EP4127050A1 - Composition émulsifiante et texturante à base d'amidons et de gommes pour la cosmétique - Google Patents

Composition émulsifiante et texturante à base d'amidons et de gommes pour la cosmétique

Info

Publication number
EP4127050A1
EP4127050A1 EP21716805.3A EP21716805A EP4127050A1 EP 4127050 A1 EP4127050 A1 EP 4127050A1 EP 21716805 A EP21716805 A EP 21716805A EP 4127050 A1 EP4127050 A1 EP 4127050A1
Authority
EP
European Patent Office
Prior art keywords
gum
oil
starch
starches
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21716805.3A
Other languages
German (de)
English (en)
Inventor
Florence LAMOTTE D'INCAMPS
Géraldine LOUVET-POMMIER
Léon Mentink
Sophie PIOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Alliance Gums and Industries SAS
Original Assignee
Roquette Freres SA
Alliance Gums and Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2002819A external-priority patent/FR3108328A1/fr
Application filed by Roquette Freres SA, Alliance Gums and Industries SAS filed Critical Roquette Freres SA
Publication of EP4127050A1 publication Critical patent/EP4127050A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/732Starch; Amylose; Amylopectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/737Galactomannans, e.g. guar; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/99Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from microorganisms other than algae or fungi, e.g. protozoa or bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/06Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/08Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system

Definitions

  • the present application is in the field of emulsifying cosmetic compositions for preparing an oil-in-water emulsion, to stabilize said emulsion, and to give this emulsion a sensory profile ranging from a fluid milk to a thick cream, and a transformable texture.
  • Patent US20140287128 to Nisshion Oillio discloses the use of a thickening modified starch, of an emulsifying modified starch, and of a thickening polysaccharide chosen from vegetable gums, to prepare food seasonings in the form of an oil emulsion. -in-water.
  • This patent remains silent as regards any use in cosmetics, and a fortiori as regards any notion of sensory profile in topical use.
  • Starches modified with an octenyl succinate function have been widely known for their emulsifying properties since the 1950s when National Starch files its application US2661349. Numerous patent applications have subsequently been filed on improvements of this type of modified starch, in particular on processes combining a modification of the structure of the starch granules and of the anhydroglucose polymers which make up the starch, for example. for example by the action of enzymes, or of hydrothermal treatments such as gelatinization or dextrinification.
  • Starches modified for example by an acetyl function such as acetylated starches or starch acetates, are also widely known for their texturizing and thickening property. Gums of microbial or vegetable origin are also known for their texturizing and thickening or gelling property.
  • the synergy developed by the particular solid emulsifying and texturing composition selected by the applicant has not never been disclosed, and a fortiori the transformation texture allowed by said solid composition has never been either.
  • a first subject of the present application is a solid composition comprising, or even consisting of:
  • a second subject of the present application is an oil-in-water emulsion comprising, or even consisting of:
  • a third subject of the present application is the use of a solid composition that is the subject of the application for preparing oil-in-water emulsions for cosmetic use, chosen from products for skin care, skin care or. hair coloring, oral care or hygiene, hygiene, makeup, or perfume.
  • a fourth subject of the present application is a process for preparing an oil-in-water emulsion comprising a step of emulsifying an oil in an aqueous phase in which the solid composition which is the subject of the application has been previously dispersed or solubilized.
  • the solid composition which is the subject of the present application comprises, or consists of:
  • solid composition the Applicant means a pulverulent or powdery form, in the form of a set of divided or agglomerated solid particles, or a composition made solid by pressing or compaction of one or more powders.
  • the size of said solid composition ranges from about 1 micron to several hundred microns, for example 10 microns to 500 microns, or 20 microns to 300 microns, and generally 40 microns to 200 microns.
  • the morphology of the particles can be regular, such as spheres, or irregular and angular, or a combination of different morphologies.
  • the water content of the solid form is less than or equal to 30% by weight, relative to the total weight of the solid composition, or less than or equal to 20% by weight, or less than or equal to 15% by weight, or less or equal to 10% by weight, or less than or equal to 5% by weight.
  • the fraction of the solid composition soluble in water at 20 ° C may be greater than or equal to 5% by weight relative to the total weight of the solid composition, or greater than or equal to 25% by weight, or greater than or equal to 50% by weight, or greater than or equal to 60% by weight, or greater than or equal to 75% by weight.
  • the solid composition comprises at least one starchy emulsifier or one of starchy origin.
  • said at least one starch emulsifier or emulsifier of starch origin is a starch functionalized with at least one amphiphilic group chosen from a granular starch octenyl succinate, or a pregelatinized starch modified octenyl succinate, or a gelatinized starch modified octenyl succinate, or is an octenyl succinate functionalized dextrin, or an octenyl succinate functionalized maltodextrin, or mixtures thereof.
  • the solid composition comprises at least one thickening starch.
  • said at least one thickening starch is chosen from stabilized starches, preferably acetylated starches, hydroxypropylated starches, hydroxyethylated starches, or more preferably from pregelatinized and acetylated starches, or pregelatinized and hydroxypropylated starches, most preferably. from pregelatinized and acetylated starches, or mixtures thereof.
  • the solid composition comprises at least one gum of microbial origin. According to one embodiment, said at least one gum of microbial origin is chosen from xanthan gum, gellan gum, dextran gum, scleroglucan gum, beta-glucan gum, or their derivatives and mixtures.
  • the solid composition comprises at least two vegetable gums.
  • said at least two vegetable gums are chosen from galactomannans, glucomannans, galactans, alginates, preferably from guar gum, tara gum, locust bean gum, cassia gum, Fenugreek gum, konjac gum, arabic gum, tragacanth, karaya gum, and most preferably are guar gum and tara gum.
  • the solid composition comprises, or consists of, in percentages by weight relative to the total weight of said solid composition:
  • said at least two vegetable gums are guar gum and tara gum.
  • the mass proportions of the two vegetable gums, relative to the total weight of the solid composition are:
  • the solid composition comprises, or consists of, in percentages by weight relative to the total weight of said solid composition: - from 20% to 60% in at least one starchy emulsifier or of starchy origin,
  • the solid composition comprises, or consists of, in percentages by weight relative to the total weight of said solid composition:
  • the solid composition comprises, or consists of, in percentages by weight relative to the total weight of said solid composition:
  • the solid composition comprises, or consists of, in percentages by weight relative to the total weight of said solid composition:
  • the thickening starches useful in the invention can come from any botanical origin, in particular from wheat, corn, potato, legumes like peas, rice, broad beans, faba beans. They can be granular as in their natural state, or pregelatinized. Preferably, they are chosen from pregelatinized starches, hydrolyzed starches, starches treated enzymatically, modified starches and modified dextrins.
  • the thickening starches are modified starches chosen from stabilized starches, preferably from acetylated starches, hydroxypropylated starches, hydroxyethylated starches; or from pregelatinized and stabilized starches, preferably from pregelatinized and acetylated starches, pregelatinized and hydroxypropylated starches, most preferably from pregelatinized and acetylated starches, or mixtures thereof.
  • pregelatinized starch means a starch made “water-soluble”, that is to say a starch having at 20 ° C and with mechanical stirring for 24 hours a soluble fraction in water.
  • demineralized water at least equal to 5% by weight.
  • This soluble fraction is preferably greater than 20% by weight, or more preferably greater than 50% by weight, or most preferably greater than or equal to 70%.
  • the water-soluble starch can be completely soluble in demineralized water, the soluble fraction then being greater than 90%, and being able to be close to 100%.
  • the water-soluble starch preferably has a low water content, generally less than 10%, in particular less than 5% by weight.
  • Pregelatinized starches are generally prepared by thermal, chemical or mechanical techniques capable of causing swelling of the starch granules so that they become soluble in cold water, in particular thanks to the release of the chains constituent starches of said granules.
  • the preferred techniques are steam cooking, jet cooker cooking, cooking on a drum, cooking in mixer and / or extruder systems then drying, for example in an oven, by hot air on a fluidized bed, cooking on a rotary drum, atomization, extrusion or lyophilization.
  • Such starches generally have a solubility in demineralized water at 20 ° C greater than 5% and more generally between 10 and 100% and a level of starch crystallinity less than 15%, generally less than 5% and most often less than 1%, or even zero.
  • PREGEFLO® the products manufactured and marketed by the Applicant under the brand name PREGEFLO®.
  • Pregelatinized starch can also consist of a starch which has partially retained its original granular form, obtained by spray cooking, generally known under the name GCWS (Granular Cold Water Soluble) starch.
  • GCWS Granular Cold Water Soluble
  • hydrolyzed starch means a starch which has undergone enzymatic hydrolysis or partial chemical hydrolysis, by acid, basic or by oxidation, which has led to a reduction in the molecular weight of the starch.
  • weakly hydrolyzed starches are fluidized starches, and highly hydrolyzed starches are maltodextrins.
  • dextrin a starch in the form of granules having undergone a hydro-thermal modification of their granular structure or of their intermolecular or intramolecular arrangement, by thermal, physical or chemical action, or a combination of these actions.
  • dextrins in particular the most transformed and commonly called yellow dextrins, will be, in the context of the present invention, preferred because of their advantageous solubility and stability.
  • modified starch denotes a starch which has undergone a chemical treatment chosen from crosslinking, oxidation, stabilization, functionalization, or a combination of at least two of these modifications.
  • stabilized starch is understood to mean starches which have undergone one or more of the chemical treatments known to those skilled in the art aimed at slowing down or slowing down the retrogradation of the starch. Stabilization is obtained by substitution of the hydroxyl functions of the starch, by esterification or etherification. It can also be obtained by oxidation. These treatments stabilization are in particular hydroxypropylation, hydroxyethylation, acetylation, phosphatation, oxidation, cationization, or carboxymethylation. According to the present invention, an acetylated, or hydroxypropylated, or hydroxyethylated, preferentially acetylated starch is preferred.
  • Such a stabilized starch may have a soluble fraction as defined above greater than 5%, preferably greater than 10%, better still greater than 50%.
  • a stabilized starch thus advantageously has the faculties of thickening, until gelling, of water by simple dispersion in cold water and of giving thickened solutions, or gels, which are very stable over time, that is, that is to say without progress towards retrogradation during storage for several weeks at room temperature.
  • Stabilization can be obtained in particular by acetylation in aqueous phase of acetic anhydride, mixed anhydrides, hydroxypropylation in milk phase or in glue phase, by phosphating. These stabilized starches can exhibit a degree of substitution of between 0.01 and 3, and better still of between 0.05 and 1.
  • the reagents for modifying or functionalizing the starch are of renewable origin.
  • stabilization When stabilization is obtained by esterification, it can be done by using an organic acid anhydride other than acetic anhydride, or an organic acid other than acetic acid, or an anhydride mixed, or an organic acid chloride or any mixture of these products.
  • organic acid anhydride other than acetic anhydride or an organic acid other than acetic acid, or an anhydride mixed, or an organic acid chloride or any mixture of these products.
  • These products can be chosen, for example, from acids having from 1 to 24 carbons, saturated or unsaturated, and more specifically from formic acid, propionic acid, butyric acid, valeric acid, acid.
  • hexanoic acid hexanoic acid, heptanoic acid, pelargonic acid, octanoic acid, decanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, the anhydrides of these acids, the mixed anhydrides of these acids, and any mixtures of these products.
  • the stabilized starch can also be a stabilized and hydrolyzed starch.
  • the stabilized starch is an acetylated starch, or a hydroxypropylated starch, or a hydroxyethylated starch, or a starch which has undergone at least two of the chemical substitutions chosen from acetylation, hydroxypropylation, hydroxyethylation.
  • the stabilized starch is an acetylated starch.
  • the stability starch is non-crosslinked.
  • the stabilized starch is an acetylated waxy corn starch, or a pregelatinized and acetylated waxy corn starch.
  • pregelatinized and acetylated waxy starches are the “Pregeflo® CH” marketed by Roquette, such as Pregeflo® CH10, CH20, CH30 or CH40.
  • Starchy emulsifier or of starchy origin Starchy emulsifier or of starchy origin:
  • starch emulsifier is meant a starch having emulsifying properties, in particular having the ability to emulsify an oil in water.
  • a starch emulsifier useful in the invention is thus a starch modified by a hydrophobic functionalization, or an amphiphilic functionalization, or an ionic functionalization, or a combination of these functionalizations.
  • the starch undergoing at least one of said functionalizations can be a native starch, a pregelatinized starch, a hydrolyzed starch, a modified starch.
  • the starch undergoing at least one of said functionalizations is a native starch. According to another embodiment, the starch undergoing at least one of said functionalizations is a pregelatinized starch. According to another embodiment, the starch undergoing at least one of said functionalizations is a hydrolyzed starch.
  • emulsifier of starchy origin is meant a dextrin, or a hydrolyzed starch, or a maltodextrin, having the capacity to emulsify an oil in water.
  • An emulsifier of starchy origin is a dextrin, or a hydrolyzed starch, or a maltodextrin, which has undergone a hydrophobic functionalization, or an amphiphilic functionalization, or an ionic functionalization, or a combination of these functionalizations.
  • hydrophobic and / or amphiphilic functionalization denotes a chemical reaction between, on the one hand a hydrophobic and / or amphiphilic reagent, and on the other hand, a part, or all, of the hydroxyl groups of the starch or starchy material. This reaction is usually a "substitution” or “grafting” by creating covalent bonds of ester, ether or amide type.
  • the starchy emulsifier or the emulsifier of starchy origin, is obtained by substitution of the hydroxyl groups by reaction with an acid chloride, or with an alcohol ester. and acid anhydride.
  • the acid chloride can be a chloride of one or more of the following acids, having from 2 to 24 carbons, preferably 4 to 24 carbons, saturated or unsaturated, and more preferably from propionic acid, acid butyric acid, valeric acid, hexanoic acid, heptanoic acid, pelargonic acid, octanoic acid, decanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, the anhydrides of these acids, the mixed anhydrides of these acids, and any mixtures of these products.
  • acids having from 2 to 24 carbons, preferably 4 to 24 carbons, saturated or unsaturated, and more preferably from propionic acid, acid butyric acid, valeric acid, hexanoic acid, heptanoic acid, pelargonic acid, octanoic acid, decanoic acid, undecanoic acid, lauric acid, myristic
  • the alcohol can be a linear, branched, or cyclic alcohol, consisting of a carbon skeleton having at least 2 carbon atoms.
  • the alcohol can have at least one unsaturation, that is, at least one carbon-carbon double bond.
  • the alcohol can be a linear, branched, or cyclic fatty alcohol consisting of a carbon skeleton of 8 to 36 carbon atoms.
  • the fatty alcohol can have at least one unsaturation. Examples of unsaturated fatty alcohols are octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexadecanol, octadecanol, docosanol, policosanol.
  • the acid anhydride can be an anhydride of any of the polycarboxylic acids described below.
  • the polycarboxylic acid can be a linear, branched or cyclic polycarboxylic acid, consisting of a carbon skeleton having at least 2 carbon atoms.
  • the polycarboxylic acid may contain at least one unsaturation, that is to say at least one carbon-carbon double bond, such as, for example, maleic acid, glutaconic acid or fumaric acid.
  • the polycarboxylic acid can also contain at least one alcohol group attached to the carbon chain.
  • the polycarboxylic acid can have at least two acid groups.
  • the polycarboxylic acids are the acids linear dicarboxylics carrying the acid groups at the ends of the carbon chain.
  • linear dicarboxylic acids examples include ethanedioic acid (or oxalic acid), propanedioic acid, butanedioic acid (or succinic acid), dihydroxybutanedioic acid (or tartaric acid), 2-hydroxybutanedioic acid ( or malic acid), pentanedioic acid (or glutaric acid) hexanedioic acid (or adipic acid), tetrahydroxyhexanedioic acid (or saccharic acid), gluconic acid, heptanedioic acid (or pimelic acid), l octanedioic acid, nonanedioic acid, decanedioic acid (or sebacic acid).
  • ethanedioic acid or oxalic acid
  • propanedioic acid butanedioic acid (or succinic acid
  • dihydroxybutanedioic acid or tartaric
  • the acid anhydride is a linear dicarboxylic acid anhydride. In one embodiment, the acid anhydride is succinic anhydride.
  • the ester of alcohol and of acid anhydride is an ester of fatty alcohol and of succinic acid anhydride, such as octenylsuccinic anhydride, or dodecylsuccinic anhydride.
  • the ester of alcohol and of acid anhydride is an ester of a saturated fatty alcohol of C3-C15, preferably of C4-C12, and most preferably of C5-C10, and of a C2-C10, preferably C3-C9, and most preferably C4-C8 acid anhydride.
  • the fatty alcohol comprises at least one unsaturation, that is to say at least one carbon-carbon double bond, preferably at least two unsaturations, and most preferably at least three unsaturations.
  • the level of functionalization can result in solubility of the functionalized starch. If the solubility is insufficient, a pregelatinization treatment can be applied to the functionalized starch to make it sufficiently soluble.
  • the emulsifying starch is a waxy starch functionalized with an alkenyl succinate group, in particular octenyl succinate or dodecyl succinate.
  • alkenyl succinate group in particular octenyl succinate or dodecyl succinate.
  • starches carrying octenyl succinate functions are Cleargum® CO 01 and CO 03 marketed by Roquette.
  • the emulsifier of starch origin is a dextrin which has undergone octenyl succinate functionalization, such as, for example, Cleargum® CO A1 sold by Roquette.
  • the emulsifying starch, or the emulsifier of starchy origin is obtained by grafting purely hydrophobic groups by radical reaction, for example as set out in application EP3180372 of the plaintiff.
  • the term "gum of microbial origin” denotes the gums resulting from the fermentation of bacteria, such as xanthans, gellans, dextrans and scleroglucans, or from fermentation of yeasts such as beta-glucans, or from the biological activity of fungi, in particular of molds such as 1-3-beta-glucans.
  • the gum of microbial origin can be an endopolysaccharide or an exopolysaccharide (EPS), that is to say a polysaccharide present in certain microorganisms at their cell walls and which can be released into a culture medium.
  • EPS exopolysaccharide
  • Xanthan gum is a heteropolysaccharide produced on an industrial scale by the aerobic fermentation of the bacterium Xanthomonas campestris. Xanthan gums generally have a molecular weight of between 1,000,000 and 50,000,000 Da.
  • the product Xanthan Gum FNCS-PC from the company: Jungbunzlauer International AG
  • the product Keltrol® CG-T from the company CP Kelco
  • the product Cosphaderm® X 17 from the company Cosphatec
  • the product Kahlgum 6673 FEE - Xanthan Gum from the company KahIWax
  • the products Rhodicare® S and Rhodicare® XC from the company Solvay and the product VANZAN® NF-C from the company Vanderbilt Minerais
  • the product NOVAXAN TM from the company ADM
  • the Kelzan® and Keltrol® products from CP-Kelco.
  • Gellan gum is an anionic linear heteropolyoside based on oligoside units composed of 4 oses (tetra-oside). D-glucose, L-rhamnose and D-glucuronic acid in 2: 1: 1 proportions are present in gellan gum as monomeric elements. It is for example sold under the name KELCOGEL CG LA by the company CP KELCO. Dextran gum is a branched polymer of dextrose (glucose) of very high molecular mass. Dextrans are found in sticky materials produced by the growth of certain bacteria, such as Leuconostoc mesenteroides, on saccharose media. They consist of D-glucosyl units linked mainly by alpha (1, 6) bonds. A range of dextran is for example sold by the company Pharmacosmos.
  • Scleroglucan gum is a branched nonionic homopolysaccharide, consisting of beta-D glucan units.
  • the molecules consist of a main linear chain formed of D-glucose units linked by beta (1,3) bonds and one in three of which is linked to a lateral D-glucose unit by a beta (1,6) bond.
  • An example of scleroglucan gum is the product AMIGEL sold by the company ALBAN MULLER.
  • Beta-glucan gum is a polysaccharide consisting entirely of D-glucose linked by beta bonds.
  • the bonds can be very diverse and of beta (1, 3), beta (1, 4) or beta (1, 6) type.
  • beta-glucans form a diverse group of molecules, present in particular in the cell walls of baker's yeast, and certain fungi and bacteria.
  • the product Beta Glucan AC-25 from the company Kraeber & Co GmbH is known.
  • Arabinogalactan gum is a polysaccharide present in varying amounts in many fungi and bacteria.
  • the gum of microbial origin is a xanthan gum or a sceroglucan gum, preferably a xanthan gum.
  • the term "vegetable gums” denotes the gums obtained from seeds, tubers or exudates, from plants, and the gums extracted from algae. This term excludes, in the present invention, starches and their derivatives.
  • the gums obtained from seeds there are galactomannans, such as guar gum, locust bean gum, tara gum, cassia gum.
  • the gums obtained from tubers we find glucomannans such as konjac gum.
  • the gums obtained from plant exudates we find gum arabic, gum tragacanth, karaya gum.
  • the gums extracted from seaweed are alginates, galactans such as agar and carrageenans.
  • the gums useful for the invention are gelling gums, alone or in combination with one another.
  • Galactomannans are nonionic polysaccharides extracted from the albumen of legume seeds for which they constitute the reserve carbohydrate.
  • Galactomannans are macromolecules consisting of a main chain of D-mannopyranose units linked in beta (1,4), carrying side branches consisting of a single D-galactopyranose unit linked in alpha (1,6) to the chain main.
  • the different galactomannans are distinguished on the one hand by the proportion of alpha-D galactopyranose units present in the polymer, and on the other hand by significant differences in terms of the distribution of galactose units along the mannose chain.
  • the mannose / galactose (M / G) ratio is of the order of 2 for guar gum, 3 for tara gum, 4 for locust bean gum, and 5 for cassia gum.
  • Guar gum is characterized by a mannose: galactose ratio of the order of 2: 1.
  • the galactose group is regularly distributed along the mannose chain.
  • Unmodified nonionic guar gums are for example the products sold under the name Vidogum GH, Vidogum G and Vidocrem by the company Unipektin and under the name Jaguar by the company Rhodia, under the name Meypro® Guar by the company Danisco, and under the name Supercol® guar gum by the company Aqualon.
  • Locust bean gum is extracted from the seeds of the carob tree, Ceratonia siliqua. It is characterized by a mannose: galactose ratio of the order of 4: 1.
  • the unmodified locust bean gum which can be used in this invention is sold for example under the name “Vidogum L” by the company Unipektin, under the name Grinsted® LBG by the company Danisco.
  • Tara gum is obtained from the albumen of the seeds of a South American tree, Caesalpinia spinosa. It is also called locust bean gum from Peru. It is composed of a chain of mannose monomers ((1,4) beta-D-mannopyranose) branched from bridges 1-6 of galactose. It is more branched than locust bean gum and less than guar gum because the ratio between mannose and galactose is 3 to 1, instead of 4 to 1 for locust bean gum and 2 to 1 for gum. guar.
  • An example of tara gum is that sold for example under the name “Vidogum SP” by the company Unipektin.
  • Cassia gum or cassia gum is a polysaccharide of galactomannan type such as guar gum and tara gum but obtained from the seeds of plants of the genus Cassia and Senna. It consists of a linear chain of mannose monomers linked together by an osidic bond of the beta (1,4) type to which all the surrounding five mannose units are attached, by an osidic bond of the alpha (1,6) type. , a unit of galactose which gives a ratio between mannose and galactose of 5 to 1.
  • Cosmetic grades are for example available from the company Altrafine Gums under the name Semi-refined Cassia Gum.
  • Glucomannans are polysaccharides of high molecular weight (between 500,000 and 2,000,000 Da), composed of units of D-mannose and D-glucose with a branching every 50 or 60 units approximately. It is found in wood but it is also the main constituent of Konjac gum.
  • Konjac Amorphophallus konjac
  • the products which can be used according to the invention are for example sold under the names Propol® and Rheolex® by the company Shimizu.
  • Gum arabic is a highly branched acidic polysaccharide which is in the form of mixtures of potassium, magnesium and calcium salts.
  • the monomeric elements of free acid (arabic acid) are D-galactose, L-arabinose, L-rhamnose and D-glucuronic acid.
  • Gum tragacanth also called tragacanth or dragon gum
  • tragacanth is an exudate obtained from the dried mucilaginous sap of about twenty species of plants of the genus Astragalus. This eraser is a mixture complex of several polysaccharides. The two main fractions are tragacanthin (which is a neutral arabinogalactan) representing 60% to 70% by weight, and bassorin, also called "tragacanthic acid” (which is an acid glycanogalacturonan) representing 30% to 40% by weight. .
  • Arabinogalactan gum most often comes from American larch (Larix occidentalis).
  • Karaya gum (or Sterculia gum) is a vegetable gum obtained from the exudate of the branches of Sterculia, Karaya gum is a polysaccharide composed of galactose, rhamnose and galacturonic acid mainly and a small amount glucuronic acid.
  • alginates is understood to mean alginic acid, derivatives of alginic acid and salts of alginic acid (alginates) or of said derivatives.
  • Alginic acid a natural substance derived from brown algae or certain bacteria, is a polyuronic acid composed of 2 uronic acids linked by (1,4) glycosidic bonds: Beta-D-manuronic acid and Alpha- acid. L-glucuronic.
  • Use is preferably made of alginate-based compounds having a weight average molecular mass ranging from 10,000 to 1,000,000, preferably from 15,000 to 500,000, and better still from 20,000 to 250,000.
  • alginate-based compounds suitable for the invention can be represented, for example, by the products sold under the name Protanal TM by the company FMC Biopolymer, under the name GRINDSTED® Alginate by the company Danisco, under the name name KEVIICA ALGIN by the company KEVIICA, and under the names Manucol ® and Manugel ® by the company ISP.
  • Carrageenan-type galactans are anionic polysaccharides constituting the cell walls of various red algae (Rhodophyceae) belonging to the families of Gigartinacae, Hypneaceae, Furcellariaceae and Polyideaceae. These linear polymers, formed by disaccharide units, are composed of two D-galactopyranose units linked alternately by alpha- (1,3) and beta (1,4) bonds. Those are Highly sulphated polysaccharides (20-50%) and alpha-D-galactopyranosyl residues can be in the 3,6-anhydro form.
  • carrageenans which have an ester-sulfate group, iota-carrageenans which have two ester groups -sulfate and lambda-carrageenans which have three ester-sulfate groups.
  • Carrageenans consist essentially of potassium, sodium, magnesium, triethanolamine and / or calcium salts and sulfate esters of polysaccharides.
  • Carrageenans are in particular marketed by the company Seppic under the name Solagum®, by the company Gelymar under the name of Carragel®, Carralact®, and Carrasol®, and by the company CP-Kelco under the name GENULACTA®, GENUGEL® and GENUVISCO.
  • Agar-type galactans are galactose polysaccharides contained in the cell wall of some of these species of red algae (rhodophyceae). They are formed from a polymer group whose basic backbone is a beta (1,3) D-galactopyranose and alpha (1,4) L 3-6 anhydrogalactose chain, these units repeating regularly and alternately. The differences within the agar family are due to the presence or absence of methylated or carboxyethylated solvated groups. These hybrid structures are generally present in varying percentages, depending on the species of algae and the harvest season.
  • Agar-agar is a mixture of polysaccharides (agarose and agaropectin) of high molecular mass, between 40,000 and 300,000 Da. It is obtained by making algae extraction juices, generally by autoclaving, and by treating these juices which include about 2% agar, in order to extract the latter.
  • Agar is for example produced by the B&V Agar Producers group, under the name Gold Agar, Agarite and Grand Agar by the company Hispanagar, and under the names Agar-Agar, QSA (Quick Soluble Agar), and Puragar by the company Setexam.
  • Other vegetable gums In addition to the vegetable gums presented above, other vegetable gums can be used: psyllium gum, pectins, mannans, galactoglucomannans, xylans, glycosaminoglycans such as hyaluronic acid.
  • Pectins are substances present in large quantities in the primary walls of dicotyledons, and in particular in the plant walls of many fruits and vegetables, mainly citrus fruits and apples. These are rhamnogalacturonic-type polysaccharides characterized by an alpha-D-galacturonic acid backbone and small amounts of alpha-L-rhamnose more or less branched mainly by galactose and arabinose.
  • pectic acids with a degree of methylation less than 5% (MD ⁇ 5), weakly methylated pectins with a degree of methylation less than 50% (MD ⁇ 50 or highly methylated pectins with a degree of methylation is greater than 50% (MD> 50)
  • MD ⁇ 5 may be pectic acids with a degree of methylation less than 5%
  • MD ⁇ 50 may be weakly methylated pectins with a degree of methylation less than 50%
  • MD> 50 By way of example, mention may be made of the product sold under the trademark GENU pHresh TM DF Pectin by the company CP Kelco.
  • Xyloglucan is a compound of hemicelluloses which has a backbone of glucose (GIc) residues onto which xylose (Xyl), galactose (Gai) and fucose (Fuc) residues are grafted; they are found in many primary walls of plants.
  • GIc glucose
  • Xyl xylose
  • Gai galactose
  • Fuc fucose
  • Xylan is a main component of hemicelluloses, and the second most abundant natural polysaccharide after xyloglucan.
  • Xylans are polymers of xyloses which include glucuronoxylans (GX) which have a backbone of xylose residues onto which are grafted residues of glucuronic acid (GIcA) or its O-methylated derivative, arabinoxylans (AX) which have a backbone of residues xylose onto which arabinose residues are grafted, glucuronoarabinoxylans (GAX) which have a backbone of xylose residues onto which arabinose and glucuronic acid residues are grafted; arabinoxylans and glucuronoarabinoxylans are found in the primary walls of monocots and finally unsubstituted homoxylans.
  • GX glucuronoxylans
  • GcA glucuronic acid
  • AX arabinoxylans
  • Mannan is a polysaccharide composed mainly of mannose monomers and designates a set of polysaccharides belonging to the family of hemicelluloses which make up the wall of plant cells. He These are monosaccharides linked by beta-1,4 bonds. They can be linear or branched, forming chains with a length (or degree of polymerization) of between 100 and 3000 units.
  • Glycosaminoglycans are carbohydrate macromolecules forming important components of the extracellular matrices of connective tissues of plant or marine origin. These are long linear chains (unbranched polymers) sulfated (except hyaluronic acid), composed of the repetition of disaccharides: a basic disaccharide always containing a hexosamine (glucosamine (GIcN) or galactosamine (GaIN)) and a other ose (glucuronic acid (GIcA), iduronic acid (IdoA), galactose (Gai)).
  • GAGs or glycoaminoglycans are carbohydrate macromolecules forming important components of the extracellular matrices of connective tissues of plant or marine origin. These are long linear chains (unbranched polymers) sulfated (except hyaluronic acid), composed of the repetition of disaccharides: a basic disaccharide always containing a hexos
  • Glucosamine is either N-sulfated (GIcNS) or N-acetylated (GIcNac).
  • GcNac N-acetylated
  • GalNac N-acetylated
  • hyaluronic acid, its derivatives and its salts mention may be made of hyaluronic acid, its derivatives and its salts.
  • This type of macromolecules are for example sold under the names of MDI Complex® by the company Lucas Meyer Cosmetics, D-Factor by the company Res Pharma Industriale, Hydrocan by the company Tri-K Industries, Inc, Hyaluronic acid-BT from the company DSM Nutritional Products Europe Ltd.
  • Emulsion for cosmetic use :
  • the oil-in-water type emulsion that is the subject of the present application comprises:
  • the oil-in-water emulsion comprises, or consists of:
  • At least one thickening starch chosen from starches functionalized by crosslinking and stabilized, pregelatinized starches functionalized by crosslinking and stabilized, preferably from crosslinked and acetylated starches, most preferably from pregelatinized crosslinked and acetylated starches, - at least one gum of microbial origin,
  • At least two vegetable gums including at least guar gum and tara gum
  • the oil-in-water emulsion comprises, or consists of:
  • At least one thickening starch chosen from starches functionalized by crosslinking and stabilized, pregelatinized starches functionalized by crosslinking and stabilized, preferably from crosslinked and acetylated starches, most preferably from pregelatinized crosslinked and acetylated starches,
  • the oil-in-water emulsion comprises, or consists of:
  • At least one thickening starch chosen from non-crosslinked stabilized starches, non-crosslinked stabilized functionalized pregelatinized starches, preferably from non-crosslinked acetylated starches, most preferably from uncrosslinked acetylated pregelatinized starches,
  • the oil-in-water emulsion comprises, or consists of:
  • At least one thickening starch chosen from non-crosslinked stabilized starches, non-crosslinked stabilized functionalized pregelatinized starches, preferably from non-crosslinked acetylated starches, most preferably from uncrosslinked acetylated pregelatinized starches,
  • the oil-in-water emulsion comprises, or comprises as one and only emulsifier, at least one starch emulsifier or of starch origin chosen from a granular starch octenyl succinate, or an octenyl dextrin. succinate, or an octenyl succinate modified gelatinized starch, or an octenyl succinate modified maltodextrin, or a mixture thereof.
  • the starch emulsifier is an octenyl succinate starch.
  • the proportion by mass of said at least one starchy emulsifier or of starchy origin ranges from 0.20% to 3.60%, relative to the total weight of said oil-in-water emulsion.
  • the oil-in-water emulsion comprises, or comprises as one and only thickener, at least one thickening starch chosen from stabilized starches, preferably acetylated starches, hydroxypropylated starches, starches. hydroxyethylated, or more preferably from pregelatinized and acetylated starches, or pregelatinized and hydroxypropylated starches, most preferably from pregelatinized and acetylated starches, or mixtures thereof.
  • the thickening starch can in particular be a crosslinked and acetylated pregelatinized starch, or an uncrosslinked acetylated pregelatinized starch.
  • the proportion by mass of said at least one thickening starch ranges from 0.20 to 3.60%, relative to the total weight of the emulsion.
  • the oil-in-water emulsion comprises at least one gum of microbial origin chosen from xanthan gum, gellan gum, dextran gum, scleroglucan gum, gum. of beta-glucan, or their derivatives and mixtures.
  • the mass proportion of said gum of microbial origin ranges from 0.005% to 0.600%, relative to the total weight of the emulsion.
  • the oil-in-water emulsion comprises at least two vegetable gums are chosen from galactomannans, glucomannans, galactans, alginates, preferably from guar gum, tara gum , locust bean gum, cassia gum, Fenugreek gum, konjac gum, arabic gum, tragacanth, karaya gum, and most preferably are guar gum and tara gum.
  • the mass proportion of said at least two vegetable gum ranges from 0.06% to 2.700%, relative to the total weight of the emulsion.
  • said at least two vegetable gums are guar gum and tara gum, which are therefore the only vegetable gums present in the solid composition.
  • the proportion by weight of the guar gum ranges from 0.05% to 1.800%, and the proportion by weight of the tara gum ranges from 0.010% to 0.900%, relative to the total weight of the emulsion. .
  • the oil-in-water emulsion which is the subject of the present application comprises:
  • the oil-in-water emulsion which is the subject of the present application comprises:
  • the oil-in-water emulsion which is the subject of the present application comprises:
  • the oil-in-water emulsion comprises an oil chosen from non-volatile polar hydrocarbon oils, non-volatile non-polar hydrocarbon oils, volatile oils, waxes and butters.
  • the oil-in-water emulsion comprises an oil chosen from silicone oils, hydrocarbon oils, ester oils, vegetable oils, preferably from ester oils and vegetable oils.
  • the mass proportion of oil in said emulsion ranges from 0.5% to 75%, or from 1% to 70%, or from 4% to 65%, or from 5% to 60%. , or from 10% to 30%, by weight relative to the total weight of said emulsion.
  • the oil-in-water emulsion comprises less than 1% of at least one other emulsifier, preferably less than 1% of another surfactant, in particular of an ethoxylated surfactant, or of a weakly or non-biodegradable surfactant, preferably less than 0.5%, or less than 0.01%, relative to the total weight of the emulsion.
  • the oil-in-water emulsion comprises:
  • At least cosmetic additive chosen from polyols, organic acids, cationic or anionic polymers, fragrances, foaming surfactants, exfoliating agents, film-forming agents, preservatives, pigments, mineral fillers.
  • moisturizers chosen from moisturizers, anti-aging agents, UV filters, active ingredients extracted from plants.
  • the oil-in-water emulsion does not comprise monosaccharide, preferably no fructose. According to one embodiment, the oil-in-water emulsion does not include glucose-fructose syrup, also called high fructose corn syrup.
  • the oil-in-water emulsion consists of: - at least one starchy emulsifier or one of starchy origin,
  • At least cosmetic additive chosen from polyols, organic acids, cationic or anionic polymers, fragrances, foaming surfactants, exfoliating agents, film-forming agents, preservatives, pigments, mineral fillers.
  • moisturizers chosen from moisturizers, anti-aging agents, UV filters, active ingredients extracted from plants.
  • the oil-in-water emulsion comprises an ingredient for cosmetic use chosen from cationic surfactants, cationic polymers and pigments.
  • oil means any fatty substance in liquid form at ambient temperature (25 ° C.) and at atmospheric pressure (1,013,105 Pa).
  • the oil-in-water emulsion according to the invention comprises at least one non-volatile oil.
  • the non-volatile oil is chosen from non-volatile silicone oils, from non-volatile hydrocarbon, polar or non-volatile oils, as well as their mixtures; and preferably from polar non-volatile oils, in particular chosen from C10-C26 alcohols, ester oils, vegetable oils, alone or as mixtures.
  • hydrocarbon-based oil is understood to mean an oil formed essentially, or even consisting, of carbon and hydrogen atoms, and optionally of oxygen or nitrogen atoms, and not containing any carbon atom. silicon or fluorine.
  • the hydrocarbon oil is therefore distinct from a silicone oil and from a fluorinated oil.
  • silicone oil means an oil comprising at least one silicon atom, and in particular at least one Si — O group.
  • the oil-in-water emulsion according to the invention comprises at least one non-volatile polar hydrocarbon oil.
  • This hydrocarbon oil can contain alcohol, ester, ether, carboxylic acid, amine and / or amide groups.
  • the hydrocarbon oil is free from heteroatoms such as nitrogen, sulfur and phosphorus.
  • the polar non-volatile hydrocarbon oil comprises at least one oxygen atom.
  • this non-volatile polar hydrocarbon oil comprises at least one alcohol function (it is then an “alcohol oil”) or at least one ester function (it is then an “ester oil”).
  • ester oils which can be used in the oil-in-water emulsion according to the invention can in particular be hydroxylated.
  • the oil-in-water emulsion comprises one or more non-volatile polar hydrocarbon oils, in particular chosen from:
  • C10-C26 alcohols are saturated or not, branched or not, and comprise from 10 to 26 carbon atoms, preferably from 14 to 24 carbon atoms.
  • fatty alcohols which can be used according to the invention, mention may be made of linear or branched fatty alcohols of synthetic or even natural origin, such as for example alcohols originating from plant materials (copra, palm kernel, palm. ...) or animal (tallow ).
  • other long-chain alcohols can also be used, such as, for example, ether alcohols or even so-called Guerbet alcohols.
  • alcohols of natural origin such as, for example, coconut (C12 to C16) or tallow (C16 to C18) or compounds of the diol or cholesterol type.
  • fatty alcohols which can be used preferably, mention may in particular be made of lauryl, isostearyl, oleic alcohol, 2-butyloctanol, 2-undecyl pentadecanol, 2-hexyldecyl alcohol, isocetyl alcohol. , octyldodecanol and mixtures thereof.
  • the alcohol is chosen from octyldodecanol.
  • esters of a C2-C8 polyol and of one or more C2-C8 carboxylic acids such as diesters of glycol and monoacids, such as neopentylglycol diheptanoate, or triesters of glycol and monoacids such as triacetin.
  • ester oils in particular having between 17 and 70 carbon atoms: as examples, mention may be made of mono-, di- or tri-esters. Ester oils may or may not be hydroxylated.
  • the non-volatile ester oil can be chosen, for example, from:
  • (4.1) monoesters comprising between 17 and 40 carbon atoms in total, in particular monoesters, of formula R1-COO-R2 in which R1 represents the residue of a linear or branched or aromatic fatty acid comprising from 4 to 40 atoms of carbon, saturated or not, and R2 represents a particularly branched hydrocarbon chain containing from 3 to 40 carbon atoms provided that R1 + R2 is greater than or equal to 17, such as for example Purcellin oil (cetostearyl octanoate), isononyl isononanoate, C12-C15 alcohol benzoate, 2-ethylhexyl palmitate, octyledodecyl neopentanoate, 2-octyl dodecyl stearate, 2-octyl dodecyl erucate , isostearyl isostearate, 2-octyl dodecyl benzoate, octanoates, decanoates
  • esters of formula R1-COO-R2 in which R1 represents the residue of a linear or branched fatty acid comprising from 4 to 40 carbon atoms and R2 represents a particularly branched hydrocarbon chain containing from 3 to 40 carbon atoms, R1 and R2 being 10 such that R1 + R2 is greater than or equal to 17. Even more particularly, the ester comprises between 17 and 40 carbon atoms in total.
  • R1 represents the residue of a linear or branched fatty acid comprising from 4 to 40 carbon atoms and R2 represents a particularly branched hydrocarbon chain containing from 3 to 40 carbon atoms
  • R1 and R2 being 10 such that R1 + R2 is greater than or equal to 17.
  • the ester comprises between 17 and 40 carbon atoms in total.
  • isononyl isononanoate isopropyl palmitate, oleyl erucate and / or octyl-2-docecyl neopentanoate.
  • fatty acid monoesters in particular of 18 to 22 carbon atoms, and in particular of oleic acid, lauric acid, stearic acid, and diols, such as propylene glycol monostearate.
  • diesters in particular comprising between 18 and 60 carbon atoms in total, in particular between 18 and 50 carbon atoms in total. It is in particular possible to use diesters of dicarboxylic acid and of monoalcohols, such as preferably diisostearyl malate; or diesters of monocarboxylic acid and of dialcohols, such as the 1,3-propanediyl ester of octanoic acid (or propanediol dicaprylate), sold under the name DUB ZENOAT by the company Stéarinerie Dubois; or diesters of glycol and of mono-carboxylic acids, such as neopentylglycol diheptanoate, propylene glycol dioctanoate, diethylene glycol diisononanoate, or polyglyceryl-2 diisostearate (in particular such as the compound sold under the trade reference DERMOL DGDIS by the company Alzo);
  • (4.4) monoesters and hydroxylated diesters preferably having a total carbon number ranging from 18 to 70, such as polyglyceryl-3 diisostearate, isostearyl lactate, octylhydroxystearate, octyldodecyl hydroxystearate, malate of diisostearyl, glycerin stearate;
  • triesters in particular comprising between 35 and 70 carbon atoms in total, in particular such as triesters of tricarboxylic acid, such as triisostearyl citrate, or tridecyl trimellitate, or triesters of glycol and of mono carboxylic acids such as polyglycerol-2 tri isostearate;
  • (4.6) tetraesters in particular having a total carbon number ranging from 35 to 70, such as tetraesters of penthaerythritol or of polyglycerol and of a mono-carboxylic acid, for example such as pentaerythrityl tetrapelargonate, tetraisostearate pentaerythrityl, pentaerythrityl tetreasononanoate, 2-tri-decyl glyceryl tetradecanoate, polyglyceryl-2 tetraisostearate or alternatively pentaerythrityl-2-tetradecyl tetradecanoate;
  • polyesters obtained by condensation of fatty acid dimer and / or trimer unsaturated and diol such as those described in patent application FR 0853634, such as in particular dilinoleic acid and 1,4-butanediol.
  • Viscoplast 14436H INCI name: dilinoleic acid / butanediol copolymer
  • esters and polyesters of dimer diol and of mono- or dicarboxylic acid such as esters of dimer diol and of fatty acid and esters of dimer diols and of dicarboxylic acid dimer, in particular obtainable from of a dicarboxylic acid dimer derived in particular from the dimerization of an unsaturated fatty acid in particular of C8 to C34, in particular of C12 to C22, in particular of C16 to C20, and more particularly of C18, such as esters of dilinoleic diacids and dilinoleic diol dimers, for example such as those sold by the company NIPPON FINE CFIEMICAL under the trade names LUSPLAN DD-DA5® and DD-DA7®;
  • vegetable hydrocarbon oils such as triglycerides of fatty acids (liquid at room temperature), in particular of fatty acids having from 7 to 40 carbon atoms, such as triglycerides of heptanoic or octanoic acids, in particular, one may cite saturated triglycerides such as caprylic / capric triglyceride and their mixtures, for example such as that sold under the reference Myritol 318 from Cognis, glyceryl triheptanoate, glycerin trioctanoate, C18-36 acid triglycerides such as than those marketed under the reference DUB TGI 24 marketed by Stéarineries Dubois), jojoba oil, macadamia oil, apricot kernel oil, as well as unsaturated triglycerides such as castor oil, olive oil, ximenia oil, pracaxi oil; and other vegetable hydrocarbon oils such as Japanese Camellia seed oil, avocado oil, cam
  • oils consisting of a mixture of C8-C10 fatty acid monoesters and C12-C18 fatty alcohols, such as MIGLYOL Coco 810 from IOI Oleo GmbH (INCI name: coco -Capyrlate / Caprate).
  • the oil-in-water emulsion does not include vegetable oil.
  • the oil-in-water emulsion does not include canola oil.
  • the non-volatile polar hydrocarbon-based oil (s) are chosen from C10-C26 monoalcohols, ester oils, and in particular monoesters comprising at least 17 carbon atoms in total, diesters, hydroxylated or not. , comprising at least 18 carbon atoms in total, triesters, in particular having at least 35 carbon atoms, tetraesters, in particular having at least 35 carbon atoms, vegetable hydrocarbon oils, as well as mixtures thereof.
  • non-volatile apolar oils mention may be made very particularly of paraffin oil, squalane, pentadecane, nonadecane eicosane, isoeicosane, polybutenes, hydrogenated or not, hydrogenated polyisobutenes. or not, hydrogenated or non-hydrogenated polydecenes, decene / butene copolymers, polybutene / polyisobutene copolymers, as well as their mixtures.
  • An example of a mixture of non-volatile non-polar hydrocarbon oils is the product Emogreen L15 sold by Seppic, which is a mixture of C15-C19 alkanes.
  • non-volatile silicone oils mention may be made, for example, of non-volatile non-phenylated silicone oils, such as, for example, polydimethylsiloxanes. Mention may also be made of phenylated silicone oils, such as, for example, diphenyl dimethicone, phenyl trimethicone, trimethylsiloxyphenyl dimethicone, diphenylsiloxy phenyl trimethicone, trimethyl pentaphenyl trisiloxane, or tetramethyl tetraphenyl trisiloxane, as well as their mixtures.
  • the non-volatile silicone oil does not comprise a C2-C3 oxyalkylenated group (oxyethylenated, oxypropylenated), nor a glycerolated group (s).
  • the non-volatile oil is chosen from polar non-volatile oils, in particular chosen from C10-C26 alcohols, ester oils, vegetable oils, alone or in mixtures.
  • the oil-in-water emulsion comprises at least one C10-C26, preferably C14-C24, alcohol.
  • the mass percentage of non-volatile oils represents more particularly from 4 to 65% by weight, preferably from 5% to 60%, more preferably from 10 to 30% by weight, relative to the weight of the oil-in-water emulsion .
  • the oil-in-water emulsion according to the invention may optionally comprise at least one volatile oil.
  • volatile oil denotes oils in particular having a non-zero vapor pressure, at room temperature and atmospheric pressure, in particular having a vapor pressure ranging from 2.66 Pa to 40,000 Pa) , in particular ranging from 2.66 Pa to 13000 Pa, and more particularly ranging from 2.66 Pa to 1300 Pa.
  • the volatile oils can be hydrocarbon-based or silicone-based.
  • Nonpolar volatile hydrocarbon oils having from 8 to 16 carbon atoms such as branched C8-C16 alkanes such as C8-C16 iso-alkanes (also called isoparaffins), isododecane, l. 'isodecane, isohexadecane and, for example, the oils sold under the trade names of Isopars or Permyls.
  • the volatile hydrocarbon oil is chosen from volatile hydrocarbon oils having from 8 to 16 carbon atoms and their mixtures, in particular from isododecane, isodecane, isohexadecane, and is in particular isohexadecane.
  • n-dodecane C12
  • n-tetradecane C14
  • the undecane-tridecane mixture such as Cetiol Ultimate from BASF
  • volatile silicone oils mention may be made of linear volatile silicone oils such as hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, tetradecamethylhexasiloxane, hexadecamethylheptasiloxane and dodecamethyl-pentasiloxane.
  • volatile cyclic silicone oils mention may be made of hexamethylcyclotrisiloxane, octamethylcylotetrasiloxane, decamethylcyclopenta-siloxane and dodecamethylcyclohexasiloxane.
  • the content of volatile oil (s) is between 0.5 and 10% by weight, or between 1 and 5% by weight, by relative to the weight of the oil-in-water emulsion.
  • the oil-in-water emulsion according to the invention can optionally comprise at least one silicone wax, or a hydrocarbon wax, polar or nonpolar.
  • the wax considered in the context of the present invention is generally a lipophilic compound which is solid at room temperature (25 ° C), with a reversible solid / liquid change of state, having a melting point in particular greater than or equal to 30 ° C, more particularly above 45 ° C.
  • the melting point is less than or equal to 90 ° C, more particularly less than or equal to 80 ° C, and preferably less than or equal to 70 ° C.
  • the melting point of a solid fatty substance can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name “DSC Q100” by the company TA Instruments with the software “TA Universal Analysis ”.
  • DSC differential scanning calorimeter
  • the measurement protocol is as follows: A sample of solid fatty substance of approximately 5 mg is placed in a crucible "hermetic aluminum capsule".
  • the sample is subjected to a first rise in temperature ranging from 20 ° C to 120 ° C, at the heating rate of 2 ° C / minute up to 80 ° C, then left at 100 ° C isotherm for 20 minutes , then is cooled from 120 ° C to 0 ° C at a cooling rate of 2 ° C / minute, and finally subjected to a second temperature rise ranging from 0 ° C to 20 ° C at a heating rate of 2 ° C / minute.
  • the value of the melting temperature of the solid fatty substance is the value of the top of the most endothermic peak of the observed melting curve, representing the variation of the difference in power absorbed as a function of the temperature.
  • the polar wax is chosen from ester hydrocarbon waxes, alcohol hydrocarbon waxes, silicone waxes, as well as mixtures thereof.
  • hydrocarbon wax is understood to mean a wax formed essentially, or even consisting, of carbon and hydrogen atoms, and optionally of oxygen or nitrogen atoms, and not containing any silicon or carbon atom. fluorine. It can contain alcohol, ester, ether, carboxylic acid, amine and / or amide groups.
  • ester wax is meant according to the invention a wax comprising at least one ester function.
  • the ester waxes can also be hydroxylated.
  • alcohol wax is meant according to the invention a wax comprising at least one alcohol function, that is to say comprising at least one free hydroxyl (OH) group.
  • the additional alcohol wax does not in particular include an ester function.
  • silicone wax means a wax comprising at least one silicon atom, and in particular comprising Si — O groups.
  • ester wax The following can in particular be used as ester wax:
  • ester wax a C20-C40 alkyl (hydroxystearyloxy) stearate (the alkyl group comprising from 20 to 40 carbon atoms), alone or as a mixture or a C20-C40 alkyl stearate.
  • Such waxes are sold in particular under the names “Kester Wax K 82 P®”, “Hydroxypolyester K 82 P®”, “Kester Wax K 80 P®”, or “KESTER WAX K82H” by the company KOSTER KEUNEN. It is also possible to use mixtures of C14-C18 carboxylic acid esters and alcohols, such as the products “Cetyl Ester Wax 814” from the company KOSTER KEUNEN, “SP Crodamol MS MBAL”, “Crodamol MS PA” from the company. CRODA company, "Miraceti” from LASERSON company. It is also possible to use a glycol and butylene glycol montanate (octacosanoate) such as LICOWAX KPS FLAKES wax (INCI name: glycol montanate) marketed by the company Clariant.
  • octacosanoate such as LICOWAX KPS FLAKES wax (INCI name: glyco
  • the C4-C30 aliphatic group is linear and unsaturated.
  • waxes obtained by catalytic hydrogenation of animal or vegetable oils having in particular fatty, linear or branched, C8-C32 chains for example such as hydrogenated jojoba oil, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut oil, as well as waxes obtained by hydrogenation of esterified castor oil with cetyl alcohol, such as those sold under the names Phytowax ricin 16L64® and 22L73® by the SOPHIM company.
  • Such waxes are described in application FR-A-2792190.
  • waxes obtained by hydrogenation of olive oil esterified with stearyl alcohol mention may be made of those sold under the name “PFIYTOWAX Olive 18 L 57”.
  • waxes of animal or vegetable origin such as beeswax, synthetic beeswax, carnauba wax, candellila wax, lanolin wax, rice bran wax, Ouricury wax, Alfa wax, berry wax, shellac wax, cork fiber wax, sugar cane wax, Japanese wax, wax sumac, montan wax, Orange and Lemon waxes, Laurel wax, hydrogenated Jojoba wax, sunflower wax, in particular refined.
  • polyoxyethylenated beeswax such as PEG- 6 beeswax, PEG-8 beeswax
  • polyoxyethylenated carnauba waxes such as PEG-12 carnauba
  • lanolin waxes hydrogenated or not, polyoxyethenated or polyoxypropylenated, such as PEG-30 lanolin, PEG-75 lanolin
  • PPG-5 lanolin wax glyceride polyglycerolated beeswaxes, in particular polyglyceryl-3 Beewax, the Acacia Decurrens / Jojoba / Sunflower Seed Wax / Polyglyceryl-3 Esters mixture, polyglycerolated vegetable waxes such as mimosa, jojoba, sunflower waxes, and their mixtures (Acacia Decurrens / Jojoba / Sunflower Seed Wax Polyglyceryl-3 Esters.
  • total esters is understood to mean that all the hydroxylated functions of the glycerol are esterified.
  • trihydroxystearine or glyceryl trihydroxystearate
  • tristearin or glyceryl tristearate
  • tribhenin or glyceryl tribhenate
  • triesters of glycerol and of 12-hydroxystearic acid or of hydrogenated castor oil, such as, for example, Thixcin R, Thixcin E, marketed by Elementis Specialties.
  • Alcohol wax of alcohols, preferably linear, preferably saturated, comprising from 16 to 60 carbon atoms, the melting point of which is between 25 ° C and 90 ° C.
  • alcohol wax there may be mentioned stearic alcohol, cetyl alcohol, myristic alcohol, palmitic alcohol, behenic alcohol, erucic alcohol, arachidyl alcohol, or their mixtures.
  • the oil-in-water emulsion may optionally comprise at least one additional wax chosen from nonpolar hydrocarbon waxes.
  • nonpolar hydrocarbon wax within the meaning of the present invention, is meant a wax comprising only carbon or hydrogen atoms in its structure. In other words, such a wax is free from other atoms, in particular heteroatoms such as, for example, nitrogen, oxygen, silicon.
  • hydrocarbon waxes such as microcrystalline waxes, paraffin waxes, ozokerite, polymethylene waxes, polyethylene waxes, waxes obtained by the synthesis of Fischer-Tropsch, especially polyethylene microwaxes.
  • silicone wax mention may be made, for example, of mixtures comprising a compound of C30-45 Alkyldimethylsilyl Polypropylsilsesquioxane (INCI name), for example the product Dow Corning SW-8005 C30 Resin Wax sold by the company Dow Corning. Mention may also be made of mixtures comprising a compound of the C30-45 Alkyl Methicone type (INCI name), such as for example the product Dow Corning® AMS-C30 Cosmetic Wax. Mention may also be made of silicone beeswax.
  • ICI name Alkyldimethylsilyl Polypropylsilsesquioxane
  • silicone beeswax silicone beeswax.
  • the oil-in-water emulsion according to the invention may comprise a content of wax (es), preferably polar, preferably hydrocarbon (s), of between 0.5 and 10% by weight, or of 0 , 5 to 6% by weight, or from 1 to 4% by weight, relative to the weight of the composition.
  • wax es
  • polar preferably hydrocarbon
  • the solid composition which is the subject of the present application can be used to prepare an industrial oil-in-water emulsion, or food, or pharmaceutical, or dermatological, or cosmetic.
  • the solid composition makes it possible to prepare an oil-in-water emulsion, and more preferably an emulsion with a transformation texture.
  • the solid composition is used to prepare an oil-in-oil emulsion which is a cosmetic product, chosen from among skin care products, or hair care or coloring products, or oral care products, hygiene products, or make-up products, or a perfume.
  • the solid composition makes it possible to prepare an oil-in-water cosmetic emulsion with a transformation texture.
  • the method comprises an emulsification step which is carried out at a temperature ranging from 10 ° C to 90 ° C, or at a temperature ranging from 15 ° C to 50 ° C, or at a temperature ranging from 18 ° C to 35 ° C, or a temperature ranging from 18 ° C to 25 ° C.
  • the solid composition which is the subject of the present application makes it possible to prepare oil-in-water emulsions with very varied pot textures depending on the amount used in said emulsion.
  • potted texture is understood to mean in particular the appearance and viscosity in a container, for example a jar or a bottle, before application to the skin. Used at a low mass percentage, that is to say less than or equal to 2%, or 1%, relative to the total weight of emulsion, the solid composition gives the emulsion a fluid texture, and thus makes it possible to prepare an emulsion in the form of the shape of milk.
  • the solid composition gives the emulsion a thick texture, and thus makes it possible to prepare a thick cream.
  • the texture of the emulsion will be that of a slightly fluid to slightly thick cream.
  • the solid composition gives the emulsion a shiny appearance.
  • the solid composition which is the subject of the present application also makes it possible to prepare an oil-in-water emulsion exhibiting a transformable texture.
  • transformation texture means an emulsion which has a texture when applied to the skin, in particular under shear stress, different from the texture in a pot, in particular a more fluid texture, and / or a texture that is both aqueous and oily.
  • the jar texture is that of a thick cream, the texture obtained by spreading it on the skin will become a fluid texture, and may also present a feeling of a mixture of a watery texture and an oily texture.
  • the Applicant considers that this transformation texture is allowed by a phenomenon known as "quick-break", that is to say of rapid breaking of the emulsion under shear stress on the skin, with the novelty that this quick-break is in water and oil, that is to say that the feeling on the skin is both that of an aqueous phase and that of an oily phase.
  • the solid composition that is the subject of the present application thus has the advantage of being a composition of natural origin making it possible to prepare oil-in-water emulsions exhibiting a quick-break in water and in oil.
  • the oil-in-water emulsions prepared with the solid composition which is the subject of the present application spread easily and evenly on the skin, and after penetration of the oil-in-water emulsion, the sensation of tack is weak or even absent.
  • the solid composition which is the subject of the application makes it possible to prepare an emulsion which gives a rich feel.
  • mass percentage of average oil is meant a mass percentage ranging from 60% to 20%, or from 50% to 25%, relative to the total weight of the emulsion.
  • mass percentage of low oil is meant a mass percentage ranging from 20% to 1%, or from 15% to 2.5%, or from 10% to 5%, relative to the total weight of the emulsion.
  • the oil-in-water emulsions prepared with the solid composition that is the subject of the present application have good compatibility with anionic surfactants, preservatives, salts, ethanol and pigments. In the presence of these ingredients, the emulsion remains stable, and its texture remains unchanged.
  • FIG. 1 is an illustration of the transformation texture and the “quick-break”.
  • Example 1 Preparation of a solid composition according to the invention
  • the solid compositions according to the invention are prepared by dry mixing the powders of Table 1 in the mass proportions indicated.
  • Cleargum® CO 01 can be replaced by Cleargum® CO 03 and Cleargum®CO A1 in the same quantities.
  • Example 2 preparation of sunflower oil emulsions and their stability
  • Oil-in-water emulions are prepared from sunflower oil and using the solid emulsifying composition CS1 of Example 1 in two proportions by weight, 2% m and 5% m relative to the total weight d 'emulsion, and for mass proportions of oil ranging from 10% m to 70% m relative to the total weight of emulsion, according to the compositions of Table 2.
  • each emulsion To prepare each emulsion, the required amount of solid emulsifying composition CS1 is dispersed in the required body of water in total at 20 ° C with stirring at 1000 rpm for 15 min. Then the mass of oil is added with stirring at 2500-3000 rpm for 2 minutes. The mixture is then kept under stirring at 3000 rpm for 30 minutes. The emulsion is then allowed to stand at 20 ° C for 48 hours.
  • composition CS1 By means of the composition CS1, by varying the mass proportion of oil between 10% and 70%, it is possible to prepare emulsions having viscosities ranging from low values, ie approximately 3000 mPa.s and thus having the form of a fluid milk, up to high values, ie approximately 72000 mPa.s and then having the form of a thick cream. Intermediate viscosity values are also accessible, for example values of 12000 to 16000 mPa.s, giving emulsions in the form of fluid to medium thick cream.
  • the storage of the emulsions is continued at 20 ° C., and the viscosity is re-measured after one week, then after one month of storage.
  • Example 3 preparation of emulsion with oils of different natures
  • Oil-in-water emulsions are produced at percentages by weight of oil of 10%, 30% and 60% according to the protocol of the example. 2, using a mass percentage of CS1 composition of 3%, and using a single oil per emulsion, for the different oils in Table 6.
  • Each emulsion is then evaluated by a Brookfield viscosity measurement (at 20 ° C at 20 rpm for 1 minute), and by a measurement of the particle sizes with an optical microscope, and by an evaluation of the color of the emulsion. .
  • the CS1 composition made it possible to obtain white emulsions with all the types of oil tested, with viscosities ranging from approximately 6500-8000 mPa.s, corresponding to a fluid cream texture, at approximately 80,000-85,000 mPa.s, then corresponding to a thick texture.
  • Example 4 stability of the emulsions as a function of the pH
  • Emulsions are prepared according to the protocol of Example 2, using the following mass percentages: 5% of composition CS1, 20% of "Helianthus annuus seed oil” oil, 75% of demineralized water.
  • the pH is adjusted to a target value corresponding to the values shown in Table 8, ranging from 2.6 to 12, with citric acid solution or dilute sodium hydroxide.
  • the Brookfield viscosity is measured at 20 rpm after 24 hours, then 7 days, of storage at 22 ° C.
  • the viscosities of the emulsions prepared are sufficiently stable to qualify these emulsions as stable.
  • the stability of the Brookfield viscosity (at 20 ° C at 20 rpm for 1 minute) during storage at pH 4, 4.7 and 6.5 over periods of 48 hours and 3 was then studied. months at 22 ° C, and 1 month at 50 ° C (Table 8 bis).
  • Example 5 stability of the emulsions as a function of the salt content
  • Example 6 stability of the emulsions as a function of the surfactant content
  • Example 2 According to the protocol of Example 2, four emulsions are prepared at 3% in composition CS1, 35% in oil “Helianthus annuus seed oil”, between 0% and 20% of surfactant mixture sold under the name “Texapon WW100 By BASF, and the "sufficient quantity for 100%” of demineralized water.
  • the emulsions obtained after storage for 48 hours at 20 ° C. are characterized (Table 11), by evaluating the size of the particles under an optical microscope, and the color of the emulsions.
  • the emulsions prepared with the composition CS1 exhibit good tolerance to the presence of the mixture of anionic and nonionic surfactants. The viscosities are lowered but remain acceptable. In addition, the emulsions remain stable. [0223] [Table 11a]
  • Coloring emulsions are prepared with the yellow pigment “Unipure Yellow LC 182 HLC” from Sensient Cosmetic Technologies:
  • Coloring emulsions were prepared with the solid composition CS1 and with different dyes at percentages by weight of 10% or 20% (relative to the weight of the emulsion), and by introducing the pigment in different ways: either into water, either in oil, or either at the end, that is to say in the emulsion obtained. Brookfield viscosity was measured following storage at 22 ° C for 48 hours and 3 months, and following storage at 50 ° C for 1 month. The results are presented in Tables 13 bis and 13 ter. The Brookfield viscosity measuring mobile is SP6 at 20 ° C. at 20 rpm for 1 minute.
  • Example 8 illustration of the transformation texture
  • a transformation-textured cream is prepared using the solid emulsifying and texturing composition which is the subject of the present application, according to the composition of Table 14, by following the protocol below.
  • the solid composition CS1 is dispersed in water at 20 ° C. with stirring at 1000 rpm with a deflocculating paddle, until the solid composition is hydrated and thus becomes opalescent, which requires approximately 5 to 10 minutes.
  • the ingredients of phase B are mixed at 20 ° C. Still at 20 ° C., phase B is added slowly, over approximately 1 to 2 minutes, in phase A, while stirring at 2000-3000 rpm with the deflocculating paddle, then stirring is continued for 10 minutes.
  • a white cream of thick "pot texture" is obtained, exhibiting a Brookfield viscosity at 20 ° C. at 20 rpm with the mobile SP6, from 23,000 to 27,000 mPa.s .
  • This cream is stable for at least one month at 50 ° C.
  • the thick texture is preserved, as illustrated in photograph B of figure 1.
  • the texture of transforms into a mixture of aqueous texture and oily texture as illustrated in photograph C of figure 1. This transformation seems to be the result of a phenomenon called "quick -break ”in both water and oil.
  • composition of Table 15 a variant of the texture cream with previous transformation is prepared, by adding cosmetic additives, such as the isosorbide humectant sold under the name “Beauté by Roquette PO500” by Roquette Fromme, preservatives of paraben type, perfume, and an anti-aging cosmetic active agent, tocopherol, sold under the name “Covi-ox T-70 C” by BASF.
  • cosmetic additives such as the isosorbide humectant sold under the name “Beauté by Roquette PO500” by Roquette Fromme, preservatives of paraben type, perfume, and an anti-aging cosmetic active agent, tocopherol, sold under the name “Covi-ox T-70 C” by BASF.
  • a thick cream is obtained as above, just as stable, and also exhibiting a texture which can be transformed with a quick-break in water and in oil.
  • emulsions are prepared comprising a percentage by mass of 3% in composition CS1, 35% in "Helianthus annuus seed oil” and "an amount sufficient to reach 100%" in demineralized water. .
  • One of the emulsions constitutes the control.
  • the others are supplemented with a dose of preservative according to Table 17.
  • the dose is expressed as a percentage by mass, that is to say in% by weight of preservative relative to the total weight of the emulsion.
  • the emulsions obtained after storage for 48 hours and 3 months at 20 ° C., and in parallel after 1 month at 50 ° C., are characterized by measuring the Brookfield viscosity at 20 ° C. and 20 rpm for 1 minute.
  • the emulsions prepared with the solid composition CS1 supplemented with preservatives have a stable viscosity which drops slightly during storage at 22 ° C for 3 months and at 50 ° C for 1 month, but which remains sufficient to retain the initial texture of the cream.
  • Example 11 compatibility with the method of preparation
  • Emulsions are prepared with 3% by weight of solid composition CS1, 35% by weight of “Helianthus annuus seed oil” and 62% by weight of demineralized water, according to 5 different preparation methods, in order to evaluate the ease with which the emulsion can be prepared using a solid composition such as CS1:
  • “deflocculating” preparation method this is a preparation protocol identical to that of Example 2, in which the stirring is provided by a mobile of the “dispersion turbine” or even “dispersion turbine” type. deflocculating turbine ”.
  • the emulsions obtained are characterized after storage for 48 hours and 3 months at 20 ° C, and in parallel after 1 month at 50 ° C, by measuring the Brookfield viscosity at 20 ° C and 20 rpm for 1 minute (table 18).
  • Example 12 implementation in a sun protection cream
  • a sunscreen was prepared by emulsification with a solid composition CS1 according to the composition of Table 19 by following the protocol of Example 2, and by adding phase C to the emulsion obtained.
  • the sun protection indices were determined by in vitro protocols by the Helioscience laboratory according to the following protocol. Three “Sunplate” type PMMA plates were used, and 4 measurements per plate were done. On each of the plates, the cream prepared according to Table 19. The plates were subjected to irradiation of 550 W / m2 for 30 minutes with an “ATLAS CPS +” solar simulator. Before and after irradiation, and before and after a bath in water for water resistance, the level of photoprotection was measured with a “Kontron 933” spectrophotometer equipped with an integrating sphere. The results are shown in Table 20.
  • the CS1 composition made it possible to prepare a sunscreen whose level of sun protection is "50+", and whose water resistance is 69%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

La présente demande a pour objet une composition solide à usage cosmétique, comprenant au moins un amidon modifié porteur d'au moins une fonction hydrophobe et/ou amphiphile, au moins un amidon modifié porteur d'au moins une fonction hydrophile, au moins une gomme d'origine microbienne ou fongique, et au moins deux gommes végétales. Une telle composition a des propriétés émulsifiantes et texturantes.

Description

Description
Titre : Composition émulsifiante et texturante à base d’amidons et de gommes pour la cosmétique
Domaine technique
[0001] La présente demande se situe dans le domaine des compositions cosmétiques émulsifiantes pour préparer une émulsion huile-dans-eau, à stabiliser ladite émulsion, et à donner à cette émulsion un profil sensoriel allant d’un lait fluide à une crème épaisse, et une texture à transformation.
Etat de l’art
[0002] Le brevet US20140287128 de Nisshion Oillio dévoile l’utilisation d’un amidon modifié épaississant, d’un amidon modifié émulsifiant, et d’un polysaccharide épaississant choisi parmi les gommes végétales, pour préparer des assaisonnements alimentaires sous forme d’émulsion huile-dans-eau. Ce brevet reste silencieux quant à toute utilisation en cosmétique, et a fortiori quant à toute notion de profil sensoriel en usage topique.
[0003] Les amidons modifiés par une fonction octényl succinate sont largement connus pour leurs propriétés émulsifiantes depuis les années 1950 lorsque National Starch dépose sa demande US2661349. De nombreuses demandes de brevets ont par la suite été déposées sur des perfectionnements de ce type d’amidons modifiés, notamment sur des procédés associant une modification de la structure des granules d’amidon et des polymères d’anhydroglucose qui composent l’amidon, par exemple par l’action d’enzymes, ou de traitements hydro thermiques comme la gélatinisation, ou la dextrinification.
[0004] Les amidons modifiés par exemple par une fonction acétyl, comme les amidons acétylés ou les acétates d’amidon, sont aussi largement connus pour leur propriété texturante et épaississante. Les gommes d’origine microbienne ou végétale sont connues elles aussi pour leur propriété texturante et épaississante ou gélifiante. Cependant, la synergie développée par la composition solide émulsifiante et texturante particulière sélectionnée par la demanderesse n’a jamais été divulguée, et a fortiori la texture à transformation permise par ladite composition solide ne l’a jamais été non plus.
Description des modes de réalisation
[0005] Un premier objet de la présente demande est une composition solide comprenant, voire consistant en :
- au moins émulsifiant amylacé ou d’origine amylacée,
- au moins un amidon épaississant,
- au moins une gomme d’origine microbienne,
- et au moins deux gommes végétales.
[0006] Un second objet de la présente demande est une émulsion huile-dans-eau comprenant, voire consistant en :
- au moins un émulsifiant amylacé ou d’origine amylacée,
- au moins un amidon épaississant,
- au moins une gomme d’origine microbienne,
- au moins deux gommes végétales,
- et au moins une huile.
[0007] Un troisième objet de la présente demande est l’utilisation d’une composition solide objet de la demande pour préparer des émulsions huile-dans- eau d’usage cosmétique, choisies parmi les produits de soin de la peau, de soin ou de coloration des cheveux, de soin ou d’hygiène buccal, d’hygiène, de maquillage, ou de parfum.
[0008] Un quatrième objet de la présente demande est un procédé de préparation d’une émulsion huile-dans-eau comprenant une étape d’émulsification d’une huile dans une phase aqueuse dans laquelle la composition solide objet de la demande a été préalablement dispersée ou solubilisée.
[0009] Composition solide :
[0010] La composition solide objet de la présente demande comprend, ou consiste en :
- au moins émulsifiant amylacé ou d’origine amylacée,
- au moins un amidon épaississant, - au moins une gomme d’origine microbienne,
- et au moins deux gommes végétales.
[0011] Par « composition solide », la demanderesse entend une forme pulvérulente ou poudreuse, se présentant comme un ensemble de particules solides divisées ou agglomérées, ou une composition rendue solide par pressage ou compaction d’une ou plusieurs poudres. La taille de ladite composition solide va d’environ 1 micromètre à plusieurs centaines de micromètres, par exemple 10 microns à 500 microns, ou de 20 microns à 300 microns, et généralement de 40 microns à 200 microns. La morphologie des particules peut être régulière, comme des sphères, ou irrégulière et anguleuse, ou une combinaison de morphologies différentes. La teneur en eau de la forme solide est inférieure ou égale à 30 % en poids, par rapport au poids total de la composition solide, ou inférieure ou égale à 20 % en poids, ou inférieure ou égale à 15 % en poids, ou inférieure ou égale à 10 % en poids, ou inférieure ou égale à 5 % en poids. La fraction de la composition solide soluble dans l’eau à 20°C peut être supérieure ou égale à 5 % en poids par rapport au poids total de la composition solide, ou supérieure ou égale à 25 % en poids, ou supérieure ou égale à 50 % en poids, ou supérieure ou égale à 60 % en poids, ou supérieure ou égale à 75 % en poids.
[0012] La composition solide comprend au moins un émulsifiant amylacé ou d’origine amylacé. Selon un mode de réalisation, ledit au moins un émulsifiant amylacé ou d’origine amylacé est un amidon fonctionnalisé par un au moins un groupement amphiphile choisi parmi un amidon granulaire octényl succinate, ou un amidon prégélatinisé modifié octényl succinate, ou un amidon gélatinisé modifié octényl succinate, ou est une dextrine fonctionnalisée octényl succinate, ou une maltodextrine fonctionnalisée octényl succinate, ou leurs mélanges.
[0013] La composition solide comprend au moins un amidon épaississant. Selon un mode réalisation, ledit au moins un amidon épaississant est choisi parmi les amidons stabilisés, préférentiellement les amidons acétylés, les amidons hydroxypropylés, les amidons hydroxyéthylés, ou plus préférentiellement parmi les amidons prégélatinisés et acétylés, ou les amidons prégélatinisés et hydroxypropylés, tout préférentiellement parmi les amidons prégélatinisés et acétylés, ou leurs mélanges. [0014] La composition solide comprend au moins une gomme d’origine microbienne. Selon un mode de réalisation, ladite au moins une gomme d’origine microbienne est choisie parmi la gomme de xanthane, la gomme gellane, la gomme de dextrane, la gomme de scléroglucane, la gomme de beta-glucane, ou leurs dérivés et mélanges.
[0015] La composition solide comprend au moins deux gommes végétales. Selon un mode de réalisation, lesdits au moins deux gommes végétales sont choisies parmi les galactomannanes, les glucomannanes, les galactannes, les alginates, préférentiellement parmi la gomme de guar, la gomme de tara, la gomme de caroube, la gomme de casse, la gomme de fenugrec, la gomme de konjac, la gomme arabique, la gomme adragante, la gomme karaya, et tout préférentiellement sont la gomme de guar et la gomme de tara.
[0016] Selon un mode de réalisation, la composition solide comprend, ou est constituée de, en pourcentages massiques par rapport au poids total de ladite composition solide :
- de 20 % à 60 % en au moins un émulsifiant amylacé ou d’origine amylacée,
- de 20 % à 60 % en au moins un amidon épaississant,
- de 0,5 % à 10 % en au moins une gomme d’origine microbienne,
- et de 2% à 45 % en au moins deux gommes végétales.
[0017] Dans le cas où la composition solide consiste en lesdits pourcentages massiques desdits composants, alors ces deniers sont choisis de façon à ce que leur somme soit égale à 100%.
[0018] Selon un autre mode de réalisation, lesdites au moins deux gommes végétales sont la gomme de guar et la gomme de tara. Selon une variante de ce mode de réalisation, les proportions massiques des deux gommes végétales, par rapport au poids total de la composition solide, sont :
- de 1 % à 30 % de gomme de guar, ou de 2% à 25%, ou de 8% à 20%, ou de 10% à 20%,
- et de 1 % à 15 % de gomme de tara, ou de 2% à 10%, ou de 3% à 8%.
[0019] Selon un autre mode de réalisation, la composition solide comprend, ou est constituée de, en pourcentages massiques par rapport au poids total de ladite composition solide : - de 20 % à 60 % en au moins un émulsifiant amylacé ou d’origine amylacée,
- de 20 % à 60 % en au moins un amidon épaississant,
- de 0,5 % à 10 % en au moins une gomme d’origine microbienne,
- de 1 % à 30 % de gomme de guar,
- et de 1 % à 15 % de gomme de tara.
[0020] Selon un autre mode de réalisation, la composition solide comprend, ou est constituée de, en pourcentages massiques par rapport au poids total de ladite composition solide :
- de 30 % à 50 % en au moins un émulsifiant amylacé ou d’origine amylacée,
- de 30 % à 50 % en au moins un amidon épaississant,
- de 0,75 % à 7 % en au moins une gomme d’origine microbienne,
- de 2 % à 25 % de gomme de guar,
- et de 2 % à 10 % de gomme de tara.
[0021] Selon un autre mode de réalisation, la composition solide comprend, ou est constituée de, en pourcentages massiques par rapport au poids total de ladite composition solide :
- de 35 % à 45 % en au moins un émulsifiant amylacé ou d’origine amylacée,
- de 35 % à 45 % en au moins un amidon épaississant,
- de 1 % à 4 % en au moins une gomme d’origine microbienne,
- de 8 % à 20 % de gomme de guar,
- et de 3 % à 8 % de gomme de tara.
[0022] Selon un autre mode de réalisation, la composition solide comprend, ou est constituée de, en pourcentages massiques par rapport au poids total de ladite composition solide :
- de 35 % à 45 % en au moins un émulsifiant amylacé ou d’origine amylacée,
- de 35 % à 45 % en au moins un amidon épaississant,
- de 1 % à 4 % en au moins une gomme d’origine microbienne,
- de 10 % à 18 % de gomme de guar,
- et de 3 % à 8 % de gomme de tara.
[0023] Amidons épaississants :
[0024] Les amidons épaississants utiles à l’invention peuvent provenir de toute origine botanique, en particulier de blé, de maïs, de pomme de terre, de légumineuses comme le pois, de riz, de fèves, de fèverole. Ils peuvent être granulaires comme à l’état naturel, ou prégélatinisés. Préférentiellement, ils sont choisis parmi les amidons prégélatinisés, les amidons hydrolysés, les amidons traités par voie enzymatique, les amidons modifiés, les dextrines modifiées.
[0025] Selon un mode de réalisation, les amidons épaississants sont des amidons modifiés choisis parmi les amidons stabilisés, préférentiellement parmi les amidons acétylés, les amidons hydroxypropylés, les amidons hydroxyéthylés ; ou parmi les amidons prégélatinisés et stabilisés, préférentiellement parmi les amidons prégélatinisés et acétylés, les amidons prégélatinisés et hydroxypropylés, tout préférentiellement parmi les amidons prégélatinisés et acétylés, ou leurs mélanges.
[0026] Amidon préqélatinisé :
[0027] On entend au sens de l'invention par « amidon prégélatinisé » un amidon rendu « hydrosoluble », c’est-à-dire un amidon présentant à 20°C et sous agitation mécanique pendant 24 heures une fraction soluble dans de l'eau déminéralisée au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids, ou plus préférentiellement supérieure à 50 % en poids, ou tout préférentiellement supérieure ou égale à 70%. Bien entendu, l'amidon hydrosoluble peut être totalement soluble dans l'eau déminéralisée, la fraction soluble étant alors supérieure à 90%, et pouvant être proche à 100 %.
[0028] L'amidon hydrosoluble présente de préférence avec une faible teneur en eau, généralement inférieure à 10 %, notamment inférieure à 5% en poids.
[0029] Les amidons prégélatinisés sont généralement préparés par des techniques thermiques, chimiques ou mécaniques susceptibles d'engendrer un gonflement des granules d'amidons de façon à ce qu’ils deviennent solubles dans l'eau froide, notamment grâce à la libération des chaînes amylacées constitutives desdits granules. Les techniques préférées sont la cuisson vapeur, la cuisson jet- cooker, la cuisson sur tambour, la cuisson dans des systèmes de malaxeur et/ou extrudeur puis séchage par exemple en étuve, par air chaud sur lit fluidisé, la cuisson sur tambour rotatif, l’atomisation, l’extrusion ou la lyophilisation. De tels amidons présentent généralement une solubilité dans l'eau déminéralisée à 20°C supérieure à 5 % et plus généralement comprise entre 10 et 100 % et un taux de cristallinité en amidon inférieur à 15 %, généralement inférieur à 5 % et le plus souvent inférieur à 1 %, voire nul. A titre d'exemple, on peut citer les produits fabriqués et commercialisés par la Demanderesse sous le nom de marque PREGEFLO®.
[0030] L'amidon prégélatinisé peut également consister en un amidon qui a conservé partiellement sa forme granulaire d’origine, obtenu par cuisson atomisation, généralement connu sous l'appellation d'amidon GCWS (Granular Cold Water Soluble).
[0031] Amidon hvdrolvsé :
[0032] Par « amidon hydrolysé », on entend un amidon ayant subi une hydrolyse enzymatique ou une hydrolyse chimique partielle, par voie acide, basique ou par oxydation, ayant conduit à une réduction du poids moléculaire de l’amidon. Des exemples d’amidons faiblement hydrolysés sont les amidons fluidifiés, et des amidons fortement hydrolysés sont les maltodextrines.
[0033] Dextrines :
[0034] Par « dextrine », on entend un amidon sous forme de granules ayant subi une modification hydro-thermique de leur structure granulaire ou de leur arrangement intermoléculaire ou intramoléculaire, par action thermique, physique ou chimique, ou une combinaison de ces actions. Les dextrines, notamment les plus transformées et communément appelés dextrines jaunes, seront dans le cadre de la présente invention, préférées du fait de leur solubilité et stabilité intéressantes.
[0035] Amidon stabilisé :
[0036] Le terme « amidon modifié » désigne un amidon ayant subi un traitement chimique choisi parmi la réticulation, l’oxydation, la stabilisation, la fonctionnalisation, ou une combinaison d’au moins deux ces modifications.
[0037] Par « amidon stabilisé », on entend les amidons ayant subi un ou plusieurs des traitements chimiques connues de l’homme du métier visant à ralentir ou freiner la rétrogradation de l’amidon. La stabilisation est obtenue par substitution des fonctions hydroxyles de l’amidon, par estérification ou éthérification. Elle peut également être obtenue par oxydation. Ces traitements de stabilisation sont notamment l’hydroxypropylation, l’hydroxyéthylation, l’acétylation, la phosphatation, l’oxydation, la cationisation, ou la carboxyméthylation. On préfère selon la présente invention un amidon acétylé, ou hydroxypropylé, ou hydroxyéthylé, préférentiellement acétylé. Un tel amidon stabilisé peut présenter une fraction soluble telle que définie ci-dessus supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50 %. Un amidon stabilisé présente ainsi avantageusement les facultés d’épaissir, jusqu’à gélifier, de l’eau par simple dispersion dans l’eau froide et de donner des solutions épaissies, ou des gels, très stables dans le temps, c’est-à-dire sans évolution vers une rétrogradation au cours d’un stockage de plusieurs semaines à température ambiante.
[0038] La stabilisation peut s'obtenir en particulier par acétylation en phase aqueuse d'anhydride acétique, d'anhydrides mixtes, hydroxypropylation en phase lait ou en phase colle, par phosphatation. Ces amidons stabilisés peuvent présenter un degré de substitution compris entre 0,01 et 3, et mieux encore compris entre 0,05 et 1. De préférence, les réactifs de modification ou de fonctionnalisation de l'amidon sont d'origine renouvelable.
[0039] Lorsque la stabilisation est obtenue par estérification, elle peut être faite par emploi d’un anhydride d'acide organique autre que l'anhydride acétique, ou d’un acide organique autre que l'acide acétique, ou d’un anhydride mixte, ou d’un chlorure d'acide organique ou d’un mélange quelconque de ces produits. Ces produits peuvent être choisis, par exemple, parmi les acides présentant de 1 à 24 carbones, saturés ou insaturés, et plus spécifiquement parmi l'acide formique, l'acide propionique, l'acide butyrique, l'acide valérique, l'acide hexanoïque, l'acide heptanoïque, l'acide pelargonique, l'acide octanoïque, l'acide décanoïque, l'acide undécanoïque, l'acide laurique, l'acide myristique, l'acide palmitique, l'acide oléïque, l'acide stéarique, les anhydrides de ces acides, les anhydrides mixtes de ces acides, et les mélanges quelconques de ces produits.
[0040] L’amidon stabilisé peut aussi être un amidon stabilisé et hydrolysé.
[0041] Selon un mode de réalisation, l’amidon stabilisé est un amidon acétylé, ou un amidon hydroxypropylé, ou un amidon hydroxyéthylé, ou un amidon ayant subi au moins deux des substitutions chimiques choisies parmi l’acétylation, l’hydroxypropylation, l’hydroxyéthylation. Selon un mode de réalisation, l’amidon stabilisé est un amidon acétylé.
[0042] Selon un mode de réalisation, l’amidon stabilité est non-réticulé.
[0043] Selon un autre mode de réalisation, l’amidon stabilisé est un amidon de maïs waxy acétylé, ou un amidon de maïs waxy prégélatinisé et acétylé. Des exemples d’amidons waxy prégélatinisés et acétylés sont les « Pregeflo® CH » commercialisés par Roquette, tels que le Pregeflo® CH10, CH20, CH30 ou CH40.
[0044] Emulsifiant amylacé ou d’origine amylacée :
[0045] Par « émulsifiant amylacé », on entend un amidon ayant des propriétés émulsifiantes, en particulier ayant la capacité à émulsifier une huile dans l’eau. Un émulsifiant amylacé utile à l’invention est ainsi un amidon modifié par une fonctionnalisation hydrophobe, ou une fonctionnalisation amphiphile, ou une fonctionnalisation ionique, ou une combinaison de ces fonctionnalisations. L’amidon subissant au moins une desdites fonctionnalisations peut être un amidon natif, un amidon prégélatinisé, un amidon hydrolysé, un amidon modifié.
[0046] Selon un mode de réalisation, l’amidon subissant au moins une desdites fonctionnalisations est un amidon natif. Selon un autre mode de réalisation, l’amidon subissant au moins une desdites fonctionnalisations est un amidon prégélatinisé. Selon un autre mode de réalisation l’amidon subissant au moins une desdites fonctionnalisations est un amidon hydrolysé.
[0047] Par « émulsifiant d’origine amylacée », on entend une dextrine, ou un amidon hydrolysé, ou une maltodextrine, ayant la capacité à émulsifier une huile dans l’eau. Un émulsifiant d’origine amylacé est une dextrine, ou un amidon hydrolysé, ou une maltodextrine, ayant subi une fonctionnalisation hydrophobe, ou une fonctionnalisation amphiphile, ou une fonctionnalisation ionique, ou une combinaison de ces fonctionnalisations.
[0048] Fonctionnalisation hydrophobe et/ou amphiphile
[0049] Le terme « fonctionnalisation hydrophobe et/ou amphiphile » désigne une réaction chimique entre, d’un côté un réactif hydrophobe et/ou amphiphile, et de l’autre côté, une partie, ou la totalité, des groupes hydroxyles de l’amidon ou de la matière d’origine amylacée. Cette réaction est généralement une « substitution » ou un « greffage » par création de liaisons covalentes de type ester, éther ou amide.
[0050] Selon un mode de réalisation dit « amphiphile », l’émulsifiant amylacé, ou l’émulsifiant d’origine amylacée, est obtenu par substitution des groupes hydroxyles par réaction avec un chlorure d’acide, ou avec un ester d’alcool et d’anhydride d’acide.
[0051] Le chlorure d’acide peut être un chlorure d’un ou plusieurs des acides suivants, présentant de 2 à 24 carbones, préférentiellement 4 à 24 carbones, saturés ou insaturés, et plus préférentiellement parmi l'acide propionique, l'acide butyrique, l'acide valérique, l'acide hexanoïque, l'acide heptanoïque, l'acide pelargonique, l'acide octanoïque, l'acide décanoïque, l'acide undécanoïque, l'acide laurique, l'acide myristique, l'acide palmitique, l'acide oléïque, l'acide stéarique, les anhydrides de ces acides, les anhydrides mixtes de ces acides, et les mélanges quelconques de ces produits.
[0052] L’alcool peut être un alcool linéaire, ramifié, ou cyclique, constitué d’un squelette carboné comptant au moins 2 atomes de carbones. L’alcool peut comporter au moins une insaturation, c’est-à-dire au moins une double liaison carbone-carbone. L’alcool peut être un alcool gras linéaire, ramifié, ou cyclique, constitué d’un squelette carboné comptant de 8 à 36 atomes de carbones. L’alcool gras peut comportant au moins une insaturation. Des exemples d’alcools gras sans insaturation sont l’octanol, le nonanol, le décanol, l’undécanol, le dodécanol, le tétradécanol, l’hexadécanol, l’octadécanol, le docosanol, le policosanol.
[0053] L’anhydride d’acide peut être un anhydride de l’un des acide polycarboxyliques décrits ci-après.
[0054] L’acide polycarboxylique peut être un acide polycarboxylique linéaire, ramifié, ou cyclique, constitué d’un squelette carboné comptant au moins 2 atomes de carbones. L’acide polycarboxylique peut comporter au moins une insaturation, c’est-à-dire au moins une double liaison carbone-carbone, comme par exemple l’acide maléique, l’acide glutaconique, l’acide fumarique. L’acide polycarboxylique peut aussi comporter au moins un groupe alcool fixé sur la chaîne carbonée. L’acide polycarboxylique peut comporter au moins deux groupes acides. Selon un mode de réalisation, les acides polycarboxyliques sont les acides dicarboxyliques linéaires portant les groupes acides aux extrémités de la chaîne carbonée. Des exemples d’acides dicarboxyliques linéaires sont l’acide éthanedioïque (ou acide oxalique), l’acide propanedioique, l’acide butanedioïque (ou acide succinique), l’acide dihydroxybutanedioïque (ou acide tartrique), l’acide 2-hydroxybutanedioïque (ou acide malique), l’acide pentanedioïque (ou acide glutarique) l’acide hexanedioïque (ou acide adipique), l’acide tétrahydroxyhexanedioïque (ou acide saccharique), l’acide gluconique, l’acide heptanedioïque (ou acide pimélique), l’acide octanedioïque, l’acide nonanedioïque, l’acide décanedioïque (ou acide sébacique).
[0055] Selon un mode de réalisation, l’anhydride d’acide est un anhydride d’acide dicarboxylique linéaire. Selon un mode de réalisation, l’anhydride d’acide est l’anhydride succinique.
[0056] Selon un mode de réalisation, l’ester d’alcool et d’anhydride d’acide est un ester d’alcool gras et d’anhydride d’acide succinique, tel que l’anhydride octénylsuccinique, ou l’anhydride dodécylsuccinique.
[0057] Selon un mode de réalisation, l’ester d’alcool et d’anhydride d’acide est un ester d’un alcool gras saturé en C3-C15, préférentiellement en C4-C12, et tout préférentiellement en C5-C10, et d’un anhydride d’acide en C2-C10, préférentiellement en C3-C9, et tout préférentiellement en C4-C8. Selon une variante de ce mode de réalisation, l’alcool gras comporte au moins une insaturation, c’est-à-dire au moins une double liaison carbone-carbone, préférentiellement au moins deux insaturations, et tout préférentiellement au moins trois insaturations.
[0058] Le niveau de fonctionnai isation peut résulter en une solubilité de l’amidon fonctionnalisé. Si la solubilité est insuffisante, un traitement de prégélatinisation peut être appliqué à l’amidon fonctionnalisé pour le rendre suffisamment soluble.
[0059] Selon un mode de réalisation, l’amidon émulsifiant est un amidon waxy fonctionnalisé par un groupement alcényl succinate, notamment octényl succinate ou dodécyl succinate. Des exemples d’amidons porteur de fonctions octényl succinate sont les Cleargum® CO 01 et CO 03 commercialités par Roquette. [0060] Selon un autre mode de réalisation, l’émulsifiant d’origine amylacé est une dextrine ayant subi une fonctionnalisation octényl succinate, comme par exemple le Cleargum® CO A1 commercialisé par Roquette.
[0061] Selon un mode de réalisation dit « hydrophobe », l’amidon émulsifiant, ou l’émulsifiant d’origine amylacée, est obtenu par greffage de groupes purement hydrophobes par réaction radicalaire, par exemple tel qu’exposé dans la demande EP3180372 de la demanderesse.
[0062] Gomme d’origine microbienne :
[0063] Le terme « gomme d’origine microbienne » désigne les gommes issues de fermentation de bactéries, comme les xanthanes, les gellanes, les dextranes et les scléroglucanes, ou de fermentation de levures comme les beta-glucanes, ou issues de l’activité biologique de champignons, en particulier de moisissures comme les 1-3-beta-glucanes. La gomme d’origine microbienne peut être un endopolysaccharide ou bien exopolysaccharide (EPS), c’est-à-dire un polysaccharide présent chez certains microorganismes au niveau de leurs parois cellulaires et pouvant être relargués dans un milieu de culture.
[0064] La gomme de xanthane est un hétéropolysaccharide produit à l'échelle industrielle par la fermentation aérobie de la bactérie Xanthomonas campestris. Les gommes de xanthane ont généralement un poids moléculaire compris entre 1 000 000 et 50 000 000 Da. Parmi les produits du commerce possibles, on peut citer par exemple le produit Xanthan Gum FNCS-PC de la société: Jungbunzlauer International AG, le produit Keltrol® CG-T de la société CP Kelco, le produit Cosphaderm® X 17 de la société Cosphatec , le produit Kahlgum 6673 FEE - Xanthan Gum de la société KahIWax, les produits Rhodicare® S et Rhodicare® XC de la société Solvay et le produit VANZAN® NF-C de la société Vanderbilt Minerais, le produit NOVAXAN™ de la société ADM, et les produits Kelzan® et Keltrol® de la société CP-Kelco.
[0065] La gomme de gellane est un hétéropolyoside linéaire anionique basé sur des unités d'oligoside composé de 4 oses (tétra-oside). Le D-glucose, le L- rhamnose et l'acide D-glucuronique en proportions 2:1:1 sont présents dans la gomme de gellane sous forme d'éléments monomères. Elle est par exemple vendue sous la dénomination KELCOGEL CG LA par la société CP KELCO. [0066] La gomme de dextrane est un polymère ramifié de dextrose (glucose) de masse moléculaire très élevée, Les dextranes se trouvent dans les matières gluantes produites par la croissance de certaines bactéries, tel Leuconostoc mesenteroides , sur milieux saccharosés. Ils se composent d'unités D-glucosyl unies principalement par des liaisons alpha(1 ,6). Une gamme de dextrane est par exemple vendue par la société Pharmacosmos.
[0067] La gomme de scléroglucane est un homopolysaccharide ramifié non ionique, constitué de motifs beta-D glucane. Les molécules sont constituées d'une chaîne linéaire principale formée de motifs D-glucose liées par des liaisons beta(1,3) et dont un sur trois est lié à un motif D-glucose latéral par une liaison beta(1,6). Un exemple de gomme de scléroglucane est le produit AMIGEL vendu par la Société ALBAN MULLER.
[0068] La gomme de beta-glucane est un polysaccharide entièrement constitué de D-glucose liés par des liaisons beta. Les liaisons peuvent être très diverses et de type beta(1 ,3), beta(1 ,4) ou beta(1 ,6). De ce fait, les beta-glucanes forment un groupe diversifié de molécules, présentes notamment dans les parois cellulaires de la levure de boulanger, et certains champignons et bactéries. On connaît par exemple le produit Beta Glucan AC-25 de la Société Kraeber & Co GmbH.
[0069] La gomme d’arabinogalactane est un polysaccharide présent en quantités variables dans de nombreux champignons et bactéries.
[0070] Selon un mode de réalisation, la gomme d’origine microbienne est une gomme de xanthane ou une gomme de scéroglucane, préférentiellement une gomme de xanthane.
[0071] Gommes végétales :
[0072] Le terme « gommes végétales » désigne les gommes issues de graines, tubercules ou d’exsudats, de plantes, et les gommes extraites d’algues. Ce terme exclut dans la présente invention, les amidons et leurs dérivés. Parmi les gommes issues de graines, on trouve les galactomannanes, comme la gomme de guar, la gomme de caroube, gomme de tara, gomme de casse. Parmi les gommes issues de tubercules, on trouve les glucomannanes comme la gomme konjac. Parmi les gommes issues d’exsudats de plantes, on trouve la gomme arabique, la gomme adragante, la gomme de karaya. Parmi les gommes extraites d’algues, on trouve les alginates, les galactannes comme l’agar et les carraghénanes.
[0073] Les gommes utiles à l’invention sont des gommes gélifiantes seules ou associées entre elles.
[0074] Gommes issues de graines
[0075] Les galactomannanes sont des polyosides non ioniques extraits de l'albumen de graines de légumineuses dont ils constituent le glucide de réserve. Les galactomannanes sont des macromolécules constituées d'une chaîne principale d'unités D-mannopyranose liées en beta(1,4), portant des branchements latéraux constitués d'une seule unité D-galactopyranose liée en alpha(1,6) à la chaîne principale. Les différents galactomannanes se distinguent d'une part par la proportion d'unités alpha-D galactopyranose présentes dans le polymère, et d'autre part par des différences significatives en terme de distribution des unités galactose le long la chaîne de mannose. Le rapport mannose/galactose (M/G) est de l'ordre de 2 pour la gomme guar, de 3 pour la gomme tara, de 4 pour la gomme de caroube, et de 5 pour la gomme de casse.
[0076] La gomme de guar est caractérisée par un ratio mannose:galactose de l'ordre de 2:1. Le groupement galactose est régulièrement distribué le long de la chaîne de mannose. Les gommes de guar non ioniques non modifiées sont par exemple les produits vendus sous la dénomination Vidogum GH, Vidogum G et Vidocrem par la société Unipektin et sous la dénomination Jaguar par la société Rhodia, sous la dénomination Meypro® Guar par la société Danisco, et sous la dénomination Supercol® guar gum par la société Aqualon.
[0077] La gomme de caroube est extraite des graines du caroubier, le Ceratonia siliqua. Elle est caractérisée par un ratio mannose:galactose de l'ordre de 4:1. La gomme de caroube non modifiée utilisable dans cette invention est vendue par exemple sous la dénomination « Vidogum L » par la société Unipektin, sous la dénomination Grinsted® LBG par la société Danisco.
[0078] La gomme de Tara est issue de l’albumen des graines d'un arbre d’Amérique du Sud, le Caesalpinia spinosa. Elle est aussi appelée gomme de caroube du Pérou. Elle est composée d'une chaîne de monomères de mannose ((1,4)beta-D-mannopyranose) ramifiée des ponts 1-6 de galactose. Elle est plus ramifiée que la gomme de caroube et moins que la gomme de guar car le ratio entre le mannose et le galactose est de 3 pour 1, au lieu de 4 pour 1 pour la gomme de caroube et 2 pour 1 pour la gomme de guar. Un exemple de gomme de tara est celle vendue par exemple sous la dénomination « Vidogum SP » par la société Unipektin.
[0079] La gomme de casse ou gomme cassia est un polyoside de type galactomannane comme la gomme de guar et la gomme tara mais obtenue à partir des graines de plantes du genre Cassia et Senna. Elle est constituée d'une chaîne linéaire de monomères de mannose lié entre eux par une liaison osidique du type beta(1,4) auxquelles se rattachent toutes les cinq unités de mannose environs, par une liaison osidique du type alpha(1,6), une unité de galactose ce qui donne un ratio entre le mannose et le galactose de 5 pour 1. Des grades cosmétiques sont par exemple disponibles chez la société Altrafine Gums sous l’appelation Semi-refined Cassia Gum.
[0080] Gommes issues de tubercules
[0081] Les glucomannanes sont des polysaccharides de poids moléculaire élevé (entre 500 000 et 2 000000 Da), composé d'unités de D-mannose et de D- glucose avec une ramification toutes les 50 ou 60 unités environ. On le trouve dans le bois mais c'est aussi le principal constituant de la gomme de Konjac. Le konjac (Amorphophallus konjac) est une plante de la famille des Araceae. Les produits utilisables selon l'invention sont par exemple vendus sous la dénomination Propol® et Rheolex® par la société Shimizu.
[0082] Gomme d’exsudats de plantes
[0083] La gomme arabique est un polysaccharide acide fortement ramifié qui se présente sous la forme de mélanges de sels de potassium, de magnésium et de calcium. Les éléments monomères de l'acide libre (acide arabique) sont le D- galactose, le L-arabinose, le L-rhamnose et l'acide D-glucuronique.
[0084] La gomme adragante, encore appelée tragacanthe ou gomme de dragon, est un exsudât obtenu à partir de la sève mucilagineuse séchée d'une vingtaine d'espèces de plantes du genre Astragalus. Cette gomme est un mélange complexe de plusieurs polysaccharides. Les deux fractions principales sont la tragacanthine (qui est un arabinogalactane neutre) représentant de 60% à 70% en poids, et la bassorine, aussi appelée « acide tragacanthique » (qui est un glycanogalacturonane acide) représentant de 30% à 40 % en poids.
[0085] La gomme arabinogalactane provient le plus souvent du mélèze d'Amérique (Larix occidentalis).
[0086] La gomme karaya (ou gomme de Sterculia) est une gomme végétale obtenue depuis l'exsudât des branches du Sterculia, La gomme karaya est un polyoside composé de galactose, de rhamnose et d'acide galacturonique principalement et d'une petite quantité d'acide glucuronique.
[0087] Gommes extraites d’algues
[0088] Par « alginates », on entend au sens de l'invention, l'acide alginique, les dérivés d'acide alginique et les sels d'acide alginique (alginates) ou desdits dérivés. L'acide alginique, substance naturelle issue des algues brunes ou de certaines bactéries, est un acide polyuronique composé de 2 acides uroniques liés par des liaisons (1,4)glycosidiques : l'acide Beta-D-manuronique et l'acide Alpha- L-glucuronique. On utilise de préférence des composés à base d'alginate présentant une masse moléculaire moyenne en poids allant de 10 000 à 1 000 000, de préférence de 15000 à 500000, et mieux de 20000 à 250000.
[0089] Les composés à base d'alginate convenant à l'invention peuvent être représentés, par exemple, par les produits vendus sous la dénomination Protanal™ par la société FMC Biopolymer, sous la dénomination GRINDSTED ® Alginate par la société Danisco, sous la dénomination KEVIICA ALGIN par la société KEVIICA, et sous les dénominations Manucol ® et Manugel ® par la société ISP.
[0090] Les galactannes de type carraghénanes sont des polysaccharides anioniques constituant les parois cellulaires de diverses algues rouges (Rhodophycées) appartenant aux familles de Gigartinacae, Hypneaceae, Furcellariaceae et Polyideaceae. Ces polymères linéaires, formés par des motifs disaccharides, sont composés par deux unités D-galactopyranoses liées alternativement par des liaisons alpha-(1,3) et beta-(1,4). Ce sont des polysaccharides très sulfatés (20-50 %) et les résidus alpha-D-galactopyranosyles peuvent être sous forme 3,6-anhydro. Selon le nombre et la position de groupements ester-sulfate sur le disaccharide de répétition de la molécule, on distingue plusieurs types de carraghénanes à savoir : les kappa-carraghénanes qui possèdent un groupement ester-sulfate, les iota-carraghénanes qui possèdent deux groupements ester-sulfate et les lambda-carraghénanes qui possèdent trois groupements ester-sulfate. Les carraghénanes se composent essentiellement de sels de potassium, de sodium, de magnésium, de triéthanolamine et/ou de calcium et d'esters sulfates de polysaccharides.
[0091] Les carraghénanes sont notamment commercialisés par la société Seppic sous le nom de Solagum®, par la société Gelymar sous la dénomination de Carragel®, Carralact®, et Carrasol®, et par la société CP-Kelco sous la dénomination GENULACTA®, GENUGEL® et GENUVISCO.
[0092] Les galactannes de type Agar sont des polysaccharides du galactose contenu dans la paroi cellulaire de certaines de ces espèces d'algues rouges (rhodophycées). Ils sont formés d'un groupe de polymère dont le squelette de base est une chaîne beta(1,3) D-galactopyranose et alpha(1,4) L 3-6 anhydrogalactose, ces unités se répétant régulièrement et alternativement. Les différences à l'intérieur de la famille des agars sont dues à la présence ou non de groupes solvatés méthylés ou carboxyethylés. Ces structures hybrides sont en général présentes en pourcentage variable, suivant les espèces d'algues et la saison de récolte. L'agar-agar est un mélange de polysaccharides (agarose et agaropectine) de masse moléculaire élevée, comprise entre 40000 et 300000 Da. Il est obtenu en fabricant des jus d'extraction d'algues, généralement par autoclavage, et en traitant ces jus qui comprennent environ 2 % d'agar-agar, afin d'extraire ce dernier.
[0093] L'agar est par exemple produit par le groupe B&V Agar Producers, sous la dénomination Gold Agar, Agarite et Grand Agar par la société Hispanagar, et sous les dénominations Agar-Agar, QSA (Quick Soluble Agar), et Puragar par la société Setexam.
[0094] Autres gommes végétales : [0095] En plus des gommes végétales présentées ci-avant, d’autres gommes végétales peuvent être utilisées : la gomme psyllium, les pectine, les mannanes, les galactoglucomannanes, les xylanes, les glycosaminoglycanes telles que l’acide hyaluronique.
[0096] Les pectines sont des substances présentes en grande quantité dans les parois primaires des dicotylédones, et en particulier dans les parois végétales de nombreux fruits et légumes, principalement des agrumes et des pommes. Ce sont des polysaccharides de type rhamnogalacturonique caractérisés par un squelette d’acide alpha-D-galacturonique et de faibles quantités d’alpha-L-rhamnose plus ou moins ramifiés par essentiellement du galactose et de l'arabinose. Il peut s’agir de d'acides pectiques avec un degré de méthylation est inférieur à 5 % (DM<5), de pectines faiblement méthylé avec un degré de méthylation est inférieur à 50 % (DM<50 ou de pectines hautement méthylées avec un degré de méthylation est supérieur à 50 % (DM>50). A titre d’exemple, on peut citer le produit vendu sous la marque GENU pHresh™ DF Pectin par la société CP Kelco.
[0097] Le xyloglucane est un composé des hémicelluloses qui a un squelette de résidus glucose (GIc) sur lequel se greffent des résidus xylose (Xyl), galactose (Gai) et fucose (Fuc) ; on les trouve dans de nombreuses parois primaires de végétaux.
[0098] Le xylane est un composant principal des hémicelluloses, et le deuxième polysaccharide naturel le plus abondant après le xyloglucane. Les xylanes sont des polymères de xyloses qui incluent les glucuronoxylanes (GX) qui ont un squelette de résidus xylose sur lequel se greffent des résidus acide glucuronique (GIcA) ou son dérivé O-méthylé, les arabinoxylanes (AX) qui ont un squelette de résidus xylose sur lequel se greffent des résidus arabinose , les glucuronoarabinoxylanes (GAX) qui ont un squelette de résidus xylose sur lequel se greffent des résidus arabinose et acide glucuronique ; on trouve les arabinoxylanes et les glucuronoarabinoxylanes dans les parois primaires des monocots et enfin les homoxylanes non substituées.
[0099] La mannane est un polysaccharide composé principalement de monomères de mannose et désigne un ensemble de polysaccharides appartenant à la famille des hémicelluloses qui composent la paroi des cellules végétales. Il s’agit de monosaccharides reliés par des liaisons beta-1,4. Ils peuvent être linéaires ou bien ramifiés, formant des chaînes d'une longueur (ou degré de polymérisation) compris entre 100 et 3000 unités.
[0100] Les glycosaminoglycanes (GAG ou glycoaminoglycanes) sont des macromolécules glucidiques formant d'importants composants des matrices extracellulaires des tissus conjonctifs d’origine végétale ou marine. Il s'agit de longues chaînes linéaires (polymères non ramifiées) sulfatées (sauf l'acide hyaluronique), composées de la répétition de disaccharides : un diholoside de base contenant toujours une hexosamine (glucosamine (GIcN) ou galactosamine (GaIN)) et un autre ose (acide glucuronique (GIcA), acide iduronique (IdoA), galactose (Gai)). La glucosamine est soit N-sulfatée (GIcNS), soit N-acétylée (GIcNac). La galactosamine est toujours N-acétylée (GalNac). On peut citer parmi les GAG l'acide hyaluronique, ses dérivés et ses sels. Ce type de macromolécules sont par exemple vendues sous des noms de MDI Complex® par la société Lucas Meyer Cosmetics, D-Factor par la société Res Pharma Industriale, Hydrocan par la société Tri-K Industries, Inc, Hyaluronic acid-BT de la société DSM Nutritional Products Europe Ltd.
[0101] Emulsion à usage cosmétique :
[0102] L’émulsion de type huile-dans-eau objet de la présente demande comprend :
- au moins un émulsifiant amylacé ou d’origine amylacé,
- au moins un amidon épaississant,
- au moins une gomme d’origine microbienne,
- au moins deux gommes végétales,
- et au moins une huile.
[0103] Selon un mode de réalisation, l’émulsion huile-dans-eau comprend, ou est constituée de :
- au moins un émulsifiant amylacé ou d’origine amylacé,
- au moins un amidon épaississant choisi parmi les amidons fonctionnalisés par réticulation et stabilisés, les amidons prégélatinisés fonctionnalisés par réticulation et stabilisés, préférentiellement parmi les amidons réticulés et acétylés, tout préférentiellement parmi les amidons prégélatinisés réticulés et acétylés, - au moins une gomme d’origine microbienne,
- au moins deux gommes végétales, dont au moins la gomme de guar et la gomme de tara,
- au moins une huile.
[0104] Selon un autre mode de réalisation, l’émulsion huile-dans-eau comprend, ou est constituée de :
- au moins un émulsifiant amylacé ou d’origine amylacé,
- au moins un amidon épaississant choisi parmi les amidons fonctionnalisés par réticulation et stabilisés, les amidons prégélatinisés fonctionnalisés par réticulation et stabilisés, préférentiellement parmi les amidons réticulés et acétylés, tout préférentiellement parmi les amidons prégélatinisés réticulés et acétylés,
- au moins une gomme d’origine microbienne,
- une gomme de guar et une gomme de tara comme seules gommes végétales,
- au moins une huile.
[0105] Selon un autre mode de réalisation, l’émulsion huile-dans-eau comprend, ou est constituée de :
- au moins un émulsifiant amylacé ou d’origine amylacé,
- au moins un amidon épaississant choisi parmi les amidons stabilisés non réticulés, les amidons prégélatinisés fonctionnalisés stabilisés non réticulés, préférentiellement parmi les amidons acétylés non réticulés, tout préférentiellement parmi les amidons prégélatinisés acétylés non réticulés,
- au moins une gomme d’origine microbienne,
- au moins deux gommes végétales,
- au moins une huile.
[0106] Selon un autre mode de réalisation, l’émulsion huile-dans-eau comprend, ou est constituée de :
- au moins un émulsifiant amylacé ou d’origine amylacé,
- au moins un amidon épaississant choisi parmi les amidons stabilisés non réticulés, les amidons prégélatinisés fonctionnalisés stabilisés non réticulés, préférentiellement parmi les amidons acétylés non réticulés, tout préférentiellement parmi les amidons prégélatinisés acétylés non réticulés,
- au moins une gomme d’origine microbienne, - une gomme de guar et une gomme de tara comme seules gommes végétales,
- au moins une huile.
[0107] Selon un autre mode de réalisation, l’émulsion huile-dans-eau comprend, ou comporte comme seul et unique émulsifiant, au moins un émulsifiant amylacé ou d’origine amylacé choisi parmi un amidon granulaire octényl succinate, ou une dextrine octényl succinate, ou un amidon gélatinisé modifié octényl succinate, ou une maltodextrine modifiée octényl succinate, ou leur mélange. Préférentiellement, l’émulsifiant amylacé est un amidon octényl succinate. Selon un autre mode de réalisation, la proportion massique en ledit au moins un émulsifiant amylacé ou d’origine amylacé, va de 0,20 % à 3,60 %, par rapport au poids total de ladite émulsion huile-dans-eau.
[0108] Selon un autre mode de réalisation, l’émulsion huile-dans-eau comprend, ou comporte comme seul et unique épaississant, au moins un amidon épaississant choisi parmi les amidons stabilisés, préférentiellement les amidons acétylés, les amidons hydroxypropylés, les amidons hydroxyéthylés, ou plus préférentiellement parmi les amidons prégélatinisés et acétylés, ou les amidons prégélatinisés et hydroxypropylés, tout préférentiellement parmi les amidons prégélatinisés et acétylés, ou leurs mélanges. L’amidon épaississant peut notamment être un amidon prégélatinisé réticulé et acétylé, ou un amidon prégélatinisé acétylé non réticulé. Selon un autre mode de réalisation la proportion massique en ledit au moins un amidon épaississant, va de 0,20 à 3,60 %, par rapport au poids total de l’émulsion.
[0109] Selon un autre mode de réalisation, l’émulsion huile-dans-eau comprend au moins une gomme d’origine microbienne choisie parmi la gomme de xanthane, la gomme gellane, la gomme de dextrane, la gomme de scléroglucane, la gomme de beta-glucane, ou leurs dérivés et mélanges. Selon un mode de réalisation, la proportion massique en ladite gomme d’origine microbienne, va de 0,005 % à 0,600%, par rapport au poids total de l’émulsion.
[0110] Selon un autre mode de réalisation, l’émulsion huile-dans-eau comprend au moins deux gommes végétales sont choisies parmi les galactomannanes, les glucomannanes, les galactannes, les alginates, préférentiellement parmi la gomme de guar, la gomme de tara, la gomme de caroube, la gomme de casse, la gomme de fenugrec, la gomme de konjac, la gomme arabique, la gomme adragante, la gomme karaya, et tout préférentiellement sont la gomme de guar et la gomme de tara. Selon un mode de réalisation, la proportion massique en lesdites au moins deux gomme végétales, va de 0,06 % à 2,700%, par rapport au poids total de l’émulsion.
[0111] Selon un mode de réalisation, lesdites au moins deux gommes végétales sont la gomme de guar et la gomme de tara, qui sont donc les seules gommes végétales présentes dans la composition solide. Selon un mode de réalisation, la proportion massique de la gomme de guar va de 0,05 % à 1,800%, et la proportion massique de la gomme de tara va de 0,010% à 0,900%, par rapport au poids total de l’émulsion.
[0112] Selon un mode de réalisation, l’émulsion huile-dans-eau objet de la présente demande comprend :
- de 0,20 % à 3,60 % en émulsifiant amylacé ou d’origine amylacée,
- de 0,20 % à 3,60 % en amidon épaississant,
- de 0,005 % à 0,600 % en gomme d’origine microbienne,
- de 0,015 % à 2,700 % en gommes d’origine végétale,
- de 1 % à 70 % en huile, ou de 10 % à 60 %, ou de 15 % à 50 %, par rapport au poids total de ladite émulsion.
[0113] Selon un mode de réalisation, l’émulsion huile-dans-eau objet de la présente demande comprend :
- de 0,40 % à 3,00 % en émulsifiant amylacé ou d’origine amylacée,
- de 0,40 % à 3,00 % en amidon épaississant,
- de 0,010 % à 0,500 % en gomme d’origine microbienne,
- de 0,120 % à 2,250 % en gommes d’origine végétale,
- de 1 % à 70 % en huile, ou de 10 % à 60 %, ou de 15 % à 50 %, par rapport au poids total de ladite émulsion.
[0114] Selon un mode de réalisation, l’émulsion huile-dans-eau objet de la présente demande comprend :
- de 0,60 % à 1 ,80 % en émulsifiant amylacé ou d’origine amylacée,
- de 0,60 % à 1 ,80 % en amidon épaississant,
- de 0,015% à 0,300 % en gomme d’origine microbienne, - de 0,180 % à 1 ,350 % en gommes d’origine végétale,
- de 1 % à 70 % en huile, ou de 10 % à 60 %, ou de 15 % à 50 %, par rapport au poids total de ladite émulsion.
[0115] L’émulsion huile-dans-eau comprend une huile choisie parmi les huiles hydrocarbonées non volatiles polaires, les huiles non volatiles hydrocarbonées apolaires, les huiles volatiles, les cires, les beurres.
[0116] Selon un mode de réalisation, l’émulsion huile-dans-eau comprend une huile choisie parmi les huiles siliconées, les huiles d’hydrocarbures, les huiles d’ester, les huiles végétales, préférentiellement parmi les huiles d’ester et les huiles végétales.
[0117] Selon un mode de réalisation, la proportion massique en huile dans ladite émulsion va de 0,5 % à 75 %, ou de 1 % à 70 %, ou de 4 % à 65 %, ou de 5 % à 60 %, ou de 10% à 30%, en poids par rapport au poids total de ladite émulsion.
[0118] Selon un mode de réalisation, l’émulsion huile-dans-eau comprend moins de 1 % d’au moins un autre émulsifiant, préférentiellement moins de 1 % de d’un autre tensioactif, notamment d’un tensioactif éthoxylé, ou d’un tensioactif faiblement ou pas biodégradable, préférentiellement moins de 0,5 %, ou moins de 0,01%, par rapport au poids total de l’émulsion.
[0119] Selon un mode de réalisation, l’émulsion huile-dans-eau comprend :
- au moins additif cosmétique choisi parmi les polyols, les acides organiques, les polymères cationiques ou anioniques, les fragrances, les tensioactifs moussants, les agents exfoliants, les agents filmogènes, les conservateurs, les pigments, les charges minérales.
- et/ou au moins un produit actif cosmétique choisi parmi les agents hydratants, les anti-âges, les filtres UV, les actifs extraits de plantes.
[0120] Selon un mode de réalisation, l’émulsion huile-dans-eau ne comprend pas de monosaccharide, de préférence pas de fructose. Selon un mode de réalisation, l’émulsion huile-dans-eau ne comprend pas de sirop de glucose-fructose, également appelé sirop de maïs à haute teneur en fructose.
[0121] Selon un mode de réalisation, l’émulsion huile-dans-eau est constituée de : - au moins un émulsifiant amylacé ou d’origine amylacé,
- au moins un amidon épaississant,
- au moins une gomme d’origine microbienne,
- au moins deux gommes végétales,
- et au moins une huile,
- au moins additif cosmétique choisi parmi les polyols, les acides organiques, les polymères cationiques ou anioniques, les fragrances, les tensioactifs moussants, les agents exfoliants, les agents filmogènes, les conservateurs, les pigments, les charges minérales.
- et au moins un produit actif cosmétique choisi parmi les agents hydratants, les anti-âges, les filtres UV, les actifs extraits de plantes.
[0122] Selon un mode de réalisation, l’émulsion huile-dans-eau comprend un ingrédient à usage cosmétique choisi parmi les tensioactifs cationiques, les polymères cationiques, les pigments.
[0123] Huile
[0124] On entend par « huile », tout corps gras sous forme liquide à température ambiante (25°C) et à pression atmosphérique (1.013.105 Pa).
[0125] Huiles non volatile
[0126] Comme indiqué précédemment, l’émulsion huile-dans-eau selon l'invention comprend au moins une huile non volatile. Plus particulièrement, l'huile non volatile est choisie parmi les huiles non volatiles siliconées, parmi les huiles non volatiles hydrocarbonées, polaires ou apolaires, ainsi que leurs mélanges ; et de préférence parmi les huiles non volatiles polaires, en particulier choisie parmi les alcools en C10-C26, les huiles esters, les huiles végétales, seules ou en mélanges.
[0127] Par « huile hydrocarbonée », on entend une huile formée essentiellement, voire constituée, d'atomes de carbone et d'hydrogène, et éventuellement d'atomes d'oxygène, d'azote, et ne contenant pas d'atome de silicium ou de fluor. L'huile hydrocarbonée est donc distincte d'une huile siliconée et d'une huile fluorée. Par « huile siliconée », on entend au sens de l'invention, une huile comprenant au moins un atome de silicium, et notamment au moins un groupe Si-O. Par non volatile, on désigne des huiles dont la pression de vapeur est inférieure à 2,66 Pa, de préférence inférieure à 0,13 Pa (mesure selon la norme OCDE 104 du 27/07/95).
[0128] Huiles hvdrocarbonées non volatiles polaires
[0129] De préférence, l’émulsion huile-dans-eau selon l'invention comprend au moins une huile non volatile hydrocarbonée polaire. Cette huile hydrocarbonée peut contenir des groupes alcool, ester, éther, acide carboxylique, amine et/ou amide. De préférence, l'huile hydrocarbonée est exempte d'hétéroatomes tels que l'azote, le soufre et le phosphore. Dans le cas présent, l'huile hydrocarbonée non volatile polaire comprend au moins un atome d'oxygène. En particulier, cette huile non volatile hydrocarbonée polaire comprend au moins une fonction alcool (il s'agit alors d'une « huile alcool ») ou au moins une fonction ester (il s'agit alors d'une « huile ester »). Les huiles esters pouvant être utilisées dans l’émulsion huile-dans- eau selon l'invention peuvent notamment être hydroxylées. Ainsi, l’émulsion huile- dans-eau comprend une ou plusieurs huiles non volatiles hydrocarbonées polaires, en particulier choisies parmi :
(1) les alcools en C10-C26, de préférence les monoalcools : les alcools en C10- C26 sont saturés ou non, ramifiés ou non, et comprennent de 10 à 26 atomes de carbone, de préférence de 14 à 24 atomes de carbone. A titre d'exemples d'alcools gras pouvant être utilisés selon l'invention, on peut citer les alcools gras linéaires ou ramifiés, d'origine synthétique, ou encore naturelle comme par exemple les alcools provenant de matières végétales (coprah, palmiste, palme...) ou animales (suif...). Bien entendu, d'autres alcools à longue chaîne peuvent également être utilisés, comme par exemple les éther-alcools ou bien encore les alcools dits de Guerbet. Enfin, on peut également utiliser certaines coupes plus ou moins longues d'alcools d'origine naturelle, comme par exemple coco (C12 à C16) ou suif (C16 à C18) ou des composés type diols ou cholestérol. A titre d'exemples particuliers d'alcools gras utilisables à titre préféré, on peut notamment citer l'alcool laurique, isostéarylique, oléique, le 2-butyloctanol, le 2-undécyl pentadécanol, l'alcool 2-hexyldécylique, l'alcool isocétylique, l'octyldodécanol et leurs mélanges. Selon un mode de réalisation avantageux de l'invention, l'alcool est choisi parmi l'octyldodécanol.
(2) les monoesters, les diesters, les triesters, optionnellement hydroxylés, d'un acide mono ou polycarboxylique en C2-C8 et d'un alcool en C2-C8. En particulier :
(2.1) les monoesters d'un acide carboxylique en C2-C8 et d'un alcool en C2-C8, optionnellement hydroxylés,
(2.2) les diester d'un diacide carboxylique en C2-C8 et d'un alcool en C2-C8, optionnellement hydroxylés ; tels que le diisopropyl adipate, le diéthyl-2 hexyl adipate, le dibutyl adipate, le succinate de 2-diéthyl-hexyle,
(2.3) les triesters d'un triacide carboxylique en C2-C8 et d'un alcool en C2-C8, optionnellement hydroxylés, tels que les esters d'acide citrique, tels que le trioctyle citrate, triéthylcitrate, l'acétyltributyl citrate, le tributyl citrate.
(3) les esters d'un polyol en C2-C8 et d'un ou plusieurs acides carboxyliques en C2-C8 : tels que les diesters de glycol et de monoacides, tels que le diheptanoate de néopentylglycol, ou les triesters de glycol et de monoacides tel que la triacétine.
(4) les huiles ester, en particulier ayant entre 17 et 70 atomes de carbone : à titre d'exemples, on peut citer les mono-, di- ou tri- esters. Les huiles esters peuvent être hydroxylées ou non. L'huile ester non volatile peut être choisie par exemple parmi :
(4.1) les monoesters comprenant entre 17 et 40 atomes de carbone au total, en particulier les monoesters, de formule R1-COO-R2 dans laquelle R1 représente le reste d'un acide gras linéaire ou ramifié ou aromatique comportant de 4 à 40 atomes de carbone, saturé ou non, et R2 représente une chaîne hydrocarbonée notamment ramifiée contenant de 3 à 40 atomes de carbone à condition que R1+R2 soit supérieur ou égal à 17, comme par exemple l'huile de Purcellin (octanoate de cétostéaryle), l'isononanoate d'isononyle, le benzoate d'alcool en C12 à C15, le palmitate d'éthyl 2-hexyle, le néopentanoate d'octyledodécyle, le stéarate d'octyl-2 dodécyle, l'érucate d'octyl-2 dodécyle, l'isostéarate d'isostéaryle, le benzoate d'octyl-2 dodécyle, des octanoates, décanoates ou ricinoléates d'alcools ou de polyalcools, le myristate d'isopropyle, le palmitate d'isopropyle, le stéarate de butyle, le laurate d'hexyle, le palmitate de 2-éthyl-hexyle, le laurate de 2-hexyl-décyle, le palmitate de 2-octyl décyle, le myristate de 2-octyldodécyle. De préférence, il s'agit des esters de formule R1-COO-R2 dans laquelle R1 représente le reste d'un acide gras linéaire ou ramifié comportant de 4 à 40 atomes de carbone et R2 représente une chaîne hydrocarbonée notamment ramifiée contenant de 3 à 40 atomes de carbone, R1 et R2 étant 10 tels que R1+R2 soit supérieur ou égal à 17. Encore plus particulièrement, l'ester comprend entre 17 et 40 atomes de carbone au total. A titre de monoesters préférés, on peut citer l'isononanoate d'isononyle, le palmitate d'isopropyle, l'érucate d'oleyle et/ou le néopentanoate d'octyl-2-docécyle.
(4.2) les monoesters d'acide gras, en particulier de 18 à 22 atomes de carbone, et notamment d'acide oléique, d'acide laurique, d'acide stéarique, et de diols, comme le monostéarate de propylène glycol.
(4.3) les diesters, notamment comprenant entre 18 et 60 atomes de carbone au total, en particulier entre 18 et 50 atomes de carbone au total. On peut notamment utiliser les diesters de diacide carboxylique et de monoalcools, tel que de préférence le diisostéaryle malate ; ou les diesters de monoacide carboxylique et de dialcools, tels que le 1,3-propanediyl ester d’acide octanoïque (ou propanediol dicaprylate), vendu sous le nom DUB ZENOAT par la société Stéarinerie Dubois ; ou les diesters de glycol et de monoacides carboxyliques, tels que le diheptanoate de néopentylglycol, le dioctanoate de propylène glycol, le diisononanoate de diéthylèneglycol, ou le polyglycéryle-2 diisostéarate (notamment tel que le composé vendu sous la référence commerciale DERMOL DGDIS par la société Alzo) ;
(4.4) les monoesters et les diesters hydroxylés, de préférence ayant un nombre total de carbone allant de 18 à 70, comme le polyglycéryl-3 diisostéarate, le lactate d'isostéaryle, l'octylhydroxystéarate,1'hydroxystéarate d' octyldodécyle, le malate de diisostéaryle, le stéarate de glycérine;
(4.5) les triesters, notamment comprenant entre 35 et 70 atomes de carbone au total, en particulier tel que les triesters de triacide carboxylique, tels que le triisostéaryle citrate, ou le tridécyl trimellitate, ou les triesters de glycol et de monoacides carboxyliques tel que le tri isostéarate de polyglycérol-2 ;
(4.6) les tétraesters, notamment ayant un nombre total de carbone allant de 35 à 70, tel que les tétraesters de penthaerythritol ou de polyglycerol et d'un monoacide carboxylique, par exemple tels que le tétrapélargonate de pentaérythrityle, le pentaerythrityle de tetraisostéarate, le tétraisononanoate de pentaérythrityle, le tri décyl-2 tétradécanoate de glycéryle, le tétraisostéarate de polyglycéryle-2 ou encore le tétra décyl-2 tétradécanoate de pentaérythrityle ;
(4.7) les polyesters obtenus par condensation de dimère et/ou trimère d'acide gras insaturé et de diol tels que ceux décrits dans la demande de brevet FR 0853634, tels qu'en particulier de l'acide dilinoléique et du 1,4- butanediol. On peut notamment citer à ce titre le polymère commercialisé par Biosynthis sous la dénomination Viscoplast 14436H (nom INCI : dilinoleic acid/butanediol copolymer), ou encore les copolymères de polyols et de dimères diacides, et leurs esters, tels que le Hailucent ISDA ;
(4.8) les esters et polyesters de dimère diol et d'acide mono- ou dicarboxylique, tels que les esters de dimère diol et d'acide gras et les esters de dimère diols et de dimère diacide carboxylique, en particulier pouvant être obtenus à partir d'un dimère diacide carboxylique dérivé en particulier de la dimérisation d'un acide gras insaturé notamment en C8 à C34, notamment en C12 à C22, en particulier en C16 à C20, et plus particulièrement en C18, tels que les esters de diacides dilinoléiques et de dimères diols dilinoléiques, par exemple tels que ceux commercialisés par la société NIPPON FINE CFIEMICAL sous la dénomination commerciale LUSPLAN DD-DA5® et DD-DA7®;
(4.9) les polyesters résultant de l'estérification d'au moins un triglycéride d'acide(s) carboxylique(s) hydroxylé(s) par un acide monocarboxylique aliphatique et par un acide dicarboxylique aliphatique, éventuellement insaturé comme l'huile de ricin d'acide succinique et d'acide isostéarique commercialisée sous la référence Zénigloss parZénitech ;
(4.10) les huiles hydrocarbonées végétales telles que les triglycérides d'acides gras (liquides à température ambiante), notamment d'acides gras ayant de 7 à 40 atomes de carbone, tels que les triglycérides des acides heptanoïque ou octanoïque, en particulier, on peut citer les triglycérides saturés tels que le caprylic/capric triglycéride et leurs mélanges, par exemple tel que celui commercialisé sous la référence Myritol 318 de Cognis, le triheptanoate de glycéryle, le trioctanoate de glycérine, les triglycérides d'acide en C18-36 tels que ceux commercialisés sous la référence DUB TGI 24 commercialisé par Stéarineries Dubois), l'huile de jojoba l'huile de macadamia, l'huile de noyau d'abricot, ainsi que les triglycérides insaturés tels que l'huile de ricin, l'huile d'olive, l'huile de ximénia, l'huile de pracaxi ; et les autres huiles hydrocarbonées végétales telles que l’huile de graines de Camélia du Japon, l'huile d'avocat, l'huile de camélias, l’huile de noisette, l’huile de tsubaki, l'huile de noix de cajou, l'huile d’argan, l'huile de soja, l'huile de pépins de raisin, l'huile de sésame, l'huile de mais, l’huile de germes de blé, l'huile de colza, l'huile de tournesol, l'huile de coton, l'huile d'arachide.
(4.11) et leurs mélanges, comme par exemple les huiles constituées de mélange de monoesters d’acide gras en C8-C10 et d’alcools gras en C12-C18, telles que le MIGLYOL Coco 810 de IOI Oleo GmbH (nom INCI : coco-Capyrlate/Caprate).
[0130] Dans un mode de réalisation particulier de l’invention, l’émulsion huile- dans-eau ne comprend pas d’huile végétale.
[0131] Dans un mode de réalisation particulier de l’invention, l’émulsion huile- dans-eau ne comprend pas d’huile de canola.
[0132] De préférence, la ou les huiles hydrocarbonées non volatiles polaires, sont choisies parmi les monoalcools en C10-C26, les huiles esters, et en particulier les monoesters comprenant au moins 17 atomes de carbone au total, les diesters, hydroxylés ou non, comprenant au moins 18 atomes de carbone au total, les triesters, notamment ayant au moins 35 atomes de carbone, les tétraesters, notamment ayant au moins 35 atomes de carbone, les huiles hydrocarbonées végétales, ainsi que leurs mélanges.
[0133] Huiles non volatiles hvdrocarbonées apolaires
[0134] En ce qui concerne les huiles non volatiles apolaires, on peut citer tout particulièrement l'huile de paraffine, le squalane, le pentadecane, le nonadecane l’eicosane, l’isoeicosane, les polybutènes, hydrogénés ou non, les polyisobutènes hydrogénés ou non, les polydécènes hydrogénés ou non, les copolymères décène/butène, les copolymères polybutène/polyisobutène, ainsi que leurs mélanges. Un exemple de mélange d’huiles non volatiles hydrocarbonées apolaires est le produit Emogreen L15 vendu par Seppic, qui est un mélange d’alcanes en C15-C19.
[0135] Huiles non volatiles siliconées
[0136] En ce qui concerne les huiles non volatiles siliconées, on peut citer par exemple les huiles siliconées non volatiles non phénylées, comme par exemples les polydimethylsiloxanes. [0137] On peut également citer les huiles siliconées phénylées, comme par exemple la diphenyl dimethicone, la phenyl trimethicone, la trimethylsiloxyphenyl dimethicone, la diphenylsiloxy phenyl trimethicone, le trimethyl pentaphenyl trisiloxane, ou le tetramethyl tetraphenyl trisiloxane, ainsi que leurs mélanges. Avantageusement, l'huile non volatile siliconée ne comprend pas de groupement oxyalkyléné(s) en C2-C3 (oxyéthyléné, oxypropyléné), ni de groupement glycérolé(s).
[0138] Conformément à un mode de réalisation particulier de l'invention, l'huile non volatile est choisie parmi les huiles non volatiles polaires, en particulier choisie parmi les alcools en C10-C26, les huiles esters, les huiles végétales, seules ou en mélanges. Ainsi, comme indiqué auparavant, l’émulsion huile-dans-eau comprend au moins un alcool en C10-C26, de préférence en C14-C24. Le pourcentage massique en huiles non volatiles représente plus particulièrement de 4 à 65 % en poids, de préférence de 5% à 60%, plus préférentiellement de 10 à 30 % en poids, par rapport au poids de l’émulsion huile-dans-eau.
[0139] Huiles volatiles
[0140] L’émulsion huile-dans-eau selon l'invention peut éventuellement comprendre au moins une huile volatile. Par « huile volatile », on désigne, au sens de l'invention, des huiles ayant notamment une pression de vapeur non nulle, à température ambiante et pression atmosphérique, notamment ayant une pression de vapeur allant de 2,66 Pa à 40000 Pa), en particulier allant de 2,66 Pa à 13000 Pa, et plus particulièrement allant de 2,66 Pa à 1 300 Pa. Les huiles volatiles peuvent être hydrocarbonées, ou siliconées.
[0141] On peut notamment citer parmi les huiles volatiles hydrocarbonées apolaires ayant de 8 à 16 atomes de carbone comme les alcanes ramifiés en C8- C16 tels que les iso-alcanes (appelées aussi isoparaffines) en C8-C16, l'isododécane, l'isodécane, l'isohexadécane et par exemple les huiles vendues sous les noms commerciaux d'Isopars ou de Permetyls. De préférence, l'huile volatile hydrocarbonée est choisie parmi les huiles volatiles hydrocarbonées ayant de 8 à 16 atomes de carbone et leurs mélanges, en particulier parmi l'isododécane, l'isodécane, l'isohexadécane, et est notamment l'isohexadécane. On peut également citer les alcanes linéaires volatils comprenant de 8 à 16 atomes de carbone, en particulier de 10 à 15 atomes de carbone, et plus particulièrement de 11 à 13 atomes de carbone, par exemple tels que le n-dodécane (C12) et le n- tétradécane (C14) vendus par Sasol respectivement sous les références PARAFOL 12-97 et PARAFOL 14-97, ainsi que leurs mélanges, le mélange undécane-tridécane, tel que le Cetiol Ultimate de BASF, les mélanges de n- undécane (CFI) et de n-tridécane (C13) obtenus aux exemples 1 et 2 de la demande WO 2008/155059 de la Société Cognis, et leurs mélanges, ainsi que les éthers ayant au maximum 16 atomes de carbone, comme par exemple le dicaprylylether.
[0142] Comme huiles volatiles siliconées, on peut citer les huiles volatiles siliconées linéaires telles que l'hexamethyldisiloxane, l'octamethyltrisiloxane, le decamethyltetrasiloxane, le tetradecamethylhexasiloxane, l'hexadecamethylheptasiloxane et le dodecaméthyl-pentasiloxane. Comme huiles volatiles siliconées cycliques, on peut citer l'hexamethylcyclotrisiloxane, l'octamethylcylotetrasiloxane, le decamethylcyclopenta-siloxane et le dodecamethylcyclohexasiloxane.
[0143] Avantageusement, si l’émulsion huile-dans-eau en comprend, la teneur en huile(s) volatile(s) est comprise entre 0,5 et 10 % en poids, ou entre 1 et 5 % en poids, par rapport au poids de l’émulsion huile-dans-eau.
[0144] Cires :
[0145] L’émulsion huile-dans-eau selon l'invention peut éventuellement comprendre au moins une cire siliconée, ou une cire hydrocarbonée, polaire ou apolaire. La cire considérée dans le cadre de la présente invention est d'une manière générale un composé lipophile solide à température ambiante (25°C), à changement d'état solide/liquide réversible, ayant un point de fusion en particulier supérieur ou égal à 30°C, plus particulièrement supérieur à 45°C. Avantageusement, le point de fusion est inférieur ou égal à 90°C, plus particulièrement inférieur ou égal à 80°C, et de préférence inférieur ou égal à 70°C. Le point de fusion d'un corps gras solide peut être mesuré à l'aide d'un calorimètre à balayage différentiel (DSC), par exemple le calorimètre vendu sous la dénomination « DSC Q100 » par la société TA Instruments avec le logiciel « TA Universal Analysis ». [0146] Le protocole de mesure est le suivant : Un échantillon de corps gras solide d'environ 5 mg est disposé dans un creuset "capsule hermétique en aluminium". L'échantillon est soumis à une première montée en température allant de 20°C à 120°C, à la vitesse de chauffe de 2°C/minute jusque 80°C, puis laissé à l'isotherme de 100 °C pendant 20 minutes, puis est refroidi de 120°C à 0°C à une vitesse de refroidissement de 2°C/minute, et enfin soumis à une deuxième montée en température allant de 0°C à 20°C à une vitesse de chauffe de 2°C/minute. La valeur de température de fusion du corps gras solide est la valeur du sommet du pic le plus endothermique de la courbe de fusion observé, représentant la variation de la différence de puissance absorbée en fonction de la température.
[0147] Cires hvdrocarbonées polaires
[0148] Plus particulièrement, la cire polaire est choisie parmi les cires hydrocarbonées esters, les cires hydrocarbonées alcools, les cires siliconées, ainsi que leurs mélanges. Par « cire hydrocarbonée », on entend une cire formée essentiellement, voire constituée, d'atomes de carbone et d'hydrogène, et éventuellement d'atomes d'oxygène, d'azote, et ne contenant pas d'atome de silicium ou de fluor. Elle peut contenir des groupes alcool, ester, éther, acide carboxylique, amine et/ou amide. Par « cire ester », on entend selon l'invention une cire comprenant au moins une fonction ester. Les cires esters peuvent en outre être hydroxylées. Par « cire alcool », on entend selon l'invention une cire comprenant au moins une fonction alcool, c'est-à-dire comprenant au moins un groupe hydroxyle (OH) libre. La cire alcool additionnelle ne comprend en particulier pas de fonction ester. Par « cire siliconée », on entend une cire comprenant au moins un atome de silicium, et notamment comprenant des groupes Si-O.
[0149] Cires esters :
[0150] On peut notamment utiliser en tant que cire ester :
[0151] i) les cires de formule R1-COO-R2 dans laquelle R1 et R2 représentent des chaînes aliphatiques linéaires, ramifiées ou cycliques dont le nombre d'atomes varie de 10 à 50, pouvant contenir un hétéroatome en particulier l'oxygène, et dont la température de point de fusion varie de 30°C à 120°C, de préférence de 30°C à 100°C. En particulier on peut utiliser comme cire ester un (hydroxystéaryloxy)stéarate d'alkyle en C20-C40 (le groupe alkyle comprenant de 20 à 40 atomes de carbone), seul ou en mélange ou un stéarate d'alkyle en C20- C40. De telles cires sont notamment vendues sous les dénominations «Kester Wax K 82 P® », «Hydroxypolyester K 82 P® », «Kester Wax K 80 P® », ou « KESTER WAX K82H » par la société KOSTER KEUNEN. On peut aussi utiliser des mélanges d'esters d'acides carboxyliques en C14-C18 et d'alcools comme les produits « Cetyl Ester Wax 814 » de la société KOSTER KEUNEN, « SP Crodamol MS MBAL », « Crodamol MS PA » de la société CRODA, « Miraceti » de la société LASERSON. On peut également utiliser un montanate (octacosanoate) de glycol et de butylène glycol tel que la cire LICOWAX KPS FLAKES (nom INCI : glycol montanate) commercialisée par la société Clariant.
[0152] ii) le tétrastéarate de di-(triméthylol-1 ,1 ,1 propane), vendu sous la dénomination de Hest 2T4S® par la société HETERENE.
[0153] iii) les cires diesters d'un diacide carboxylique de formule générale R3-(- OCO-R4-COO-R5), dans laquelle R3 et R5 sont identiques ou différents, de préférence identiques et représentent un groupe alkyle en C4-C30 (groupe alkyle comprenant de 4 à 30 atomes 35 de carbone) et R4 représente un groupe aliphatique en C4-C30 (groupe alkyle comprenant de 4 à 30 atomes de carbone) linéaire ou ramifié et pouvant contenir ou non une ou plusieurs insaturations. De préférence, le groupe aliphatique en C4-C30 est linéaire et insaturé.
[0154] iv) les cires obtenues par hydrogénation catalytique d'huiles animales ou végétales ayant notamment des chaînes grasses, linéaires ou ramifiées, en C8- C32, par exemple telles que l'huile de jojoba hydrogénée, l'huile de tournesol hydrogénée, l'huile de ricin hydrogénée, l'huile de coprah hydrogénée, ainsi que les cires obtenues par hydrogénation d'huile de ricin estérifiée avec l'alcool cétylique, telles que celles vendues sous les dénominations de Phytowax ricin 16L64® et 22L73® par la société SOPHIM. De telles cires sont décrites dans la demande FR-A-2792190. Comme cires obtenues par hydrogénation d'huile d'olive estérifiée avec l'alcool stéarylique, on peut citer celles vendues sous la dénomination « PFIYTOWAX Olive 18 L 57 ».
[0155] v) les cires d'origine animale ou végétale, comme la cire d'abeille, la cire d'abeille synthétique, la cire de carnauba, la cire de candellila, la cire de lanoline, la cire de son de riz, la cire d'Ouricury, la cire d'Alfa, la cire de berry, la cire de shellac, la cire de fibres de liège, la cire de canne à sucre, la cire du Japon, la cire de sumac, la cire de montan, les cires d'Orange et de Citron, la cire de Laurier, la cire de Jojoba hydrogénée, la cire de tournesol, en particulier raffinée.
[0156] vi) On peut également citer les cires hydrocarbonées, polyoxyalkylénées ou polyglycérolées, naturelles ou synthétiques, d'origine animale ou végétale ; le nombre de motifs oxyalkylénés (en C2-C4) peut varier de 2 à 100, le nombre de motifs glycérolés peut varier de 1 à 20. A titre d'exemples, on peut citer les cires d'abeille polyoxyéthylénées, comme la PEG-6 beeswax, la PEG-8 beeswax ; les cires de carnauba polyoxyéthylénées, comme la PEG-12 carnauba ; les cires de lanoline, hydrogénées ou non, polyoxyéthénées ou polyoxypropylénées, comme la PEG-30 lanolin, la PEG-75 lanolin ; la PPG-5 lanoline wax glyceride ; les cires d'abeille polyglycérolées, notamment la polyglyceryl-3 Beewax, le mélange Acacia Decurrens/Jojoba/Sunflower Seed Wax/Polyglyceryl-3 Esters, les cires végétales polyglycérolées telles que les cires de mimosa, jojoba, tournesol, et leurs mélanges (Acacia Decurrens/Jojoba/Sunflower Seed Wax Polyglyceryl-3 Esters.
[0157] vii) Les cires correspondant aux esters partiels ou totaux, de préférence totaux, d'un acide carboxylique en C16-C30, saturé, éventuellement hydroxylé, avec le glycérol. Par esters totaux, on entend que toutes les fonctions hydroxylé du glycérol sont estérifiées. A titre d'exemple, on peut citer la trihydroxystearine (ou trihydroxystéarate de glycéryle), la tristéarine (ou tristéarate de glycéryle), la tribéhénine (ou tribéhénate de glycéryle), seuls ou en mélange. Parmi des composés convenables, on peut citer les triesters de glycérol et d'acide 12- hydroxystéarique, ou d'huile de ricin hydrogénée, comme par exemple la Thixcin R, la Thixcin E, commercialisés par Elementis Specialties.
[0158] viii) ainsi que leurs mélanges.
[0159] Cires alcools
[0160] A titre de cire alcool, on peut citer les alcools, de préférence linéaires, de préférence saturés, comprenant de 16 à 60 atomes de carbone, dont le point de fusion est compris entre 25°C et 90°C. A titre d'exemples de cire alcool, on peut citer l'alcool stéarique, l'alcool cétylique, l'alcool myristique, l'alcool palmitique, l'alcool béhénique, l'alcool érucique, l'alcool arachidylique, ou leurs mélanges. [0161] Cires hvdrocarbonées apolaires
[0162] L’émulsion huile-dans-eau peut éventuellement comprendre au moins une cire additionnelle choisie parmi les cires hydrocarbonées apolaires. Par « cire hydrocarbonée apolaire », au sens de la présente invention, on entend une cire ne comprenant que des atomes de carbone ou d'hydrogène dans sa structure. En d'autres termes, une telle cire est exempte d'autres atomes, en particulier d'hétéroatomes tels que par exemple l'azote, l'oxygène, le silicium. A titre illustratif des cires apolaires convenant à l'invention, on peut notamment citer les cires hydrocarbonées comme les cires microcristallines, les cires de paraffines, l'ozokérite, les cires de polyméthylène, les cires de polyéthylène, les cires obtenues par la synthèse de Fischer-Tropsch, les microcires notamment de polyéthylène.
[0163] Cires siliconées
[0164] En tant que cire siliconée, on peut citer par exemple les mélanges comprenant un composé de type C30-45 Alkyldimethylsilyl Polypropylsilsesquioxane (nom INCI), par exemple le produit Dow Corning SW- 8005 C30 Resin Wax commercialisé par la société Dow Corning. On peut aussi citer les mélanges comprenant un composé du type C30-45 Alkyl Methicone (nom INCI), comme par exemple le produit Dow Corning® AMS-C30 Cosmetic Wax. On peut également citer la cire d'abeille siliconée. L’émulsion huile-dans-eau selon l'invention peut comprendre une teneur en cire(s), de préférence polaire(s), de préférence hydrocarbonée(s), comprise entre 0,5 et 10 % en poids, ou de 0,5 à 6 % en poids, ou de 1 à 4 % en poids, par rapport au poids de la composition.
[0165] Utilisation en cosmétique et produits cosmétiques
[0166] La composition solide objet de la présente demande peut être utilisée pour préparer une émulsion huile-dans-eau industrielle, ou alimentaire, ou pharmaceutique, ou dermatologique, ou cosmétique. Préférentiellement, la composition solide permet de préparer une émulsion huile-dans-eau, et plus préférentiellement une émulsion à texture à transformation.
[0167] Selon un mode de réalisation, la composition solide est utilisée pour préparer une émulsion huile-dans-huile qui est un produit cosmétique, choisi parmi les produits de soin de la peau, ou les produits de soin ou de coloration des cheveux, ou les produits de soin buccal, les produits d’hygiène, ou les produits de maquillage, ou un parfum. Préférentiellement, la composition solide permet de préparer une émulsion cosmétique huile-dans-eau à texture à transformation.
[0168] Procédé de préparation d’une émulsion huile-dans-eau
[0169] Le procédé de préparation d’une émulsion huile-dans-eau objet de la présente demande comprend les étapes :
- de dispersion et/ou dissolution d’une composition solide objet de la présente demande dans une phase aqueuse,
- émulsification de la phase aqueuse obtenue précédemment avec une phase huile.
[0170] Selon un mode de réalisation, le procédé comprend une étape d’émulsification qui est faite à une température allant de 10°C à 90°C, ou à une température allant de 15°C à 50°C, ou à une température allant de 18°C à 35°C, ou à une température allant de 18°C à 25°C.
[0171] L’homme de l’art pourra utiliser n’importe quelle technique d’émulsification, notamment :
- Dispersion de la quantité requise de composition solide dans de l’eau à 20°C sous agitation à 1000 rpm pendant 15 min,
- Ajout de la masse d’huile sous agitation à 2500-3000 rpm pendant 2 minutes
- Maintien ensuite sous agitation à 3000 rpm pendant 30 minutes.
[0172] Bénéfices de la composition solide, et de l’émulsion obtenue avec, selon l’invention :
[0173] La composition solide objet de la présente demande permet de préparer des émulsions huile-dans-eau avec des textures en pot très variées selon la quantité mise en œuvre dans ladite émulsion. Par « texture en pot », on entend notamment l’apparence et la viscosité dans un contenant, par exemple un pot ou un flacon, avant l’application sur la peau. Utilisée à un pourcentage massique faible, soit inférieur ou égal à 2%, ou 1%, par rapport au poids total d’émulsion, la composition solide donne à l’émulsion une texture fluide, et permet ainsi de préparer une émulsion se présentant sous la forme d’un lait. Utilisée à un pourcentage massique élevé, soit supérieur ou égal à 4%, ou 5%, par rapport au poids total d’émulsion, la composition solide donne à l’émulsion une texture épaisse, et permet ainsi de préparer une crème épaisse. Pour des pourcentages massiques intermédiaires, allant de 2% à 4%, la texture de l’émulsion sera celle d’une crème légèrement fluide à légèrement épaisse. Quel que soit le pourcentage massique de mise en œuvre dans l’émulsion, la composition solide confère à l’émulsion une apparence brillante.
[0174] La composition solide objet de la présente demande permet aussi de préparer une émulsion huile-dans-eau présentant une texture à transformation. Par « texture à transformation », on entend une émulsion qui présente une texture en application sur la peau, notamment sous contrainte de cisaillement, différente de la texture en pot, notamment une texture plus fluide, et/ou une texture à la fois aqueuse et huileuse. Lorsque la texture en pot est celle d’une crème épaisse, la texture obtenue par application par étalement sur la peau deviendra une texture fluide, et pourra aussi présenter un ressenti d’un mélange d’une texture aqueuse et d’une texture huileuse.
[0175] Sans être liée par une théorie, la demanderesse estime que cette texture à transformation est permise par un phénomène dit de « quick-break », c’est-à- dire de cassage rapide de l’émulsion sous contrainte de cisaillement sur la peau, avec la nouveauté que ce quick-break est en eau et en huile, c’est-à-dire que le ressenti sur la peau est à la fois celui d’une phase aqueuse et celui d’une phase huileuse. La composition solide objet de la présente demande présente ainsi l’avantage d’être une composition d’origine naturelle permettant de préparer des émulsions huile-dans-eau présentant un quick-break en eau et en huile.
[0176] De plus, les émulsions huile-dans-eau préparées avec la composition solide objet de la présente demande s’étalent sur la peau aisément et de manière homogène, et après pénétration de l’émulsion huile-dans-eau, la sensation de collant est faible, voire absente. Ainsi, pour des émulsions comportant des pourcentages massiques en huile de moyen à faible, la composition solide objet de la demande permet de préparer une émulsion donnant un touché riche. Par pourcentage massique en huile moyen, on entend un pourcentage massique allant de 60% à 20%, ou de 50% à 25%, par rapport au poids total de l’émulsion. Par pourcentage massique en huile faible, on entend un pourcentage massique allant de 20% à 1%, ou de 15% à 2,5%, ou de 10% à 5%, par rapport au poids total de l’émulsion.
[0177] Les émulsions huile-dans-eau préparées avec la composition solide objet de la présente demande ont une bonne compatibilité avec les tensioactifs anioniques, les agents de conservations, les sels, l’éthanol et les pigments. En présence de ces ingrédients, l’émulsion reste stable, et sa texture reste inchangée.
Brève description des Figures
[0178] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture des Figures annexées.
Fig. 1
[0179] [Fig. 1] représente illustration de la texture à transformation et du « quick- break » .
Exemples [0180] Exemple 1 : préparation d’une composition solide selon l’invention
[0181] On prépare des compositions solides selon l’invention en mélangeant à sec les poudres du tableau 1 dans les proportions massiques indiquées.
[0182] [Tableau 1]
[0183] Le Cleargum® CO 01 peut être remplacé par du Cleargum® CO 03 et du Cleargum®CO A1 dans les mêmes quantités.
[0184] Exemple 2 : préparation d’émulsions d’huile de tournesol et leur stabilité [0185] On prépare des émulions huile-dans-eau à partir d’huile de tournesol et en utilisant la composition solide émulsifiante CS1 de l’exemple 1 à deux proportions massiques, 2%m et 5%m par rapport au poids total d’émulsion, et pour des proportions massiques d’huile allant de 10 %m à 70 %m par rapport au poids total d’émulsion, selon les compositions du tableau 2.
[0186] [Tableau 2]
[0187] Pour préparer chaque émulsion, on disperse la quantité requise de composition solide émulsifiante CS1 dans la masse d’eau requise au total à 20°C sous agitation à 1000 rpm pendant 15 min. Puis on ajoute la masse d’huile sous agitation à 2500-3000 rpm pendant 2 minutes. On maintient ensuite sous agitation à 3000 rpm pendant 30 minutes. On laisse ensuite l’émulsion reposer à 20°C pendant 48 heures.
[0188] On mesure les viscosités Brookfield après la période de repose de 48 heures. Les résultats sont présentés dans le tableau 3. [0189] [Tableau 3]
[0190] Grâce à la composition CS1, en faisant varier la proportion massique en huile entre 10% et 70%, on peut préparer des émulsions ayant des viscosités allant de valeurs faibles, soit environ 3000 mPa.s et ayant ainsi la forme d’un lait fluide, jusqu’à des valeurs élevées, soit environ 72000 mPa.s et ayant alors la forme d’une crème épaisse. Des valeurs intermédiaires de viscosité sont aussi accessibles, par exemple des valeurs de 12000 à 16000 mPa.s, donnant des émulsions sous la forme de crème fluide à moyennement épaisse.
[0191] On poursuit la conservation des émulsions à 20°C, et on remesure la viscosité après une semaine, puis après un mois de conservation.
[0192] [Tableau 4]
[0193] [Tableau 5] [0194] Pour les deux valeurs de pourcentage massique de composition CS1 mis en œuvre, les viscosités des émulsions obtenues sont stables sur une durée d’au moins un mois (instable = +/- de 25% de variation entre une semaine et un mois)
[0195] Exemple 3 : préparation d’émulsion avec des huiles de différentes natures [0196] On réalise des émulsions huile-dans-eau à des pourcentages massiques en huile de 10%, 30% et 60% selon le protocole de l’exemple 2, en mettant en œuvre un pourcentage massique en composition CS1 de 3%, et en utilisant une seule huile par émulsion, pour les différentes huiles du tableau 6. [0197] [Tableau 6]
[0198] Chaque émulsion est ensuite évaluée par une mesure de viscosité Brookfield (à 20°C à 20 rpm pendant 1 minute), et par une mesure des tailles de particules au microscope optique, et par une évaluation de la couleur de l’émulsion.
[0199] [Tableau 7]
[0200] La composition CS1 a permis d’obtenir des émulsions blanches avec tous les types d’huile testés, avec des viscosités allant d’environ 6500-8000 mPa.s, correspondant à une texture de crème fluide, à environ 80000-85000 mPa.s, correspondant alors une texture épaisse.
[0201] On a poursuivi les mesures de viscosité Brookfield (à 20°C à 20 rpm pendant 1 minute) des émulsions à 22°C pendant 3 mois (tableau 7 bis), et à 50°C pendant 1 mois (tableau 7 ter).
[0202] [Tableau 7 bis]
(H3), la variation moyenne des viscosités Brookfield au cours des stockages à 22°C et 50°C est de 19% pour des pourcentages massiques en huile de 10% à 30%, et de 38% pour un pourcentage massique en huile de 60%. [0205] Pour la cyclopentasiloxane - diméthicone (H4), la dimethicone 50 (H5), la cyclopentasiloxane (H6), l’huile de paraffine (H7) et l’isohexadecane (H8), la variation moyenne des viscosités Brookfield au cours des stockages à 22°C et 50°C est de 27% pour des pourcentages massiques en huile de 10% à 30%, et de 44% pour un pourcentage massique en huile de 60%. [0206] Exemple 4 : stabilité des émulsions en fonction du pH
[0207] On prépare des émulsions selon le protocole de l’exemple 2, en utilisant les pourcentages massiques suivants : 5% de composition CS1, 20% d’huile « Helianthus annuus seed oil », 75% d’eau déminéralisée. On ajuste le pH à une valeur cible correspondant aux valeurs présentées dans le tableau 8, allant de 2,6 à 12, avec de l’acide citrique en solution ou de la soude diluée. On mesure la viscosité Brookfield à 20 rpm après 24 heures, puis 7 jours, de stockage à 22°C.
[0208] [Tableau 8]
[0209] à 7,5-8, les viscosités des émulsions préparées sont suffisamment stables pour qualifier ces émulsions de stables. [0210] On a ensuite étudié la stabilité de la viscosité Brookfield (à 20°C à 20 rpm pendant 1 minute) au cours du stockage à des pH de 4, 4,7 et 6,5 sur des durées de 48 heures et 3 mois à 22°C, et de 1 mois à 50°C (tableau 8 bis).
[0211] [Tableau 8 bis] [0212] On observe qu’à des valeurs de pH inférieures ou égales à 6,5 et supérieures ou égales à 4, les émulsions ont une viscosité Brookfield très stable lors d’un stockage à 22°C durant 3 mois et à 50°C durant 1 mois.
[0213] Exemple 5 : stabilité des émulsions en fonction de la teneur en sel
[0214] Selon le protocole de l’exemple 2, on prépare trois émulsions à 5% en composition CS1, 20% en huile « Helianthus annuus seed oil » et 75% d’eau déminéralisée. L’une des émulsions constitue le témoin. Une autre est additionnée de 2% de chlorure de sodium. La dernière est additionnée de 2% de chlorure de calcium. On caractérise les émulsions obtenues après un stockage de 48 heures à 20°C (tableau 9), 3 mois à 20°C (tableau 9 bis), et après 1 mois à 50°C (tableau 10), en mesurant la viscosité Brookfield (20°C, 20 rpm), en évaluant la taille des particules au microscope optique, et la couleur des émulsions.
[0215] [Tableau 9]
[0217] Les résultats des tableaux 9, 9 bis et 10 montrent que l’addition de sel à 2% n’altère pas la capacité à émulsionner, ni la qualité et la stabilité des émulsions obtenues.
[0218] [Tableau 9 bis] [0219] Exemple 6 : stabilité des émulsions en fonction de la teneur en surfactant
[0220] Selon le protocole de l’exemple 2, on prépare quatre émulsions à 3% en composition CS1, 35% en huile « Helianthus annuus seed oil », entre 0% et 20% de mélange tensioactif vendu sous le nom « Texapon WW100 » par BASF, et la « quantité suffisante pour 100% » d’eau déminéralisée. On caractérise les émulsions obtenues après un stockage de 48 heures à 20°C (tableau 11), en évaluant la taille des particules au microscope optique, et la couleur des émulsions.
[0221] [Tableau 11]
[0222] Les émulsions préparées avec la composition CS1 présentent une bonne tolérance à la présence du mélange de tensioactifs anioniques et non ioniques. Les viscosités sont abaissées mais demeurent acceptables. De plus les émulsions restent stables. [0223] [Tableau 11 bis]
[0224] On a poursuivi le stockage à 20°C jusqu’à une durée de 3 mois, et on a mis en place un stockage à 50°C sur une durée de 1 mois (tableau 11 bis). Pour des pourcentages massiques en Texapon WW100 inférieurs ou égaux à 10%, on observe que la viscosité Brookfield varie de 5 % à 15 % durant le stockage à 20°C, ce qui est une faible variation, et de 18% à 28% à 50°C, ce qui est une variation notable. Les faibles variations de viscosité observées à 20°C n’ont aucun impact sur la texture des émulsions, qui reste inchangée par rapport à son état initial. Les variations plus notables à 50°C n’impactent toutefois pas la texture des émulsions de manière perceptible par l’utilisateur. [0225] Exemple 7 : compatibilité avec les pigments
[0226] On prépare des émulsions colorantes avec le pigment jaune « Unipure Yellow LC 182 HLC » de Sensient Cosmetic Technologies :
- soit en introduisant un pigment dans l’huile, puis en mettant en œuvre le Al protocole de l’exemple 2,
- soit en préparant une émulsion selon le protocole de l’exemple 2, puis en dispersant le pigment dans l’émulsion.
[0227] On applique ensuite la crème sur le dos de la main pour en évaluer la qualité de l’étalement, et l’homogénéité de la coloration (tableau 12).
[0228] [Tableau 12]
[0229] On constate que l’introduction du pigment dans l’émulsion déjà préparée donne de meilleurs résultats : la crème colorant s’étale mieux, et donne une couleur plus homogène. [0230] [Tableau 13]
CS1 pour la préparation d’émulsions colorantes permet d’obtenir des émulsions qui s’étalent bien, et dont l’homogénéité de coloration est bonne.
[0232] De bons résultats sont également obtenus à partir des compositions solides CS2, CS3 ou CS4.
[0233] On a préparé des émulsions colorantes avec la composition solide CS1 et avec différents colorants à des pourcentages massiques de 10% ou 20% (par rapport au poids de l’émulsion), et en introduisant le pigment de différentes manières : soit dans l’eau, soit dans l’huile, ou soit à la fin c’est-à-dire dans l’émulsion obtenue. On a mesuré la viscosité Brookfield suite à un stockage à 22°C durant 48 heures et 3 mois, et suite à stockage à 50°C durant 1 mois. Les résultats sont présentés dans les tableaux 13 bis et 13 ter. Le mobile de mesure de viscosité Brookfield est le SP6 à 20°C à 20 rpm pendant 1 minute.
[0234] [Tableau 13 bis] [0235] On observe que les émulsions colorantes avec les pigments du tableau 13 bis sont stables et ont des viscosités Brookfield qui varient sur des durées de 3 mois à 22°C et de 1 mois à 50°C mais sans impact perceptible sur la texture.
[0236] [Tableau 13 ter]
[0237] On observe que les émulsions colorantes avec les pigments du tableau 13 ter ont une viscosité Brookfield relativement stable à 22°C mais qui chute significativement à 50°C, donnant une crème plus fluide. Ces variations sont cependant peu d’impact sur l’émulsion, qui reste stable, et sur la dispersion des pigments, qui reste homogène, et sur l’étalement sur la peau, qui reste aussi homogène.
[0238] Exemple 8 : illustration de la texture à transformation
[0239] On prépare une crème à texture à transformation en utilisant la composition solide émulsifiante et texturante objet de la présente demande, selon la composition du tableau 14, en suivant le protocole ci-après.
[0240] [Tableau 14]
[0241] On disperse la composition solide CS1 dans l’eau à 20°C sous agitation à 1000 rpm avec une pale défloculatrice, jusqu’à ce la composition solide soit hydratée et devienne ainsi opalescente, ce qui requiert environ 5 à 10 minutes. A part, on mélange les ingrédients de la phase B à 20°C. Toujours à 20°C, on ajoute lentement, en environ 1 à 2 minutes, la phase B dans la phase A, tout en agitant à 2000-3000 rpm avec la pale défloculatrice, puis on maintient encore l’agitation pendant 10 minutes. [0242] Comme illustré sur la photographie A de la figure 1 , on obtient une crème blanche de « texture en pot » épaisse, présentant une viscosité Brookfield à 20°C à 20 rpm avec le mobile SP6, de 23000 à 27000 mPa.s. Cette crème est stable au moins un mois à 50°C. Lorsque l’on prélève de la crème et qu’on la pose sur la peau, la texture épaisse est conservée, comme illustrée sur la photographie B de la figure 1. Puis, lorsque l’on étale la crème sur la peau, en faisant des mouvements circulaires, qui développent un cisaillement, la texture de se transforme en un mélange de texture aqueuse et de texture huileuse, comme illustré sur la photographie C de la figure 1. Cette transformation semble être le résultat d’un phénomène dit de « quick-break » à la fois en eau et en huile. [0243] Selon la composition du tableau 15, on prépare une variante de la crème à texture à transformation précédente, en ajoutant des additifs cosmétiques, comme l’humectant isosorbide vendu sous le nom « Beauté by Roquette PO500 » par Roquette Frères, des conservateurs de type paraben, du parfum, et un actif cosmétique anti-âge, le tocophérol, vendu sous le nom « Covi-ox T-70 C » par BASF.
[0244] [Tableau 15]
[0245] On obtient une crème épaisse comme précédemment, tout aussi stable, et présentant aussi une texture à transformation avec un quick-break en eau et en huile.
[0246] Exemple 9 : compatibilité avec l’éthanol
[0247] Selon le protocole de l’exemple 2, on prépare 4 émulsions comprenant un pourcentage massique de 3% en composition CS1, 35% en huile « Flelianthus annuus seed oil » et « une quantité suffisante pour atteindre 100% » en eau déminéralisée. L’une des émulsions constitue le témoin. Une autre est additionnée de 5% en poids d’éthanol par rapport au poids total de l’émulsion. On caractérise les émulsions obtenues après un stockage de 48 heures et 3 mois à 20°C, et en parallèle après 1 mois à 50°C, en mesurant la viscosité Brookfield (20°C, 20 rpm). [0248] [Tableau 16]
[0249] On observe que l’on peut ajouter de 'éthanol à hauteur de 5% en poids par rapport au poids de l’émulsion et conserver une viscosité Brookfield proche de la viscosité initiale, et que cette viscosité est stable jusqu’à au moins 3 mois à 20°C et 1 mois à 50°C.
[0250] Exemple 10 : compatibilité avec des conservateurs
[0251] Selon le protocole de l’exemple 2, on prépare 4 émulsions comprenant un pourcentage massique de 3% en composition CS1, 35% en huile « Helianthus annuus seed oil » et « une quantité suffisante pour atteindre 100% » en eau déminéralisée. L’une des émulsions constitue le témoin. Les autres sont additionnées d’une dose de conservateur selon le tableau 17. La dose est exprimée en pourcentage massique, c’est-à-dire en % en poids de conservateur par rapport au poids total de l’émulsion. On caractérise les émulsions obtenues après un stockage de 48 heures et 3 mois à 20°C, et en parallèle après 1 mois à 50°C, en mesurant la viscosité Brookfield à 20°C et 20 rpm pendant 1 minute.
[0252] [Tableau 17]
[0253] On observe que les émulsions préparées avec la composition solide CS1 additivées de conservateurs ont une viscosité stable qui baisse légèrement lors du stockage à 22°C durant 3 mois et à 50°C durant 1 mois, mais qui reste suffisante pour conserver la texture initiale de la crème.
[0254] Exemple 11 : compatibilité avec le mode de préparation
[0255] On prépare des émulsions avec 3% en poids de composition solide CS1, 35% en poids d’huile « Helianthus annuus seed oil » et 62% en poids d’eau déminéralisée, selon 5 mode de préparation différents, afin d’évaluer la facilité avec laquelle l’émulsion peut être préparée grâce à une composition solide comme la CS1 :
[0256] - Mode de préparation « défloculeuse » : il s’agit d’un protocole de préparation identique à celui de l’exemple 2, dans lequel l’agitation est assurée par un mobile de type « turbine de dispersion » ou encore « turbine défloculeuse ».
[0257] - Mode de préparation « procédé classique » : il s’agit d’un protocole de préparation identique à celui de l’exemple 2, dans lequel l’agitation est assurée par un mobile de type « hélice marine ».
[0258] - Mode de préparation « procédé concentré » : il s’agit d’un protocole de préparation semblable à celui de l’exemple 2, mais dans lequel la moitié de la quantité d’eau totale nécessaire est utilisée pour faire l’émulsion avec toute la quantité d’huile nécessaire, pour obtenir une « émulsion concentrée », puis la moitié de quantité d’eau restante est ajoutée à l’émulsion concentrée pour la diluer et atteindre la composition finale souhaitée.
[0259] - Mode de préparation « rotor-stator » : il s’agit d’un protocole de préparation identique à celui de l’exemple 2, dans lequel l’agitation est assurée par un mobile de type rotor-stator.
[0260] - Mode de préparation « ultra-turrax® » : il s’agit d’un protocole de préparation identique à celui de l’exemple 2, dans lequel l’agitation est assurée par un mobile de type rotor-stator de modèle « ultra-turrax® » du fabricant IKA.
[0261] On caractérise les émulsions obtenues après un stockage de 48 heures et 3 mois à 20°C, et en parallèle après 1 mois à 50°C, en mesurant la viscosité Brookfield à 20°C et 20 rpm pendant 1 minute (tableau 18).
[0262] [Tableau 18]
[0263] On observe que les viscosités Brookfield des émulsions préparées par tous les modes de préparation testés sont stables.
[0264] Exemple 12 : mise en œuyre dans une crème de protection solaire
[0265] On a préparé une crème solaire par émulsification avec une composition solide CS1 selon la composition du tableau 19 en suivant le protocole de l’exemple 2, et en ajoutant la phase C à l’émulsion obtenue.
[0266] [Tableau 19]
[0267] Les indices de protection solaire ont été déterminés par des protocoles in- vitro par le laboratoire Helioscience selon le protocole suivant. Trois plaques de PMMA de type « Sunplate » ont été utilisées, et 4 mesures par plaques ont été faites. Sur chacune des plaques, on a déposé la crème préparée selon le tableau 19. On a soumis les plaques à une irradiation de 550 W/m2 pendant 30 minutes avec un simulateur solaire « ATLAS CPS+ ». Avant et après irradiation, et avant et après un bain dans de l’eau pour la résistance à l’eau, on a mesuré le niveau de photoprotection avec un spectrophotomètre « Kontron 933 » équipé d’une sphère d’intégration. Les résultats sont présentés dans le tableau 20.
[0268] [Tableau 20]
[0269] La composition CS1 a permis de préparer une crème solaire dont le niveau de protection solaire est « 50+ », et dont la résistance à l’eau est de 69%.

Claims

Revendications
[Revendication 1] Composition solide comprenant :
- au moins un émulsifiant amylacé ou d’origine amylacée,
- au moins un amidon épaississant,
- au moins une gomme d’origine microbienne,
- et au moins deux gommes végétales.
[Revendication 2] Composition solide selon la revendication précédente, caractérisée en ce que ledit au moins un émulsifiant amylacé ou d’origine amylacé est un amidon fonctionnalisé par au moins un groupement amphiphile choisi parmi un amidon granulaire octényl succinate, un amidon prégélatinisé modifié octényl succinate, un amidon gélatinisé modifié octényl succinate, une dextrine fonctionnalisée octényl succinate, une maltodextrine fonctionnalisée octényl succinate, ou leurs mélanges.
[Revendication 3] Composition solide selon l’une des revendications précédentes, caractérisée en ce que ledit au moins un amidon épaississant est choisi parmi les amidons stabilisés, préférentiellement les amidons acétylés, les amidons hydroxypropylés, les amidons hydroxyéthylés, ou plus préférentiellement parmi les amidons prégélatinisés et acétylés, ou les amidons prégélatinisés et hydroxypropylés, tout préférentiellement parmi les amidons prégélatinisés et acétylés, ou leurs mélanges.
[Revendication 4] Composition solide selon l’une des revendications précédentes, caractérisée en ce que ladite au moins une gomme d’origine microbienne choisie parmi la gomme de xanthane, la gomme gellane, la gomme de dextrane, la gomme de scléroglucane, la gomme de beta-glucane, ou leurs dérivés et mélanges.
[Revendication 5] Composition solide selon l’une des revendications précédentes, caractérisée en ce que lesdites au moins deux gommes végétales sont choisies parmi les galactomannanes, les glucomannanes, les galactannes, les alginates, préférentiellement parmi la gomme de guar, la gomme de tara, la gomme de caroube, la gomme de casse, la gomme de fenugrec, la gomme de konjac, la gomme arabique, la gomme adragante, la gomme karaya, et tout préférentiellement sont la gomme de guar et la gomme de tara.
[Revendication 6] Composition solide selon l’une des revendications précédentes, caractérisée en ce que les proportions massiques, par rapport au poids total de la composition, sont :
- de 20 % à 60 % en émulsifiant amylacé ou d’origine amylacée,
- de 20 % à 60 % en amidon épaississant,
- de 0,5 % à 10 % en gomme d’origine microbienne,
- de 2% à 45 % en gommes végétales.
[Revendication 7] Emulsion de type huile-dans-eau comprenant :
- au moins un émulsifiant amylacé ou d’origine amylacé,
- au moins un amidon épaississant,
- au moins une gomme d’origine microbienne,
- au moins deux gommes végétales,
- et au moins une huile.
[Revendication 8] Emulsion selon la revendication précédente caractérisée en ce que ledit au moins un émulsifiant amylacé ou d’origine amylacé est choisi parmi un amidon granulaire octényl succinate, une dextrine octényl succinate, un amidon gélatinisé modifié octényl succinate, une maltodextrine modifiée octényl succinate, ou leurs mélanges.
[Revendication 9] Emulsion selon l’une des revendications 7 à 8, caractérisée en ce que le au moins un émulsifiant amylacé ou d’origine amylacé, est un amidon octényl succinate.
[Revendication 10] Emulsion selon l’une des revendications 7 à 9, caractérisée en ce que ledit au moins un amidon épaississant est choisi parmi les amidons stabilisés, préférentiellement les amidons acétylés, les amidons hydroxypropylés, les amidons hydroxyéthylés, ou plus préférentiellement parmi les amidons prégélatinisés et acétylés, ou les amidons prégélatinisés et hydroxypropylés, tout préférentiellement parmi les amidons prégélatinisés et acétylés, ou leurs mélanges.
[Revendication 11] Emulsion selon l’une des revendications 7 à 10, caractérisée en ce que ladite au moins une gomme d’origine microbienne est choisie parmi la gomme de xanthane, la gomme gellane, la gomme de dextrane, la gomme de scléroglucane, la gomme de beta-glucane, ou leurs dérivés et mélanges.
[Revendication 12] Emulsion selon l’une des revendications 7 à 11, caractérisée en ce que lesdites au moins deux gommes végétales sont choisies parmi les galactomannanes, les glucomannanes, les galactannes, les alginates, préférentiellement parmi la gomme de guar, la gomme de tara, la gomme de caroube, la gomme de casse, la gomme de fenugrec, la gomme de konjac, la gomme arabique, la gomme adragante, la gomme karaya, et tout préférentiellement sont la gomme de guar et la gomme de tara.
[Revendication 13] Emulsion selon l’une des revendications 7 à 12, caractérisée en ce que ladite émulsion comprend une huile choisie parmi les huiles hydrocarbonées non volatiles polaires, les huiles non volatiles hydrocarbonées apolaires, les huiles volatiles, les cires.
[Revendication 14] Utilisation d’une composition solide selon l’une des revendications 1 à 6 pour préparer une émulsion huile-dans-eau, préférentiellement une émulsion huile-dans-eau à texture à transformation.
[Revendication 15] Utilisation d’une composition solide selon la revendication précédente, caractérisée en ce que l’émulsion huile-dans-huile est un produit de soin de la peau, ou un produit de soin ou de coloration des cheveux, ou un produit de soin buccal, un produit d’hygiène, ou un produit de maquillage, ou un parfum.
EP21716805.3A 2020-03-23 2021-03-23 Composition émulsifiante et texturante à base d'amidons et de gommes pour la cosmétique Pending EP4127050A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR2002819A FR3108328A1 (fr) 2020-03-23 2020-03-23 Composition émulsifiante et texturante à base d’amidons et de gommes pour la cosmétique
FR2012560 2020-12-02
PCT/FR2021/050484 WO2021191548A1 (fr) 2020-03-23 2021-03-23 Composition émulsifiante et texturante à base d'amidons et de gommes pour la cosmétique

Publications (1)

Publication Number Publication Date
EP4127050A1 true EP4127050A1 (fr) 2023-02-08

Family

ID=75396818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21716805.3A Pending EP4127050A1 (fr) 2020-03-23 2021-03-23 Composition émulsifiante et texturante à base d'amidons et de gommes pour la cosmétique

Country Status (7)

Country Link
US (1) US20230107458A1 (fr)
EP (1) EP4127050A1 (fr)
JP (1) JP2023533888A (fr)
KR (1) KR20230002458A (fr)
CN (1) CN115485327A (fr)
BR (1) BR112022018966A2 (fr)
WO (1) WO2021191548A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023064836A1 (fr) * 2021-10-14 2023-04-20 Cargill, Incorporated Mélange sous forme de pré-émulsion pour soins personnels
CN114848571B (zh) * 2022-04-26 2023-03-17 康柏利科技(苏州)有限公司 珍珠爽身粉以及制备方法
FR3146403A1 (fr) * 2023-03-09 2024-09-13 Roquette Freres Composition cosmétique solide apte à former une émulsion huile-dans-eau

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR853634A (fr) 1938-04-29 1940-03-23 Ericsson Telefon Ab L M Appareils de mesure
US2661349A (en) 1949-02-18 1953-12-01 Nat Starch Products Inc Polysaccharide derivatives of substituted dicarboxylic acids
FR2792190B1 (fr) 1999-04-16 2001-09-28 Sophim Procede de fabrication d'un emollient non gras a base de cires-esters
US20050208009A1 (en) * 2004-03-22 2005-09-22 Valerie Bonnardel Emulsifier
WO2008155059A2 (fr) 2007-06-19 2008-12-24 Cognis Ip Management Gmbh Mélanges d'hydrocarbures et leur utilisation
JP5723104B2 (ja) * 2010-03-25 2015-05-27 株式会社マンダム 皮膚用乳化組成物
JP6177138B2 (ja) 2011-12-06 2017-08-09 日清オイリオグループ株式会社 乳化液状調味料
EP3741217A1 (fr) * 2012-11-30 2020-11-25 Allied Blending & Ingredients Inc. Mélange sec amélioré pour produire un succédané de fromage
FR3024874B1 (fr) 2014-08-14 2016-09-02 Roquette Freres Copolymere de dextrine avec du styrene et un ester acrylique, son procede de fabrication et son utilisation pour le couchage papetier

Also Published As

Publication number Publication date
US20230107458A1 (en) 2023-04-06
CN115485327A (zh) 2022-12-16
KR20230002458A (ko) 2023-01-05
BR112022018966A2 (pt) 2022-12-13
JP2023533888A (ja) 2023-08-07
WO2021191548A1 (fr) 2021-09-30

Similar Documents

Publication Publication Date Title
EP4127050A1 (fr) Composition émulsifiante et texturante à base d&#39;amidons et de gommes pour la cosmétique
EP3185843B1 (fr) Composition gel/gel comprenant un filtre uv
FR3002448A1 (fr) Composition cosmetique de type gel
FR3045326A1 (fr) Composition a base d&#39;une phase aqueuse contenant une dispersion d&#39;un materiau composite anhydre
FR3002444A1 (fr) Composition cosmetique de type gel
FR3028758A1 (fr) Composition cosmetique de type gel/gel comprenant un phyllosilicate synthetique
FR3067934B1 (fr) Composition gelifiee comprenant une dispersion d&#39;agregats solides.
JPH04290809A (ja) 酵素的に枝切りされたスターチを含む化粧品
FR2940111A1 (fr) Kit de revetement des matieres keratiniques comprenant un polysaccharide et un agent de complexation ionique ou dative
FR2828645A1 (fr) Composition cosmetique capillaire contenant de la gomme xanthane, et procede pour sa preparation
FR2992170A1 (fr) Composition translucide comprenant des particules d&#39;aerogel de silice
WO2022129403A1 (fr) Composition comprenant des gélifiants aqueux, des tensioactifs et de l&#39;acide ascorbique
FR2972924A1 (fr) Composition cosmetique et dermatologique et leurs utilisations
FR3025075A1 (fr) Nouveau dispositif de soin et/ou maquillage comprenant une composition d’architecture gel/gel
FR3025103A1 (fr) Composition gel/gel comprenant un filtre uv
WO2024110067A1 (fr) Emulsion huile-dans-eau comprenant un systeme emulsifiant constitue d&#39;une cyclodextrine et d&#39;un emulsifiant d&#39;origine amylace
FR3108328A1 (fr) Composition émulsifiante et texturante à base d’amidons et de gommes pour la cosmétique
FR3076730A1 (fr) Agent cosmétique pour la mise en forme temporaire de fibres kératiniques comportant un agent filmogène
FR3082745A1 (fr) Emulsion eau-dans-huile comprenant un alkylpolyglycoside, des nacres et procede de maquillage et/ou de soin la mettant en œuvre
FR3067937A1 (fr) Composition gel-gel comprenant une cire a l&#39;etat cristallin.
JP2019108298A (ja) 穀物の発酵生成物及びヘクトライトを含むo/wエマルションの形態の組成物
WO2024183957A1 (fr) Composition cosmetique solide apte a former une emulsion huile-dans-eau
FR3104432A1 (fr) Composition aqueuse de traitement des fibres keratiniques comprenant une huile vegetale, une huile hydrocarbonnée, un tensioactif non ionique glycérolé, un polysaccharide et un solvant
FR3060382A1 (fr) Composition du type gel/gel comprenant une charge a effet flouteur et un pigment composite a base d’alumine non spherique, d’oxyde metallique et d’un agent de traitement de surface
FR2944458A1 (fr) Procede de fabrication d&#39;une emulsion huile-dans-eau par voie directe et indirecte a froid et a faible agitation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)