsansat zes being presented in the reactor, or semi-batch processes, where individual or more components are presented and the remainder is metered in, or a continuous Polymerisa tion are carried out, the Components are metered in during the polymerization. If necessary, the dosages can be carried out separately (in terms of space and time).
  • Vinyl ester a) is preferably partially or in particular completely initially introduced.
  • the (meth) acrylic acid esters b) and / or the (meth) acrylic acid esters c) and, if appropriate, the further monomers are preferably wholly or partially metered in.
  • the total amount of vinyl ester a) used is particularly preferably initially introduced or metered in before the (meth) acrylic acid ester b) and / or the (meth) acrylic acid ester c) and, if appropriate, the further monomers are metered in.
  • Most preferably the vinyl esters a) are given partially or in particular completely polymerized before the (meth) acrylic acid esters b) and / or the (meth) acrylic acid esters c) and optionally the further monomers are metered in.
  • All the monomers are preferably polymerized in the same reactor.
  • a polymer based on the vinyl ester a) in the form of an aqueous dispersion as a seed and to use the (meth) acrylic acid ester b), the (meth) acrylic acid ester c) and optionally the other monomers in the presence of the seed to polymerize.
  • Some or all of the seed can be presented or partially or fully metered in. The seed is preferably presented in full.
  • post-polymerization can be carried out using known methods to remove residual monomers, for example by post-polymerization initiated with a redox catalyst. Volatile residual monomers can also be removed by means of distillation, preferably under reduced pressure, and if necessary by passing through or passing over inert entrainment gases such as air, nitrogen or steam.
  • the (meth) acrylic acid ester polymers are generally obtained in the form of polyvinyl alcohol-stabilized aqueous dispersions.
  • the aqueous dispersions have a solids content of preferably 30 to 75% by weight and particularly preferably 40 to 65% by weight.
  • the aqueous dispersions can be dried as a drying aid, for example by means of fluidized bed drying, freeze drying or spray drying .
  • the dispersions are preferably spray-dried.
  • the spray drying can be carried out in conventional spray drying systems, the atomization being able to take place, for example, by means of single-, dual- or multi-fluid nozzles or with a rotating disk.
  • the outlet temperature is generally in the range of 45 ° C to 120 ° C, preferably 60 ° C to 90 ° C, depending on the system, Tg of the resin and ge desired degree of dryness selected.
  • the drying aid is used in a total amount of 3 to 30% by weight, based on the polymeric constituents of the dispersion.
  • the total amount of protective colloid, in particular polyvinyl alcohol, before the drying process is preferably 3 to 30% by weight, particularly preferably 5 to 20% by weight, based on the polymer content.
  • Suitable drying aids are, for example, the protective colloids mentioned above, in particular polyvinyl alcohols, preferably the polyvinyl alcohols described above. Preference is given to using no further protective colloids other than polyvinyl alcohol as a drying aid.
  • the powder obtained can be equipped with an antiblocking agent (anticaking agent), preferably up to 30% by weight, based on the total weight of polymeric constituents.
  • antiblocking agents are calcium carbonate or magnesium carbonate, talc, gypsum, silicic acid, in particular hydrophobic silicic acid, kaolins, silicates with particle sizes, preferably in the range from 10 nm to 10 ⁇ m.
  • the viscosity of the food to be atomized is preferably adjusted via the solids content so that a value of ⁇ 500 mPas (Brookfield viscosity at 20 revolutions and 23 ° C.), particularly preferably ⁇ 250 mPas, is obtained.
  • the solids content of the dispersion to be atomized is preferably> 35%, particularly preferably> 40%.
  • redispersible polymer powder compositions contained in preferred embodiments are pigments, fillers, foam stabilizers, Water repellants.
  • the (meth) acrylic ester polymers stabilized according to the invention polyvinyl alcohol are particularly suitable for use in construction chemical products. They can be used alone or in combination with conventional polymer dispersions or dispersion powders, optionally in conjunction with hydraulically setting binders such as cements (Portland, aluminate, trass, metallurgical, magnesia, phosphate cement), gypsum and water glass for the production of Leveling compounds, construction adhesives, plasters, leveling compounds, grouts, sealing slurries, thermal insulation composite systems or paints such as powder paints. Under construction adhesives, tile adhesives or full heat protection adhesives are preferred areas of application for dispersion powder compositions. Preferred areas of application for the dispersion powder compositions are leveling compounds, and particularly preferred leveling compounds are self-leveling floor leveling compounds and screeds.
  • binders such as cements (Portland, aluminate, trass, metallurgical, magnesia, phosphate cement), gyp
  • finely divided, polyvinyl alcohol-stabilized (meth) acrylic acid ester polymers are available which are storage-stable in the form of aqueous dispersions, redispersible powders or corresponding aqueous redispersions.
  • Conventional, unmodified polyvinyl alcohols can advantageously be used for this purpose, so that this does not interfere with the property profile of application products.
  • the (meth) acrylic acid ester polymers can be produced by established processes. All of this is also economically advantageous.
  • the (meth) acrylic acid ester polymers according to the invention lead in applications to advantageous mechanical properties, such as, for example, adhesive tensile strength, and in paint applications to high covering power, color density and, in particular, high wet abrasion resistance.
  • the reactor was provided with a nitrogen protective gas atmosphere. 197 g of vinyl laurate were added and the mixture was heated to 70.degree.
  • the polymerization was carried out by adding 5% by weight aqueous tert-butyl hydroperoxide solution (TBHP) at a rate of 12 g / h and adding 5% by weight aqueous ascorbic acid solution at a rate of 12 g / h started.
  • TBHP tert-butyl hydroperoxide solution
  • the monomer metering consisting of 592 g of butyl acrylate and 527 g of methyl methacrylate was started at a rate of 280 g / h (duration 4 h).
  • an aqueous dosage consisting of 557 g of water and 559 g of a 20% by weight solution of a partially saponified polyvinyl alcohol (degree of hydrolysis: 88 mol%; Höppler viscosity: 4 mPas) was started at a rate of 280 g / h ( Duration 4 h). After the monomer had been metered in, the polymerization was continued for a further 1 hour.
  • polymerization was carried out with the addition of 6.5 g of a 5% strength by weight aqueous TBHP solution and 6.5 g of a 5% strength by weight aqueous ascorbic acid solution.
  • Example 2 to 6 and Comparative Example 7 (Ex. 2-6, Ex. 7): The polymer dispersions of Ex. 2-6 and Ex. 7 were prepared as described for Example 1, with the difference that the polymer dispersions of Ex. 2-6 and Ex specified monomers were used.
  • the polymer dispersions from (comparative) Examples 1 to 7 were each with the addition of 2.0% by weight, based on the polymer content of the dispersion (solid / solid), of a partially saponified polyvinyl alcohol (degree of hydrolysis: 88 mol%; Höppler viscosity : 4 mPas in 4% aqueous solution)) and 6.0% by weight, based on the polymer content of the dispersion (solid / solid), of a partially saponified polyvinyl alcohol (degree of hydrolysis: 88 mol%; Höppler viscosity: 13 mPas in 4 % strength aqueous solution) dried by spray drying in a conventional manner at an inlet temperature of 130 ° C. and an outlet temperature of 80 ° C., as a result of which redispersible powders were obtained.
  • the powders were stabilized as anti-caking agents by adding 4% by weight of kaolin and 16% by weight of calcium carbonate.
  • the powder to be examined was filled into an iron pipe with a screw connection and then loaded with a metal stamp. It was stored under load in the drying cabinet at 50 ° C. for 16 hours. After cooling to room temperature, the powder was removed from the tube and the blocking stability was determined qualitatively by crushing the powder. The results of the testing are listed in Table 3.
  • the block stability was classified as follows:
  • the settling behavior of redispersions serves as a measure of the redispersibility of redispersible powders.
  • the powder to be investigated was redispersed in a concentration of 50% by weight in water by the action of strong shear forces.
  • the dispersion powder compositions were examined for their suitability for bonding ceramic tiles. Dry mortar of the following composition was produced: 420 parts Milke Premium cement CEM I 52.5R,
  • the tile adhesive mortar was mixed with 34 g of water per 100 g of dry mortar.
  • the tiles were laid with the tile adhesive in the conventional way.
  • the tile adhesives with the dispersion powder compositions PI to P6 according to the invention showed, compared to the tile adhesive with the comparative dispersion powder composition VP7, improved tensile strengths, in particular improved wet strengths, freeze-thaw resistance (FT) and also after exposure to heat.
  • improved tensile strengths in particular improved wet strengths
  • freeze-thaw resistance FT
  • the dispersion powder compositions P3 and P4 as well as VP7 were also tested in flexible sealing slurries with regard to adhesive tensile strength.
  • the sealing slurries were based on the recipe in Table 5 and were made and applied in a conventional manner.
  • the testing of the adhesive tensile strength of the sealing slurry after storage in a standard climate or after storage in water was carried out in accordance with EN 14891.
  • the adhesive tensile strength of sealing slurries can be improved by using dispersion powder compositions according to the invention.
  • the dispersion powder compositions were examined for their suitability for use in dispersion paints.
  • the dispersion paints were based on the recipe in Table 7 and were prepared and tested in a conventional manner as in Described below. The test results are summarized in Table 8.
  • the emulsion paint was applied in each case with an applicator in a layer thickness of 300 gm (wet) to a Leneta film (PVC film).
  • Class 3 with abrasion between 20 pm and less than 70 pm.
  • the Brookfield viscosity of the emulsion paints produced with the powder paint compositions was measured with a Brookfield viscometer BF 35, after heating to 23 ° C., using the spindle specified in the operating instructions at 100 revolutions per minute (BF100).
  • the viscosity is given in mPas.
  • the opacity was determined using the DIN EN 13300 method described in the "Guideline for determining the opacity" of the Association of the German Paint Industry, July 2002 edition.
  • the emulsion paints were kator with an automatic film applicator, with a doctor blade with a gap height of 150 pm and 225 pm, each on black and white contrast cards (type 3H from Lenetta) with standard color value Y over black of 7 or less and standard color value Y over white of 80 to 90 applied.
  • black and white contrast cards type 3H from Lenetta
  • the contrast cards coated in this way were dried for 24 hours at 23 ° C. and 50% relative humidity and then weighed.
  • the coverage in m 2 / l was calculated from the amount applied in g / m 2 and the color density. Using a colorimeter (Elrepho 450X from Datacolor), the standard color values Y (color standards) were measured over the black and white bases and the “contrast ratio” in “%” was calculated. The values determined in this way for the contrast ratio were plotted in a diagram against the corresponding yield (m 2 / l). The yield E at 7m 2 / l with a contrast ratio of 98% was determined by interpolation.
  • the wet abrasion resistance of emulsion paints could be increased considerably.
  • the other properties correspond to the requirements for dispersion paints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Gegenstand der Erfindung sind Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere mit Partikelgrößen Dw von 100 bis 900 nm in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpolymere basieren auf a) 1 bis 30 Gew.-% an einem oder mehreren Vinylestern von Carbonsäuren mit 5 bis 15 C-Atomen, b) 20 bis 80 Gew.-% an einem oder mehreren (Meth)Acrylsäureestern, deren Homopolymerisat eine Glasübergangstemperatur Tg von ≤ 20°C aufweist, c) 10 bis 70 Gew.-% an einem oder mehreren (Meth)Acrylsäureestern, deren Homopolymerisat eine Glasübergangstemperatur Tg von ≥ 50°C aufweisen, und gegebenenfalls einem oder mehreren weiteren ethylenisch ungesättigten Monomeren, wobei sich die Angaben in Gew.-% auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere beziehen.

Description

Polyvinylalkohol-stabilisierte (Meth)Acrylsäureesterpolymere
Die Erfindung betrifft Polyvinylalkohol-stabilisierte (Meth)Ac- rylsäureesterpolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern, Verfahren zu deren Her stellung sowie deren Verwendung in bauchemischen Produkten, wie beispielsweise in Fliesenklebern, Verlaufsmassen, Pulverfarben oder Wärmedämmverbundsystemen.
Wässrige Dispersionen oder in Wasser redispergierbare Pulver von Polymerisaten auf Basis ethylenisch ungesättigter Monomere finden in vielerlei Anwendungen Einsatz, beispielsweise in Klebstoffen, Coatinganwendungen, als Bindemittel in Teppich-, Textil- und Papieranwendungen sowie in bauchemischen Produkten, wie Fliesenkleber, Putzen und Dichtungsmassen. Die Herstellung solcher Polymerdispersionen erfolgt üblicherweise durch wäss rige Emulsionspolymerisation ethylenisch ungesättigter Mono mere, beispielsweise chargenweise (diskontinuierlich) in ge rührten Polymerisationsreaktoren oder auch kontinuierlich, bei spielsweise in Rührkesselkaskaden. Dispersionspulver können durch Sprühtrocknung wässriger Polymerdispersionen unter Zusatz von Trocknungshilfen, wie Polyvinylalkohol, hergestellt werden, wie beispielsweise in DE-A 2049114 beschrieben. So erhältliche gut rieselfähige Pulver mit Teilchengrößen zwischen 10 und 250 gm redispergieren in Wasser wieder zu Dispersionen mit Teilchengrößen zwischen 0,1 und 5 gm. Derartige Redispersionen müssen für eine Einsetzbarkeit in oben genannten Anwendungen über einen längeren Zeitraum stabil bleiben, d. h. sie dürfen nicht zum Absitzen neigen.
Die Stabilisierung wässriger Polymerdispersionen erfolgt übli cherweise mit Schutzkolloiden, wie Polyvinylalkohol, oder Emul gatoren mit vielfältiger Chemie. Im Falle von Vinylacetat-Copo- lymeren wird häufig Polyvinylalkohol als Schutzkolloid einge setzt, um sowohl stabile Polymerdispersionen als auch redisper gierbare Dispersionspulver mit den gewünschten Pulvereigen schaften zu erhalten. Dagegen hat sich im Fall von herkömmli chen (Meth)Acrylsäureestercopolymeren die Stabilisierung mit gängigen Polyvinylalkoholen nicht bewährt, da solche Dispersio nen nicht hinreichend stabil sind oder sich häufig grobteilige Polymerpartikel bilden, was zu unterbinden ist.
Um solche Probleme im Falle von (Meth)Acrylsäureestercopolyme ren zu vermeiden, wurden vielfach Emulgatoren als Stabilisato ren eingesetzt. Emulgatoren können aber aus ökologischer oder gesundheitlicher Sicht problematisch sein, beispielsweise wegen ihrer reizenden oder sensibilisierenden Wirkung, so dass ent sprechende Emulgatoren enthaltende Endprodukte Verbraucher be einträchtigen können oder sogar als Gefahrstoff kennzeichnungs pflichtig sind. Daher besteht der Wunsch, auf Emulgatoren als Stabilisator zu verzichten.
Als Schutzkolloide zur Stabilisierung von (Meth)Acrylsäurees terpolymeren haben bisher sehr spezielle, modifizierte Polyvi nylalkohole Einsatz gefunden. So beschreiben hierfür die JP2004 339291, JP2004323571, JP2004331785, JP07070989 und JP05059106 Merkapto-funktionelle Polyvinylakohole. Die W02006095524 lehrt Polyvinylalkohole mit definiertem Anteil an 1,2 Glykolgruppen. Mit den speziellen Synthesestrategien der DE19928933 konnten zwar stabile, aber nur grobteilige (Meth)Acrylsäureesterpoly merdispersionen erhalten werden. Solche speziellen, modifizier ten Polyvinylalkohole sind zum einen aufwändig herzustellen und teuer. Zudem können sich solche in Polyvinylalkohol eingebrach- ten funktionellen Gruppen negativ auf die Verarbeitbarkeit oder sonstigen Eigenschaften der Anwendungsprodukte auswirken.
Vor diesem Hintergrund bestand die Aufgabe, feinteilige, stabi le, Schutzkolloid stabilisierte wässrige Dispersionen von (Meth)Acrylsäureesterpolymeren sowie entsprechende in Wasser redispergierbare Pulver bereitzustellen, wobei als Schutzkollo ide möglichst herkömmliche, unmodifizierte Polyvinylalkohole zum Einsatz kommen sollten. Zudem sollten solche wässrigen Dis persionen oder in Wasser redispergierbare Pulver nach möglichst einfachen, etablierten Verfahren zugänglich sein. Gegenstand der Erfindung sind Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere mit Partikelgrößen Dw von 100 bis 900 nm in Form von wässrigen Dispersionen oder in Wasser redis- pergierbaren Pulvern, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpolymere basieren auf a) 1 bis 30 Gew.-% an einem oder mehreren Vinylestern von Car bonsäuren mit 5 bis 15 C-Atomen, b) 20 bis 80 Gew.-% an einem oder mehreren (Meth)Acrylsäure estern, deren Homopolymerisat eine Glasübergangstemperatur Tg von < 20°C aufweist, c) 10 bis 70 Gew.-% an einem oder mehreren (Meth)Acrylsäure estern, deren Homopolymerisat eine Glasübergangstemperatur Tg von > 50°C aufweisen, und gegebenenfalls einem oder mehreren weiteren ethylenisch unge sättigten Monomeren, wobei sich die Angaben in Gew.-% auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere beziehen.
(Meth)Acrylsäureesterpolymere umfassen allgemein Acrylsäurees terpolymere oder Methacrylsäureesterpolymere und vorzugsweise Copolymere von Acrylsäureestern und Methacrylsäureestern.
(Meth)Acrylsäureester stehen allgemein für Acrylsäureester und Methacrylsäureester .
Als Vinylester a) bevorzugt sind Vinylester von Carbonsäuren mit 9 bis 12 C-Atomen.
Beispiele für Vinylester a) sind Vinyl-2-ethylhexanoat, Vinyl laurat, Vinylpivalat und Vinylester von alpha-verzweigten Mono carbonsäuren mit 5 bis 13 C-Atomen, wie VeoVa9R, VeoValOR, Ve- oVallR oder VeoVal2R (Handelsnamen der Firma Hexion). Bevorzugt sind Vinylester von alpha-verzweigten Monocarbonsäuren mit 9 bis 13 C-Atomen und insbesondere Vinyllaurat.
Die (Meth)Acrylsäureesterpolymere basieren vorzugsweise zu 3 bis 25 Gew.-%, besonders bevorzugt 5 bis 20 Gew.-% und am meis ten bevorzugt 10 bis 15 Gew.-% auf Vinylester a), bezogen auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere. Bevorzugt sind (Meth)Acrylsäureester b), deren Homopolymerisate eine Glasübergangstemperatur Tg von < 10°C aufweisen.
Bei (Meth)Acrylsäureestern b) kann es sich beispielsweise um (Meth)Acrylsäureester von linearen oder verzweigten, Ci- bis Cis-Alkanolen, insbesondere Ci- bis Cis-Alkanolen handeln. Bei spiele für solche Alkanole sind n-Propyl-, n-Butyl-, iso-Butyl- , n-Pentyl-, n-Hexyl-, n-Nonyl- oder n-Decyl- Alkanole.
Bevorzugte (Meth)Acrylsäureester b) sind n-Butylacrylat, n-He- xylacrylat, n-Hexylmethacrylat, 2-Ethylhexylacrylat, 2-Ethylhe- xylmethacrylat, Laurylacrylat und Stearylacrylat. Am meisten bevorzugt ist Butylacrylat, insbesondere n-Butylacrylat.
Die (Meth)Acrylsäureesterpolymere basieren vorzugsweise zu 25 bis 70 Gew.-%, besonders bevorzugt 30 bis 65 Gew.-% und am mei sten bevorzugt 40 bis 60 Gew.-% auf (Meth)Acrylsäureestern b), bezogen auf das Gesamtgewicht der (Meth)Acrylsäureesterpoly mere.
Bevorzugt sind (Meth)Acrylsäureester c), deren Homopolymerisate eine Glasübergangstemperatur Tg von > 60°C, insbesondere > 80°C aufweisen.
Bei (Meth)Acrylsäureestern c) kann es sich beispielsweise um (Meth)Acrylsäureester von linearen oder verzweigten, Ci- bis Cio-Alkanolen, insbesondere Ci- bis Cio-Alkanolen handeln.
Bevorzugte (Meth)Acrylsäureester c) sind Methylmethacrylat, tert.-Butylmethacrylat und tert.-Butylacrylat. Methylmethac rylat ist besonders bevorzugt.
Die (Meth)Acrylsäureesterpolymere basieren vorzugsweise zu 15 bis 60 Gew.-%, besonders bevorzugt 20 bis 55 Gew.-% und am mei sten bevorzugt 25 bis 50 Gew.-% auf (Meth)Acrylsäureestern c), bezogen auf das Gesamtgewicht der (Meth)Acrylsäureesterpoly- mere Die (Meth)Acrylsäureesterpolymere basieren vorzugsweise zu 50 bis 99 Gew.-%, besonders bevorzugt 65 bis 97 Gew.-% und am mei sten bevorzugt 80 bis 95 Gew.-% auf (Meth)Acrylsäureestern b) und (Meth)Acrylsäureestern c), je bezogen auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere.
Die weiteren Monomere sind allgemein verschieden von den Mono meren a) bis c).
Weitere Monomere sind beispielsweise ethylenisch ungesättigte
1 2
Silane d), wie Verbindungen der allgemeinen Formel R SiR (OR ) , wobei R2 ein Ci- bis C3-Alkylrest, Ci- bis C3-Alkoxyrest oder Halogen, beispielsweise Chlor oder Brom, ist, R die Be deutung CH2=CR4- (CH2)0-1 oder CH2=CR4C02 (CH2)1 3 mit R4 als Kohlen stoffrest mit 1 bis 10 C-Atomen hat, R3 ein unverzweigter oder verzweigter, gegebenenfalls substituierter Alkylrest mit 1 bis 12 C-Atomen, vorzugsweise 1 bis 3 C-Atomen, ist. Das Silicium- Atom Si ist hierbei bekanntermaßen vierwertig.
Bevorzugt sind g-Acryl- bzw. g-Methacryloxypropyltri(alkoxy)si- lane, a-Methacryloxymethyltri(alkoxy)silane, g-Methacryloxypro- pylmethyldi (alkoxy)silane, Vinylalkyldi(alkoxy)silane und Vi- nyltri (alkoxy)silane, wobei als Alkoxygruppen beispielsweise Methoxy-, Ethoxy-, Isopropoxy-, Methoxyethylen-, Ethoxyethylen- , Methoxypropylenglykolether- bzw. Ethoxypropylenglykolether- Reste eingesetzt werden können.
Besonders bevorzugt sind Vinyltrimethoxysilan, Vinylmethyldime- thoxysilan, Vinyltriethoxysilan, Vinylmethyldiethoxysilan, Vi- nyltripropoxysilan, Vinyltriisopropoxysilan, Vinyltris- (1-me thoxy)-isopropoxysilan, Vinyltributoxysilan, 3-Methacryloxypro- pyltrimethoxysilan, 3-Methacryloxypropylmethyldimethoxysilan, Methacryloxymethyltrimethoxysilan, 3-Methacryloxypropyl-tris(2- methoxyethoxy)silan, Vinyltris- (2-methoxyethoxy)silan, Allylvi- nyltrimethoxysilan, Allyltrimethoxysilan, Vinyldimethylmethoxy- silan, Vinyldimethylethoxysilan, Vinylisobutyldimethoxysilan, Vinyltriisopropyloxysilan, Vinylltributoxysilan, Vinyltri- hexyloxysilan, Vinylmethoxydihexyloxysilan, Vinyltrioctyloxy- silan, Vinyldimethoxyoctyloxysilan, Vinylmethoxydioctyloxy- silan, Vinylmethoxydilauryloxysilan und Vinyldimethoxylauryl- oxysilan. Am meisten bevorzugt sind Vinyltrimethoxysilan, Vi- nylmethyldimethoxysilan, Vinyltriethoxysilan, Vinyltriisopropo- xysilan, Vinylmethyldiethoxysilan, Vinyltris-(1-methoxy)-isop- ropoxysilan, Methacryloxypropyl-tris(2-methoxyethoxy)silan, 3- Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropylmethyl- dimethoxysilan und Methacryloxymethyltrimethoxysilan. Vinyl silane, das heißt Vinyl-Gruppen enthaltende Silane, sind bevor zugt.
Die (Meth)Acrylsäureesterpolymere basieren zu vorzugsweise 0 bis 5 Gew.-%, besonders bevorzugt 0,1 bis 3 Gew.-% und am meis ten bevorzugt 0,5 bis 1 Gew.-% auf ethylenisch ungesättigten Silanen d), bezogen auf das Gesamtgewicht der (Meth)Acrylsäu reesterpolymere .
Weitere Monomere sind beispielsweise epoxidfunktionelle, ethyl enisch ungesättigte Monomere e), insbesondere Glycidylmethacry- lat und Glycidylacrylat.
Die (Meth)Acrylsäureesterpolymere basieren zu vorzugsweise 0 bis 5 Gew.-%, besonders bevorzugt 0,1 bis 3 Gew.-% und am meis ten bevorzugt 0,5 bis 2 Gew.-% auf Monomeren e), bezogen auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere.
Beispiele für weitere Monomere sind auch ein oder mehrere ethy lenisch ungesättigte Monomere f) ausgewählt aus der Gruppe um fassend Vinylester von Carbonsäuren mit 2 bis 4 C-Atomen, Ole fine, Diene, Vinylaromaten und Vinylhalogenide.
Beispiele für Vinylester f) sind Vinylpropionat, Vinylbutyrat, 1-Methylvinylacetat und insbesondere Vinylacetat. Bevorzugte Olefine oder Diene sind Ethylen, Propylen und 1,3-Butadien. Be vorzugte Vinylaromaten sind Styrol und Vinyltoluol. Ein bevor zugtes Vinylhalogenid ist Vinylchlorid. Monomere f), insbesondere Vinylester von Carbonsäuren mit 2 bis 4 C-Atomen und/oder Ethylen, sind zu vorzugsweise 0 bis 20 Gew.-% und besonders bevorzugt 0,1 bis 10 Gew.-% in die (Meth)- Acrylsäureesterpolymere einpolymerisiert, bezogen auf das Ge samtgewicht der (Meth)Acrylsäureesterpolymere. Am meisten be vorzugt enthalten die (Meth)Acrylsäureesterpolymere keine Mono mer-Einheit f), insbesondere keine Vinylester-Einheit f) und/ oder keine Ethylen-Einheit.
Die weiteren Monomere umfassen gegebenenfalls noch 0 bis 20 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, bezogen auf das Gesamt gewicht der (Meth)Acrylsäureesterpolymere, an einem oder mehre ren Hilfsmonomeren g). Beispiele für Hilfsmonomere g) sind ethylenisch ungesättigte Mono- und Dicarbonsäuren, vorzugsweise Acrylsäure, Methacrylsäure, Fumarsäure und Maleinsäure; ethyle nisch ungesättigte Carbonsäureamide und -nitrile, vorzugsweise Acrylamid und Acrylnitril; Mono- und Diester der Fumarsäure und Maleinsäure wie die Diethyl- und Diisopropylester, sowie Mal einsäureanhydrid, ethylenisch ungesättigte Sulfonsäuren bzw. deren Salze, vorzugsweise Vinylsulfonsäure, 2-Acrylamido-2-me- thyl-propansulfonsäure . Weitere Beispiele sind vorvernetzende Comonomere wie mehrfach ethylenisch ungesättigte Comonomere, beispielsweise Divinyladipat, Diallylmaleat, Allylmethacrylat oder Triallylcyanurat, oder nachvernetzende Comonomere, bei spielsweise Acrylamidoglykolsäure (AGA), Methylacrylamidogly- kolsäuremethylester (MAGME), N-Methylolacrylamid (NMA), N-Me- thylolmethacrylamid (NMMA), N-Methylolallylcarbamat, Alkylether wie der Isobutoxyether oder Ester des N-Methylolacrylamids, des N-Methylolmethacrylamids und des N-Methylolallylcarbamats. Ge nannt seien auch Monomere mit Hydroxy- oder CO-Gruppen, bei spielsweise Methacrylsäure- und Acrylsäurehydroxyalkylester wie Hydroxyethyl-, Hydroxypropyl- oder Hydroxybutylacrylat oder -methacrylat sowie Verbindungen wie Diacetonacrylamid und Ace- tylacetoxyethylacrylat oder -methacrylat. Weitere Beispiele sind auch Vinylether, wie Methyl-, Ethyl- oder iso-Butylvinyl- ether. Vorzugsweise enthalten die (Meth)Acrylsäureesterpolymere keine Carbonsäureamid-Einheit g), insbesondere keine Acrylamid-Ein heit. Besonders bevorzugt enthalten die (Meth)Acrylsäureester polymere keine Einheit von Monomeren aus der Gruppe umfassend Acrylamidoglykolsäure (AGA), Methylacrylamidoglykolsäuremethyl- ester (MAGME), N-Methylolacrylamid (NMA), N-Methylolmethacryl- amid (NMMA), N-Methylolallylcarbamat, Alkylether wie der Iso- butoxyether oder Ester des N-Methylolacrylamids, des N-Methyl- olmethacrylamids und des N-Methylolallylcarbamats.
Als weitere Monomere bevorzugt sind ethylenisch ungesättigte Silane d) und epoxidfunktionelle, ethylenisch ungesättigte Mo nomere e).
Weitere Monomere sind zu vorzugsweise 0 bis 20 Gew.-%, beson ders bevorzugt 0,1 bis 10 Gew.-% und am meisten bevorzugt 1 bis 5 Gew.-% in die (Meth)Acrylsäureesterpolymere einpolymerisiert, bezogen auf das Gesamtgewicht der (Meth)Acrylsäureesterpoly mere.
Die (Meth)Acrylsäureesterpolymere haben gewichtsmittlere Parti keldurchmesser Dw zwischen 100 nm und 900 nm, bevorzugt 200 nm bis 800 nm und besonders bevorzugt 250 nm und 800 nm.
Die Polydispersität PD der (Meth)Acrylsäureesterpolymere ist vorzugsweise < 3, besonders bevorzugt < 2,5 und am meisten be vorzugt < 2. Die Polydispersität PD steht für das Verhältnis von gewichtsmittlerem Teilchendurchmesser Dw zu zahlenmittlerem Teilchendurchmesser Dn, PD = Dw/Dn.
Die Bestimmung der Parameter Dw und Dn beziehungsweise der Teilchengrößenverteilung erfolgt mittels Laserlichtbeugung und Laserlichtstreuung anhand der (Meth)Acrylsäureesterpolymere mit dem Messgerät LS13320 mit dem optischen Modell PVAC.RF780D, einschließend PIDS, der Firma Beckmann-Coulter und unter Beach tung der Vorschrift des Geräteherstel lers nach hinreichender Verdünnung der wässrigen Polymerdispersionen mit vollentsalztem Wasser. Die Monomerauswahl bzw. die Auswahl der Gewichtsanteile der Co- monomere erfolgt dabei so, dass für die (Meth)Acrylsäureester polymere im Allgemeinen Glasübergangstemperaturen Tg von < +120°C, vorzugsweise -50°C bis +60°C, noch mehr bevorzugt -30°C bis +40°C und am meisten bevorzugt -15°C bis +20°C, resultie ren.
Die Glasübergangstemperatur Tg kann in bekannter Weise mittels Differential Scanning Calorimetry (DSC) ermittelt werden. Die Tg kann auch mittels der Fox-Gleichung näherungsweise vorausbe rechnet werden. Nach Fox T. G., Bull. Am. Physics Soc. 1, 3, page 123 (1956) gilt: 1/Tg = xl/Tgl + x2/Tg2 + ... + xn/Tgn, wobei xn für den Massebruch (Gew.-%/100) des Monomeren n steht, und Tgn die Glasübergangstemperatur in Kelvin des Homopolymeren des Monomeren n ist. Tg-Werte für Homopolymerisate sind in Po lymer Handbook 2nd Edition, J. Wiley & Sons, New York (1975) aufgeführt .
Bei den Polyvinylalkoholen kann es sich beispielsweise um teil verseifte oder vollverseifte Polyvinylalkohole handeln, vor zugsweise mit einem Hydrolysegrad von 80 bis 100 Mol-%, beson ders bevorzugt um teilverseifte Polyvinylalkohole mit einem Hy drolysegrad von 80 bis 95 Mol-%, insbesondere 86 bis 90 Mol-%. Die Höpplerviskosität der Polyvinylalkohole, in 4 %-iger wäss riger Lösung, beträgt vorzugsweise 1 bis 30 mPas, und besonders bevorzugt 2 bis 20 mPas und am meisten bevorzugt 3 bis 15 mPas (Methode nach Höppler bei 20°C, DIN 53015).
Polyvinylalkohole sind in einer Menge von vorzugsweise 1 bis 30 Gew.-%, besonders bevorzugt 3 bis 20 Gew.-% und am meisten be vorzugt 5 bis 15 Gew.-% enthalten, bezogen auf das Gesamtge wicht der (Meth)Acrylsäureesterpolymere.
Bevorzugt sind auch teilverseifte, hydrophob modifizierte Po lyvinylalkohole, insbesondere teilverseifte, hydrophob modifi zierte Polyvinylalkohole mit einem Hydrolysegrad von 80 bis 95 Mol-%, insbesondere mit einer Höpplerviskosität, in 4 %-iger wässriger Lösung von 1 bis 30 mPas. Beispiele hierfür sind teilverseifte Copolymerisate von Vinylacetat mit hydrophoben Comonomeren wie Isopropenylacetat, Vinylpivalat, Vinylethylhe- xanoat, Vinylester von gesättigten alpha-verzweigten Monocar bonsäuren mit 5 oder 9 bis 11 C-Atomen, Dialkylmaleinate und Dialkylfumarate wie Diisopropylmaleinat und Diisopropylfumarat, Vinylchlorid, Vinylalkylether wie Vinylbutylether, Olefine wie Ethen und Decen. Der Anteil der hydrophoben Einheiten beträgt vorzugsweise 0,1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht des teilverseiften Polyvinylalkohols. Es können auch Gemische der genannten Polyvinylalkohole eingesetzt werden. Besonders bevorzugt sind keine hydrophob modifizierten Polyvinylalkohole enthalten.
Die Polyvinylalkohole enthalten vorzugsweise keine Merkapto- Gruppen und/oder keine 1,2-Glykolgruppen. Die Polyvinylalkohole bestehen zu vorzugsweise > 80 Gew.-%, mehr bevorzugt > 90 Gew.- % und besonders bevorzugt > 95 Gew.-% aus Vinylalkohol- und Vi nylacetat-Einheiten, bezogen auf das Gesamtgewicht der Polyvi nylalkohole. Am meisten bevorzugt bestehen die Polyvinylalko hole ausschließlich aus Vinylalkohol- und Vinylacetat-Einhei- ten.
Des Weiteren können neben Polyvinylalkohol ein oder mehrere weitere Schutzkolloide enthalten sein, wie beispielsweise Poly vinylacetale; Polyvinylpyrrolidone; Polysaccharide in wasser löslicher Form wie Stärken (Amylose und Amylopectin), Cellulo sen und deren Carboxymethyl-, Methyl-, Hydroxyethyl-, Hydroxyp- ropyl-Derivate, Dextrine und Cyclodextrine; Proteine wie Kasein oder Kaseinat, Sojaprotein, Gelatine; Ligninsulfonate; synthe tische Polymere wie Poly(meth)acrylsäure, Copolymerisate von (Meth)acrylaten mit carboxylfunktionellen Comonomereinheiten, Poly (meth)acrylamid, Polyvinylsulfonsäuren und deren wasserlös lichen Copolymere; Melaminformaldehydsulfonate, Naphthalinfor- maldehydsulfonate, Styrolmaleinsäure- und Vinylethermaleinsäu- re-Copolymere . Die weiteren Schutzkolloide können beispielsweise in einer Menge von 0 bis 20 Gew.-%, insbesondere 0,1 bis 10 Gew.-% ent halten sein. Vorzugsweise sind weitere Schutzkolloide zu < 20 Gew.-%, besonders bevorzugt < 10 Gew.-% enthalten. Die Angaben in Gew.-% beziehen sich auf das Gesamtgewicht der (Meth)Acryl säureesterpolymere . Am meisten bevorzugt sind keine weiteren Schutzkolloide enthalten. Vorzugsweise sind als Schutzkolloide ausschließlich Polyvinylalkohole enthalten.
Die genannten Polyvinylalkohole und Schutzkolloide sind mittels des Fachmanns bekannter Verfahren zugänglich beziehungsweise kommerziell erhältlich.
Gegebenenfalls können noch ein oder mehrere Emulgatoren enthal ten sein, wie anionische, kationische oder nichtionische Emul gatoren, insbesondere anionische Tenside, wie Alkylsulfate mit einer Kettenlänge von 8 bis 18 C-Atomen, Alkyl- oder Alkyla rylethersulfate mit 8 bis 18 C-Atomen im hydrophoben Rest und bis zu 40 Ethylen- oder Propylenoxideinheiten, Alkyl- oder Al- kylarylsulfonate mit 8 bis 18 C-Atomen, Ester und Halbester der Sulfobernsteinsäure mit einwertigen Alkoholen oder Alkylpheno len, oder nichtionische Tenside wie Alkylpolyglykolether oder Alkylarylpolyglykolether mit 8 bis 40 Ethylenoxid-Einheiten.
Emulgatoren können in einer Menge von beispielweise 0 bis 10 Gew.-%, insbesondere 0,1 bis 5 Gew.-% enthalten sein, bezogen auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere. Beson ders bevorzugt sind keine Emulgatoren enthalten.
Ein weiterer Gegenstand der Erfindung sind Verfahren zur Her stellung von Polyvinylalkohol stabilisierten (Meth)Acrylsäure esterpolymeren mit Partikelgrößen Dw von 100 bis 900 nm in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern mittels radikalisch initiierter Emulsionspolymerisation von ethylenisch ungesättigten Monomeren in Gegenwart von Poly vinylalkohol in wässrigem Medium und gegebenenfalls anschlie ßender Trocknung, dadurch gekennzeichnet, dass a) 1 bis 30 Gew.-% an einem oder mehreren Vinylestern von Car bonsäuren mit 5 bis 15 C-Atomen, b) 20 bis 80 Gew.-% an einem oder mehreren (Meth)Acrylsäure estern, deren Homopolymerisat eine Glasübergangstemperatur Tg von < 20°C aufweist, c) 10 bis 70 Gew.-% an einem oder mehreren (Meth)Acrylsäure estern, deren Homopolymerisat eine Glasübergangstemperatur Tg von > 50°C aufweisen, und gegebenenfalls ein oder mehrere weitere ethylenisch ungesättig te Monomere polymerisiert werden, wobei sich die Angaben in Gew.-% auf das Gesamtgewicht der (Me th)Acrylsäureesterpolymere beziehen.
Die Polymerisationstemperatur beträgt im Allgemeinen 40°C bis 150°C, vorzugsweise 60°C bis 90°C.
Die Initiierung der Polymerisation kann mit den für die Emulsi onspolymerisation gebräuchlichen Redox-Initiator-Kombinationen erfolgen. Beispiele für geeignete Oxidationsinitiatoren sind die Natrium-, Kalium- und Ammoniumsalze der Peroxodischwefel- säure, Wasserstoffperoxid, t-Butylperoxid, t-Butylhydroperoxid, Kaliumperoxodiphosphat, t-Butylperoxopivalat, Cumolhydroper- oxid, Isopropylbenzolmonohydroperoxid Azobisisobutyronitril. Bevorzugt werden die Natrium-, Kalium- und Ammoniumsalze der Peroxodischwefelsäure und Wasserstoffperoxid. Die genannten Initiatoren werden im Allgemeinen in einer Menge von 0,01 bis 2,0 Gew.-%, bezogen auf das Gesamtgewicht der ethylenisch unge sättigten Monomere, eingesetzt.
Geeignete Reduktionsmittel sind beispielsweise die Sulfite und Bisulfite der Alkalimetalle und von Ammonium, wie Natriumsul fit, die Derivate der Sulfoxylsäure wie Zink- oder Alkalifor- maldehydsulfoxylate, beispielsweise Natriumhydroxymethansulfi- nat (Brüggolit) und (Iso-)Ascorbinsäure. Bevorzugt werden Nat riumhydroxymethansulfinat und (Iso-)Ascorbinsäure. Die Redukti onsmittelmenge beträgt vorzugsweise 0,015 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der ethylenisch ungesättigten Monomere. Die genannten Oxidationsmittel, insbesondere die Salze der Per- oxodischwefelsäure, können auch alleinig als thermische Initia toren eingesetzt werden.
Zur Steuerung des Molekulargewichts können während der Polyme risation regelnde Substanzen eingesetzt werden. Falls Regler eingesetzt werden, werden diese üblicherweise in Mengen zwi schen 0,01 bis 5,0 Gew.-%, bezogen auf die zu polymerisierenden Monomeren, eingesetzt und separat oder auch vorgemischt mit Re aktionskomponenten dosiert. Beispiele solcher Substanzen sind n-Dodecylmercaptan, tert.-Dodecylmercaptan, Mercaptopropions- äure, Mercaptopropionsäuremethylester, Isopropanol und Acetal dehyd. Vorzugsweise werden keine regelnden Substanzen verwen det.
Zur Stabilisierung des Polymerisationsansatzes wird Polyvinyl alkohol in einer Menge von vorzugsweise insgesamt 1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der ethylenisch ungesät tigten Monomere, bei der Emulsionspolymerisation eingesetzt.
Bei der Emulsionspolymerisation kann nach Batchverfahren gear beitet werden, wobei alle Komponenten des Polymerisationsansat zes im Reaktor vorgelegt werden, oder nach Semi-Batchverfahren, wobei einzelne oder mehrere Komponenten vorgelegt werden und der Rest zudosiert wird, oder eine kontinuierliche Polymerisa tion durchgeführt werden, wobei die Komponenten während der Po lymerisation zudosiert werden. Die Dosierungen können gegebe nenfalls separat (räumlich und zeitlich) durchgeführt werden.
Vorzugsweise wird Vinylester a) teilweise oder insbesondere vollständig vorgelegt. Die (Meth)Acrylsäureester b) und/oder die (Meth)Acrylsäureester c) und gegebenenfalls die weiteren Monomere werden vorzugsweise ganz oder teilweise zudosiert. Be sonders bevorzugt wird die insgesamt eingesetzte Menge an Vi nylester a) vorgelegt oder zudosiert bevor die (Meth)Acrylsäu reester b) und/oder die (Meth)Acrylsäureester c) und gegebenen falls die weiteren Monomere zudosiert werden. Am meisten bevor zugt werden die Vinylester a) teilweise oder insbesondere vollständig auspolymerisiert, bevor die (Meth)Acrylsäureester b) und/oder die (Meth)Acrylsäureester c) und gegebenenfalls die weiteren Monomere zudosiert werden. Vorzugsweise erfolgt die Polymerisation sämtlicher Monomere in demselben Reaktor. Alter nativ ist es auch möglich, ein Polymerisat auf Basis der Vinyl ester a) in Form einer wässrigen Dispersion als Saat einzuset zen und die (Meth)Acrylsäureester b), die (Meth)Acrylsäureester c) und gegebenenfalls die weiteren Monomere in Gegenwart der Saat zu polymerisieren. Die Saat kann teilweise oder vollstän dig vorgelegt oder teilweise oder vollständig zudosiert werden. Vorzugsweise wird die Saat vollständig vorgelegt.
Nach Abschluss der Emulsionspolymerisation kann zur Restmonome rentfernung in Anwendung bekannter Methoden nachpolymerisiert werden, beispielsweise durch mit Redoxkatalysator initiierter Nachpolymerisation. Flüchtige Restmonomere können auch mittels Destillation, vorzugsweise unter reduziertem Druck, und gegebe nenfalls unter Durchleiten oder Überleiten von inerten Schlepp gasen wie Luft, Stickstoff oder Wasserdampf entfernt werden.
Die (Meth)Acrylsäureesterpolymere werden allgemein in Form von Polyvinylalkohol-stabilisierten wässrigen Dispersionen erhal ten. Die wässrigen Dispersionen haben einen Feststoffgehalt von vorzugsweise 30 bis 75 Gew.-% und besonders bevorzugt 40 bis 65 Gew.—%.
Zur Herstellung der (Meth)Acrylsäureesterpolymere in Form von in Wasser redispergierbaren Pulvern können die wässrigen Dis persionen, gegebenenfalls nach Zusatz von Schutzkolloiden, bei spielsweise Polyvinylalkohol, insbesondere dem oben beschriebe nen Polyvinylalkohol, als Trocknungshilfe, getrocknet werden, beispielsweise mittels Wirbelschichttrocknung, Gefriertrocknung oder Sprühtrocknung. Vorzugsweise werden die Dispersionen sprühgetrocknet. Die Sprühtrocknung kann dabei in üblichen Sprühtrocknungsanlagen durchgeführt werden, wobei die Zerstäu bung beispielsweise mittels Ein-, Zwei- oder Mehrstoffdüsen o- der mit einer rotierenden Scheibe erfolgen kann. Die Austritts temperatur wird im Allgemeinen im Bereich von 45°C bis 120°C, bevorzugt 60°C bis 90°C, je nach Anlage, Tg des Harzes und ge wünschtem Trocknungsgrad, gewählt.
In der Regel wird die Trocknungshilfe in einer Gesamtmenge von 3 bis 30 Gew.-%, bezogen auf die polymeren Bestandteile der Dispersion, eingesetzt. Die Gesamtmenge an Schutzkolloid, ins besondere Polyvinylalkohol, vor dem Trocknungsvorgang beträgt vorzugsweise 3 bis 30 Gew.-%, besonders bevorzugt 5 bis 20 Gew.-%, bezogen auf den Polymeranteil. Geeignete Trocknungshil fen sind beispielsweise die oben genannten Schutzkolloide, ins besondere Polyvinylalkohole, vorzugsweise die oben beschriebe nen Polyvinylalkohole. Bevorzugt werden keine weiteren Schutz kolloide außer Polyvinylalkohol als Trocknungshilfe eingesetzt.
Bei der Verdüsung hat sich vielfach der Zusatz von Antischaum mittel als günstig erwiesen, vorzugsweise bis zu 3 Gew.-% Anti schaummittel, bezogen auf das Gesamtgewicht der (Meth)Acrylsäu reesterpolymere . Zur Erhöhung der Lagerfähigkeit durch Verbes serung der Verblockungsstabilität kann das erhaltene Pulver mit einem Antiblockmittel (Antibackmittel), vorzugsweise bis 30 Gew.-%, bezogen auf das Gesamtgewicht polymerer Bestandteile, ausgerüstet werden. Beispiele für Antiblockmittel sind Ca- bzw. Mg-Carbonat, Talk, Gips, Kieselsäure, insbesondere hydrophobe Kieselsäure, Kaoline, Silicate mit Teilchengrößen, vorzugsweise im Bereich von 10 nm bis 10 pm.
Die Viskosität der zu verdüsenden Speise wird über den Fest stoffgehalt vorzugsweise so eingestellt, dass ein Wert von < 500 mPas (Brookfield-Viskosität bei 20 Umdrehungen und 23°C), besonders bevorzugt < 250 mPas, erhalten wird. Der Feststoffge halt der zu verdüsenden Dispersion beträgt bevorzugt > 35%, be sonders bevorzugt > 40%.
Zur Verbesserung der anwendungstechnischen Eigenschaften können weitere Zusätze zugegeben werden, beispielsweise bei der Ver düsung. Weitere, in bevorzugten Ausführungsformen enthaltene Bestandteile von redispergierbaren Polymerpulver-Zusammenset zungen sind Pigmente, Füllstoffe, Schaumstabilisatoren, Hydrophobierungsmittel .
Die erfindungsgemäß Polyvinylalkohol stabilisierten (Meth)Ac- rylsäureesterpolymere eignen sich insbesondere zum Einsatz in bauchemischen Produkten. Sie können alleine oder in Kombination mit herkömmlichen Polymerdispersionen oder Dispersionspulvern eingesetzt werden, gegebenenfalls in Verbindung mit hydraulisch abbindenden Bindemitteln wie Zementen (Portland-, Aluminat-, Trass-, Hütten-, Magnesia-, Phosphatzement), Gips und Wasser glas für die Herstellung von Verlaufsmassen, Bauklebern, Put zen, Spachtelmassen, Fugenmörteln, Dichtschlämmen, Wärmedämm verbundsysteme oder Farben, beispielsweise Pulverfarben. Unter Bauklebern sind Fliesenkleber oder Vollwärmeschutzkleber bevor zugte Einsatzgebiete der Dispersionspulverzusammensetzungen. Bevorzugte Anwendungsgebiete für die Dispersionspulverzusammen- setzungen sind Verlaufsmassen, besonders bevorzugte Verlaufs massen sind selbstverlaufende Bodenspachtelmassen und Estriche.
Überraschenderweise werden erfindungsgemäß feinteilige, Polyvi- nylalkohol-stabilisierte (Meth)Acrylsäureesterpolymere zugäng lich, die in Form von wässrigen Dispersionen, redispergierbaren Pulver oder entsprechenden wässrigen Redispersionen lagerstabil sind. Vorteilhafterweise können hierfür gängige, unmodifizierte Polyvinylalkohole Einsatz finden, so dass dadurch nicht in das Eigenschaftsprofil von Anwendungsprodukten eingegriffen wird. Die Herstellung der (Meth)Acrylsäureesterpolymere kann nach etablierten Verfahren erfolgen. All dies ist auch ökonomisch vorteilhaft .
Zudem führen die erfindungsgemäßen (Meth)Acrylsäureesterpoly mere in Anwendungen zu vorteilhaften mechanischen Eigenschaf ten, wie beispielsweise Haftzugfestigkeit, und in Farbanwendun- gen zu hoher Deckkraft, Farbdichte und insbesondere hoher Nas sabriebsbeständigkeit .
Die nachfolgenden Beispiele dienen der weiteren Erläuterung der Erfindung: Herstellung der Polymerdispersionen:
Beispiel 1 (Bsp.l):
In einem Polymerisationsreaktor mit einem Volumen von 3 Litern wurden folgende Komponenten vorgelegt:
330 g Wasser, 132 g einer 20 Gew.-%igen, wässrigen Lösung eines teilverseiften Polyvinylalkohols (Hydrolysegrad: 88 Mol-%; Höpplerviskosität von 4 mPas (bestimmt nach Höppler gemäß DIN 53015, 20°C, 4 %-ige wässrige Lösung) und 0,6 g einer 1%-igen wässrigen Eisenammoniumsulfatlösung.
Der Reaktor wurde mit einer Stickstoff-Schutzgasatmosphäre ver sehen. Es wurden 197 g Vinyllaurat zugegeben und auf 70°C auf geheizt.
Die Polymerisation wurde durch Zugabe von 5 Gew.%-iger wässri ger tert.-Butylhydroperoxid-lösung (TBHP) mit einer Rate von 12 g/h und Zugabe von 5 Gew.%-iger wässriger Ascorbinsäure-Lösung mit einer Rate von 12 g/h gestartet.
Nach 10 min wurde die Monomerdosierung bestehend aus 592 g Butylacrylat und 527 g Methylmethacrylat mit einer Rate von 280 g/h gestartet (Dauer 4 h). Zeitgleich wurde eine wässrige Do sierung bestehend aus 557 g Wasser und 559 g einer 20 Gew.-%i- gen Lösung eines teilverseiften Polyvinylalkohols (Hydrolyse grad: 88 Mol-%; Höpplerviskosität: 4 mPas) mit einer Rate 280 g/h gestartet (Dauer 4 h). Nach Beendigung der Monomerdosierung wurde die Polymerisation noch 1 h fortgesetzt.
Nach Abkühlen der Dispersion wurde auf Zugabe von 6,5 g einer 5 Gew.%-igen wässrigen TBHP-lösung und 6,5 g einer 5 Gew.%-igen wässrigen Ascorbinsäure-Lösung nachpolymerisiert.
Die Eigenschaften der so erhaltenen Polymerdispersion sind in Tabelle 1 zusammengefasst. Die Bestimmung der Eigenschaften er folgte wie weiter oben in der allgemeinen Beschreibung angege ben.
Beispiele 2 bis 6 und Vergleichsbeispiel 7 (Bsp.2-6, VBsp.7): Die Herstellung der Polymerdispersionen von Bsp.2-6 beziehungs weise VBsp.7 erfolgte wie für Beispiel 1 beschrieben, mit dem Unterschied, dass die in Tabelle 2 angegebenen Monomere eingesetzt wurden.
Die Eigenschaften der so erhaltenen Polymerdispersionen sind in Tabelle 1 zusammengefasst. Die Bestimmung der Eigenschaften er folgte wie weiter oben in der allgemeinen Beschreibung angege- ben oder kann auf herkömmliche Weise erfolgen.
Tabelle 1: Eigenschaften der Polymerdispersionen von Beispiel 1 bis 6 und Vergleichsbeispiel 7:
*: Brookfield-Viskosität: bestimmt bei 20 Umdrehungen und 23°C.
Tabelle 2: Monomerzusammensetzung der Polymere von Beispiel 1 bis 6 und Vergleichsbeispiel 7: Herstellung der Dispersionspulverzusammensetzungen PI bis P6 und VP7:
Die Polymerdispersionen aus den (Vergleichs)Beispielen 1 bis 7 wurden je unter Zusatz von 2,0 Gew.-%, bezogen auf den Polymer gehalt der Dispersion (fest/fest), eines teilverseiften Polyvi nylalkohols (Hydrolysegrad: 88 Mol-%; Höpplerviskosität: 4 mPas in 4%-iger wässriger Lösung)) und 6,0 Gew.-%, bezogen auf den Polymergehalt der Dispersion (fest/fest), eines teilverseiften Polyvinylalkohols (Hydrolysegrad: 88 Mol-%; Höpplerviskosität: 13 mPas in 4%-iger wässriger Lösung) durch Sprühtrocknung in an sich herkömmlicher Weise bei einer Eintrittstemperatur von 130°C und einer Austrittstemperatur von 80°C getrocknet, wodurch redispergierbare Pulver erhalten wurden. Die Pulver wurden durch Zusatz von 4 Gew.-% Kaolin und 16 Gew.-% Calci umcarbonat als Antibackmittel stabilisiert.
In allen (Vergleichs)Beispielen 1 bis 7 wurden freifließende, stabile Dispersionspulver erhalten.
Bestimmung der Eigenschaften der Dispersionspulverzusammenset- zungen PI bis P6 und VP7:
Bestimmung der Blockfestigkeit (BF):
Zur Bestimmung der Blockfestigkeit wurde das zu untersuchende Pulver in ein Eisenrohr mit Verschraubung gefüllt und danach mit einem Metallstempel belastet. Unter Belastung wurde im Tro ckenschrank 16 Stunden bei 50°C gelagert. Nach Abkühlen auf Raumtemperatur wurde das Pulver aus dem Rohr entfernt und die Blockstabilität qualitativ durch Zerdrücken des Pulvers be stimmt. Die Ergebnisse der Austestung sind in Tabelle 3 aufge listet.
Die Blockstabilität wurde wie folgt klassifiziert:
1 = sehr gute Blockstabilität
2 = gute Blockstabilität
3 = befriedigende Blockstabilität
4 = nicht blockstabil, Pulver nach Zerdrücken nicht mehr rieselfähig .
Bestimmung des Absitzverhaltens (RA):
Das Absitzverhalten von Redispersionen dient als Maß für die Redispergierbarkeit von redispergierbaren Pulvern. Das zu un tersuchende Pulver wurde in einer Konzentration von 50 Gew.-% in Wasser durch Einwirkung von starken Scherkräften redisper- giert.
Das Absitzverhalten wurde dann an verdünnten Redispersionen (0,5% Festgehalt) bestimmt, und dazu 100 ml dieser Dispersion in eine graduierte Röhre gefüllt, und die Absitzhöhe an Fest stoff gemessen. Die Angabe erfolgt in mm Absitz nach 1 Stunde sowie 24 Stunden. Werte größer 7 zeigen eine sehr unzureichende Redispersion des Pulvers an. Die Ergebnisse der Austestung sind in Tabelle 3 aufgelistet.
Tabelle 3: Dispersionspulverzusammensetzungen von Beispiel 1 bis 6 und Vergleichsbeispiel 7:
Anwendungstechnische Austestung der Dispersionspulverzusammen- setzungen :
Fliesenkleber :
Die Dispersionspulverzusammensetzungen wurden auf ihre Eignung für die Verklebung keramischer Fliesen untersucht. Trockenmör tel folgender Zusammensetzung wurden hergestellt: 420 Teile Milke Premium Zement CEM I 52,5R,
446 Teile Quarzsand,
80 Teile Calciumcarbonat,
4 Teile Tylose MB60000 (Verdicker),
10 Teile Calciumformiat (Beschleuniger),
40 Teile Dispersionspulverzusammensetzung wie in Tabelle 4 an gegeben.
Der Fliesenklebermörtel wurde mit 34 g Wasser pro 100 g Tro ckenmörtel angemischt.
Die Fliesen wurden mit dem Fliesenkleber auf herkömmliche Weise verlegt.
Die Ausprüfung nach DIN EN 12004 (Prüfnorm EN 1348) ergab die in Tabelle 4 aufgeführten Austestungsergebnisse.
Tabelle 4: Austestungsergebnisse der Fliesenkleber:
Die Fliesenkleber mit den erfindungsgemäßen Dispersionspulver zusammensetzungen PI bis P6 zeigten gegenüber dem Fliesenkleber mit der Vergleichsdispersionspulverzusammensetzung VP7 verbes serte HaftZugfestigkeiten, insbesondere verbesserte Nassfestig keiten, Frost-Tau-Beständigkeit (FT) und auch nach Wärmebean spruchung.
Dichtungsschlämme :
Die Dispersionspulverzusammensetzungen P3 und P4 sowie VP7 wur den auch in flexiblen Dichtungsschlämmen in Bezug auf Haftzug festigkeit ausgetestet.
Die Dichtungsschlämme basierten auf der Rezeptur von Tabelle 5 und wurden auf herkömmliche Weise hergestellt und appliziert. Die Austestung der HaftZugfestigkeit der Dichtungsschlämme nach Lagerung im Normklima beziehungsweise nach Wasserlagerung er folgte nach EN 14891. Die Austestungsergebnisse sind in Tabelle 6 angegeben.
Tabelle 5: Rezeptur der Dichtungsschlämme: Tabelle 6: HaftZugfestigkeiten der Dichtungsschlämme:
Die HaftZugfestigkeit von Dichtungsschlämmen kann durch Einsatz erfindungsgemäßer Dispersionspulverzusammensetzungen verbessert werden.
Dispersionsfärben :
Die Dispersionspulverzusammensetzungen wurden auf ihre Eignung für die Verwendung in Dispersionsfarben untersucht. Die Disper- sionsfarben basierten auf der Rezeptur der Tabelle 7 und wurden auf herkömmliche Weise hergestellt und ausgetestet wie im Folgenden beschrieben. Die Austestungsergebnisse sind in Ta belle 8 zusammengefasst.
Tabelle 7: Rezeptur der Dispersionsfarben:
Testmethoden :
Testung der Scheuertestigkeit SF (Nassabriebsfestigkeit) der Dispersionsfärben : Zur Bestimmung der Nassabriebsfestigkeit wurden die aus den Pulverfarben hergestellten Dispersionsfarben jeweils mit der Vliesmethode gemäß ISO 11998 getestet.
Die Dispersionsfarbe wurde jeweils mit einem Applikator in ei ner Schichtdicke von 300 gm (naß) auf eine Leneta-Folie (PVC- Folie) aufgetragen.
Anschließend wurde 72 Stunden bei Normklima (DIN 50014, 23°C und 50 % relative Luftfeuchtigkeit) gelagert, dann 24 Stunden bei 50°C und schließlich 24 Stunden bei Normklima gelagert.
Es resultierte eine Trockenschichtstärke von ca. 200 gm. Dann wurde jeweils drei Teststreifen mit den Abmessungen 2,5 cm x 7,5 cm ausgeschnitten und anschließend gewogen. Damit wurde die Scheuerprüfung mit 200 Zyklen durchgeführt und anschließend wieder gewogen. Aus der Farbdichte der gescheuer ten Fläche und dem Massenverlust des Farbfilms wurde dann der Farbabtrag in gm errechnet.
Es wurde jeweils ein Mittelwert aus drei Messungen ermittelt. Die Scheuerfestigkeit nach 200 Zyklen wird in Klassen bewertet: Klasse 1 mit Abrieb kleiner 5 gm,
Klasse 2 mit Abrieb zwischen 5 pm und kleiner 20 pm,
Klasse 3 mit Abrieb zwischen 20 pm und kleiner 70 pm.
Messung der Brookfield-Viskositäten BF100 der Dispersionsfar ben:
Die Messung der Brookfield-Viskosität der mit den Pulverfarben- Zusammensetzungen hergestellten Dispersionsfarben erfolgte je weils mit einem Brookfieldviskosimeter BF 35, nach Temperierung auf 23°C, unter Verwendung der in der Bedienungsanleitung ange gebenen Spindel bei 100 Umdrehungen pro Minute (BF100).
Die Viskosität wird jeweils in mPas angegeben.
Bestimmung der Deckkraft der Dispersionsfarben:
Die Deckkraft wurde mit der in der „Richtlinie zur Bestimmung des Deckvermögens" des Verbandes der deutschen Lackindustrie, Ausgabe Juli 2002, beschriebenen Methode gemäß DIN EN 13300 er mittelt .
Die Dispersionsfarben wurden mit einem automatischen Filmappli kator, mit einer Rakel mit einer Spalthöhe von 150 pm und 225 pm, jeweils auf schwarz-weißen Kontrastkarten (Typ 3H der Firma Lenetta) mit Normfarbwert Y über Schwarz von 7 oder weniger und Normfarbwert Y über Weiß von 80 bis 90, aufgebracht.
Die so beschichteten Kontrastkarten wurden 24 Stunden bei 23°C und 50 % relativer Luftfeuchtigkeit getrocknet und anschließend gewogen .
Aus der Auftragsmenge in g/m2 und der Farbdichte wurde jeweils die Ergiebigkeit in m2/l berechnet. Mit einem Colorimeter (Elrepho 450X von Datacolor) wurden die Normfarbwerte Y (Farbstandards) über der schwarzen und der wei ßen Basis gemessen und das "Kontrastverhältnis" in "%" berech net. Die so ermittelten Werte für das Kontrastverhältnis wurden in einem Diagramm gegen die entsprechende Ergiebigkeit (m2/l) auf getragen. Durch Interpolation wurde die Ergiebigkeit E bei 7m2/l bei einem Kontrastverhältnis von 98 % bestimmt.
Je höher die Ergiebigkeit E, desto besser ist die Deckkraft.
Tabelle 8: Austestungsergebnisse der Dispersionsfarben:
Mit den erfindungsgemäßen Pulvern konnte die Nassabriebsfestig- keit von Dispersionsfarben erheblich gesteigert werden. Die sonstigen Eigenschaften entsprechen den Anforderungen an Dis persionsfarben.

Claims

Patentansprüche :
1. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere mit Partikelgrößen Dw von 100 bis 900 nm in Form von wässri gen Dispersionen oder in Wasser redispergierbaren Pulvern, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpoly mere basieren auf a) 1 bis 30 Gew.-% an einem oder mehreren Vinylestern von Carbonsäuren mit 5 bis 15 C-Atomen, b) 20 bis 80 Gew.-% an einem oder mehreren (Meth)Acrylsäure estern, deren Homopolymerisat eine Glasübergangstempera- tur Tg von < 20°C aufweist, c) 10 bis 70 Gew.-% an einem oder mehreren (Meth)Acrylsäure estern, deren Homopolymerisat eine Glasübergangstempera- tur Tg von > 50°C aufweisen, und gegebenenfalls einem oder mehreren weiteren ethylenisch un gesättigten Monomeren, wobei sich die Angaben in Gew.-% auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere beziehen.
2. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere gemäß Anspruch 1, dadurch gekennzeichnet, dass ein oder meh rere (Meth)Acrylsäureester b) ausgewählt werden aus der Gruppe umfassend n-Butylacrylat, n-Hexylacrylat, n-Hexylme- thacrylat, 2-Ethylhexylacrylat, 2-Ethylhexylmethacrylat, Laurylacrylat und Stearylacrylat.
3. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein o- der mehrere (Meth)Acrylsäureester c) ausgewählt werden aus der Gruppe umfassend Methylmethacrylat, tert.-Butylmethac- rylat und tert.-Butylacrylat.
4. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere gemäß Anspruch 1 bis 3, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpolymere zu 50 bis 99 Gew.-% auf (Meth)Acrylsäureestern b) und (Meth)Acrylsäureestern c) basieren, bezogen auf das Gesamtgewicht der (Meth)Acrylsäu reesterpolymere.
5. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere gemäß Anspruch 1 bis 4, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpolymere zusätzlich auf einem oder meh reren ethylenisch ungesättigten Silanen d) der allgemeinen Formel R1SiR2 02 (OR3)13 basieren, wobei R2 ein Ci- bis C3-Al- kylrest, Ci- bis C3-Alkoxyrest oder Halogen ist, R die Be deutung CH2=CR4-(CH2)0-1 oder CH2=CR4C02 (CH2)13 mit R4 als Koh lenstoffrest mit 1 bis 10 C-Atomen hat, R3 ein unverzweigter oder verzweigter, gegebenenfalls substituierter Alkylrest mit 1 bis 12 C-Atomen ist.
6. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere gemäß Anspruch 1 bis 5, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpolymere zusätzlich auf Glycidylmethac- rylat oder Glycidylacrylat basieren.
7. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere gemäß Anspruch 1 bis 6, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpolymere zu 0 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere, auf einem oder mehreren ethylenisch ungesättigten Monomeren f) basieren ausgewählt aus der Gruppe umfassend Vinylester von Carbonsäuren mit 2 bis 4 C-Atomen, Olefine, Diene, Vinylaro- maten und Vinylhalogenide.
8. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere gemäß Anspruch 1 bis 7, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpolymere keine Ethylen-Einheit und/oder keine Einheit eines Vinylesters einer Carbonsäure mit 2 bis
4 C-Atomen enthalten.
9. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpolymere gemäß Anspruch 1 bis 8, dadurch gekennzeichnet, dass die Po lyvinylalkohole ausschließlich aus Vinylalkohol- und Vi nylacetat-Einheiten bestehen.
10. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpoly mere gemäß Anspruch 1 bis 9, dadurch gekennzeichnet, dass keine Emulgatoren enthalten sind.
11. Polyvinylalkohol stabilisierte (Meth)Acrylsäureesterpoly mere gemäß Anspruch 1 bis 10, dadurch gekennzeichnet, dass die (Meth)Acrylsäureesterpolymere eine Polydispersität PD ist von < 3 aufweisen.
12. Verfahren zur Herstellung von Polyvinylalkohol stabilisier ten (Meth)Acrylsäureesterpolymeren mit Partikelgrößen Dw von 100 bis 900 nm in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern gemäß Anspruch 1 bis 10 mittels radikalisch initiierter Emulsionspolymerisation von ethylenisch ungesättigten Monomeren in Gegenwart von Poly vinylalkohol in wässrigem Medium und gegebenenfalls an schließender Trocknung, dadurch gekennzeichnet, dass a) 1 bis 30 Gew.-% an einem oder mehreren Vinylestern von Carbonsäuren mit 5 bis 15 C-Atomen, b) 20 bis 80 Gew.-% an einem oder mehreren (Meth)Acrylsäu reestern, deren Homopolymerisat eine Glasübergangstempe- ratur Tg von < 20°C aufweist, c) 10 bis 70 Gew.-% an einem oder mehreren (Meth)Acrylsäu reestern, deren Homopolymerisat eine Glasübergangstempe- ratur Tg von > 50°C aufweisen, und gegebenenfalls ein oder mehrere weitere ethylenisch unge sättigte Monomere polymerisiert werden, wobei sich die Angaben in Gew.-% auf das Gesamtgewicht der (Meth)Acrylsäureesterpolymere beziehen.
13. Verfahren zur Herstellung von Polyvinylalkohol stabilisier ten (Meth)Acrylsäureesterpolymeren gemäß Anspruch 12, dadurch gekennzeichnet, dass die Vinylester a) teilweise o- der vollständig vorgelegt und die (Meth)Acrylsäureester b) und/oder die (Meth)Acrylsäureester c) und gegebenenfalls die weiteren ethylenisch ungesättigten Monomere vollständig oder teilweise zudosiert werden.
14. Verwendung der Polyvinylalkohol stabilisierten (Meth)Acryl säureesterpolymere aus Anspruch 1 bis 11 in Verlaufsmassen, Putzen, Spachtelmassen, Fugenmörteln, Fliesenkleber, Voll- wärmeschutzkleber, Dichtschlämmen, Wärmedämmverbundsysteme oder Farben.
EP20725120.8A 2020-05-05 2020-05-05 Polyvinylalkohol-stabilisierte (meth)acrylsäureesterpolymere Pending EP4146714A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/062412 WO2021223849A1 (de) 2020-05-05 2020-05-05 Polyvinylalkohol-stabilisierte (meth)acrylsäureesterpolymere

Publications (1)

Publication Number Publication Date
EP4146714A1 true EP4146714A1 (de) 2023-03-15

Family

ID=70680475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20725120.8A Pending EP4146714A1 (de) 2020-05-05 2020-05-05 Polyvinylalkohol-stabilisierte (meth)acrylsäureesterpolymere

Country Status (4)

Country Link
US (1) US20230202924A1 (de)
EP (1) EP4146714A1 (de)
CN (1) CN115515994B (de)
WO (1) WO2021223849A1 (de)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2049114C3 (de) 1970-10-06 1974-03-21 Wacker-Chemie Gmbh, 8000 Muenchen Herstellen freifließender, blockfester,redispergierbarer Kunststoffpulver
JPH0770989B2 (ja) 1986-07-10 1995-07-31 日本電気株式会社 デイジタルpll回路
JPH02223553A (ja) 1988-10-21 1990-09-05 Rikagaku Kenkyusho 新規抗生物質rk―441、その製造法、抗腫瘍剤並びに免疫抑制剤
DE19825052A1 (de) * 1998-06-04 1999-12-16 Wacker Chemie Gmbh Verfahren zur Herstellung von Klebemitteln mit verbesserter Adhäsion
DE19901307C1 (de) * 1999-01-15 2000-06-21 Clariant Gmbh Dispersionspulver enthaltend teilacetalisierte, wasserlösliche Polyvinylalkohole, Verfahren zu deren Herstellung sowie deren Verwendung
DE19928933A1 (de) * 1999-06-24 2000-12-28 Wacker Polymer Systems Gmbh Verfahren zur Herstellung von Polyvinylalkohol-stabilisierten Polymerisaten
DE19962566A1 (de) * 1999-12-23 2001-07-05 Wacker Polymer Systems Gmbh Verfahren zur Herstellung von Vinylester-(Meth)acrylsäureester-Mischpolymeri- saten
DE10014399A1 (de) * 2000-03-23 2001-10-04 Wacker Polymer Systems Gmbh Vernetzbare Polymerzusammensetzung
JP2002348339A (ja) * 2001-05-24 2002-12-04 Sumitomo Chem Co Ltd エチレン・ビニルエステル共重合体含有水性エマルジョンならびに該エマルジョンと多価イソシアネート化合物とを含有する接着剤
DE10126560C1 (de) * 2001-05-31 2002-09-12 Wacker Polymer Systems Gmbh Verwendung von Mischpolymerisaten von Vinylester-, (Meth)acrylsäureester- und gegebenenfalls Ethylen-Comonomeren in Baustoffen
WO2003062307A2 (en) * 2002-01-24 2003-07-31 Zeon Corporation Polymer latex composition, dip-formed article and process for producing dip-formed article
DE10316079A1 (de) * 2003-04-08 2004-11-11 Wacker Polymer Systems Gmbh & Co. Kg Polyvinylalkohol-stabilisierte Redispersionspulver mit verflüssigenden Eigenschaften
CN100360569C (zh) * 2003-04-09 2008-01-09 可乐丽股份有限公司 (甲基)丙烯酸树脂系乳状液及其制造方法
JP2004323571A (ja) 2003-04-22 2004-11-18 Kuraray Co Ltd 合成樹脂エマルジョン粉末およびその製造方法
JP2004331785A (ja) 2003-05-07 2004-11-25 Kuraray Co Ltd (メタ)アクリル樹脂系エマルジョンの製法
JP2004339291A (ja) 2003-05-13 2004-12-02 Kuraray Co Ltd 水性塗料
WO2006095524A1 (ja) 2005-03-09 2006-09-14 Kuraray Co., Ltd 水性エマルジョン及び塗料
DE102009000537A1 (de) * 2009-02-02 2010-08-05 Wacker Chemie Ag Vernetzbare, in Wasser redispergierbare Polymerpulver-Zusammensetzung
DE102010039315A1 (de) * 2010-08-13 2012-02-16 Wacker Chemie Ag Verwendung von in Wasser redispergierbaren Polymerpulvern zur Verbesserung der Lagerstabilität von Zement oder zementären Trockenmörteln
DE102011076407A1 (de) * 2011-05-24 2012-11-29 Wacker Chemie Ag Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten

Also Published As

Publication number Publication date
WO2021223849A1 (de) 2021-11-11
US20230202924A1 (en) 2023-06-29
CN115515994B (zh) 2024-02-13
CN115515994A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
EP1916275B1 (de) Geminitensid enthaltende Dispersionspulverzusammensetzungen
EP1984428B1 (de) Verfahren zur herstellung von kationisch stabilisierten und in wasser redispergierbaren polymerpulverzusammensetzungen
EP1615861B2 (de) Redispersionspulver-zusammensetzung mit abbindebesschleunigender wirkung
EP2488557B1 (de) Verfahren zur kontinuierlichen emulsionspolymerisation
EP1352915B1 (de) Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten mittels kontinuierlicher Emulsionspolymerisation
EP1833865B1 (de) Vernetzbare, silanmodifizierte mischpolymerisate
EP1940887B1 (de) Silan-modifizierte dispersionspulver
EP1110978B1 (de) Verfahren zur Herstellung von Vinylester-(Meth)acrylsäureester-Mischpolymerisaten
EP1174447B1 (de) Verfahren zur Herstellung von zweiphasigen Polymerisaten in Form deren wässrigen Polymerdispersionen und in Wasser redispergierbaren Polymerpulver
EP1323752B1 (de) Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten mittels kontinuierlicher Emulsionspolymerisation
EP1792922A1 (de) Schutzkolloidstabilisiertes Dispersionspulver
EP1215219A1 (de) Polyvinylacetal-gepfropfte Polymerisate
DE102012209210A1 (de) Vinylacetat-Copolymere für hydraulisch abbindende Baustoffmassen
EP3068805B1 (de) Verfahren zur herstellung von in wasser redispergierbaren polymerpulver-zusammensetzungen mit kationischer funktionalität
WO2019020157A1 (de) Dispersionspulver-zusammensetzung enthaltend vinylalkohol-copolymerisat
EP4146714A1 (de) Polyvinylalkohol-stabilisierte (meth)acrylsäureesterpolymere
EP3931270B1 (de) In wasser redispergierbare pulverfarben-zusammensetzung
WO2024061448A1 (de) Copolymere von zyklischen ketenacetal-monomeren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WACKER CHEMIE AG