EP4100168A1 - Nozzle for spraying liquid in the form of mist - Google Patents

Nozzle for spraying liquid in the form of mist

Info

Publication number
EP4100168A1
EP4100168A1 EP21707351.9A EP21707351A EP4100168A1 EP 4100168 A1 EP4100168 A1 EP 4100168A1 EP 21707351 A EP21707351 A EP 21707351A EP 4100168 A1 EP4100168 A1 EP 4100168A1
Authority
EP
European Patent Office
Prior art keywords
fluid
nozzle
section
diameter
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21707351.9A
Other languages
German (de)
French (fr)
Inventor
Claire AUTHESSERRE
Mahutin AKLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eveon SAS
Original Assignee
Eveon SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eveon SAS filed Critical Eveon SAS
Publication of EP4100168A1 publication Critical patent/EP4100168A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3436Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a plane perpendicular to the outlet axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3426Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels emerging in the swirl chamber perpendicularly to the outlet axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3478Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet the liquid flowing at least two different courses before reaching the swirl chamber

Definitions

  • the present invention relates to a nozzle for a device for spraying a fluid in the form of a mist.
  • the device is operated manually or automatically using a mechanical pump, syringe pump, spring or electromechanical system, i.e. using a motor, to spray the fluid.
  • a mist spraying solution without the intervention of propellant also ensures uniform coverage of the area targeted by the sprayer, all with less fluid sprayed by volume, which saves money.
  • spraying in the form of a mist has a second advantage in terms of patient comfort during administration to sensitive or painful areas.
  • Application EP2570190 for example, relates to a spray nozzle for dispensing a fluid comprising a fluid chamber for receiving the fluid, at least one supply channel for supplying the fluid from the fluid chamber radially inwardly into a chamber. swirl chamber and an outlet channel with an inlet end facing the swirl chamber and an outlet end for discharging fluid to the environment of the spray nozzle.
  • the outlet channel of this invention narrows in the direction of fluid flow.
  • the present disclosure further relates to a sprayer comprising such a spray nozzle. This prior art represents insufficient progress for very viscous fluids.
  • Application EP0412524 discloses a disposable nozzle adapter for intranasal administration of a viscous medical solution in combination with a spray container, which comprises a cylindrical body, a rod disposed in the body and a tip nozzle.
  • the body has a cylindrical chamber and a central bore communicating with the chamber by a channel for securing the spray container.
  • the rod is provided at its end with at least a small portion and a medium-sized portion.
  • the nozzle tip has a top wall and a cylindrical portion extending therefrom, the top wall being provided with a central spray opening including a tapered recess and swirl grooves extending outwardly from it. from the tapered recess on the inner surface of the cylindrical part.
  • the swirl grooves of this invention have a cross-sectional area increasing outwardly and its cross-sectional area is 0.03 to 0.08 mm 2 as a minimum.
  • the nozzle tip is fitted into the opening of the body chamber and engaged with the mid-sized portion of the rod to form an annular channel surrounding the small-sized portion of the rod and communicating with the grooves. This prior art also represents insufficient progress for very viscous fluids.
  • the object of the present invention is therefore to overcome the drawbacks of the prior art and to improve the capacity of the nozzles to spray a viscous rheo-thinning fluid in the form of a mist without propellant gas.
  • the object of the present invention is a type nozzle free of air or any other propellant gas making it possible to generate a mist from a very viscous and shear-thinning fluid, flowing with a viscosity of more than 3000 Pa. .s at 0.01s 1 , and this at a very low flow rate, ie a flow rate preferably between 0.10 ml / s and 1 ml / s. It thus makes it possible to deposit a viscous fluid in a thin layer and in small quantity over a large area.
  • the invention relates to a fluid spray nozzle intended to be mounted on a dispensing container, said nozzle comprising:
  • the swirl chamber intended to receive the fluid to be sprayed, the swirl chamber having a maximum section S and a maximum diameter D,
  • ducts extending longitudinally along the axis Al and being radially offset with respect to said axis Al, said ducts being in fluid connection with the inlet capillary, - at least two swirl channels, in fluid connection with said at least two conduits, and connecting said at least two conduits with the swirl chamber, said at least two conduits thus connecting the inlet capillary to the at least two swirl channels , - a spray orifice supplied by the swirl chamber, the spray orifice having axial symmetry and a constant section s, said swirl chamber having, along the axis Al, a section which decreases in the direction of said orifice of spray.
  • the nozzle is characterized in that: the ratio of the section s of the spray orifice to the maximum section S of the swirl chamber is such as 1% £ s / ⁇ £ 20%, and the spray nozzle is actuated by means of an actuator independent of the nozzle, and the inlet capillary has a section making it possible to generate a fluid shear rate greater than 5000 s 1 .
  • the nozzle according to the invention may include one or more of the following features, taken in isolation from one another or in combination with one another:
  • the spray orifice has a cylindrical shape with a diameter d and a height h such that: 40% d ⁇ h ⁇ 150% d, preferably
  • the at least two swirl channels each have a section in the form of a quadrilateral at right angles, said section being between 0.001 and 0.06mm 2 , - the quadrilateral is a square
  • the middle feed comprises: either a chamber of hollow section of generally cylindrical shape and the base of which extends on a plane perpendicular to the axis A1, or several feed channels extending radially on a plane perpendicular to the axis A 1, so as to supply said at least two conduits
  • the swirl chamber has a frustoconical shape whose angle a between the axis Al and the generatrix is such that 25 ° ⁇ a ⁇ 55 °, preferably 30 ° ⁇ a ⁇ 45 °
  • - the at least two ducts are formed in a pillar, said pillar comprising an enveloping cylinder and having an internal surface, said enveloping cylinder comprising a coaxial spacer, the external surface of which is polygonal so
  • a subject of the invention is also a method for dispensing a viscous shear-thinning fluid by spraying, characterized in that the method is implemented by means of the nozzle according to any one of the above characteristics.
  • the distribution can be carried out in the form of a mist having homogeneous drops, at least 90% of the drops of the mist having a diameter of less than 1 OOmhi.
  • the distribution can also be carried out in the form of a mist having homogeneous drops, the median diameter of which is between 1 OLUTI and 50mhi.
  • the distribution can also be carried out in the form of a mist having homogeneous drops of which less than 12% of the drops having a diameter of less than 1 OLUTI.
  • the distribution can be carried out in the form of a homogeneous fog whose taste dispersion characterized the ratio of the deviation between DvlO and Dv90 with respect to the median is less than 2.
  • Upstream is defined according to the direction of flow of the fluid in the nozzle, and refers to any element which is located, relative to another element, close to the fluid inlet in the nozzle.
  • Downstream is defined by the direction of fluid flow in the nozzle, and refers to any element that is located, relative to another element, close to the fluid outlet of the nozzle.
  • “Fog” is to be assimilated to a mist and is defined as a cluster of very fine droplets.
  • Capillary is a conduit of fine section compared to its length, the section is arbitrary.
  • Pillar is an element composed of one or more pieces which, when assembled, serve as a support at least for the supply means and the conduits, in the context of the invention, the pillar is located between the supply means and the channels. swirling, it comprises at least the means for conveying the fluid from at least one capillary to the channels.
  • Swirl channel length the length of the swirl channels is defined as the longest distance at identical sections along said channels.
  • Viscos fluid fluid with a viscosity greater than lOmPa.s.
  • Shear-thinning fluid fluid having a dynamic viscosity which decreases when the shear rate of the fluid increases.
  • Dv10, Dv50, Dv90 are quantities used in granulometry which make it possible to give an indication of the volume distribution of the size of the particles of a set of particles (in the present case, of droplets).
  • a Dv10 of 4mpi indicates that 10% of the particles (by volume) have a diameter of less than 4pm.
  • D50 gives the median size: half of the particles are less, half more, and 10% of the particles are larger than D90.
  • DvlO, Dv50 and Dv90 indicate the particle sizes for which 10%, 50% and 90% (respectively) of the particle population are smaller than this size.
  • Distribution is the distribution around the median, or Dv50, of the different droplet sizes measured in a fog. It is calculated by the ratio of the difference between DvlO and Dv90, and the Dv50. This ratio is unitless.
  • Figure 1 is an illustrative view of the spray that the invention wishes to avoid on the left (a) and the desired mist spray on the right (b).
  • Figure 2 is a front view of an embodiment according to the invention with three cross sections (2a, 2b and 2c).
  • Figure 3 is an isolated front view of Figure 2 showing the orifice and base sections of a frustoconical swirl chamber.
  • Figure 4 is a perspective view of the path of the fluid within the nozzle, the pillar is transparent.
  • Figure 5 is a perspective view of the fluid path of a nozzle according to another embodiment of the invention in which the supply means is composed of several angularly equidistant channels.
  • Figure 6 is composed of three figures (6a, 6b, 6c) illustrating three different embodiments for the inlet capillary, this figure illustrates the fluid paths.
  • Figure 7 is a perspective view of the fluid path within the nozzle according to one embodiment where the conduits are formed by a spacer inserted into the cylinder of the pillar here in transparency.
  • Figure 8 is a cross section of the pillar to illustrate the conduits between the spacer and the enveloping cylinder.
  • Figure 9 is a view of two embodiments according to the invention in which the length of the conduits has been changed from H1 to H2.
  • Figure 10 shows the logarithmic relationship between viscosity and shear for a shear thinning fluid capable of being sprayed by the nozzle according to the invention.
  • Figure 11 illustrates a cross-sectional view of the nozzle according to the invention with a clearance for connecting a container containing the fluid to be expelled.
  • Figure 12 illustrates a perspective view of the spacer of a particular embodiment according to the invention comprising several capillaries with parallel inputs.
  • Figure 13 shows a perspective view of the fluid path obtained with several inlet capillaries like Figure 12.
  • Figure 14 is a schematic view of the nozzle according to the invention where the pillar coincides with the part forming the swirl chamber, the orifice and the swirl channels.
  • the invention relates to a nozzle 1 for spraying a fluid, more precisely a viscous and shear-thinning fluid, intended to be mounted on a dispensing container.
  • the fluid considered may not be a shear thinning fluid if its viscosity is of the order of 20 mPa.s, preferably less than 20 mPa.s, that is to say if the fluid is low viscous.
  • the nozzle 1 according to the invention is thus intended to be fixed on a reservoir of fluid, in particular of viscous shear-thinning fluid.
  • FIG. 1 makes it possible to compare a diffuse fog obtained thanks to the nozzle 1 according to the invention with what is obtained if all the conditions are not met, that is to say an expulsion on a very localized surface of a large volume of liquid.
  • Figure 1 is an illustrative view of the spray that the invention wishes to avoid on the left (a) and the desired mist spray on the right (b). In addition, it is also desired to avoid coarse drops.
  • Figure 2 illustrates a front view of one embodiment of the nozzle 1 of the invention.
  • the inlet capillary 7 of the nozzle 1 is off-center with respect to the axis A1 of the spray orifice 2.
  • the axis A 1 is also the axis of the frustoconical swirl chamber 3.
  • the Decentering can range from a distance h7 between 0mm and 0.4mm, noting that if h7 is 0mm, this leads to co-axiality with the spray orifice.
  • the distance h7 thus qualifies the distance between the axis Al of the spray orifice 2 and the axis of the inlet capillary 7.
  • the advantage presented by this off-centering is a practical advantage of making the nozzle 1.
  • the length L and the section D of the inlet capillary 7 are variables on which it is possible to act within the framework of the invention in order to modulate the shear rate of the fluid passing through the inlet capillary 7.
  • the section D of the input capillary 7 is a disc (the capillary being cylindrical)
  • the shear rate increases when the section S decreases.
  • increasing the length L makes it possible to increase the time during which the fluid is sheared at a given shear rate. This allows to ensure that the length L is greater than the establishment length of the flow and that the viscosity to be obtained at this shear rate is indeed reached.
  • the pressure drops increase when the sections decrease and the lengths increase. It is therefore a matter of finding a functional balance, which is achieved by the present invention.
  • the inlet capillary 7 has a cylindrical shape of circular section.
  • the diameter D7 of the inlet capillary 7 is between 0.1 and 0.3 mm and its length L is between 2 and 11mm.
  • the shear rate of the fluid to be propelled is thereby increased, because the shear rate is equal to the speed of the fluid divided by l 'gap.
  • the small sections allow a high speed to be achieved, however a very small section induces a large pressure drop and thus requires a very high pressure applied at the inlet of the nozzle 1 to reach the spray.
  • the inlet capillary 7 has, from upstream to downstream, portions 71, 72, 73, 74 with different diameters: each portion 71, 72, 73, 74 has a constant section over its entire length, however, the first portion 71, located most upstream on the inlet capillary 7, has a diameter D greater than that of the downstream portions 72, 73, 74.
  • Each portion 71, 72 , 73, 74 thus has, over its entire length, a diameter D: greater than or equal to that of the portions 72, 72, 74 located downstream, and less than or equal to that of the portions 71, 72, 73 located upstream.
  • the aim here is to gradually reduce the passage section in order to gradually increase the shear rate of the fluid in order to always reduce the viscosity of the fluid, without creating excessively large point restrictions which would induce significant single head losses, and therefore an increase in the fluid. pressure.
  • the different positions 71, 72, 73, 74 can be separated from each other by plates. These plates allow better alignment of the different portions 71, 72, 73, 74 with one another.
  • the three variants 6a, 6b and 6c of FIG. 6 illustrate different possible configurations for the different portions 71, 72, 73, 74 of the inlet capillary 7.
  • the diameter D of the downstream portion 71 is smaller than the diameter D of the upstream portion 72.
  • Variant 6b has three portions 71, 72 and 73, each with a constant diameter D over its entire length.
  • the diameter D of the upstream portion 73 is greater than that of the central portion 72, itself larger than that of the downstream portion 71. This is the embodiment of FIG. 5.
  • Variant 6c for its part, has four portions 71, 72, 73 and 74 each with a constant diameter D.
  • the diameters D decrease towards the supply means 6 and the two central portions 72 and 73 have similar surface sections.
  • the advantage of this embodiment is to increase the length L of the inlet capillary 7 when there is only one capillary diameter (establishment length of the flow at this shear). It is also preferable to increase the length on the intermediate section rather than on the smaller section so as not to increase the pressure losses too much.
  • the portions 71, 72, 73, 74 of the inlet capillary 7 are co-axial, along the axis Al, with the spray orifice 2.
  • Figure 11 illustrates a cross-sectional view of the nozzle 1 according to an embodiment of the invention having several parallel inlet capillaries 7.
  • the advantage of having several parallel inlet capillaries 7 is the ease of industrial manufacture. In plastic injection it is not possible to make an inlet capillary 7 of small section, but thanks to this assembly, it becomes possible to make a cylinder much larger in diameter (feasible in plastic injection) in which is inserted the inlet cylinder of nozzle 1, also feasible in plastic injection.
  • the nozzle 1 comprises a support 8 having a first recess 81 capable of accommodating a container containing the fluid to be expelled, as well as a second recess 82 capable of accommodating a nozzle inlet cylinder. This nozzle inlet cylinder is illustrated in FIG.
  • this nozzle inlet cylinder is integral with a spacer 53, the function of which will be explained later in the application.
  • Grooves are formed longitudinally in the nozzle inlet cylinder, so that the outer walls of the nozzle inlet cylinder can, by engaging by interlocking with the inner walls of the second recess 82, form the inlet capillaries. parallel to each other and extending along the axis A1.
  • each inlet capillary 7 is formed by a space situated between the inlet cylinder of the nozzle 1 and its support 8.
  • support 8 is to be able to connect the nozzle 1 directly to a syringe via a luer connector (82 is a female luer, the syringe ends with a male luer).
  • a luer connector 82 is a female luer, the syringe ends with a male luer.
  • This embodiment makes it possible to obtain the desired shear rate at the inlet of the nozzle 1 with parts which can be manufactured by industrial manufacturing methods (large series).
  • the inlet capillary (s) 7 has (have) a diameter D making it possible to generate a fluid shear rate greater than 5000 s 1 .
  • the upstream portion 74 which makes it possible to achieve a shear rate greater than 5000 s 1 .
  • the following portions 71, 72, 73 make it possible to achieve even higher shears.
  • the section along axis 2a of Figure 2 shows the connection allowing the fluid path between the inlet capillary 7, and the spacer 53 already mentioned above.
  • the spacer 53 of the embodiment of section 2a is a hexagonal prism.
  • this shape makes it possible to create conduits with small passage sections, using two interlocking parts that are easily assembled and positioned. It is the gap between the enveloping cylinder and the spacer 53 which forms the conduits.
  • the small passage section allows a high shear rate to be maintained.
  • conduits 512 can be obtained in various ways.
  • One way to obtain these conduits 512 is to stack machined parts, thus forming a pillar 5 in which said conduits 512 are formed. This method is nevertheless long and tedious, industrially unattractive.
  • these conduits 512 are obtained by means of the interlocking of two parts which can be obtained independently of one another by plastic injection. These two parts take the form of a spacer 53 of the hexagonal prism type and of an enveloping cylinder 52. We are thus limited to two parts, simplifying the assembly of the nozzle 1.
  • FIG. 1 In the embodiment of FIG.
  • section 2b shows the connection allowing the fluid path between the inlet capillary 7 and the swirl chamber 3 through the pillar 5. More precisely, section 2b shows the 6 ducts of small passage section formed by the interlocking of G spacer 53 in the enveloping cylinder 52.
  • the spacer 53 is hexagonal , which forms six conduits 512, but certain embodiments have twelve conduits 512. The greater the number of “facets” of G spacer 53, the smaller the passage section of the conduits 512 and therefore the greater the shear rate. important.
  • the fluid path passes between the external walls of the spacer 53 and the / the internal wall (s) of the enveloping cylinder 52.
  • the enveloping cylinder 52 is of circular section.
  • the conduits 512 extend longitudinally along the axis A1.
  • the arrows indicate the direction of flow of a fluid suitable for being sprayed along the conduits 512 of the pillar 5.
  • Figure 7 illustrates the fluid path of a third embodiment according to the invention.
  • the pillar 5 is not shown in order to show the fluid path passing through the conduits 51 which extend longitudinally along the axis Al.
  • all the elements and their dimensions given for the first embodiment are identical with the exception of pillar 5 and its components.
  • These conduits 51 have a generally flattened shape, resulting from a "faceted" spacer 53 in a cylinder.
  • the greater the number of "facets" of the spacer 53 the smaller the passage section of the ducts 51 and therefore the greater the shear rate within the ducts 51. This allows the maintenance of a high shear rate to maintain a low viscosity; the shear rate may be higher than in the fluid path upstream of these conduits 51, which makes it possible to rheo fluidify even more.
  • FIG. 9 illustrates two embodiments 9a and 9b, the heights H1 and H2 of the pillar 5 of which are variable in order to obtain a greater length over which the fluid is sheared.
  • the advantage of the height H1 over the height H2 is that the shorter lengths induce a lower pressure drop and therefore a lower inlet pressure of nozzle 1.
  • the advantage of the height H2 over the height H1 is that the length over which the fluid is sheared is greater and therefore induces better shear.
  • Figure 14 is another perspective view of a nozzle 1 according to the invention showing an inlet capillary 7 through which the fluid to be expelled will pass.
  • An embodiment with several input capillaries 7 as illustrated in Figure 13 is possible.
  • the pillar 5 is also shown, it comprises conduits defined by the space between the faces of the spacer 53 and the inner surface of the enveloping cylinder 52 (not shown). On exiting the conduits (not shown), the fluid passes through the swirl channels (not shown) and then tangentially accesses the swirl chamber 3 before being expelled through the spray port 2 in the form of a mist.
  • the pillar 5 coincides with the part in which the channels, cone and spray orifice are formed.
  • a single piece supports the enveloping cylinder, the swirl channels 4, the swirl chamber 3 and the port 2.
  • connection between the conduits 512 of the pillar 5 and the inlet capillary 7 can be provided by a supply means 6 typically taking the form of a hollow-shaped plate of generally flat cylindrical shape.
  • a supply means 6 typically taking the form of a hollow-shaped plate of generally flat cylindrical shape.
  • Figure 4 illustrates the fluid path followed by the fluid to be sprayed in the nozzle 1.
  • the nozzle 1 has three conduits 511, 512, 513 connecting the inlet capillary 7 to the chamber of swirl 3.
  • these three ducts 511, 512 and 513 are cylindrical ducts with a circular section extending longitudinally along the axis A1.
  • the three ducts 511, 512 and 513 are angularly equidistant and therefore at 120 ° from each other.
  • the section along the axis 2c of Figure 2 shows more particularly the connection continuing the fluid path between the pillar 5 and the frustoconical swirl chamber 3.
  • the section of Figure 2c shows a circular ring connecting the pillar 5 to the swirl channels. 4 in order to convey the fluid to be sprayed tangentially towards the swirl chamber 3 in the direction of the center of the circular ring.
  • the circular ring makes it possible to connect the conduits 512 to the inlet of the swirl channels 4, 41, 42, 43.
  • Said swirl channels 4, 41, 42, 43 convey the fluid to the frustoconical swirl chamber 3 tangentially to the cone to create a vortex.
  • Figure 3 shows a front view of the spray orifice 2 and of the swirl chamber 3.
  • the ratio of the section s of the spray orifice to the maximum section S of the swirl chamber is such that 1% 20% and preferably, this ratio is between 1 and 10%, more preferably, this ratio is between 1 and 6%. It should be noted that the respective limits of these intervals are included in the invention.
  • a circular ring connects the conduits 511, 512 and 513 to the three swirl channels 41, 42 and 43 with which they are respectively in fluid connection.
  • the three swirl channels 41, 42 and 43 each have a rectangle-shaped section, said section being between 0.001 and 0.06mm 2 , preferably between 0.003 and 0.01mm 2 .
  • flow rate speed x section, at a given speed, the smaller the section, the lower the flow rate.
  • reducing the section of the vortex channels 41, 42 and 43 makes it possible to increase the shear of the fluid and therefore its speed. This increase in speed allows better generation of vortices and therefore better spraying.
  • the length of the swirl channels 41, 42 and 43 that is to say the distance to be traveled by the fluid to be sprayed between the circular ring and the tangential inlet of the swirl chamber 3 is ideally between
  • the swirl chamber 3 which has a frustoconical shape whose base diameter is ideally between 0.8 and 1.6mm.
  • the angle a between Tax Al and the generatrix of the frustoconical chamber is such that 25 ° ⁇ a ⁇ 55 °, preferably: 30 ° ⁇ a ⁇ 45 °.
  • the height L3 of the frustoconical chamber is, for its part, ideally between 0.4 and 0.7 mm.
  • the height h of the spray orifice 2 is, for its part, ideally between 0.1 mm and 0.15 mm.
  • FIG. 5 illustrates a second embodiment according to the invention.
  • the supply means 6 which is here a set of three supply channels 61, 62 and 63 which are angularly equidistant and in fluid connection with the conduits 511, 512 and 513.
  • This embodiment allows better routing of the fluid from the inlet capillary 7 to the conduits 51, 511, 512, 513.
  • FIG. 13 illustrates an alternative embodiment of the present invention.
  • FIG. 13 thus illustrates the fluid path followed by a fluid to be expelled in the form of a mist by a nozzle 1 such as that illustrated in FIG. 11 with the capillaries inlet formed by the spacer of Figure 12.
  • the fluid path downstream of the supply means 6 is identical to those described for the embodiments of Figures 7, 8 and 9.
  • the nozzle 1 according to the invention may well be considered as a consumable and is therefore made of disposable and / or very short-lived materials.
  • the nozzle 1 according to the present invention is thus adaptable to numerous applications in cosmetics and the food industry, and is therefore not limited to the medical field.
  • the use of the nozzle 1 is done in conjunction with an independent actuator.
  • the spray nozzle 1 is thus actuated by means of an actuator independent of the nozzle.
  • actuation of the nozzle is meant “circulation of the fluid to be distributed through the nozzle 1”.
  • This independent actuator can take a wide variety of forms, but in all cases it comprises a means for circulating the fluid to be sprayed.
  • the actuator can thus be manual or automated using a mechanical system (pump, syringe pump, spring) or electromechanical (using a motor).
  • the choice of the actuator and the means for circulating the fluid to be sprayed depends on the properties desired for spraying the mist: size of the cone, flow rate, duration of the spray, for example.
  • the nozzle 1 allows a high shear of a viscous shear-thinning fluid so as to be able to spray effectively and in a safe manner this type of fluid.
  • the diameter of the swirl channels 41, 42 and 43 is small enough to spray a mist at a low flow rate, while nevertheless having a diameter large enough not to induce excessively large pressure drops so as to minimize the inlet pressure of nozzle 1.
  • FIG. 10 shows the rheogram (curve of the viscosity as a function of the shear rate) of a fluid which has been sprayed with the nozzle 1.
  • the nozzle 1 thus allows the implementation of a method for dispensing a viscous shear-thinning fluid by spraying. Specifically, this distribution is produced in the form of a mist presenting homogeneous drops, the characterization of which by laser diffraction (Spraytec / MAL 10332887 / Malvem / UK) makes it possible to establish the following characteristics: at least 90% of the drops of the mist having a diameter less than 1 OOLHTI, preferably less than 90 ⁇ m, more preferably less than 80 ⁇ m, even more preferably 70 ⁇ m.
  • the median diameter of the drops of the fog is between 10 and 50pm, preferably between 10 and 45pm, more preferably between 15 and 40miti,
  • a distribution of the different sizes of drops of a fog concentrated around its mediating value (Dv50), such as the ratio between the difference between the Dv90 and DvlO , and the Dv50 is less than 2, preferably less than 1.8, more preferably less than 1.6.
  • the “SPAN” distribution is less than 2, preferably less than 1.8, more preferably less than 1.6.
  • inlet capillary (s) 8 support 81: first clearance of the support suitable for receiving the container of the liquid to be distributed, 81: second clearance of the support suitable for receiving the grooves forming inlet capillaries, 71,72,73,74: portions of constant section of the inlet capillary 7 Al: axis of the spray orifice Hl, H2: height of the pillar
  • D7 diameter of the fluid inlet capillary
  • h7 radial distance between the axis of the spray orifice and the axis of the fluid inlet capillary.
  • L3 Height of the swirl chamber (along the Al axis)
  • a angle between the Al axis and the generator of the swirl chamber.

Abstract

The invention relates to a fluid spray nozzle (1) which is intended to be mounted on a distribution receptacle, the nozzle comprising at least one fluid inlet capillary which extends longitudinally along an axis A1, a supply means, the means being able to receive the fluid from the at least one inlet capillary in order to supply it to at least two pipes, a pillar comprising the at least two pipes which are able to receive the fluid from the supply means, the pipes extending longitudinally along the axis A1 and being radially offset relative to the axis A1, at least two turbulence channels in fluid connection with the at least two pipes, a turbulence chamber for receiving the fluid coming tangentially from the at least two turbulence channels in order to supply at least one spray opening having axial symmetry and a constant cross-section s, the chamber having a cross-section decreasing towards the opening and having a maximum cross-section S and a maximum diameter D, characterised in that the ratio of the cross-section s of the spray opening to the maximum cross-section S of the turbulence chamber (3) is such that 1% ≤ s/S ≤ 20%.

Description

BUSE DE PULVÉRISATION DE LIQUIDE SOUS FORME DE BROUILLARD MIST LIQUID SPRAY NOZZLE
DOMAINE DE L’INVENTION FIELD OF THE INVENTION
La présente invention concerne une buse pour dispositif permettant de pulvériser un fluide sous la forme d’un brouillard. Le dispositif est actionné de manière manuelle ou automatisée à l’aide d’un système mécanique de type pompe, pousse seringue, ressort ou électromécanique, i.e. employant un moteur, pour pulvériser le fluide. The present invention relates to a nozzle for a device for spraying a fluid in the form of a mist. The device is operated manually or automatically using a mechanical pump, syringe pump, spring or electromechanical system, i.e. using a motor, to spray the fluid.
ÉTAT DE LA TECHNIQUE STATE OF THE ART
Il est connu de toute personne de l’art qu’avec l’augmentation de la viscosité, tout fluide a tendance à former des gouttelettes volumineuses lors d’une pulvérisation. Ceci a pour conséquence l’obtention d’une pulvérisation hétérogène et non une pulvérisation générant un brouillard homogène. Ceci a pour conséquence un gaspillage du produit pulvérisé et une application non uniforme de celui-ci. Or il a été démontré que la viscosité d’un fluide médicamenteux influe positivement sur l’absorption du médicament, d’où la nécessité de pouvoir pulvériser correctement ce type de fluide. Les buses de l’état de l’art présentent des capacités limitées aux faibles viscosités. Les buses de l’état de l’art ne sont ainsi pas satisfaisantes lorsqu’il s’agit de combiner la capacité à pulvériser des fluides visqueux pour applications médicale en particulier au moyen d’un système appelé en anglais « airless » c’est-à-dire sans gaz propulseur. It is known to those skilled in the art that as viscosity increases, any fluid tends to form large droplets when sprayed. This results in obtaining a heterogeneous spray and not a spray generating a homogeneous mist. This results in wastage of the sprayed product and uneven application thereof. However, it has been shown that the viscosity of a medicinal fluid has a positive influence on the absorption of the drug, hence the need to be able to spray this type of fluid correctly. State-of-the-art nozzles have limited capacities at low viscosities. The nozzles of the state of the art are thus not satisfactory when it comes to combining the ability to spray viscous fluids for medical applications in particular by means of a system known in English as “airless”. that is to say without propellant gas.
En effet une solution pour contourner ce problème technique, est l’utilisation de gaz propulseur. Cette solution s’est toutefois avérée non satisfaisante lorsqu’il s’agit d’éjecter certains produits pharmaceutiques pour des contraintes de stérilité, par exemple. En effet, la présence d’un gaz propulseur peut nuire notamment à la stérilité, la propreté, ou l’équilibre microbiologique de la zone d’administration. Il convient aussi de considérer les impacts environnementaux de tels gaz. Indeed, a solution to get around this technical problem is the use of propellant gas. However, this solution has proved unsatisfactory when it comes to ejecting certain pharmaceuticals for sterility constraints, for example. In fact, the presence of a propellant gas can adversely affect the sterility, cleanliness or microbiological balance of the administration area. The environmental impacts of such gases should also be considered.
Une solution de pulvérisation de brouillard sans intervention de gaz propulseur permet en outre de garantir une uniformité de couverture de la surface visée par le pulvérisateur, le tout avec moins de fluide pulvérisé en volume, ce qui permet de faire des économies. Par ailleurs, la pulvérisation sous forme de brouillard présente un second avantage concernant le confort du patient lors de l’administration sur des zones sensibles ou douloureuses.A mist spraying solution without the intervention of propellant also ensures uniform coverage of the area targeted by the sprayer, all with less fluid sprayed by volume, which saves money. By elsewhere, spraying in the form of a mist has a second advantage in terms of patient comfort during administration to sensitive or painful areas.
Il existe actuellement des solutions de nébulisation piézoélectrique capables de former un brouillard. Cependant ces solutions restent relativement limitées concernant les plages de débit pouvant être utilisées, la réactivité du système - soit la vitesse d’administration - et le contrôle de la direction du brouillard. De plus, ces systèmes imposent un coût final du dispositif élevé pouvant être un facteur limitant au déploiement d’une telle solution, notamment dans des systèmes jetables. There are currently piezoelectric nebulization solutions capable of forming a mist. However, these solutions remain relatively limited in terms of the flow ranges that can be used, the responsiveness of the system - that is, the speed of administration - and the control of the direction of the fog. In addition, these systems impose a high final cost of the device which may be a limiting factor in the deployment of such a solution, in particular in disposable systems.
La demande EP2570190, par exemple, concerne une buse de pulvérisation pour distribuer un fluide comprenant une chambre à fluide pour recevoir le fluide, au moins un canal d'alimentation pour alimenter le fluide de la chambre à fluide radialement vers l'intérieur dans un chambre de tourbillonnement et un canal de sortie avec une extrémité d'entrée face à la chambre de tourbillonnement et une extrémité de sortie pour évacuer le fluide vers l'environnement de la buse de pulvérisation. Le canal de sortie de cette invention se rétrécit dans le sens d’écoulement du fluide. La présente divulgation concerne en outre un pulvérisateur comprenant une telle buse de pulvérisation. Cet art antérieur représente une avancée insuffisante pour les fluides très visqueux. Application EP2570190, for example, relates to a spray nozzle for dispensing a fluid comprising a fluid chamber for receiving the fluid, at least one supply channel for supplying the fluid from the fluid chamber radially inwardly into a chamber. swirl chamber and an outlet channel with an inlet end facing the swirl chamber and an outlet end for discharging fluid to the environment of the spray nozzle. The outlet channel of this invention narrows in the direction of fluid flow. The present disclosure further relates to a sprayer comprising such a spray nozzle. This prior art represents insufficient progress for very viscous fluids.
En effet, c’est la différence de vitesse entre le gaz, souvent l’air, et le fluide qui permet la pulvérisation. Ce type de technologie, qui est parfaitement adapté pour des fluides de faible viscosité, devient inopérant pour des fluides dépassant les 100 centipoises (cps). En outre, l’utilisation d’un gaz propulseur comme l’air peut devenir problématique lorsqu’il s’agit de pulvériser des produits de santé, de nutrition ou encore dermo-cosmétiques puisque qu’un impératif de stérilité est à respecter surtout dans le domaine médical. La demande EP0412524 divulgue un adaptateur de buse jetable pour l'administration intranasale d’une solution médicale visqueuse en combinaison avec un récipient de pulvérisation, qui comprend un corps cylindrique, une tige disposée dans le corps et une buse de pointe. Le corps a une chambre cylindrique et un alésage central communiquant avec la chambre par un canal pour la fixation du récipient de pulvérisation. La tige est munie à son extrémité au moins d'une portion de petite taille et d'une portion de taille moyenne. La pointe de buse a une paroi supérieure et une partie cylindrique s’étendant à partir de celle-ci, la paroi supérieure étant pourvue d’une ouverture de pulvérisation centrale comprenant un évidement effilé et des rainures tourbillonnantes s'étendant vers l'extérieur à partir de l'évidement effilé à la surface intérieure de la partie cylindrique. Les rainures tourbillonnantes de cette invention ont une surface en coupe transversale augmentant vers l’extérieur et sa surface en coupe transversale est de 0,03 à 0,08 mm2 au minimum. La pointe de buse est ajustée dans l’ouverture de la chambre du corps et engagée avec la partie de taille moyenne de la tige pour former un canal annulaire entourant la partie de petite taille de la tige et communiquant avec les rainures. Cet art antérieur représente, lui aussi, une avancée insuffisante pour les fluides très visqueux.In fact, it is the speed difference between the gas, often air, and the fluid which allows the spraying. This type of technology, which is perfectly suited for fluids of low viscosity, becomes inoperative for fluids exceeding 100 centipoise (cps). In addition, the use of a propellant gas such as air can become problematic when it comes to spraying health, nutrition or dermo-cosmetic products since an imperative of sterility must be respected especially in the medical field. Application EP0412524 discloses a disposable nozzle adapter for intranasal administration of a viscous medical solution in combination with a spray container, which comprises a cylindrical body, a rod disposed in the body and a tip nozzle. The body has a cylindrical chamber and a central bore communicating with the chamber by a channel for securing the spray container. The rod is provided at its end with at least a small portion and a medium-sized portion. The nozzle tip has a top wall and a cylindrical portion extending therefrom, the top wall being provided with a central spray opening including a tapered recess and swirl grooves extending outwardly from it. from the tapered recess on the inner surface of the cylindrical part. The swirl grooves of this invention have a cross-sectional area increasing outwardly and its cross-sectional area is 0.03 to 0.08 mm 2 as a minimum. The nozzle tip is fitted into the opening of the body chamber and engaged with the mid-sized portion of the rod to form an annular channel surrounding the small-sized portion of the rod and communicating with the grooves. This prior art also represents insufficient progress for very viscous fluids.
L’objet de la présente invention est donc de palier les inconvénients de l’art antérieur et d’améliorer la capacité des buses à pulvériser un fluide visqueux rhéo fluidifiant sous la forme d’un brouillard sans gaz propulseur. Pour cela, le but de la présente invention est une buse de type exempt d’air ou de tout autre gaz propulseur permettant de générer un brouillard à partir d’un fluide très visqueux et rhéofluidifïant, s’écoulant avec une viscosité de plus de 3000Pa.s à 0,01s 1, et cela à très faible débit, soit un débit préférentiellement compris entre 0,10 ml/s et 1 ml/s. Elle permet ainsi de déposer un fluide visqueux en couche fine et en faible quantité sur une grande surface. The object of the present invention is therefore to overcome the drawbacks of the prior art and to improve the capacity of the nozzles to spray a viscous rheo-thinning fluid in the form of a mist without propellant gas. For this, the object of the present invention is a type nozzle free of air or any other propellant gas making it possible to generate a mist from a very viscous and shear-thinning fluid, flowing with a viscosity of more than 3000 Pa. .s at 0.01s 1 , and this at a very low flow rate, ie a flow rate preferably between 0.10 ml / s and 1 ml / s. It thus makes it possible to deposit a viscous fluid in a thin layer and in small quantity over a large area.
RÉSUMÉ ABSTRACT
L’invention concerne une buse de pulvérisation de fluide destinée à être montée sur un récipient distributeur, ladite buse comprenant : The invention relates to a fluid spray nozzle intended to be mounted on a dispensing container, said nozzle comprising:
- au moins un capillaire d’entrée de fluide s’étendant longitudinalement le long d’un axe Al, - at least one fluid inlet capillary extending longitudinally along an axis Al,
- une chambre de tourbillonnement destinée à recevoir le fluide à pulvériser, la chambre de tourbillonnement ayant une section maximale S et un diamètre maximal D, - a swirl chamber intended to receive the fluid to be sprayed, the swirl chamber having a maximum section S and a maximum diameter D,
- au moins deux conduit s’étendant longitudinalement le long de l’axe Al et étant radialement déportés par rapport audit axe Al, lesdits conduits étant en connexion fluidique avec le capillaire d’entrée, - au moins deux canaux de tourbillonnement, en connexion fluidique avec lesdits au moins deux conduits, et connectant lesdits au moins deux conduits avec la chambre de tourbillonnement, lesdits au moins deux conduits reliant ainsi le capillaire d’entrée aux au moins deux canaux de tourbillonnement, - un orifice de pulvérisation alimenté par la chambre de tourbillonnement, l’orifice de pulvérisation présentant une symétrie axiale et une section constante s, ladite chambre de tourbillonnement présentant, le long de l’axe Al, une section décroissante en direction dudit orifice de pulvérisation. La buse se caractérisée en ce que : le rapport de la section s de l’orifice de pulvérisation sur la section maximale S de la chambre de tourbillonnement est tel que 1% £ s/^ £ 20%, et la buse de pulvérisation est actionnée au moyen d’un actionneur indépendant de la buse, et le capillaire d’entrée présente une section permettant de générer un taux de cisaillement de fluide supérieur à 5000 s 1. Ainsi, cette solution permet d’atteindre l’objectif susmentionné. En particulier, elle permet l’obtention d’un brouillard homogène à partir d’un fluide visqueux rhéo fluidifiant.- at least two ducts extending longitudinally along the axis Al and being radially offset with respect to said axis Al, said ducts being in fluid connection with the inlet capillary, - at least two swirl channels, in fluid connection with said at least two conduits, and connecting said at least two conduits with the swirl chamber, said at least two conduits thus connecting the inlet capillary to the at least two swirl channels , - a spray orifice supplied by the swirl chamber, the spray orifice having axial symmetry and a constant section s, said swirl chamber having, along the axis Al, a section which decreases in the direction of said orifice of spray. The nozzle is characterized in that: the ratio of the section s of the spray orifice to the maximum section S of the swirl chamber is such as 1% £ s / ^ £ 20%, and the spray nozzle is actuated by means of an actuator independent of the nozzle, and the inlet capillary has a section making it possible to generate a fluid shear rate greater than 5000 s 1 . Thus, this solution makes it possible to achieve the above-mentioned objective. In particular, it makes it possible to obtain a homogeneous mist from a viscous rheo-thinning fluid.
La buse selon l’invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres : The nozzle according to the invention may include one or more of the following features, taken in isolation from one another or in combination with one another:
- 1% < s/5 < 10%, - l’orifice de pulvérisation présente une forme cylindrique avec un diamètre d et une hauteur h tels que : 40% d < h < 150% d, préférentiellement- 1% < s / 5 <10%, - the spray orifice has a cylindrical shape with a diameter d and a height h such that: 40% d <h <150% d, preferably
50% d £ h £ 100% d, les au moins deux canaux de tourbillonnement présentent chacun une section en forme de quadrilatère à angle droit, ladite section étant comprise entre 0,001 et 0,06mm2, - le quadrilatère est un carré, le moyen d’alimentation comprend : soit une chambre de section creuse de forme générale cylindrique et dont la base s’étend sur un plan perpendiculaire à l’axe Al, soit plusieurs canaux d’alimentation s’étendant radialement sur un plan perpendiculaire à 1 ’ axe A 1 , de manière à alimenter lesdits au moins deux conduits, la chambre de tourbillonnement présente une forme tronconique dont l’angle a entre l’axe Al et la génératrice est tel que 25° < a < 55°, préférentiellement 30° < a < 45°, - les au moins deux conduit sont ménagés dans un pilier, ledit pilier comprenant un cylindre enveloppant et présentant une surface intérieure, ledit cylindre enveloppant comprenant une entretoise coaxiale dont la surface extérieure est polygonale de sorte que les arêtes de G entretoise soient en contact avec la surface intérieure du cylindre enveloppant formant ainsi au moins trois conduits du pilier, - l’au moins un capillaire d’entrée comprend au moins deux portions présentant chacune un diamètre constant sur toute sa longueur, chaque portion présentant un diamètre égal ou supérieur au diamètre d’au moins une portion située en aval et chaque portion présentant un diamètre égal ou inférieur au diamètre d’au moins une portion située en amont. L’invention concerne également un dispositif médical apte à distribuer un fluide et comprenant une buse selon l’une quelconque des revendications précédentes. 50% d £ h £ 100% d, the at least two swirl channels each have a section in the form of a quadrilateral at right angles, said section being between 0.001 and 0.06mm 2 , - the quadrilateral is a square, the middle feed comprises: either a chamber of hollow section of generally cylindrical shape and the base of which extends on a plane perpendicular to the axis A1, or several feed channels extending radially on a plane perpendicular to the axis A 1, so as to supply said at least two conduits, the swirl chamber has a frustoconical shape whose angle a between the axis Al and the generatrix is such that 25 ° <a <55 °, preferably 30 ° <a <45 ° , - the at least two ducts are formed in a pillar, said pillar comprising an enveloping cylinder and having an internal surface, said enveloping cylinder comprising a coaxial spacer, the external surface of which is polygonal so that the ridges of the spacer G are in contact with the inner surface of the enveloping cylinder thus forming at least three conduits of the pillar, - the at least one inlet capillary comprises at least two portions each having a constant diameter over its entire length, each portion having a diameter equal to or greater than the diameter at least one portion located downstream and each portion having a diameter equal to or less than the diameter of at least one portion located upstream. The invention also relates to a medical device capable of dispensing a fluid and comprising a nozzle according to any one of the preceding claims.
L’invention a également pour objet un procédé de distribution d’un fluide visqueux rhéofluidifîant par pulvérisation, caractérisé en ce que le procédé est mis en œuvre au moyen de la buse selon l’une quelconque des caractéristiques ci-dessus. Selon ce procédé, la distribution peut être réalisée sous la forme d’un brouillard présentant des gouttes homogènes, au moins 90% des gouttes du brouillard présentant un diamètre inférieur à 1 OOmhi. La distribution peut également être réalisée sous la forme d’un brouillard présentant des gouttes homogènes dont le diamètre médian est compris entre 1 OLUTI et 50mhi. La distribution peut également être réalisée sous la forme d’un brouillard présentant des gouttes homogènes dont moins de 12% des gouttes présentant un diamètre inférieur à 1 OLUTI. Finalement, la distribution peut être réalisée sous la forme d’un brouillard homogène dont la dispersion des goûtes caractérisée le ratio de l’écart entre la DvlO et Dv90 par rapport à la médiane est inférieur à 2. DÉFINITIONS A subject of the invention is also a method for dispensing a viscous shear-thinning fluid by spraying, characterized in that the method is implemented by means of the nozzle according to any one of the above characteristics. According to this method, the distribution can be carried out in the form of a mist having homogeneous drops, at least 90% of the drops of the mist having a diameter of less than 1 OOmhi. The distribution can also be carried out in the form of a mist having homogeneous drops, the median diameter of which is between 1 OLUTI and 50mhi. The distribution can also be carried out in the form of a mist having homogeneous drops of which less than 12% of the drops having a diameter of less than 1 OLUTI. Finally, the distribution can be carried out in the form of a homogeneous fog whose taste dispersion characterized the ratio of the deviation between DvlO and Dv90 with respect to the median is less than 2. DEFINITIONS
Dans la présente invention, les termes ci-dessous sont définis de la manière suivante : In the present invention, the terms below are defined as follows:
« Amont » est défini selon le sens d’écoulement du fluide dans la buse, et désigne tout élément qui se situe, relativement à un autre élément, proche de l’entrée de fluide dans la buse. "Upstream" is defined according to the direction of flow of the fluid in the nozzle, and refers to any element which is located, relative to another element, close to the fluid inlet in the nozzle.
« Aval » est défini selon le sens d’écoulement du fluide dans la buse, et désigne tout élément qui se situe, relativement à un autre élément, proche de la sortie de fluide de la buse. "Downstream" is defined by the direction of fluid flow in the nozzle, and refers to any element that is located, relative to another element, close to the fluid outlet of the nozzle.
« Brouillard » est à assimiler à une brume et est défini comme un amas de très fines gouttelettes. “Fog” is to be assimilated to a mist and is defined as a cluster of very fine droplets.
« Capillaire » est un conduit de section fine par rapport à sa longueur, la section est quelconque. "Capillary" is a conduit of fine section compared to its length, the section is arbitrary.
« Pilier » est un élément composé d’une ou plusieurs pièces qui assemblées servent de support au moins au moyen d’alimentation et aux conduits, dans le cadre de l’invention, le pilier se situe entre le moyen d’alimentation et les canaux de tourbillonnement, il comprend au moins les moyens d’acheminement du fluide à partir d’au moins un capillaire vers les canaux. "Pillar" is an element composed of one or more pieces which, when assembled, serve as a support at least for the supply means and the conduits, in the context of the invention, the pillar is located between the supply means and the channels. swirling, it comprises at least the means for conveying the fluid from at least one capillary to the channels.
« Longueur de canal de tourbillonnent » : la longueur des canaux de tourbillonnement est définie comme la plus longue distance à sections identiques le long desdits canaux. "Swirl channel length": the length of the swirl channels is defined as the longest distance at identical sections along said channels.
« Fluide visqueux » : fluide dont la viscosité est supérieure lOmPa.s. “Viscous fluid”: fluid with a viscosity greater than lOmPa.s.
« Fluide rhéofluidifîant » : fluide ayant une viscosité dynamique qui diminue lorsque le taux de cisaillement du fluide augmente. "Shear-thinning fluid": fluid having a dynamic viscosity which decreases when the shear rate of the fluid increases.
« DvlO, Dv50, Dv90 » sont des grandeurs utilisées en granulométrie qui permettent de donner une indication sur la distribution volumique de la taille des particules d’un ensemble de particules (dans le cas présent, de gouttelettes). Un DvlO de 4mpi indique que 10% des particule (en volume) font un diamètre de moins de 4pm. D50 donne la taille médiane : la moitié des particules font moins, la moitié plus, et 10% des particules ont une taille supérieure à D90. Autrement dit : DvlO, Dv50 et Dv90 indiquent les tailles de particules pour lesquelles 10%, 50% et 90% (respectivement) de la population des particules sont inférieures à cette taille. “Dv10, Dv50, Dv90” are quantities used in granulometry which make it possible to give an indication of the volume distribution of the size of the particles of a set of particles (in the present case, of droplets). A Dv10 of 4mpi indicates that 10% of the particles (by volume) have a diameter of less than 4pm. D50 gives the median size: half of the particles are less, half more, and 10% of the particles are larger than D90. In other words: DvlO, Dv50 and Dv90 indicate the particle sizes for which 10%, 50% and 90% (respectively) of the particle population are smaller than this size.
« Distribution » ou « SPAN » est la répartition autour de la médiane, ou Dv50 des différentes tailles de gouttes mesurée dans un brouillard. Elle s’obtient par le ratio de la différence entre la DvlO et Dv90, et de la Dv50. Ce ratio est sans unité. “Distribution” or “SPAN” is the distribution around the median, or Dv50, of the different droplet sizes measured in a fog. It is calculated by the ratio of the difference between DvlO and Dv90, and the Dv50. This ratio is unitless.
BRÈVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
Figure 1 est une vue illustrative de la pulvérisation que l’invention souhaite éviter à gauche (a) et de la pulvérisation en brouillard souhaitée à droite (b). Figure 2 est une vue de face d’un mode de réalisation selon l’invention avec trois coupes transversales (2a, 2b et 2c). Figure 1 is an illustrative view of the spray that the invention wishes to avoid on the left (a) and the desired mist spray on the right (b). Figure 2 is a front view of an embodiment according to the invention with three cross sections (2a, 2b and 2c).
Figure 3 est une vue isolée de face de la figure 2 montrant les sections de l’orifice et de la base d’une chambre de tourbillonnement tronconique. Figure 3 is an isolated front view of Figure 2 showing the orifice and base sections of a frustoconical swirl chamber.
Figure 4 est une vue en perspective du chemin du fluide au sein de la buse, le pilier est en transparence. Figure 4 is a perspective view of the path of the fluid within the nozzle, the pillar is transparent.
Figure 5 est une vue en perspective du chemin fluidique d’une buse selon un autre mode de réalisation de l’invention dans lequel le moyen d’alimentation est composée de plusieurs canaux angulairement équidistants. Figure 5 is a perspective view of the fluid path of a nozzle according to another embodiment of the invention in which the supply means is composed of several angularly equidistant channels.
Figure 6 est composée de trois figures (6a, 6b, 6c) illustrant trois différents modes de réalisation pour le capillaire d’entrée, cette figure illustre les chemins fluidiques. Figure 6 is composed of three figures (6a, 6b, 6c) illustrating three different embodiments for the inlet capillary, this figure illustrates the fluid paths.
Figure 7 est une vue en perspective du chemin fluidique au sein de la buse selon un mode de réalisation où les conduits sont formés par une entretoise insérée dans le cylindre du pilier ici en transparence. Figure 7 is a perspective view of the fluid path within the nozzle according to one embodiment where the conduits are formed by a spacer inserted into the cylinder of the pillar here in transparency.
Figure 8 est une coupe transversale du pilier pour illustrer les conduits entre l’entretoise et le cylindre enveloppant. Figure 9 est une vue de deux modes de réalisation selon l’invention dans lesquels la longueur des conduits a été changée de H1 à H2. Figure 8 is a cross section of the pillar to illustrate the conduits between the spacer and the enveloping cylinder. Figure 9 is a view of two embodiments according to the invention in which the length of the conduits has been changed from H1 to H2.
Figure 10 montre la relation logarithmique entre la viscosité et le cisaillement pour un fluide rhéofluidifiant apte à être pulvérisé par la buse selon l’invention. Figure 11 illustre une vue en coupe transversale de la buse selon l’invention avec un dégagement pour connecter un récipient contenant le fluide à expulser. Figure 10 shows the logarithmic relationship between viscosity and shear for a shear thinning fluid capable of being sprayed by the nozzle according to the invention. Figure 11 illustrates a cross-sectional view of the nozzle according to the invention with a clearance for connecting a container containing the fluid to be expelled.
Figure 12 illustre une vue en perspective de l’entretoise d’un mode de réalisation particulier selon l’invention comportant plusieurs capillaires d’entrées parallèles. Figure 12 illustrates a perspective view of the spacer of a particular embodiment according to the invention comprising several capillaries with parallel inputs.
Figure 13 illustre une vue en perspective du chemin fluidique obtenu avec plusieurs capillaires d’entrée à l’instar de la figure 12. Figure 13 shows a perspective view of the fluid path obtained with several inlet capillaries like Figure 12.
Figure 14 est une vue schématique de la buse selon l’invention où le pilier est confondu avec la pièce formant la chambre de tourbillonnement, l’orifice et les canaux de tourbillonnement. DESCRIPTION DÉTAILLÉE Figure 14 is a schematic view of the nozzle according to the invention where the pillar coincides with the part forming the swirl chamber, the orifice and the swirl channels. DETAILED DESCRIPTION
La description suivante sera mieux comprise à la lecture des dessins présentés ci-dessus. Dans le but d'illustrer, la buse est représentée dans des modes de réalisation préférés. Il doit être compris, cependant, que la présente demande n'est pas limitée aux arrangements, structures, caractéristiques, modes de réalisation et apparences précis indiqués. Les dessins ne sont pas dessinés à l'échelle et ne sont pas destinés à limiter la portée des revendications aux modes de réalisation représentés dans ces derniers. The following description will be better understood on reading the drawings presented above. For the purpose of illustration, the nozzle is shown in preferred embodiments. It should be understood, however, that the present application is not limited to the precise arrangements, structures, features, embodiments and appearances indicated. The drawings are not drawn to scale and are not intended to limit the scope of the claims to the embodiments shown therein.
De manière générale, l’invention porte sur une buse de pulvérisation 1 de fluide, plus précisément d’un fluide visqueux et rhéofluidifiant, destiné à être montée sur un récipient distributeur. Le fluide considéré peut ne pas être un fluide rhéofluidifiant si sa viscosité est de l’ordre de 20mPa.s, préférablement inférieure à 20mPa.s, c’est-à-dire si le fluide est faiblement visqueux. La buse 1 selon l’invention est ainsi destinée à être fixée sur un réservoir de fluide, en particulier de fluide visqueux rhéofluidifïant. In general, the invention relates to a nozzle 1 for spraying a fluid, more precisely a viscous and shear-thinning fluid, intended to be mounted on a dispensing container. The fluid considered may not be a shear thinning fluid if its viscosity is of the order of 20 mPa.s, preferably less than 20 mPa.s, that is to say if the fluid is low viscous. The nozzle 1 according to the invention is thus intended to be fixed on a reservoir of fluid, in particular of viscous shear-thinning fluid.
La figure 1 permet de comparer un brouillard diffus obtenu grâce à la buse 1 selon l’invention avec ce qui est obtenu si toutes les conditions ne sont pas réunies, c’est-à-dire une expulsion sur une surface très localisée d’un grand volume de liquide. FIG. 1 makes it possible to compare a diffuse fog obtained thanks to the nozzle 1 according to the invention with what is obtained if all the conditions are not met, that is to say an expulsion on a very localized surface of a large volume of liquid.
Dans la figure 1 , les chambres de tourbillonnement 3 et les orifices de pulvérisation 2 de la buse 1 sont illustrés pour montrer les différences dimensionnelles, la figure 1 n’est pas à l’échelle réelle de Linvention. La figure 1 est une vue illustrative de la pulvérisation que l’invention souhaite éviter à gauche (a) et de la pulvérisation en brouillard souhaitée à droite (b). En outre, on souhaite aussi éviter les gouttes grossières. In Figure 1, the swirl chambers 3 and the spray holes 2 of the nozzle 1 are illustrated to show the dimensional differences, Figure 1 is not on the actual scale of the invention. Figure 1 is an illustrative view of the spray that the invention wishes to avoid on the left (a) and the desired mist spray on the right (b). In addition, it is also desired to avoid coarse drops.
Dans la figure 2, de gauche à droite, des coupes transversales 2a, 2b et 2c montrent les différents éléments pour une meilleure compréhension de la buse 1 selon l’invention. In Figure 2, from left to right, cross sections 2a, 2b and 2c show the different elements for a better understanding of the nozzle 1 according to the invention.
La figure 2 illustre une vue de face d’un mode de réalisation de la buse 1 de l’invention. Dans cette figure, le capillaire d’entrée 7 de la buse 1 est décentré par rapport à l’axe Al de 1 ’ orifice de pulvérisation 2. L ’ axe A 1 est aussi 1 ’ axe de la chambre de tourbillonnement tronconique 3. Le décentrage peut aller d’une distance h7 comprise entre 0 mm et 0,4mm, en notant que si h7 est égale à 0mm, cela mène à une co-axialité avec l’orifice de pulvérisation. La distance h7 qualifie ainsi la distance entre l’axe Al de l’orifice de pulvérisation 2 et l’axe du capillaire d’entrée 7. L’avantage présenté par ce décentrage est un avantage pratique de réalisation de la buse 1. Figure 2 illustrates a front view of one embodiment of the nozzle 1 of the invention. In this figure, the inlet capillary 7 of the nozzle 1 is off-center with respect to the axis A1 of the spray orifice 2. The axis A 1 is also the axis of the frustoconical swirl chamber 3. The Decentering can range from a distance h7 between 0mm and 0.4mm, noting that if h7 is 0mm, this leads to co-axiality with the spray orifice. The distance h7 thus qualifies the distance between the axis Al of the spray orifice 2 and the axis of the inlet capillary 7. The advantage presented by this off-centering is a practical advantage of making the nozzle 1.
La longueur L et la section D du capillaire d’entrée 7 sont des variables sur lesquelles il est possible d’agir dans le cadre de l’invention afin de moduler le taux de cisaillement du fluide traversant le capillaire d’entrée 7. Dans le cas particulier où la section D du capillaire d’entrée 7 est un disque (le capillaire étant cylindrique), alors la section devient un diamètre D, tel que tel que S=pi*(D/2)2, où S désigne la section. The length L and the section D of the inlet capillary 7 are variables on which it is possible to act within the framework of the invention in order to modulate the shear rate of the fluid passing through the inlet capillary 7. In the particular case where the section D of the input capillary 7 is a disc (the capillary being cylindrical), then the section becomes a diameter D, such that S = pi * (D / 2) 2 , where S denotes the section .
De manière bien connue en soi, le taux de cisaillement augmente lorsque la section S diminue. A un débit donné, l’augmentation de la longueur L permet d’augmenter le temps pendant lequel le fluide est cisaillé à un taux de cisaillement donné. Cela permet de s’assurer que la longueur L est supérieure à la longueur d’établissement de l’écoulement et que la viscosité devant être obtenue à ce taux de cisaillement est bien atteinte. Toutefois, on cherche également à réduire la pression d’entrée de la buse 1 et donc à réduire les pertes de charges au sein de celle-ci. Or les pertes de charges augmentent lorsque les sections diminuent et que les longueurs augmentent. Il s’agit donc de trouver un équilibre fonctionnel, ce qui est réalisé par la présente invention. In a manner well known per se, the shear rate increases when the section S decreases. At a given flow rate, increasing the length L makes it possible to increase the time during which the fluid is sheared at a given shear rate. This allows to ensure that the length L is greater than the establishment length of the flow and that the viscosity to be obtained at this shear rate is indeed reached. However, it is also sought to reduce the inlet pressure of the nozzle 1 and therefore to reduce the pressure drops within the latter. However, the pressure drops increase when the sections decrease and the lengths increase. It is therefore a matter of finding a functional balance, which is achieved by the present invention.
Dans le mode de réalisation illustré en figure 2, le capillaire d’entrée 7 présente une forme cylindrique de section circulaire. De préférence le diamètre D7 du capillaire d’entrée 7 est compris entre 0,1 et 0,3 mm et sa longueur L est comprise entre 2 et 11mm. II est connu de toute personne du métier qu’en réduisant la section D du capillaire d’entrée 7 on augmente de ce fait le taux de cisaillement du fluide à propulser, car le taux de cisaillement est égal à la vitesse du fluide divisé par l’entrefer. Ceci conduit à une baisse de la viscosité dudit fluide au sein du capillaire d’entrée 7 et dans la buse 1 de manière générale. Comme la viscosité est plus faible, il est possible d’augmenter le débit et donc atteindre des vitesses d’écoulement plus élevées tout en restant à des pressions relativement faibles. En effet, à viscosité constante, si on augmente le débit alors on augmente la pression et ceci d’autant plus que la viscosité est élevée. En d’autres termes, augmenter le taux de cisaillement permet de réduire la viscosité et ainsi d’atteindre des vitesses d’écoulement plus élevées sans pour autant augmenter (de façon très importante) la pression. Augmenter la vitesse permet d’atteindre la vitesse critique qui permet de générer une atomisation du fluide et ainsi créer un spray (ou brouillard). In the embodiment illustrated in Figure 2, the inlet capillary 7 has a cylindrical shape of circular section. Preferably, the diameter D7 of the inlet capillary 7 is between 0.1 and 0.3 mm and its length L is between 2 and 11mm. It is known to anyone skilled in the art that by reducing the section D of the inlet capillary 7, the shear rate of the fluid to be propelled is thereby increased, because the shear rate is equal to the speed of the fluid divided by l 'gap. This leads to a drop in the viscosity of said fluid within the inlet capillary 7 and in the nozzle 1 in general. As the viscosity is lower, it is possible to increase the flow rate and thus achieve higher flow velocities while remaining at relatively low pressures. In fact, at constant viscosity, if we increase the flow rate then we increase the pressure and this all the more so as the viscosity is high. In other words, increasing the shear rate reduces viscosity and thus achieves higher flow velocities without increasing (dramatically) pressure. Increasing the speed makes it possible to reach the critical speed which makes it possible to generate an atomization of the fluid and thus create a spray (or mist).
En d’autres termes, en cisaillant signifîcativement le fluide dès son entrée dans la buse 1 et donc dès son entrée dans le capillaire d’entrée 7, on obtient une faible viscosité tout le long du chemin fluidique. Ceci permet d’atteindre un débit et une vitesse d’écoulement du fluide élevés, permettant l’atomisation du fluide en sortie de la buse, c’est-à-dire la formation d’un spray (brouillard), sans pour autant augmenter de façon très importante la pression en entrée de la buse 1. En d’autres termes, cela permet de produire un spray (brouillard) à partir d’un fluide visqueux rhéofluidifïant à faible pression, facilitant ainsi la conception d’un dispositif médical et limitant les risques pour son utilisateur.In other words, by significantly shearing the fluid as soon as it enters the nozzle 1 and therefore as soon as it enters the inlet capillary 7, a low viscosity is obtained all along the fluid path. This makes it possible to achieve a high flow rate and flow rate of the fluid, allowing the atomization of the fluid at the outlet of the nozzle, that is to say the formation of a spray (mist), without however increasing very importantly the pressure at the inlet of the nozzle 1. In other words, this makes it possible to produce a spray (mist) from a viscous shear-thinning fluid at low pressure, thus facilitating the design of a medical device and limiting the risks for its user.
Les petites sections permettent d’avoir une vitesse élevée, toutefois une très faible section induit une grande perte de charge et demande ainsi une très forte pression appliquée en entrée de la buse 1 pour atteindre la pulvérisation. The small sections allow a high speed to be achieved, however a very small section induces a large pressure drop and thus requires a very high pressure applied at the inlet of the nozzle 1 to reach the spray.
On remarquera dans la figure 5, que dans le mode de réalisation représenté, le capillaire d’entrée 7 présente d’amont en aval des portions 71, 72, 73, 74 à diamètres différents : chaque portion 71, 72, 73, 74 présente une section constante sur toute sa longueur, toutefois, la première portion 71, située le plus en amont sur le capillaire d’entrée 7, présente un diamètre D supérieur à celui des portions en aval 72, 73, 74. Chaque portion 71, 72, 73, 74 présente ainsi, sur toute sa longueur, un diamètre D : supérieur ou égal à celui des portions 72, 72, 74 situées en aval, et inférieur ou égal à celui des portions 71, 72, 73 situées en amont. On cherche ici à réduire progressivement la section de passage pour augmenter progressivement le taux de cisaillement du fluide afin toujours de réduire la viscosité du fluide, sans créer de restrictions ponctuelles trop importantes qui induiraient des pertes de charges singulières importantes, et donc une augmentation de la pression. It will be noted in FIG. 5, that in the embodiment shown, the inlet capillary 7 has, from upstream to downstream, portions 71, 72, 73, 74 with different diameters: each portion 71, 72, 73, 74 has a constant section over its entire length, however, the first portion 71, located most upstream on the inlet capillary 7, has a diameter D greater than that of the downstream portions 72, 73, 74. Each portion 71, 72 , 73, 74 thus has, over its entire length, a diameter D: greater than or equal to that of the portions 72, 72, 74 located downstream, and less than or equal to that of the portions 71, 72, 73 located upstream. The aim here is to gradually reduce the passage section in order to gradually increase the shear rate of the fluid in order to always reduce the viscosity of the fluid, without creating excessively large point restrictions which would induce significant single head losses, and therefore an increase in the fluid. pressure.
En d’autres termes, plus une portion 71, 72, 73, 74 de capillaire d’entrée 7 est située proche de la chambre de tourbillonnement 3, plus sa section D est faible. Les différentes postions 71, 72, 73, 74 peuvent être séparées les unes des autres par des plateaux. Ces plateaux permettent un meilleur alignement des différentes portions 71, 72, 73, 74 entre elles. In other words, the closer a portion 71, 72, 73, 74 of inlet capillary 7 is to the swirl chamber 3, the smaller its section D is. The different positions 71, 72, 73, 74 can be separated from each other by plates. These plates allow better alignment of the different portions 71, 72, 73, 74 with one another.
Les trois variantes 6a, 6b et 6c de la figure 6 illustrent différentes configurations possibles pour les différentes portions 71, 72, 73, 74 du capillaire d’entrée 7. Selon la variante 6a, il y a deux portions 71 et 72 chacune présentant un diamètre D constant sur toute sa longueur. Le diamètre D de la portion aval 71 est plus faible que le diamètre D de la portion amont 72. The three variants 6a, 6b and 6c of FIG. 6 illustrate different possible configurations for the different portions 71, 72, 73, 74 of the inlet capillary 7. According to variant 6a, there are two portions 71 and 72 each having a constant diameter D over its entire length. The diameter D of the downstream portion 71 is smaller than the diameter D of the upstream portion 72.
La variante 6b, présente trois portions 71, 72 et 73 à chacune à diamètre D constant sur toute sa longueur. Le diamètre D de la portion amont 73 est plus grand que celui de la portion centrale 72, lui-même plus grand que celui de la portion aval 71. Il s’agit du mode de réalisation de la figure 5. Variant 6b has three portions 71, 72 and 73, each with a constant diameter D over its entire length. The diameter D of the upstream portion 73 is greater than that of the central portion 72, itself larger than that of the downstream portion 71. This is the embodiment of FIG. 5.
La variante 6c, présente, quant à elle, quatre portions 71, 72, 73 et 74 chacune à diamètre D constant. Les diamètres D sont décroissants vers le moyen d’alimentation 6 et les deux portions 72 et 73 centrales présentent des sections de surface semblables. Ceci permet d’augmenter la longueur de la portion centrale 72, 73 de section intermédiaire. L’avantage de ce mode de réalisation est d’augmenter la longueur L du capillaire d’entrée 7 quand il n’y a un seul diamètre de capillaire (longueur d’établissement de l’écoulement à ce cisaillement). Il est par ailleurs préférable d’augmenter la longueur sur la section intermédiaire plutôt que sur la plus petite section pour ne pas augmenter trop les pertes de charges. Variant 6c, for its part, has four portions 71, 72, 73 and 74 each with a constant diameter D. The diameters D decrease towards the supply means 6 and the two central portions 72 and 73 have similar surface sections. This makes it possible to increase the length of the central portion 72, 73 of intermediate section. The advantage of this embodiment is to increase the length L of the inlet capillary 7 when there is only one capillary diameter (establishment length of the flow at this shear). It is also preferable to increase the length on the intermediate section rather than on the smaller section so as not to increase the pressure losses too much.
Dans les trois modes de réalisation de la figure 6, les portions 71, 72, 73, 74 du capillaire d’entrée 7 sont co-axiales, selon l’axe Al, avec l’orifice de pulvérisation 2. In the three embodiments of Figure 6, the portions 71, 72, 73, 74 of the inlet capillary 7 are co-axial, along the axis Al, with the spray orifice 2.
La Figure 11 illustre une vue en coupe transversale de la buse 1 selon un mode de réalisation de l’invention présentant plusieurs capillaires d’entrée 7 parallèles. L’avantage de présenter plusieurs capillaires d’entrée 7 parallèles est la facilité de la fabrication industrielle. En injection plastique il n’est pas possible de faire un capillaire d’entrée 7 de faible section, mais grâce à cet assemblage, il devient possible de réaliser un cylindre beaucoup plus grand en diamètre (faisable en injection plastique) dans lequel est inséré le cylindre d’entrée de la buse 1 , également faisable en injection plastique. Dans ce mode de réalisation la buse 1 comporte un support 8 présentant un premier dégagement 81 apte à accueillir un récipient contenant le fluide à expulser, ainsi qu’un second dégagement 82 apte à accueillir un cylindre d’entrée de buse. Ce cylindre d’entrée de buse est illustré en figure 12. Dans le mode de réalisation illustré, ce cylindre d’entrée de buse est venu de matière avec une entretoise 53 dont la fonction sera explicitée plus loin dans la demande. Des gorges sont ménagées longitudinalement dans le cylindre d’entrée de buse, de manière à ce que les parois externes du cylindre d’entrée de buse puissent, en coopérant par emboîtement avec les parois internes du second dégagement 82, former les capillaires d’entrées parallèles 7 entre eux et s’étendant le long de l’axe Al. Ainsi chaque capillaire d’entrée 7 est formé par un espace situé entre le cylindre d’entrée de la buse 1 et son support 8. L’avantage du support 8 est de pouvoir connecter directement la buse 1 sur une seringue via une connectique luer (82 est un luer femelle, la seringue se termine par un luer mâle). Ce mode de réalisation permet d’obtenir le taux de cisaillement souhaité en entrée de la buse 1 avec des pièces qui peuvent être fabriquée par des méthodes de fabrication industrielle (grande série). Figure 11 illustrates a cross-sectional view of the nozzle 1 according to an embodiment of the invention having several parallel inlet capillaries 7. The advantage of having several parallel inlet capillaries 7 is the ease of industrial manufacture. In plastic injection it is not possible to make an inlet capillary 7 of small section, but thanks to this assembly, it becomes possible to make a cylinder much larger in diameter (feasible in plastic injection) in which is inserted the inlet cylinder of nozzle 1, also feasible in plastic injection. In this embodiment, the nozzle 1 comprises a support 8 having a first recess 81 capable of accommodating a container containing the fluid to be expelled, as well as a second recess 82 capable of accommodating a nozzle inlet cylinder. This nozzle inlet cylinder is illustrated in FIG. 12. In the illustrated embodiment, this nozzle inlet cylinder is integral with a spacer 53, the function of which will be explained later in the application. Grooves are formed longitudinally in the nozzle inlet cylinder, so that the outer walls of the nozzle inlet cylinder can, by engaging by interlocking with the inner walls of the second recess 82, form the inlet capillaries. parallel to each other and extending along the axis A1. Thus each inlet capillary 7 is formed by a space situated between the inlet cylinder of the nozzle 1 and its support 8. The advantage of support 8 is to be able to connect the nozzle 1 directly to a syringe via a luer connector (82 is a female luer, the syringe ends with a male luer). This embodiment makes it possible to obtain the desired shear rate at the inlet of the nozzle 1 with parts which can be manufactured by industrial manufacturing methods (large series).
De manière générale, le ou les capillaire(s) d’entrée 7 présente(nt) un diamètre D permettant de générer un taux de cisaillement de fluide supérieur à 5000 s 1. Dans le cas des modes de réalisation présentant un capillaire d’entrée 7 à portions 71, 72, 73 et 74 variables, c’est la portion amont 74 qui permet d’atteindre un taux de cisaillement supérieur à 5000s 1. Les portions suivantes 71, 72, 73 permettent d’atteindre des cisaillements encore plus élevés. In general, the inlet capillary (s) 7 has (have) a diameter D making it possible to generate a fluid shear rate greater than 5000 s 1 . In the case of embodiments having an inlet capillary 7 with variable portions 71, 72, 73 and 74, it is the upstream portion 74 which makes it possible to achieve a shear rate greater than 5000 s 1 . The following portions 71, 72, 73 make it possible to achieve even higher shears.
La coupe selon l’axe 2a de la figure 2 montre la liaison permettant le chemin fluidique entre le capillaire d’entrée 7, et l’entretoise 53 déjà mentionnée plus haut. L’entretoise 53 du mode de réalisation de la coupe 2a est un prisme hexagonal. Avantageusement, cette forme permet de créer des conduits de faibles sections de passage, à l’aide de deux pièces emboîtables et facilement assemblables et positionnables. C’est l’interstice entre le cylindre enveloppant et l’entretoise 53 qui permet de former les conduits. La faible section de passage permet de maintenir un taux de cisaillement élevé. The section along axis 2a of Figure 2 shows the connection allowing the fluid path between the inlet capillary 7, and the spacer 53 already mentioned above. The spacer 53 of the embodiment of section 2a is a hexagonal prism. Advantageously, this shape makes it possible to create conduits with small passage sections, using two interlocking parts that are easily assembled and positioned. It is the gap between the enveloping cylinder and the spacer 53 which forms the conduits. The small passage section allows a high shear rate to be maintained.
Plus généralement, le capillaire d’entrée 7 est relié à la chambre de tourbillonnement tronconique 3 au-moyens de conduits 512. Ces conduits 512 peuvent être obtenus de diverses manières. Un moyen d’obtenir ces conduits 512 est d’empiler des pièces usinées, formant ainsi un pilier 5 dans lequel sont ménagés lesdits conduits 512. Cette méthode est néanmoins longue et fastidieuse, industriellement peu intéressante. Alternativement, dans le mode de réalisation illustré en figure 2, ces conduits 512 sont obtenus au moyen de l’emboîtement de deux pièces pouvant être obtenues indépendamment l’une de l’autre par injection plastique. Ces deux pièces prennent la forme d’une entretoise 53 de type prisme hexagonal et d’un cylindre enveloppant 52. On se limite ainsi à deux pièces, simplifiant l’assemblage de la buse 1. Dans le mode de réalisation de la figure 2, 1 ’ entretoise 53 et le cylindre enveloppant forment un pilier 5. Ainsi la coupe selon 1 ’ axe 2b montre la liaison permettant le chemin fluidique entre le capillaire d’entrée 7 et la chambre de tourbillonnement 3 à travers le pilier 5. Plus précisément, la coupe 2b montre les 6 conduits de faible section de passage formés par l’emboîtement de G entretoise 53 dans le cylindre enveloppant 52. Dans cet exemple, l’entretoise 53 est hexagonale, ce qui forme six conduits 512, mais certains modes de réalisation présentent douze conduits 512. Plus le nombre de « facettes » de G entretoise 53 est important, plus la section de passage des conduits 512 est faible et donc plus le taux de cisaillement est important. En particulier, le chemin fluidique passe entre les parois externes de l’entretoise 53 et les/la paroi(s) inteme(s) du cylindre enveloppant 52. Dans cet exemple, le cylindre enveloppant 52 est de section circulaire. Les conduits 512 s’étendent longitudinalement selon l’axe Al . Les flèches indiquent la direction de l’écoulement d’un fluide apte à être pulvérisé le long des conduits 512 du pilier 5. More generally, the inlet capillary 7 is connected to the frustoconical swirl chamber 3 by means of conduits 512. These conduits 512 can be obtained in various ways. One way to obtain these conduits 512 is to stack machined parts, thus forming a pillar 5 in which said conduits 512 are formed. This method is nevertheless long and tedious, industrially unattractive. Alternatively, in the embodiment illustrated in FIG. 2, these conduits 512 are obtained by means of the interlocking of two parts which can be obtained independently of one another by plastic injection. These two parts take the form of a spacer 53 of the hexagonal prism type and of an enveloping cylinder 52. We are thus limited to two parts, simplifying the assembly of the nozzle 1. In the embodiment of FIG. 2, 1 'spacer 53 and the enveloping cylinder form a pillar 5. Thus the section along one axis 2b shows the connection allowing the fluid path between the inlet capillary 7 and the swirl chamber 3 through the pillar 5. More precisely, section 2b shows the 6 ducts of small passage section formed by the interlocking of G spacer 53 in the enveloping cylinder 52. In this example, the spacer 53 is hexagonal , which forms six conduits 512, but certain embodiments have twelve conduits 512. The greater the number of “facets” of G spacer 53, the smaller the passage section of the conduits 512 and therefore the greater the shear rate. important. In particular, the fluid path passes between the external walls of the spacer 53 and the / the internal wall (s) of the enveloping cylinder 52. In this example, the enveloping cylinder 52 is of circular section. The conduits 512 extend longitudinally along the axis A1. The arrows indicate the direction of flow of a fluid suitable for being sprayed along the conduits 512 of the pillar 5.
La figure 7 illustre le chemin fluidique d’un troisième mode de réalisation selon l’invention. En effet, dans la figure 7, le pilier 5 n’est pas représenté afin de montrer le chemin fluidique passant par les conduits 51 qui s’étendent longitudinalement selon l’axe Al . Dans ce mode de résiliation, tous les éléments et leurs dimensions donnés pour le premier mode de réalisation sont identiques à l’exception du pilier 5 et de ses composants. On observe une série de 12 conduits 51 équirépartis autour de l’axe Al, le long de la circonférence du pilier 5. Ces conduits 51 présentent une forme générale aplatie, résultante d’une entretoise 53 « à facettes » dans un cylindre. Comme précédemment, plus le nombre de « facettes » de l’entretoise 53 est important, plus la section de passage des conduits 51 est faible et donc plus le taux de cisaillement au sein des conduits 51 est important. Ceci permet le maintien d’un taux de cisaillement élevé pour maintenir une viscosité faible ; le taux de cisaillement peut être plus élevé que dans le chemin fluidique en amont de ces conduits 51 , ce qui permet de rhéo fluidifier encore davantage. Figure 7 illustrates the fluid path of a third embodiment according to the invention. Indeed, in Figure 7, the pillar 5 is not shown in order to show the fluid path passing through the conduits 51 which extend longitudinally along the axis Al. In this method of termination, all the elements and their dimensions given for the first embodiment are identical with the exception of pillar 5 and its components. There is a series of 12 conduits 51 evenly distributed around the axis Al, along the circumference of the pillar 5. These conduits 51 have a generally flattened shape, resulting from a "faceted" spacer 53 in a cylinder. As before, the greater the number of "facets" of the spacer 53, the smaller the passage section of the ducts 51 and therefore the greater the shear rate within the ducts 51. This allows the maintenance of a high shear rate to maintain a low viscosity; the shear rate may be higher than in the fluid path upstream of these conduits 51, which makes it possible to rheo fluidify even more.
A la figure 8, on voit les conduits 51 définis par l’espace compris entre les faces de l’entretoise 53 et la surface intérieure du cylindre enveloppant 52. L’entretoise 53 est composée de 12 faces formant ainsi autant de conduits pour acheminer le fluide à pulvériser du moyen d’alimentation 6 aux canaux de tourbillonnement 4. La figure 9 illustre deux modes de réalisation 9a et 9b dont les hauteurs H1 et H2 du pilier 5 sont variables afin d’obtenir une longueur plus importante sur laquelle le fluide est cisaillé. In Figure 8, we see the conduits 51 defined by the space between the faces of the spacer 53 and the inner surface of the enveloping cylinder 52. The spacer 53 is composed of 12 faces thus forming as many conduits to convey the fluid to be sprayed from the supply means 6 to the swirl channels 4. FIG. 9 illustrates two embodiments 9a and 9b, the heights H1 and H2 of the pillar 5 of which are variable in order to obtain a greater length over which the fluid is sheared.
L’avantage de la hauteur H1 par rapport à la hauteur H2 est que les longueurs plus courtes induisent une perte de charge plus faible et donc une pression en entrée de buse 1 plus faible. L’avantage de la hauteur H2 par rapport à la hauteur H1 est que la longueur sur laquelle le fluide est cisaillé est plus importante et induit donc un meilleur cisaillement. Il s’agit là encore de trouver un compromis, objet de la présente invention. The advantage of the height H1 over the height H2 is that the shorter lengths induce a lower pressure drop and therefore a lower inlet pressure of nozzle 1. The advantage of the height H2 over the height H1 is that the length over which the fluid is sheared is greater and therefore induces better shear. Here again, it is a matter of finding a compromise, which is the object of the present invention.
La figure 14 est autre vue en perspective d’une buse 1 selon l’invention montrant un capillaire d’entrée 7 à travers lequel va passer le fluide à expulser. Un mode de réalisation avec plusieurs capillaires d’entrée 7 tel qu’illustré à la figure 13 est possible. Le pilier 5 est aussi représenté, il comprend des conduits définis par l’espace compris entre les faces de l’entretoise 53 et la surface intérieure du cylindre enveloppant 52 (non représentés). En sortant des conduits (non représentés), le fluide passe par les canaux de tourbillonnement (non représentés) puis accède tangentiellement à la chambre de tourbillonnement 3 avant d’être expulsé par l’orifice de pulvérisation 2 sous forme de brouillard. Dans ce mode de réalisation, le pilier 5 est confondu avec la pièce dans laquelle sont formés canaux, cône et orifice de pulvérisation. En d’autres termes, dans ce mode de réalisation, une seule pièce supporte le cylindre enveloppant, les canaux de tourbillonnement 4, la chambre de tourbillonnement 3 et l’orifice 2. Figure 14 is another perspective view of a nozzle 1 according to the invention showing an inlet capillary 7 through which the fluid to be expelled will pass. An embodiment with several input capillaries 7 as illustrated in Figure 13 is possible. The pillar 5 is also shown, it comprises conduits defined by the space between the faces of the spacer 53 and the inner surface of the enveloping cylinder 52 (not shown). On exiting the conduits (not shown), the fluid passes through the swirl channels (not shown) and then tangentially accesses the swirl chamber 3 before being expelled through the spray port 2 in the form of a mist. In this embodiment, the pillar 5 coincides with the part in which the channels, cone and spray orifice are formed. In other words, in this embodiment, a single piece supports the enveloping cylinder, the swirl channels 4, the swirl chamber 3 and the port 2.
La liaison entre les conduits 512 du pilier 5 et le capillaire d’entrée 7peut être assuré par un moyen d’alimentation 6 prenant typiquement la forme d’un plateau de forme creuse de forme globalement cylindrique plat. Ceci est illustré en figure 4, notamment. La figure 4 illustre le chemin fluidique suivi par le fluide à pulvériser dans la buse 1. Dans le mode de réalisation de la figure 4, la buse 1 présente trois conduits 511, 512, 513 reliant le capillaire d’entrée 7 à la chambre de tourbillonnement 3. Dans ce mode de réalisation, ces trois conduits 511,512 et 513 sont des conduits de forme cylindrique à section circulaire s’étendant longitudinalement le long de l’axe Al. Les trois conduits 511, 512 et 513 sont équidistants angulairement et donc à 120° l’un de l’autre. La coupe selon l’axe 2c de la figure 2 montre plus particulièrement la liaison continuant le chemin fluidique entre le pilier 5 et la chambre de tourbillonnement tronconique 3. La coupe de la figure 2c montre un anneau circulaire reliant le pilier 5 aux canaux de tourbillonnement 4 afin d’acheminer le fluide à pulvériser tangentiellement vers la chambre de tourbillonnement 3 en direction du centre de l’anneau circulaire. Dit autrement, l’anneau circulaire permet de relier les conduits 512 à l’entrée des canaux de tourbillonnement 4, 41, 42, 43. Lesdits canaux de tourbillonnement 4, 41, 42, 43 acheminent le fluide vers la chambre de tourbillonnement tronconique 3 de façon tangentielle au cône afin de créer un tourbillon. La figure 3 montre une vue de face de l’orifice de pulvérisation 2 et de la chambre de tourbillonnement 3. Dans le cadre de l’invention, le rapport de la section s de l’orifice de pulvérisation sur la section maximale S de la chambre de tourbillonnement est tel que 1% £ 20% et préférentiellement, ce rapport est compris entre 1 et 10%, de manière encore préférentielle, ce rapport est compris entre 1 et 6%. Il est à noter que les limites respectives de ces intervalles sont comprises dans l’invention. The connection between the conduits 512 of the pillar 5 and the inlet capillary 7 can be provided by a supply means 6 typically taking the form of a hollow-shaped plate of generally flat cylindrical shape. This is illustrated in Figure 4, in particular. Figure 4 illustrates the fluid path followed by the fluid to be sprayed in the nozzle 1. In the embodiment of Figure 4, the nozzle 1 has three conduits 511, 512, 513 connecting the inlet capillary 7 to the chamber of swirl 3. In this embodiment, these three ducts 511, 512 and 513 are cylindrical ducts with a circular section extending longitudinally along the axis A1. The three ducts 511, 512 and 513 are angularly equidistant and therefore at 120 ° from each other. The section along the axis 2c of Figure 2 shows more particularly the connection continuing the fluid path between the pillar 5 and the frustoconical swirl chamber 3. The section of Figure 2c shows a circular ring connecting the pillar 5 to the swirl channels. 4 in order to convey the fluid to be sprayed tangentially towards the swirl chamber 3 in the direction of the center of the circular ring. In other words, the circular ring makes it possible to connect the conduits 512 to the inlet of the swirl channels 4, 41, 42, 43. Said swirl channels 4, 41, 42, 43 convey the fluid to the frustoconical swirl chamber 3 tangentially to the cone to create a vortex. Figure 3 shows a front view of the spray orifice 2 and of the swirl chamber 3. In the context of the invention, the ratio of the section s of the spray orifice to the maximum section S of the swirl chamber is such that 1% 20% and preferably, this ratio is between 1 and 10%, more preferably, this ratio is between 1 and 6%. It should be noted that the respective limits of these intervals are included in the invention.
Un anneau circulaire, visible à la figure 7, relie les conduits 511, 512 et 513 aux trois canaux de tourbillonnement 41, 42 et 43 avec lesquels ils sont respectivement en connexion fluidique. Les trois canaux de tourbillonnement 41, 42 et 43 présentent chacun une section en forme rectangle, ladite section étant comprise entre 0,001 et 0,06mm2, préférentiellement entre 0,003 et 0,01mm2. Cette section permet : d’augmenter encore davantage le taux de cisaillement du fluide et ainsi réduire encore davantage la viscosité, d’augmenter la vitesse du fluide (accélération) par rapport à la vitesse de fluide dans les canaux plus en amont, pour ainsi avoir une vitesse importante à l’arrivée dans la chambre de tourbillonnement 3 pour créer un tourbillon plus rapide et ainsi une meilleure pulvérisation, d’avoir une vitesse de fluide élevée, permettant de générer un spray, à un débit relativement faible (débit = vitesse x section, à vitesse donnée, plus la section est faible, plus le débit sera faible). De même que pour le capillaire d’entrée 7, la réduction de la section des canaux de tourbillonnements 41, 42 et 43 permet d’augmenter le cisaillement du fluide et donc sa vitesse. Cette augmentation de la vitesse permet une meilleure génération de tourbillons et donc une meilleure pulvérisation. La longueur des canaux de tourbillonnement 41, 42 et 43, c’est-à-dire la distance à parcourir par le fluide à pulvériser entre l’anneau circulaire et l’entrée tangentielle de la chambre de tourbillonnement 3 est idéalement comprise entre 0,2 et 0,71mm. A circular ring, visible in FIG. 7, connects the conduits 511, 512 and 513 to the three swirl channels 41, 42 and 43 with which they are respectively in fluid connection. The three swirl channels 41, 42 and 43 each have a rectangle-shaped section, said section being between 0.001 and 0.06mm 2 , preferably between 0.003 and 0.01mm 2 . This section makes it possible to: further increase the shear rate of the fluid and thus further reduce the viscosity, increase the speed of the fluid (acceleration) relative to the speed of the fluid in the channels further upstream, thus having a high speed on arrival in the swirl chamber 3 to create a faster vortex and thus better spraying, to have a high fluid speed, making it possible to generate a spray, at a relatively low flow rate (flow rate = speed x section, at a given speed, the smaller the section, the lower the flow rate). As for the inlet capillary 7, reducing the section of the vortex channels 41, 42 and 43 makes it possible to increase the shear of the fluid and therefore its speed. This increase in speed allows better generation of vortices and therefore better spraying. The length of the swirl channels 41, 42 and 43, that is to say the distance to be traveled by the fluid to be sprayed between the circular ring and the tangential inlet of the swirl chamber 3 is ideally between 0, 2 and 0.71mm.
Toujours à la figure 4, on distingue la chambre de tourbillonnement 3 qui présente une forme tronconique dont le diamètre de la base est idéalement compris entre 0,8 et 1,6mm. Préférentiellement, l’angle a entre Taxe Al et la génératrice de la chambre de forme tronconique est tel que 25° < a < 55°, préférentiellement : 30° < a < 45°. Still in Figure 4, we can see the swirl chamber 3 which has a frustoconical shape whose base diameter is ideally between 0.8 and 1.6mm. Preferably, the angle a between Tax Al and the generatrix of the frustoconical chamber is such that 25 ° <a <55 °, preferably: 30 ° <a <45 °.
La hauteur L3 de la chambre de forme tronconique est, quant à elle, idéalement comprise entre 0,4 et 0,7mm. The height L3 of the frustoconical chamber is, for its part, ideally between 0.4 and 0.7 mm.
Finalement, on distingue aussi dans la figure 4 l’orifice de pulvérisation 2 qui présente une forme cylindrique avec un diamètre d préférentiellement compris entre 0,05mm et 0,5mm, préférentiellement entre 0,1 mm et 0,18mm. Finally, in Figure 4 we also distinguish the spray orifice 2 which has a cylindrical shape with a diameter d preferably between 0.05mm and 0.5mm, preferably between 0.1mm and 0.18mm.
La hauteur h de l’orifice de pulvérisation 2 est, quant à elle idéalement comprise entre 0,1 mm et 0,15mm. The height h of the spray orifice 2 is, for its part, ideally between 0.1 mm and 0.15 mm.
La figure 5 illustre un second mode de réalisation selon l’invention. Dans ce mode de résiliation, tous les éléments et leurs dimensions donnés pour le premier mode de réalisation sont identiques à l’exception du moyen d’alimentation 6 qui est ici un ensemble de trois canaux d’alimentation 61, 62 et 63 angulairement équidistants et en connexion fluidique avec les conduits 511, 512 et 513. Ce mode de réalisation permet un meilleur aiguillage du fluide du capillaire d’entrée 7 vers les conduits 51, 511, 512, 513. La figure 13 illustre un mode de réalisation alternatif de la présente invention. La figure 13 illustre ainsi le chemin fluidique suivi par un fluide devant être expulsé sous forme de brouillard par une buse 1 telle que celle illustrée à la figure 11 avec les capillaires d’entrée formés par l’entretoise de la figure 12. Le chemin fluidique en aval du moyen d’alimentation 6 est identique à ceux décrits pour les modes de réalisation des figures 7, 8 et 9. FIG. 5 illustrates a second embodiment according to the invention. In this termination mode, all the elements and their dimensions given for the first embodiment are identical with the exception of the supply means 6 which is here a set of three supply channels 61, 62 and 63 which are angularly equidistant and in fluid connection with the conduits 511, 512 and 513. This embodiment allows better routing of the fluid from the inlet capillary 7 to the conduits 51, 511, 512, 513. FIG. 13 illustrates an alternative embodiment of the present invention. FIG. 13 thus illustrates the fluid path followed by a fluid to be expelled in the form of a mist by a nozzle 1 such as that illustrated in FIG. 11 with the capillaries inlet formed by the spacer of Figure 12. The fluid path downstream of the supply means 6 is identical to those described for the embodiments of Figures 7, 8 and 9.
Selon certains modes de réalisation, la buse 1 selon l’invention peut tout à fait être considérée comme un consommable et est donc faite en matériaux jetables et/ou à très faible durée de vie. La buse 1 selon la présente invention est ainsi adaptable à de nombreuses applications dans le cosmétique, l’agroalimentaire, et n’est donc pas limitée au domaine médical. According to some embodiments, the nozzle 1 according to the invention may well be considered as a consumable and is therefore made of disposable and / or very short-lived materials. The nozzle 1 according to the present invention is thus adaptable to numerous applications in cosmetics and the food industry, and is therefore not limited to the medical field.
L’utilisation de la buse 1 se fait en association avec un actionneur indépendant. La buse de pulvérisation 1 est ainsi actionnée au moyen d’un actionneur indépendant de la buse. Par « actionnement de la buse » on entend « mise en circulation du fluide à distribuer à travers la buse 1 ». The use of the nozzle 1 is done in conjunction with an independent actuator. The spray nozzle 1 is thus actuated by means of an actuator independent of the nozzle. By “actuation of the nozzle” is meant “circulation of the fluid to be distributed through the nozzle 1”.
Cet actionneur indépendant peut prendre des formes très variées mais dans tous les cas, il comprend un moyen de mise en circulation du fluide à pulvériser. L’ actionneur peut ainsi être manuel ou automatisé à l’aide d’un système mécanique (pompe, pousse seringue, ressort) ou électromécanique (employant un moteur). Le choix de l’ actionneur et du moyen de mise en circulation du fluide à pulvériser dépend des propriétés souhaitées pour la pulvérisation du brouillard : taille du cône, débit, durée du spray par exemple.This independent actuator can take a wide variety of forms, but in all cases it comprises a means for circulating the fluid to be sprayed. The actuator can thus be manual or automated using a mechanical system (pump, syringe pump, spring) or electromechanical (using a motor). The choice of the actuator and the means for circulating the fluid to be sprayed depends on the properties desired for spraying the mist: size of the cone, flow rate, duration of the spray, for example.
Il ressort de ce qui précède, que la buse 1 selon l’invention permet un cisaillement élevé d’un fluide visqueux rhéofluidifiant de manière à pouvoir pulvériser efficacement et de manière sécurisée, ce type de fluides. Le diamètre des canaux de tourbillonnement 41, 42 et 43 est assez faible pour pulvériser un brouillard à faible débit, tout en présentant néanmoins un diamètre suffisamment grand pour ne pas induire des pertes de charges trop importantes de manière à minimiser la pression d’entrée de la buse 1. La figure 10 présente le rhéogramme (courbe de la viscosité en fonction du taux de cisaillement) d’un fluide qui a été pulvérisé avec la buse 1. It emerges from the foregoing that the nozzle 1 according to the invention allows a high shear of a viscous shear-thinning fluid so as to be able to spray effectively and in a safe manner this type of fluid. The diameter of the swirl channels 41, 42 and 43 is small enough to spray a mist at a low flow rate, while nevertheless having a diameter large enough not to induce excessively large pressure drops so as to minimize the inlet pressure of nozzle 1. FIG. 10 shows the rheogram (curve of the viscosity as a function of the shear rate) of a fluid which has been sprayed with the nozzle 1.
La buse 1 selon l’invention permet ainsi la mise en œuvre d’un procédé de distribution d’un fluide visqueux rhéofluidifiant par pulvérisation. Plus précisément, cette distribution est réalisée sous la forme d’un brouillard présentant des gouttes homogènes dont la caractérisation par Diffraction laser (Spraytec / MAL 10332887 / Malvem / UK) permet d’établir les caractéristiques suivantes : au moins 90% des gouttes du brouillard présentant un diamètre inférieur à 1 OOLHTI, préférentiellement inférieur à 90pm, plus préférentiellement inférieur à 80miti, encore plus préférentiellement 70pm. Dans un mode dernier mode préférentiel, inférieur à 60pm, en d’autres termes, que le brouillard présente une Dv90 inférieure à 1 OOLHTI, le diamètre médian des gouttes du brouillard, aussi référencé comme la Dv50 du brouillard est compris entre 10 et 50pm, préférentiellement entre 10 et 45pm, plus préférentiellement entre 15 et 40miti, The nozzle 1 according to the invention thus allows the implementation of a method for dispensing a viscous shear-thinning fluid by spraying. Specifically, this distribution is produced in the form of a mist presenting homogeneous drops, the characterization of which by laser diffraction (Spraytec / MAL 10332887 / Malvem / UK) makes it possible to establish the following characteristics: at least 90% of the drops of the mist having a diameter less than 1 OOLHTI, preferably less than 90 μm, more preferably less than 80 μm, even more preferably 70 μm. In a last preferred mode, less than 60pm, in other words, that the fog has a Dv90 less than 1 OOLHTI, the median diameter of the drops of the fog, also referred to as the Dv50 of the fog, is between 10 and 50pm, preferably between 10 and 45pm, more preferably between 15 and 40miti,
12% des gouttes présentant un diamètre inférieur à 1 Omhi, préférentiellement inférieur à 10pm, une distribution des différentes tailles de gouttes d’un brouillard concentrée autour de sa valeur médiante (Dv50), telle que le ratio entre la différence entre la Dv90 et DvlO, et la Dv50 est inférieur à 2, préférentiellement, inférieur à 1 ,8, plus préférentiellement inférieur à 1,6. Autrement dit la distribution « SPAN » est inférieure à 2, préférentiellement, inférieur à 1.8, plus préférentiellement inférieur à 1,6. 12% of the drops having a diameter less than 1 Omhi, preferably less than 10pm, a distribution of the different sizes of drops of a fog concentrated around its mediating value (Dv50), such as the ratio between the difference between the Dv90 and DvlO , and the Dv50 is less than 2, preferably less than 1.8, more preferably less than 1.6. In other words, the “SPAN” distribution is less than 2, preferably less than 1.8, more preferably less than 1.6.
NUMÉROS RÉFÉRENCÉS 1 : Buse de pulvérisation REFERENCED NUMBERS 1: Spray nozzle
2 : Orifice de pulvérisation 2: Spray orifice
3 : Chambre de tourbillonnement 3: Whirlpool chamber
4, 41, 42, 43 : canaux de tourbillonnement 4, 41, 42, 43: swirl channels
5 : pilier 51, 511, 512, 513 : conduits 52 : cylindre enveloppant 5: pillar 51, 511, 512, 513: ducts 52: enveloping cylinder
53 : entretoise 53: spacer
6 : moyen d’alimentation, 6: feeding means,
61,62,63 : canaux d’alimentation 61,62,63: supply channels
7 : capillaire(s) d’entrée 8 : support 81 : premier dégagement du support apte à recevoir le conteneur du liquide à distribuer, 81 : second dégagement du support apte à recevoir les gorges formant capillaires d’entrée, 71,72,73,74 : portions de section constante du capillaire d’entrée 7 Al : axe de l’orifice de pulvérisation Hl, H2 : hauteur du pilier 7: inlet capillary (s) 8: support 81: first clearance of the support suitable for receiving the container of the liquid to be distributed, 81: second clearance of the support suitable for receiving the grooves forming inlet capillaries, 71,72,73,74: portions of constant section of the inlet capillary 7 Al: axis of the spray orifice Hl, H2: height of the pillar
D7 : diamètre du capillaire d’entrée de fluide h7 : distance radiale entre l’axe de l’orifice de pulvérisation et l’axe du capillaire d’entrée de fluide. D7: diameter of the fluid inlet capillary h7: radial distance between the axis of the spray orifice and the axis of the fluid inlet capillary.
L : longueur du capillaire d’entrée de fluide d : diamètre de l’orifice de pulvérisation h : hauteur de l’orifice de pulvérisation L: length of the fluid inlet capillary d: diameter of the spray orifice h: height of the spray orifice
L3 : Hauteur de de chambre de tourbillonnement (selon l’axe Al) a : angle entre l’axe Al et la génératrice de la chambre de tourbillonnement. L3: Height of the swirl chamber (along the Al axis) a: angle between the Al axis and the generator of the swirl chamber.

Claims

REVENDICATIONS
1. Buse de pulvérisation (1) d’un fluide, la buse (1) étant destinée à être montée sur un récipient distributeur, ladite buse (1) comprenant : - au moins un capillaire d’entrée (7) de fluide s’étendant longitudinalement le long d’un axe Al, 1. Spray nozzle (1) of a fluid, the nozzle (1) being intended to be mounted on a dispensing container, said nozzle (1) comprising: - at least one inlet capillary (7) for fluid s' extending longitudinally along an axis Al,
- une chambre de tourbillonnement (3) destinée à recevoir le fluide à pulvériser, la chambre de tourbillonnement (3) ayant une section maximale S et un diamètre maximal D, - au moins deux conduit (51, 511, 512, 513) s’étendant longitudinalement le long de l’axe Al et étant radialement déportés par rapport audit axe Al, lesdits conduits (51, 511, 512, 513) étant en connexion fluidique avec le capillaire d’entrée (7), - a swirl chamber (3) intended to receive the fluid to be sprayed, the swirl chamber (3) having a maximum section S and a maximum diameter D, - at least two ducts (51, 511, 512, 513) s' extending longitudinally along the axis Al and being radially offset from said axis Al, said conduits (51, 511, 512, 513) being in fluid connection with the inlet capillary (7),
- au moins deux canaux de tourbillonnement (4, 41, 42, 43), en connexion fluidique avec lesdits au moins deux conduits (51, 511, 512, 513), et connectant lesdits au moins deux conduits (51, 511, 512, 513) avec la chambre de tourbillonnement (3), lesdits au moins deux conduits (51, 511, 512, 513) reliant ainsi le capillaire d’entrée (7) aux au moins deux canaux de tourbillonnement (4, 41, 42, 43),- at least two swirl channels (4, 41, 42, 43), in fluid connection with said at least two conduits (51, 511, 512, 513), and connecting said at least two conduits (51, 511, 512, 513) with the swirl chamber (3), said at least two conduits (51, 511, 512, 513) thus connecting the inlet capillary (7) to the at least two swirl channels (4, 41, 42, 43 ),
- un orifice de pulvérisation (2) alimenté par la chambre de tourbillonnement (3), l’orifice de pulvérisation (2) présentant une symétrie axiale et une section constante s, ladite chambre de tourbillonnement (3) présentant, le long de l’axe Al, une section décroissante en direction dudit orifice de pulvérisation (2), la buse (1) étant caractérisée en ce que : - a spray orifice (2) supplied by the swirl chamber (3), the spray orifice (2) having axial symmetry and a constant section s, said swirl chamber (3) having, along the axis Al, a section decreasing in the direction of said spray orifice (2), the nozzle (1) being characterized in that:
- le rapport de la section s de l’orifice de pulvérisation (2) sur la section maximale S de la chambre de tourbillonnement (3) est tel que 1% £ s/^ £ 20%, et - the ratio of the section s of the spray orifice (2) to the maximum section S of the swirl chamber (3) is such that 1% £ s / ^ £ 20%, and
- la buse de pulvérisation (1) est actionnée au moyen d’un actionneur indépendant de la buse (1), et - the spray nozzle (1) is actuated by means of an actuator independent of the nozzle (1), and
- le capillaire d’entrée (7) présente une section permettant de générer un taux de cisaillement de fluide supérieur à 5000 s 1. - the inlet capillary (7) has a section making it possible to generate a fluid shear rate greater than 5000 s 1 .
2. Buse de pulvérisation (1) selon la revendication 1 caractérisé en ce que 1% < s/5 < 10%. 2. Spray nozzle (1) according to claim 1 characterized in that 1% < s / 5 <10%.
3. Buse de pulvérisation (1) selon la revendication 1 ou 2 dans laquelle l’orifice de pulvérisation (2) présente une forme cylindrique avec un diamètre d et une hauteur h tels que : 40% d £ h £ 150% d, préférentiellement3. Spray nozzle (1) according to claim 1 or 2 wherein the spray orifice (2) has a cylindrical shape with a diameter d and a height h such that: 40% d £ h £ 150% d, preferably
50% d £ h £ 100% d. 50% d £ h £ 100% d.
4. Buse de pulvérisation (1) selon l’une quelconque des revendications précédentes, dans laquelle les au moins deux canaux de tourbillonnement (4, 41, 42, 43) présentent chacun une section en forme de quadrilatère à angle droit, ladite section étant comprise entre 0,001 et 0,06mm2. The spray nozzle (1) according to any one of the preceding claims, wherein the at least two swirl channels (4, 41, 42, 43) each have a section in the form of a quadrilateral at right angles, said section being between 0.001 and 0.06mm 2 .
5. Buse de pulvérisation (1) selon la revendication 4 dans laquelle le quadrilatère est un carré. 5. Spray nozzle (1) according to claim 4 wherein the quadrilateral is a square.
6. Buse de pulvérisation (1) selon l’une quelconque des revendications précédentes, dans laquelle le moyen d’alimentation (6) comprend : soit une chambre de section creuse de forme générale cylindrique et dont la base s’étend sur un plan perpendiculaire à l’axe Al, - soit plusieurs canaux d’alimentation (61, 62, 63) s’étendant radialement sur un plan perpendiculaire à l’axe Al, de manière à alimenter lesdits au moins deux conduits (51, 511, 512, 513). 6. Spray nozzle (1) according to any one of the preceding claims, wherein the supply means (6) comprises: either a chamber of hollow section of generally cylindrical shape and the base of which extends on a perpendicular plane. to the axis Al, - or several supply channels (61, 62, 63) extending radially on a plane perpendicular to the axis Al, so as to supply said at least two conduits (51, 511, 512, 513).
7. Buse de pulvérisation (1) selon l’une quelconque des revendications précédentes, dans laquelle la chambre de tourbillonnement (3) présente une forme tronconique dont l’angle a entre l’axe Al et la génératrice est tel que 25° < a < 55°, préférentiellement 30° < a < 45°. 7. Spray nozzle (1) according to any one of the preceding claims, wherein the swirl chamber (3) has a frustoconical shape whose angle a between the axis Al and the generatrix is such that 25 ° <a <55 °, preferably 30 ° <a <45 °.
8. Buse de pulvérisation (1) selon l’une quelconque des revendications précédentes dans laquelle les au moins deux conduit (51, 511, 512, 513) sont ménagés dans un pilier (5), ledit pilier (5) comprenant un cylindre enveloppant (52) et présentant une surface intérieure Sc, ledit cylindre enveloppant (52) comprenant une entretoise (53) coaxiale dont la surface extérieure est polygonale de sorte que les arêtes de G entretoise (53) soient en contact avec la surface intérieure Sc du cylindre enveloppant (52) formant ainsi au moins trois conduits (51, 511, 512, 513) du pilier (5). 8. Spray nozzle (1) according to any one of the preceding claims wherein the at least two ducts (51, 511, 512, 513) are formed in a pillar (5), said pillar (5) comprising an enveloping cylinder. (52) and having an interior surface Sc, said enveloping cylinder (52) comprising a coaxial spacer (53) the exterior surface of which is polygonal so that the ridges of the spacer (53) are in contact with the interior surface Sc of the cylinder enveloping (52) thus forming at least three conduits (51, 511, 512, 513) of the pillar (5).
9. Buse de pulvérisation (1) selon l’une quelconque des revendications précédentes, dans laquelle l’au moins un capillaire d’entrée (7) comprend au moins deux portions (71, 72, 73, 74) présentant chacune un diamètre D constant sur toute sa longueur, chaque portion (71, 72, 73, 74) présentant un diamètre D égal ou supérieur au diamètre D d’au moins une portion (71, 72, 73, 74) située en aval et chaque portion (71, 72, 73, 74) présentant un diamètre D égal ou inférieur au diamètre D d’au moins une portion (71, 72, 73, 74) située en amont. 9. Spray nozzle (1) according to any one of the preceding claims, wherein the at least one inlet capillary (7) comprises at least two portions (71, 72, 73, 74) each having a diameter D constant over its entire length, each portion (71, 72, 73, 74) having a diameter D equal to or greater than the diameter D of at least one portion (71, 72, 73, 74) located downstream and each portion (71 , 72, 73, 74) having a diameter D equal to or less than the diameter D of at least one portion (71, 72, 73, 74) located upstream.
10. Dispositif médical apte à distribuer un fluide et comprenant une buse (1) selon l’une quelconque des revendications précédentes. 10. A medical device capable of dispensing a fluid and comprising a nozzle (1) according to any one of the preceding claims.
11. Procédé de distribution d’un fluide visqueux rhéofluidifiant par pulvérisation, caractérisé en ce que le procédé est mis en œuvre au moyen de la buse (1) selon l’une quelconque des revendications 1 à 8. 11. A method of dispensing a viscous shear-thinning fluid by spraying, characterized in that the method is implemented by means of the nozzle (1) according to any one of claims 1 to 8.
12. Procédé selon la revendication précédente, caractérisé en ce que la distribution est réalisée sous la forme d’un brouillard présentant des gouttes homogènes, au moins 90% des gouttes du brouillard présentant un diamètre inférieur à 1 OOmhi. 12. Method according to the preceding claim, characterized in that the distribution is carried out in the form of a mist having homogeneous drops, at least 90% of the drops of the mist having a diameter of less than 1 OOmhi.
13. Procédé selon l’une des revendications 11 ou 12, caractérisé en ce que la distribution est réalisée sous la forme d’un brouillard présentant des gouttes homogènes dont le diamètre médian est compris entre 1 OLUTI et 50mhi. 13. Method according to one of claims 11 or 12, characterized in that the distribution is carried out in the form of a mist having homogeneous drops, the median diameter of which is between 1 OLUTI and 50mhi.
14. Procédé selon l’une quelconque des revendications 11 à 13, caractérisé en ce que la distribution est réalisée sous la forme d’un brouillard présentant des gouttes homogènes dont moins de 12% des gouttes présentant un diamètre inférieur à 1 OLUTI. 14. Method according to any one of claims 11 to 13, characterized in that the distribution is carried out in the form of a mist having homogeneous drops including less than 12% of the drops having a diameter of less than 1 OLUTI.
15. Procédé selon l’une quelconque des revendications 11, 12, 13 ou 14, caractérisé en ce que la distribution est réalisée sous la forme d’un brouillard homogène dont la dispersion des goûtes caractérisée le ratio de l’écart entre la DvlO et Dv90 par rapport à la médiane est inférieur à 2. 15. A method according to any one of claims 11, 12, 13 or 14, characterized in that the distribution is carried out in the form of a homogeneous mist, the dispersion of which tastes characterized the ratio of the difference between the DvlO and Dv90 from the median is less than 2.
EP21707351.9A 2020-02-04 2021-02-04 Nozzle for spraying liquid in the form of mist Pending EP4100168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2001108A FR3106765B1 (en) 2020-02-04 2020-02-04 NOZZLE FOR SPRAYING LIQUID IN THE FORM OF MIST
PCT/FR2021/050208 WO2021156573A1 (en) 2020-02-04 2021-02-04 Nozzle for spraying liquid in the form of mist

Publications (1)

Publication Number Publication Date
EP4100168A1 true EP4100168A1 (en) 2022-12-14

Family

ID=70154742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21707351.9A Pending EP4100168A1 (en) 2020-02-04 2021-02-04 Nozzle for spraying liquid in the form of mist

Country Status (7)

Country Link
US (1) US20230069992A1 (en)
EP (1) EP4100168A1 (en)
JP (1) JP2023512108A (en)
KR (1) KR20220129647A (en)
CN (1) CN115038525A (en)
FR (1) FR3106765B1 (en)
WO (1) WO2021156573A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137182A1 (en) 2020-12-23 2022-06-30 Tolmar International Limited Systems and methods for mixing syringe valve assemblies

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922935B2 (en) 1989-08-11 1999-07-26 東興薬品工業株式会社 Disposable adapter for nasal spray container for viscous liquid
US5267692A (en) * 1989-11-16 1993-12-07 Afa Products Inc. Adjustable nozzle assembly
US5388766A (en) * 1993-09-22 1995-02-14 The Procter & Gamble Company High pressure atomization systems for high viscosity products
US5711488A (en) * 1995-10-13 1998-01-27 The Procter & Gamble Company High pressure swirl atomizer
DE102004029637A1 (en) * 2004-06-18 2006-01-05 Inficon Gmbh Leak detector with sniffer probe
CN104353162A (en) * 2007-11-29 2015-02-18 葛兰素集团有限公司 A dispensing device
FR2952360B1 (en) * 2009-11-06 2011-12-09 Rexam Dispensing Sys PUSH BUTTON FOR A SYSTEM FOR DISTRIBUTING A PRESSURIZED PRODUCT
CN201779651U (en) * 2010-09-10 2011-03-30 杨福堂 High-efficiency atomized liquid burner
US9821324B2 (en) * 2011-04-19 2017-11-21 Dlhbowles, Inc. Cup-shaped fluidic circuit, nozzle assembly and method
US11154876B2 (en) * 2011-04-19 2021-10-26 Dlhbowles, Inc. Multi-inlet, multi-spray fluidic cup nozzle with shared interaction region and spray generation method
EP2570190A1 (en) 2011-09-15 2013-03-20 Braun GmbH Spray nozzle for dispensing a fluid and sprayer comprising such a spray nozzle
CN105612005A (en) * 2013-09-13 2016-05-25 N.V.努特里奇亚 Internal mix atomizing spray nozzle assembly, process and product
US9381525B2 (en) * 2014-01-29 2016-07-05 Hong Kun Shin Low pressure fogging device
US10130960B2 (en) * 2014-03-24 2018-11-20 Dlhbowles, Inc. Swirl nozzle assemblies with high efficiency mechanical break up for generating mist sprays of uniform small droplets
FI3386598T3 (en) * 2015-12-10 2023-04-27 Marioff Corp Oy Water mist nozzle for a fire suppression system
FR3050125B1 (en) * 2016-04-14 2021-12-17 Albea Le Treport SPRAY NOZZLE, ESPECIALLY FOR A PRESSURE PRODUCT DISTRIBUTION SYSTEM EQUIPPED WITH A PUSH BUTTON, AND DISTRIBUTION SYSTEM INCLUDING SUCH A NOZZLE
CN106124362B (en) * 2016-06-07 2019-02-12 中南大学 A kind of ultrasound plasticizing capillary rheometer and viscosity determining procedure
EP3272423B1 (en) * 2016-07-20 2018-12-19 Aptar Radolfzell GmbH Discharge head and dispenser with a discharge head
CN106694261B (en) * 2016-11-25 2018-11-13 东北农业大学 A kind of exterior mixing Dey-Dose holding together shape based on special-shaped gas flow hole power-assisted
CN206374172U (en) * 2016-12-19 2017-08-04 长春新思路汽车部件有限公司 A kind of plastic extruder core rod
CN109177106B (en) * 2018-07-02 2021-04-20 江苏大学 Device and method for extruding directional short carbon fiber reinforced thermoplastic composite material

Also Published As

Publication number Publication date
FR3106765B1 (en) 2022-12-30
KR20220129647A (en) 2022-09-23
US20230069992A1 (en) 2023-03-09
CN115038525A (en) 2022-09-09
WO2021156573A1 (en) 2021-08-12
FR3106765A1 (en) 2021-08-06
JP2023512108A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
EP3246096B1 (en) Spraying device and use of same
EP2139604B1 (en) Spraying member, spraying device comprising such a member, spraying installation and method of cleaning such a member
EP0802827B1 (en) Spray nozzle
EP3231516B1 (en) Spray nozzle, in particular for a system for dispensing a pressurized fluid provided with a pushbutton, and dispensing system comprising such a nozzle
FR3074432A1 (en) HEAD OF DISTRIBUTION OF FLUID PRODUCT.
EP1100622B1 (en) Nasal dispensing head and fluid product dispensing device comprising same
EP2490823B1 (en) Dispensing head for a fluid dispenser
EP1365864A1 (en) Spray nozzle with profiled channels
WO2021156573A1 (en) Nozzle for spraying liquid in the form of mist
EP2606980B1 (en) Push button for a system for pressurised product distribution
EP3717137A1 (en) Fluid product dispensing head
WO2003084669A1 (en) Spray nozzle
WO2001005454A1 (en) Needleless syringe comprising an injector with nested elements
EP2119508B1 (en) Push button for convergent distribution channels
EP3530355B1 (en) Dispensing head with stepped whirl chamber for a dispensing system
WO2019106321A1 (en) Fluid-product dispensing head
WO2012143664A1 (en) Device for dispensing liquid product provided with a flow reduction member
EP3579979B1 (en) Spray head for a fluid product and use of such a head
EP2353726B1 (en) Push button for a system for pressurised product distribution
FR2858568A1 (en) Atomiser head, especially for liquid pharmaceutical product, has insert and spray channel with aligned central axes
FR2927551A1 (en) Fluid product e.g. perfume, spraying nozzle for dispenser, has supply conduit defined by internal and external edges in plane perpendicular to rotational axis, where external edge is not tangential to lateral surface of outlet channel
EP3579980B1 (en) Spray head for a fluid product and use of such a head
WO2018041594A1 (en) Pressurised fluid dispensing head and aerosol can or manual pump comprising such a dispensing head
WO2023111470A1 (en) Spraying head
FR2933883A1 (en) Fluid product spraying device for use in e.g. perfumery field, has distribution wall comprising inner surface that is curved so as to define curvature direction, and spraying hole defining inner orifice extending in direction

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)