EP4137437B1 - Procédé de fonctionnement d'un moyen de transport - Google Patents

Procédé de fonctionnement d'un moyen de transport Download PDF

Info

Publication number
EP4137437B1
EP4137437B1 EP21207741.6A EP21207741A EP4137437B1 EP 4137437 B1 EP4137437 B1 EP 4137437B1 EP 21207741 A EP21207741 A EP 21207741A EP 4137437 B1 EP4137437 B1 EP 4137437B1
Authority
EP
European Patent Office
Prior art keywords
transport
distance measuring
measuring device
scanning area
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21207741.6A
Other languages
German (de)
English (en)
Other versions
EP4137437A1 (fr
EP4137437C0 (fr
Inventor
Peter Stoiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schiller Automatisierungstechnik GmbH
Original Assignee
Schiller Automatisierungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schiller Automatisierungstechnik GmbH filed Critical Schiller Automatisierungstechnik GmbH
Priority to PCT/EP2022/072590 priority Critical patent/WO2023020940A1/fr
Publication of EP4137437A1 publication Critical patent/EP4137437A1/fr
Application granted granted Critical
Publication of EP4137437B1 publication Critical patent/EP4137437B1/fr
Publication of EP4137437C0 publication Critical patent/EP4137437C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided

Definitions

  • the present invention relates to a method for operating a conveyor equipped with a transport device.
  • the funding can be, for example, an industrial truck that is used in a goods logistics facility.
  • the conveyor can place the goods, i.e. different objects, on the shelves or retrieve them from them.
  • the conveyor is equipped with a transport device in which the respective object is arranged during transport from/to a shelf.
  • this can be the lifting frame with fork carriage and fork tines, which illustrates a preferred field of application, but is not initially intended to limit the generality of the subject.
  • the DE 10 2004 047 209 A1 relates to safety monitoring for transport vehicles, in which a safety field is monitored to initiate an emergency stop if the safety field is violated.
  • the safety field can be set depending on the load.
  • the present invention is based on the technical problem of specifying an advantageous method for operating a conveyor with a transport device.
  • a determination or adjustment of a safety zone of the funding depending on a non-contact measurement of the object is solved with the method according to claim 1, namely a determination or adjustment of a safety zone of the funding depending on a non-contact measurement of the object.
  • This can be done, for example In the event of a large object that protrudes from the conveyor, its safety zone is enlarged so that predefined minimum distances are maintained despite the protrusion.
  • a minimum lateral distance perpendicular to the main direction of travel is d min
  • d a > d min is set.
  • the safety zone which is the basis for semi-autonomous driver support or in particular fully autonomous driving, is then correspondingly larger.
  • the non-contact measurement is carried out with a distance measuring device, with which, in a preferred embodiment, a segmented scanning area is recorded.
  • a distance measuring device with which, in a preferred embodiment, a segmented scanning area is recorded.
  • the special feature lies not in the division into segments per se, but in a "free or occupied" evaluation of the status in the respective segment.
  • the segmentation can be significantly coarser than the resolution of the distance measuring device, so a respective segment can, for example, include several pixels or voxels. As far as the object extends into the respective segment, regardless of whether it fills it completely or only partially, the status “occupied” is then determined for this segment.
  • a respective segment is classified as "free” if the object does not reach into it.
  • occupied segments and e.g. B. free segments result in edge areas.
  • a protrusion that an occupied segment has compared to the conveyor is then determined, and this protrusion is added to an original safety zone, i.e. to the minimum distance d min mentioned.
  • the protrusions of all occupied segments can be determined in detail and the maximum value can then be used as a basis, but, for example, segments that are further inside can also be sorted out in advance and the respective protrusion can only be determined for the outer or outermost occupied segments.
  • the approach is not to image the object with the distance measurement, but rather to record it via the segments in a comparatively coarser grid.
  • a certain level of granularity is accepted, but this in turn increases the security in the assignment of “free” or “occupied”.
  • the remaining pixels/voxels for the segment as a whole could still ensure an “occupied” detection.
  • a little more excess is therefore opened, for example if the object only fills an “inner”, i.e. proximal to the conveyor, area of the segment that is then used as the basis for determining the safety zone.
  • this granularity can increase security.
  • a “scan area” is not intended to exclude an overall three-dimensional scan area;
  • the distance measuring device can also have a resolution at an angle or perpendicular to the scanning surface. Overall, it can be e.g. B. there are several offset scan areas, which, for example, can each correspond to a line in a matrix-shaped breakdown. On the other hand, however, as discussed below using the preferred distance measuring device, there can actually only be exactly one scan area; The scanning can also take place exclusively within a line, i.e. along a line. Regardless of these details, the scanning surface spanned by the distance measuring device can preferably be flat, i.e. lie in one plane.
  • the distance measuring device is preferably set up for a transit time-based distance measurement using electromagnetic pulses.
  • the distance measuring device can preferably be a laser scanner, the laser pulses of which are emitted sequentially in different spatial directions, i.e.
  • This emission along the beams tilted relative to one another can be achieved, for example, by pulse guidance via an oscillating or rotating reflector of the distance measuring device.
  • the distance measuring device spans the scanning area with its solid angle resolution, i.e. with spatial directions or beams tilted relative to one another.
  • it can also be designed to be spatial angle-sensitive, i.e. echo pulses incident from different spatial directions can be assigned to the different spatial directions in a receiving unit of the distance measuring device (e.g. via optics that guide echo pulses incident from different spatial directions to different areas of a sensor surface).
  • solid angle-selective emission is preferred, for example via a corresponding reflector.
  • the scanning area is positioned so that it intersects the arrangement area, and therefore also the object arranged there.
  • the “object” is the entire object picked up and transported, so it can, for example, include both the goods themselves and a means of storage and/or transport, such as a container or in particular a pallet.
  • the scanning surface can generally also be vertical, so height projections can be determined, for example, with a view to underpasses, etc.
  • the scanning surface is preferably at least partially horizontal, so a lateral projection is determined; particularly preferably it lies parallel to the horizontal directions of the fixed coordinate system.
  • the scanning area is significantly smaller than the range of the distance measuring device, so it is in a certain way oversized.
  • the range is considered at the highest angular resolution of the distance measuring device, i.e. at the smallest angular distance between the beams.
  • the range can then arise, for example, via the scanning frequency (e.g. the frequency of the rotating or oscillating reflector), ultimately via the length of time for which an echo pulse from a specific spatial direction is waited before a subsequent pulse is emitted in a different spatial direction.
  • the extent of the scanning area can be in a respective direction, i.e. e.g. B. along a respective beam, for example a maximum of 50% of the range of the distance measuring device taken in this direction (along this beam).
  • Further upper limits can be, for example, 40% or 30%.
  • Lower limits arise less from technical considerations than from economic considerations, for example values of at least 1%, 2%, 3%, 4% and 5%.
  • the scan area is considered as a whole, i.e. the entirety of all segments evaluated with the “free or occupied” criterion.
  • the scanning area is relatively small, namely its average extent is at most 3 m, more preferably at most 2.5 m or 2 m.
  • the extent of the scanning area in a respective spatial direction is determined from the distance measuring device (along a respective ray) and an average of the extensions taken along all rays is considered.
  • Possible lower limits of the average extent can be, for example, at least 0.5 m or 1 m.
  • the scanning area is divided into a total of at most 512 segments; further advantageous upper limits are, in the order in which they are mentioned, increasingly preferably at most 512, 256, 128 or 64 segments.
  • This comparatively limited number expresses the granularity already discussed; the angular resolution of the distance measuring device can, for example, be at least 2, 4 or 8 times (upper limits are again more of an economic nature; they can be at most 64 or . 32-fold).
  • the scanning area can be divided into a total of, for example, at least 4, 8 or 16 segments, so that a certain resolution is achieved despite the desired granularity, i.e. no arbitrary amount of additional excess is retained.
  • the segments are circular sectors whose common center lies on the distance measuring device.
  • the circular sectors fan out or span the scanning area with each other, so they are arranged next to each other in a scanning direction, for example.
  • Adjacent circular sectors can lie next to each other disjointly or preferably with a certain overlap (which generally applies to the segments, regardless of the specific design as circular sectors).
  • the circular sectors have at least partially different radii (excluded from the distance measuring device). So at least some of the segments can differ in their radii, but can e.g. B. the same radii exist within certain groups. For example, the radii can be smaller in a central area and larger at the edges.
  • method step iii) and/or the determination of the “free”/“occupied” state can be computer-assisted, i.e. it can be a computer-implemented method step.
  • This can generally also be done externally, for example in a central control unit of the goods logistics facility or generally cloud-based; However, a local one is preferred Evaluation, i.e. in a computer unit assigned to the funding. This can be designed, for example, as an ASIC or in particular as a microcontroller. If in the context of the present disclosure there is generally talk of the funding being "set up" for certain processes or a certain method, this means in particular that commands are stored in a computer unit (globally or preferably local) which enable the implementation of the corresponding procedural steps cause.
  • the distance measuring device is a safety laser scanner that is equipped with an integrated computer unit.
  • This integrated computer unit is then preferably used to determine the respective “free” or “occupied” status for the respective segments. Since the laser scanner is classified as "safe” overall, the evaluation in its integrated computer unit also meets this criterion, so the resulting "free”/"occupied” result matrix is also safe.
  • the protrusion determined in this way since it is based on a certified measurement and evaluation, can also be used as a basis for a partially or, in particular, fully autonomous drive (e.g. DIN EN ISO 3691-4:2020) for safety distances enough has been done.
  • the original safety zone i.e. the original safety distance, can result from such a standard; the safety laser scanner then supplies the “safe” projection, which is added.
  • the determination of the safety zone can preferably take place in a safety controller (safety PLC), which, for. B. depends directly on an output of the safety laser scanner (and receives the states "free"/"occupied” from there).
  • safety preferably means that at least Performance Level (PL) d is satisfied (e.g. defined according to EN ISO 13849).
  • the safety laser scanner can, for example, be of type 3 according to IEC 61496 or category 3 according to EN ISO 13849. Even independently of these details, at least one further (separate) safety laser scanner can preferably be provided on the conveyor to secure the journey ("travel laser scanner"), which is particularly preferably identical in construction to the safety laser scanner used to determine the protrusion is. For example, a total of at least two travel laser scanners and (independently) e.g. B. no more than five or four driving laser scanners can be provided.
  • the safety laser scanner to determine the safety zone is preferably not used to secure the journey.
  • the invention also relates to a conveyor with a transport device, in particular an industrial truck, the transport device of which preferably comprises a lifting device.
  • the transport device of which preferably comprises a lifting device.
  • the conveying means is preferably equipped with the distance measuring device.
  • the distance measuring device is positioned and oriented in such a way that its scanning surface intersects the arrangement area. Due to the integral design of the distance measuring device as part of the conveyor, this can be achieved regardless of its orientation or direction of travel (the arrangement area is always reliably recorded).
  • the transport device preferably has a lifting device with which the arrangement area can be brought to different height positions.
  • this can be, for example, a height-adjustable platform with a scissor mechanism, but it preferably has a fork carrier with fork tines, the fork carrier being guided in a height-adjustable manner on a mast.
  • the industrial truck can therefore be designed as a forklift with which the object can be removed from raised shelves, for example, in particular a fully autonomous forklift.
  • the different height positions are at different geodetic heights; the height can in particular be taken as a vertical distance from a floor of the goods logistics facility (on which, for example, the industrial truck travels and moves horizontally).
  • the distance measuring device is arranged on the lifting device in a preferred embodiment, so that it can be brought to the different height positions together with the arrangement area. Accordingly, the scanning area intersects the arrangement area different height positions, preferably always in the same place. This means that the object can, for example, be measured when or before it is removed from a shelf, which can also be advantageous in terms of time.
  • the distance measuring device can be arranged, for example, on the fork carriage or in a fixed position relative to it and can therefore be adjusted in height simultaneously with the fork tines.
  • the transport device preferably has forks, with which z. B. a pallet (transport pallet) with the goods can be picked up on it, such as a Europool pallet.
  • the forks can be inserted horizontally between the feet of the pallet and the pallet can then be lifted.
  • the distance measuring device is positioned in such a way that the scanning surface is below the forks.
  • the scanning surface can be mounted on the fork carriage, for example, so the laser scanner can be attached there in a vertical position below the fork arms.
  • the scanning surface is preferably parallel to a plane spanned by the forks, specifically their top sides (the picked up object rests on the top sides, so its support surface then lies in the plane).
  • the scanning surface is preferably at most 8 cm, more preferably at most 7 cm or 6 cm below the plane spanned by the forks. Possible minimum distances are, for example, 1 cm or 2 cm.
  • the correspondingly positioned scanning surface then cuts, for example, the feet of the picked up pallet, so the size of the pallet and/or its position on the forks can be used to determine the protrusion.
  • It can e.g. B. Pallets of different sizes are used, whereby these are dimensioned depending on the respective goods in such a way that the goods are always smaller or at most the same size as the pallet, so that the horizontal dimension of the pallet corresponds to the horizontal dimension of the object (the entire pallet and goods). If the goods are positioned on pallets without protruding, these pallets can also be easily placed next to each other in one Put down the shelf.
  • the measurement of the pallet feet can, for example due to the relatively simple geometry, provide reproducible and reliable projection data, which reduces the risk of errors.
  • the transport device has a stop sensor which measures whether the object is arranged in the arrangement area.
  • the stop sensor can generally also measure the vertical support of the object, for example the pallet on the fork(s).
  • the stop sensor preferably measures a horizontal contact, for example of the object on the fork carriage. This can of course be combined with a separate measurement with respect to the vertical direction, such as weighing the object (e.g. with a separate weighing device).
  • a coupling can be advantageous in that the measurement of the object with the distance measuring device to determine the protrusion is only initiated when the stop sensor indicates proper positioning of the object in the arrangement area.
  • the non-contact measurement of the object can, for example, be enabled or initiated when the object rests on the fork carriage. This can, for example, simplify the correct assignment of the segments in purely geometric terms during the evaluation (e.g. the assignment of "front” and "rear” pallet feet). Furthermore, for example, the risk of the object slipping later can also be reduced.
  • the funding means is set up to carry out a method disclosed here, i.e. to adapt the security zone, preferably also to determine "free"/"occupied” in segments. It is therefore equipped with a corresponding computer unit or units, which can (partially) also be part of an integrated safety laser scanner, see the details above.
  • the invention further relates to a goods logistics device with shelves that are provided for storing objects and a conveying means disclosed here, in particular an industrial truck, preferably an autonomous forklift.
  • a goods logistics device with shelves that are provided for storing objects and a conveying means disclosed here, in particular an industrial truck, preferably an autonomous forklift.
  • This can be located, for example, on an area of the goods logistics facility, on which z. B. the shelves can also be positioned, move between the latter and a transfer point at which the conveyor/industrial truck receives goods for storage on the shelves and / or delivers items taken from the shelves.
  • FIG. 1 shows a conveyor 1 for transporting an object 2, which in the present case is a product 3 on a pallet 4.
  • the conveyor 1 is designed as an autonomous forklift 5; a transport device 6 of the conveyor 1 is equipped with a lifting device 7 for lifting the object 2.
  • the lifting device 7 comprises a mast 7.1, on which a fork carrier 7.2 is guided in a vertically displaceable manner. The latter carries forks 7.3, which are used to lift the object 2 between feet 4.1 Pallet 4 is introduced.
  • the fork carrier 7.2 with the forks 7.3 can be brought into different height positions 8 on the mast 7.1.
  • the funding means 1 also has a distance measuring device 10, which in the present case is designed as a safety laser scanner 11. Its scanning plane 12 is arranged below the forks 7.3, namely at a vertical distance 13 of around 6 cm below a plane 14 spanned by the forks 7.3.
  • the distance measuring device 10 is fixed in position relative to the fork carrier 7.2 and the forks 7.3, so it is adjusted in height together with it moved up or down.
  • the object 3 is placed for transport in an arrangement area 15 of the transport device 7, which in the present case is defined by the fork carrier 7.2 and the fork tines 7.3. The correct positioning of the object 3 can be determined via a stop sensor 16.
  • Figure 2 shows the funding 1 with the object 2 in a top view.
  • the conveyor 1 is designed to drive autonomously, and an original safety zone 20 is defined around the conveyor 1. This specifies a safety distance that must not be fallen below, for example when navigating within a goods logistics facility 21, and which is therefore maintained in any case from objects 22.
  • the object 2 has a protrusion 25 relative to the conveyor 1, so the original safety zone 20 would be too small if the object 2 is transported.
  • the safety distances would become too large if the maximum possible product dimensions were always used. Therefore, the object 2 is measured contactlessly with the distance measuring device 10 and a security zone 30 is determined by adding a projection 35 to the original security zone 20.
  • three separate travel laser scanners 36 are provided on the conveyor 1 in this example, see also the overview Figure 1 .
  • Figure 3 illustrates the determination of the supernatant 35 in detail; a scanning surface 40 of the distance measuring device 10 is shown in supervision. This is in several segments 40a-f, whereby for the sake of clarity only one half of the scanning area 40 is shown segmented in detail, but the other half (on the left in the figure) is structured mirror-symmetrically in the present example.
  • the fork carrier 7.2 is shown; in front of it or above it in the figure, a foot 4.1 of the pallet 4 can be seen.
  • segment 40d This is in segment 40d, but does not extend into segment 40e.
  • a “free” state is determined for the segments 40a-c, e, f, but an “occupied” state is determined for the segment 40d.
  • the projection 35 is determined for this occupied segment 40d, based on its maximum lateral extent.
  • the projection 35 relative to the conveyor 1, specifically its outer edge 45, is therefore somewhat larger than it would be if the foot 4.1 or object 2 were precisely measured, but on the other hand the reliability of this measurement is increased, see the introduction to the description in detail .
  • two additional pallet feet are also shown in dashed lines, namely for a smaller pallet (4.1a) and a larger pallet (4.1b).
  • segment 40b, c With the smaller pallet, the segments 40b, c would be occupied, so segment 40c would be used as the basis for determining the protrusion. In the case of the larger pallet, segment 40e would be occupied, the remaining segments 40a-d and 40f would be free, and the excess would be determined based on segment 40e.
  • the scanning surface 40 lies in the scanning plane 12, with the segments 40a-f being dimensioned smaller than a range 47, i.e. in a respective direction 46 an extension 48 is smaller than the respective maximum possible range 47.
  • Figure 4 summarizes some process steps in a flowchart 50.
  • the object 2 is arranged 51 in the arrangement area 15 of the transport device 7, the correct positioning being determined with a stop sensor measurement 52 of the stop sensor 16. Then the object 2 is measured 53 with the distance measuring device 10 and a respective state of “free” or “occupied” is determined 54 for the respective segments 40a-f In the segment, an overhang 35 is determined 55, which is then added 56 to the original safety zone 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Intermediate Stations On Conveyors (AREA)
  • Control Of Conveyors (AREA)

Claims (14)

  1. Procédé d'utilisation d'un véhicule industriel (1) équipé d'un dispositif de transport (6) permettant de transporter un objet (2), comprenant les étapes consistant à:
    i) disposer un objet (2) dans une zone de disposition (15) du dispositif de transport (6),
    ii) mesurer sans contact (53) ledit objet (2) à l'aide d'un dispositif de mesure de distance (10),
    iii) déterminer une zone de sécurité (30) sur le véhicule industriel (1) en fonction de la mesure (53) réalisée selon l'étape ii) ;
    dans lequel procédé, pendant la mesure (53) réalisée au cours de l'étape ii) à l'aide du dispositif de mesure de distance (10), il est capturé une zone de balayage (40) divisée en plusieurs segments (40a-f),
    pour chaque segment (40a-f), il est déterminé (54) un état « libre » ou « occupé », et pour un segment (40d) pour lequel il a été déterminé un état « occupé », il est établi (55) un débord (35) que ce segment (40d) présente par rapport au véhicule industriel (1), ledit débord (35) étant ajouté (56) à une zone de sécurité d'origine (20) au cours de l'étape iii).
  2. Procédé selon la revendication 1, dans lequel une étendue (48) de la surface de balayage (40), qui est relevée dans une direction respective (46) à partir du dispositif de mesure de distance (10), représente au plus 50 % d'une portée (47) du dispositif de mesure de distance (10) relevée dans ladite direction respective (46).
  3. Procédé selon la revendication 1 ou 2, dans lequel l'étendue moyenne de la zone de balayage (40), qui est relevée à partir du dispositif de mesure de distance (10), ne dépasse pas 2 m.
  4. Procédé selon l'une des revendications 1 à 3, dans lequel la zone de balayage (40) est divisée en un total d'au plus 512 segments (40a-f).
  5. Procédé selon l'une des revendications 1 à 4, dans lequel les segments (40a-f) sont des secteurs circulaires qui s'étendent concentriquement au dispositif de mesure de distance (10).
  6. Procédé selon la revendication 5, dans lequel les secteurs circulaires ont, au moins en partie, des rayons différents.
  7. Procédé selon l'une des revendications 1 à 6, dans lequel l'appareil de mesure de distance (10) est un scanner laser de sécurité (11) doté d'une unité informatique intégrée, la détermination de l'état « libre » ou « occupé » s'effectuant dans l'unité informatique intégrée.
  8. Véhicule industriel (1) comportant :
    un dispositif de transport (6) comportant une zone de disposition (15) dans laquelle un objet (2) peut être disposé en vue de son transport, et
    un dispositif de mesure de distance (10) conçu pour une mesure de distance sans contact, à savoir pour capturer une zone de balayage (40), le dispositif de mesure de distance (10) étant disposé et aligné de telle manière que la zone de balayage (40) recoupe la zone de disposition (15) ;
    ledit véhicule industriel (1) étant conçu pour adapter une zone de sécurité (30) au véhicule industriel (1) en fonction d'une mesure de la zone de balayage (40),
    ladite zone de balayage (40) étant divisée en plusieurs segments (40a-f), et
    ledit véhicule industriel (1) étant conçu pour déterminer (54) un état « libre » ou « occupé » pour chaque segment (40a-f) lors de la mesure (53) de la surface de balayage (40) à l'aide du dispositif de mesure de distance (10), et
    pour un segment (40d) pour lequel il a été déterminé un état « occupé », pour établir (55) un débord (35) que ce segment (40d) présente par rapport au véhicule industriel (1), et
    pour ajouter (56) ledit débord (35) à une zone de sécurité d'origine (20).
  9. Véhicule industriel (1) selon la revendication 8, dans lequel le dispositif de transport (6) comprend un dispositif de levage (7) permettant de régler la zone de disposition (15) à différentes hauteurs (8), le dispositif de mesure de distance (10) se trouvant également sur le dispositif de levage (7) et étant amené aux différentes hauteurs (8) conjointement avec la zone de disposition (15).
  10. Véhicule industriel (1) selon la revendication 8 ou 9, dans lequel le dispositif de transport (6) comporte des fourches (7.3) permettant de prélever une palette (4), le dispositif de mesure de distance (10) étant disposé et aligné de telle manière que la surface de balayage (40) se trouve en dessous d'un plan (14) occupé par les fourches (7.3).
  11. Véhicule industriel (1) selon la revendication 10, dans lequel la surface de balayage (12) se situe à une distance verticale (13) ne dépassant pas 8 cm en dessous du plan (14).
  12. Véhicule industriel (1) selon l'une des revendications 8 à 11, dans lequel le dispositif de transport (6) comporte un capteur de butée (16) permettant de mesurer si l'objet (2) est disposé dans la zone de disposition (15), ledit véhicule industriel (1) étant conçu pour entraîner la détection de la surface de balayage (40) en fonction d'une mesure du capteur de butée (52).
  13. Véhicule industriel (1) selon l'une des revendications 8 à 12, conçu pour réaliser un procédé selon l'une des revendications 1 à 7.
  14. Installation logistique (21) comportant des rayonnages d'entreposage d'objets (2) et un véhicule industriel (1) selon l'une des revendications 8 à 13.
EP21207741.6A 2021-08-17 2021-11-11 Procédé de fonctionnement d'un moyen de transport Active EP4137437B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2022/072590 WO2023020940A1 (fr) 2021-08-17 2022-08-11 Procédé de fonctionnement d'un moyen de transport

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021004184.4A DE102021004184A1 (de) 2021-08-17 2021-08-17 Verfahren zum Betreiben eines Fördermittels

Publications (3)

Publication Number Publication Date
EP4137437A1 EP4137437A1 (fr) 2023-02-22
EP4137437B1 true EP4137437B1 (fr) 2024-03-13
EP4137437C0 EP4137437C0 (fr) 2024-03-13

Family

ID=78598927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21207741.6A Active EP4137437B1 (fr) 2021-08-17 2021-11-11 Procédé de fonctionnement d'un moyen de transport

Country Status (3)

Country Link
EP (1) EP4137437B1 (fr)
CA (1) CA3229505A1 (fr)
DE (1) DE102021004184A1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266106A (en) * 1979-04-05 1981-05-05 The Stroh Brewery Co. Lift truck load position sensing device
FR2677006A1 (fr) * 1991-05-28 1992-12-04 Sodalfa Dispositif d'assistance pour le deplacement de charges standardisees par un chariot elevateur.
DE10323641A1 (de) * 2003-05-26 2005-01-05 Daimlerchrysler Ag Bewegliche Sensoreinrichtung am Lastmittel eines Gabelstaplers
DE102004047209B4 (de) * 2004-09-27 2009-04-23 Daimler Ag Verfahren und Vorrichtung zur Sicherheitsüberwachung für Transportfahrzeuge
BE1018160A3 (nl) * 2008-05-26 2010-06-01 Egemin Nv Automatisch gestuurd voertuig en werkwijze voor het sturen daarbij toegepast.
EP2385014B1 (fr) * 2010-05-03 2013-03-27 Siemens Aktiengesellschaft Chariot de manutention doté d'un dispositif destiné à l'identification d'un produit de transport chargé et procédé destiné à l'identification d'un produit de transport chargé d'un chariot de manutention
DE102016120117A1 (de) * 2016-10-21 2018-04-26 Linde Material Handling Gmbh Flurförderzeug mit einer Sensoreinrichtung zur Überwachung eines Umgebungsbereiches
JP6880884B2 (ja) * 2017-03-22 2021-06-02 日本電気株式会社 車載装置、荷役機、制御回路、制御方法、及びプログラム

Also Published As

Publication number Publication date
EP4137437A1 (fr) 2023-02-22
DE102021004184A1 (de) 2023-02-23
CA3229505A1 (fr) 2023-02-23
EP4137437C0 (fr) 2024-03-13

Similar Documents

Publication Publication Date Title
EP3601118B1 (fr) Système de production équipé d'un ftf servant à automatiser la distribution de contenants sur des rayonnages de prélèvement
CH715083B1 (de) Verfahren und Sortiersystem zum automatischen und manuellen Sortieren von Gegenständen unter Verwendung von in vertikalen Spalten angeordneten Sortierzielen.
DE102006039382A1 (de) Stückgut-Transportvorrichtung für ein Stückgut-Lagersystem, und Verfahren zum Betreiben der Vorrichtung
EP2385014B1 (fr) Chariot de manutention doté d'un dispositif destiné à l'identification d'un produit de transport chargé et procédé destiné à l'identification d'un produit de transport chargé d'un chariot de manutention
DE112017004816T5 (de) Förderer-screening während des robotergestützten entladens von artikeln
EP3875990B1 (fr) Système d'inspection d'un dépôt
EP2532582B1 (fr) Soute, système de chargement de cargaison et procédé de chargement/déchargement d'une soute
EP2339376A1 (fr) Capteur optoélectronique
DE102010055774A1 (de) Flurförderzeug mit einem Sensor zur Erfassung einer räumlichen Umgebung und Verfahren zum Betreiben eines solchen Flurförderzeugs
EP0656868A1 (fr) Procede et dispositif de commande d'un pont dechargeur pour conteneurs.
EP3118152B1 (fr) Procédé de commande de la vitesse d'un chariot de manutention pour la préparation de commandes
WO2020083689A1 (fr) Engin de manutention comprenant une fourche de chargement, procédé de fonctionnement, appareil de commande, programme informatique et produit programme d'ordinateur
EP4137437B1 (fr) Procédé de fonctionnement d'un moyen de transport
DE112022000929T5 (de) Automatisierte einheitslast-abfertigungsverfahren und -systeme
DE19841570C2 (de) Kaikran zum Be- und Entladen von Containern
EP2987760B1 (fr) Chariot de manutention
DE102008014110B4 (de) Verfahren und Vorrichtung zur Kommissionierung von Gegenständen
EP2500850A1 (fr) Procédé et système destinés à la surveillance d'objets
WO2023020940A1 (fr) Procédé de fonctionnement d'un moyen de transport
DE202019102253U1 (de) Vorrichtung zum Verifizieren von Lagergut-Positionen in intralogistischen Lagersystemen
DE112022001463T5 (de) Transportmöglichkeitsermittlungsvorrichtung, Entfernungsmessvorrichtung, Transporteinheit, Transportmöglichkeitsermittlungsverfahren und Transportmöglichkeitsermittlungsprogramm
EP1120341A2 (fr) Méthode et appareil pour la détermination des paramètres de cargaison d'un espace de charge d'aéronef
EP4284735A1 (fr) Procédé pour emmagasiner plusieurs objets de types différents dans un rayonnage de stockage et système de stockage à rayonnages prévu à cet effet
EP3020677A1 (fr) Procede de preselection de la hauteur de levage pour un chariot de manutention
EP3925926B1 (fr) Chariot de manutention

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002958

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240318

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240322