WO2018041594A1 - Pressurised fluid dispensing head and aerosol can or manual pump comprising such a dispensing head - Google Patents

Pressurised fluid dispensing head and aerosol can or manual pump comprising such a dispensing head Download PDF

Info

Publication number
WO2018041594A1
WO2018041594A1 PCT/EP2017/070346 EP2017070346W WO2018041594A1 WO 2018041594 A1 WO2018041594 A1 WO 2018041594A1 EP 2017070346 W EP2017070346 W EP 2017070346W WO 2018041594 A1 WO2018041594 A1 WO 2018041594A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
anvil
dispensing head
fluid
head according
Prior art date
Application number
PCT/EP2017/070346
Other languages
French (fr)
Inventor
Jean-Pierre Guy Songbe
Original Assignee
Albea Le Treport
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albea Le Treport filed Critical Albea Le Treport
Publication of WO2018041594A1 publication Critical patent/WO2018041594A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3402Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to avoid or to reduce turbulencies, e.g. comprising fluid flow straightening means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle

Definitions

  • Dispensing head of a pressurized fluid and aerosol can or manually operated pump comprising such a dispensing head
  • the invention relates to a dispensing head for an aerosol can or pump with manual actuation.
  • Certain industrial or DIY fluids such as lubricants or releasing agents, are packaged in containers under pre-pressurized gas, provided with a transfer valve that can be actuated by a push button, the outlet orifice of which is extended by a long tube allowing precise and targeted application of the liquid when the user actuates the valve by pressing the push button.
  • Care products, or pharmaceuticals are also packaged, for example for hair applications. But this type of packaging has disadvantages.
  • the container is under preliminary pressure of gas. Whether the gas is compressed or liquefied, the container must withstand this pressure especially when it rises with temperature, so its constituent material, its embodiment, its controls in production and its shape must be adapted. In general, these containers, also called “bombs", are cylindrical, so bulky and bulky to contain 33% gas. Their destruction is difficult because of the precautions involved in the residual pressure of gases, some of which are flammable, such as butane.
  • the applicator tube often glued to the side of the container by adhesive tape at the time of sale, is quickly lost by the user who can not effectively glue it onto the container because it has become moistened by the product. against this, some packages are provided with an applicator tube connected to the body of the push button by a hinge allowing its folding after application, but this does not prevent it then drips and contaminates the container.
  • the velocity and the profile of the fluid at the outlet of the distribution system depends on the one hand on the pressure created within the distribution system by the actuation of the push button and which allows the movement of the fluid from the sampling tube to flow. at the exit port through said channel system, and secondly at the configuration of said channel system. Decreasing channel sections from upstream to downstream lead to fluid acceleration, while sudden changes in channel direction can cause flow destabilization.
  • the channels of said plurality of channels converge to output ports of each channel.
  • jets emerging from these channels converge and collide with each other.
  • the jets are destabilized and form a spray and not a jet of substantially cylindrical shape.
  • the invention proposes a dispensing head of a fluid under pressure comprising a nozzle and an anvil, said nozzle comprising an outlet orifice, said nozzle and said anvil defining at least one path fluidic fluid located at least partly between said nozzle and said anvil, the fluidic path (s) allowing a stabilization of the fluid from an upstream zone of said fluid path (s) to said outlet orifice, said upstream zone being located between said nozzle and said anvil .
  • this first embodiment makes it possible to maintain a stabilized flow all along the fluidic path and particularly at the outlet of the dispensing head, the fluid thus being dispensed in the form of a jet of substantially cylindrical shape.
  • the jet exiting the outlet orifice does not undergo an impact likely to destabilize it.
  • this embodiment having a single outlet orifice avoids the generation of a plurality of jets likely to collide and destabilize each other.
  • Said upstream zone marks the beginning, in the upstream-downstream direction, of the portion of the fluidic path (s) ensuring a stabilization of the flow.
  • this upstream zone is located at an annular portion which is located between the nozzle and the anvil.
  • said upstream zone is located at a disc portion, located between the nozzle and the anvil, downstream of the annular channel.
  • said upstream zone is located at the transition channel, defined by the anvil and the body of the dispensing head.
  • the passage section of the fluid path (s) of the dispensing head decreases from said upstream zone located between the nozzle and the anvil of said fluid path to said outlet orifice.
  • This section decrease in the direction from upstream to downstream of the fluidic path may be continuous or in stages. Its purpose is to accelerate the fluid along the fluidic path of the dispensing head to reach a maximum speed at the outlet orifice. It is thus possible to project a jet at a distance of at least 20 centimeters and preferably 50 centimeters. According to various embodiments of the invention, which may be taken together or separately:
  • the fluidic path has an annular portion between said nozzle and said anvil.
  • the thickness of said annular portion is less than 0.2 mm.
  • the anvil comprises at least a portion of substantially cylindrical shape at a portion of at least one or said fluidic paths.
  • said nozzle comprises a housing accommodating said anvil.
  • said housing comprises a portion of substantially cylindrical shape at a portion of at least one or more fluidic paths.
  • said fluidic path or paths comprise a disc portion situated downstream from the annular portion and between the nozzle and the anvil,
  • the end of the anvil is curved.
  • the anvil comprises at least a portion of substantially conical shape at the fluid path or paths and said nozzle housing has a shape complementary to that of said anvil, at the substantially conical portion of said anvil.
  • the nozzle and the anvil define a portion of fluidic path of substantially conical shape converging from upstream to downstream.
  • an outlet channel opens into the outlet orifice of the nozzle.
  • the length of the outlet channel is at least 0.05mm.
  • the diameter of the outlet channel is between 0.1 mm and 1 mm.
  • the distance between the face of the anvil facing the outlet orifice and the face of the nozzle facing the anvil is less than 0.2 mm.
  • the fluidic path has connection radii at the transition between two portions of fluidic path of different sections or directions.
  • the outlet orifice opens into a diverging opening.
  • a push button triggers the distribution of the fluid.
  • the nozzle is mounted by harpooning in the body of the push button.
  • the dispensing head is part of an aerosol can containing pressurized gas.
  • the dispensing head is part of a dispensing device involving a manually operated pump.
  • FIG. 1 is a sectional view of a pressurized fluid distribution device comprising a dispensing head according to a first embodiment
  • FIG. 2 is a sectional view of a pressurized fluid distribution head according to a first embodiment
  • FIG. 3a is a sectional view of an assembly consisting of a nozzle mounted in a pushbutton body and an anvil, according to a first embodiment
  • FIG. 3b is a schematic view of a fluidic path according to an alternative embodiment
  • FIG. 3c is a schematic view of a fluidic path, involving a nozzle according to an alternative embodiment
  • FIG. 4a is a perspective view of a nozzle according to an alternative embodiment
  • FIG. 4b is a sectional view of a nozzle according to an alternative embodiment
  • FIG. 5 is an axial view of the nozzle in the plane AA shown in FIG. 3a according to a first embodiment and of the flow of fluid within this nozzle;
  • FIG. 6 is a sectional view of a pressurized fluid distribution head according to a second embodiment
  • FIG. 7 is a sectional view of an assembly consisting of a nozzle mounted in a push button body and an anvil, according to a second embodiment.
  • FIG. 1 represents a device 1 for distributing pressurized fluid
  • said fluid can be of any kind, in particular used in perfumery, in cosmetics or in the framework of pharmaceutical treatments.
  • the viscosity of said fluid is preferably between 1 mPa.s and 100mPa.s.
  • a dispensing device 1 comprises a dispensing head 1 0 in the form of a push button 21 and a transfer member 2, which is preferably a pump.
  • the transfer member 2 is positioned on a mounting ring 3.
  • the mounting ring 3 and the yoke 7 are intended to fix the transfer member 2 on a neck 4 of a container 5 containing the fluid which must be transferred from the container into the dispensing head and distributed outside thereof.
  • the transfer member 2 is fixed inside the ring 3 and the latter is placed on a ring 6, preferably a flexible seal, positioned on the neck 4 of the container 5.
  • a yoke 7 maintains firmly fixed the mounting ring 3, the ring 6 on the neck 4 of the container 5, thus ensuring a retention of the transfer member 2 on the container.
  • the dispensing head comprises a push button 21 for triggering the dispensing of the fluid.
  • An upper face 1 1 of the dispensing head forms a contact surface on which the user presses to activate the transfer member 2 by displacement in a direction X.
  • the transfer member 2 then pressurizes the fluid and finally the head distributes the fluid through an outlet 51.
  • upstream and downstream terms are defined in relation to the flow direction of the fluid.
  • upstream of means “in part of the fluidic path between that point and the container containing the fluid”.
  • Downstream of means “in part of the fluidic path between that point and the outlet of the dispensing head”.
  • upstream-downstream direction is the direction of fluid flow, which flows from the container containing the fluid to the outlet port.
  • the fluid Upstream of the dispensing head 1 0, the fluid is moved from the container 5 through the sampling tube 8 and the transfer member 2.
  • a feed tube 9, or outlet tube, fixed downstream of the transfer member 2 is placed within the dispensing head 10.
  • This tube 9 ensures the transfer of the fluid under pressure from the transfer member 2 to a connecting channel 12, formed within the head of the distribution 10, and located above and in the immediate vicinity of the feed tube 9.
  • This connecting channel 12 is in communication with a system of channels within the head of This channel system conducts the fluid from the connecting channel 12 to the outlet port 51 through which the fluid jet is dispensed.
  • the dispensing head comprises a body 14 forming the connecting channel 12 and a housing 13 ( Figure 2), which is occupied by an anvil 40, comprising an axial surface 42, and of substantially cylindrical shape, the axis of the cylinder s' extending in an axial direction of fluid distribution Y, transverse to the direction X of displacement of the push button.
  • Said anvil 40 is made integrally with said body 14.
  • Said anvil is delimited in the axial direction Y by a radial end face 41.
  • Said radial end face may be flat or curved, the latter configuration promoting a stabilization of the flow.
  • the body 14 of the dispensing head 1 0 comprises an opening 20 through which a nozzle 50 is introduced.
  • the nozzle 50 includes a nozzle housing 53 housing the anvil 40.
  • the nozzle 50 includes a substantially cylindrical inner surface 55 and a substantially flat bottom 54. Said inner surface 55 and said bottom 54 define the nozzle housing 53.
  • the nozzle comprises an outlet channel 52 pierced in the bottom 54 and providing the connection between the nozzle housing 53 of the nozzle and the outlet port 51.
  • the nozzle 50 is positioned around the anvil 40 so as to define at least one fluid path for the flow of the fluid from the connecting channel 12 to the outlet orifice 51. It appears that the assembly consisting of the nozzle 50 and the anvil 40 defines at least one fluid path extending downstream of the connecting channel 12 to the outlet orifice 51 of the nozzle. More precisely, the fluidic path or paths consist of the succession:
  • transition channel 16 which is defined by the spacing between the anvil 40 and an inner surface of the body 14 of the distribution head 1 0,
  • This annular portion 17 takes the form of an annular channel.
  • Said channel forms a ring having a thickness e which is constant over a perimeter of the ring at a given axial position Y.
  • the thickness e of the ring may be constant along the Y axis of symmetry of said cylindrical anvil or it may vary depending on the position along the Y axis.
  • the anvil 40 comprises at least a portion of substantially cylindrical shape 43 at a portion of at least one or said fluidic paths.
  • said nozzle 50 comprises a nozzle housing 53 accommodating said anvil, said housing comprising a portion of substantially cylindrical shape at a portion of at least one or more fluidic paths.
  • the nozzle is fitted around the anvil coaxially with the axis of the cylindrical anvil, so that the fluid path or paths have an annular portion 17 between said nozzle and said anvil.
  • This annular portion has as outer diameter the inner surface 55 of the nozzle 50 and for inner diameter the axial surface 42 of the anvil 40.
  • the nozzle is mounted by harpooning in the body 14 of the push button 21.
  • the nozzle 50 is provided with a harpoon 58 in the form of an annular extra thickness extending over the entire perimeter of an outer surface 56 of the nozzle.
  • This extra thickness allows a tight fitting of the nozzle inside the housing 13 of the dispensing head, the diameter of the harpooned area of the nozzle being slightly greater than the diameter of the inlet orifice of the housing 13.
  • a rear face 57 of the nozzle 50 abuts against a bottom 19 of the housing 13 of the dispensing head.
  • the positioning of the nozzle 50 is thus perfectly defined with respect to the anvil 40, both in the axial direction (Y direction) and in the radial direction (X direction), the distance from the axial surface 42 of the anvil to the inner surface 55 of the nozzle being constant over the entire perimeter of the ring and at any axial position Y.
  • the axial surface 42 of the anvil 40 and the inner surface 55 of the nozzle 50 are strictly cylindrical and thus define an annular portion 17 of fluidic path forming a ring whose thickness is constant along the Y axis.
  • the thickness e of the annular portion 17, which is equal to the difference of the radii of the inner surface 55 of the nozzle 50 and the axial surface 42 of the nozzle 40, is the same at an upstream point of the annular portion 17, that is to say located near the transition channel 16, and at a downstream point of the annular portion 17, that is to say situated near the disc portion 18.
  • the axial surface 42 of the anvil 40 is cylindrical and the inner surface 55 of the nozzle 50 is slightly frustoconical, its diameter decreasing in the direction from upstream to downstream.
  • the diameter of the inner surface 55 of the nozzle 50 is greater on the side of the upstream zone of the annular portion 17 than on the side of the disc portion 18.
  • the thickness e of the annular portion 17 decreases in the upstream-downstream direction. This reduction in thickness and this convergent geometry of the annular portion 17 in the upstream-downstream direction contributes to the stabilization of the fluid flow.
  • the object of the invention is to have a stabilized flow within the fluid path (s), in order to allow the distribution by the outlet orifice 51 of the nozzle 50 of a jet of substantially cylindrical shape. Stabilization of the flow along the fluid path (s) is intended to obtain a flow in which each fluid volume element moves in a direction that remains substantially parallel to the surfaces defining the fluidic path between which it evolves.
  • a convergent channel geometry in the upstream to downstream direction also contributes to the stabilization of the flow lines when, on the contrary, a diverging channel geometry in the direction from upstream downstream, separating and moving the streamlines away from each other, is likely to induce the formation of hydrodynamic instabilities and turbulence.
  • abrupt changes in direction contribute to the formation of turbulence, for example when a layer of fluid flowing near a surface is carried away from it by its inertia at a change of direction of the fluidic path.
  • it is important for stabilization of the flow to provide progressive changes of direction, which is made possible by connecting radii between two portions successive fluidic path of different directions.
  • a fluidic path allowing a stabilization of the flow must therefore be understood as reproducing at least one of these three characteristics: decreasing passage sections in the direction going from the upstream to the downstream, a geometry of the fluidic paths convergent in the direction from upstream to downstream and connecting radii between two successive fluid path portions of different directions.
  • an annular channel of small thickness is favorable to a stabilization of the flow.
  • the thickness of said annular portion 17 of fluid path is between 0.05mm and 1 .5mm, preferably between 0.1 mm and 1 mm. More particularly, the thickness is 0.15mm.
  • Such a small thickness of the ring formed by this portion of the fluidic path makes it possible to have a flow stabilized by the proximity of the surfaces, in this case the axial surface 42 of the anvil 40 and the inner surface 55 of the nozzle 50 .
  • the annular portion 1 7 opens into the disc portion 1 8, this disc portion 1 8 being located between the radial end face 41 of the anvil 40 and the bottom 54 of the anvil 50.
  • the flow lines converge from the outlet of the annular portion 1 7 to the inlet of the outlet channel 52, said outlet channel being formed in the bottom 54 of the nozzle 50.
  • the lines flow are oriented radially (arrows in Figure 5, which is an axial section of the disc portion 18 along the plane AA of Figure 3a) and converge to the outlet channel 52, thus stabilizing the flow.
  • Said fluid path (s) thus comprise a disc portion (18) located downstream of the annular portion (17) and located between the radial end face (41) of the anvil (40) and the bottom (54) of the nozzle (50), favoring a stabilization of the flow.
  • the radial end face 41 of the anvil 40 is slightly curved, the bottom 54 of the nozzle 50 being substantially flat. This radial face 41 of the anvil defining a surface of the fluidic path at the disc portion 18, the convex shape allows a geometric convergence of the fluid path and thus a stabilization of the flow.
  • the distance between the radial end face 41 of the anvil 40 and the bottom 54 of the nozzle 50 decreases at the portion of fluid path close to the axis of symmetry Y of the anvil and the nozzle.
  • the distance between the radial end face 41 of the anvil 40 facing the outlet orifice 52 and the bottom 54 of the nozzle facing the anvil is between 0.05mm and 1 .5mm at the inlet of the disc portion 18.
  • this distance is between 0.1 mm and 1 mm. More particularly, this distance is equal to 0.15mm.
  • the distance between the radial end face 41 of the anvil 40 facing the outlet orifice 52 and the bottom 54 of the nozzle facing the anvil is even smaller with respect to the outlet channel 52 because of the curved shape of the radial end face 41 opposite the bottom 54 substantially flat. Opposite the outlet channel 52, this distance is measured between the plane comprising the bottom plane 54 and the radial end face 41.
  • the anvil 40 is designed with a flat radial end face 41.
  • the bottom 54 of the nozzle 50 is also flat, the flow section of the disc portion 18 is constant over the entire portion.
  • the distance between the radial end face 41 and the bottom 54 of the nozzle 50 is preferably less than 0.2 mm.
  • annular portion is of constant thickness in the axial direction as shown in Figure 3a and the disc portion 18 is convergent (radial end face 41 curved) as shown in Figure 3a.
  • annular portion is of constant thickness in the axial direction as shown in FIG. 3a and the disc portion 18 is of constant thickness (radial end face 41) as shown in FIG. Figure 3c and Figures 4a and b
  • annular portion is of decreasing thickness in the axial direction, ie a convergence of the annular portion as shown in FIG. 3b, and the disc portion 18 is of constant thickness (end face radial flat 41) as shown in Figure 3c and Figures 4a and b.
  • the outlet channel 52 formed in the bottom 54 of the nozzle 50 contributes to stabilizing the flow.
  • This channel must be sufficiently narrow and long to be able to stabilize the flow after it has passed the elbow formed by the fluid path or paths during the passage of the disc portion 18 to the outlet channel 52.
  • the outlet channel 52 opens into the outlet orifice 51 of the nozzle 50 and has a length at least equal to 0.05 mm and preferably at least equal to 0.3 mm. A shorter length could lead to a jet output of the outlet orifice 51 which would present turbulence.
  • said outlet channel 52 has a diameter of between 0.05 mm and 1 mm. With such a diameter, it is expected that the flow remains stable.
  • the uniqueness of the outlet orifice 51 contributes to the stabilization of the fluid by the fluid path (s). Indeed, a plurality of jets exiting the plurality of outlets, could lead to impacts between the jets and therefore their mutual destabilization. Therefore :
  • the dispensing head 10 of a fluid under pressure comprises a nozzle 50 and an anvil 40, said nozzle comprising an outlet orifice 51, said nozzle 50 and said anvil 40 defining at least one fluidic path (17, 18, 52) located at least partially between said nozzle and said anvil, the fluid path (s) allowing a stabilization of the fluid from an upstream zone (17, 18) of said fluid path (s) to said outlet orifice 51, said upstream zone ( 17, 18) being located between said nozzle 50 and said anvil 40.
  • the passage section of the fluidic path (s) (17, 18, 52) decreases from said upstream zone of said one or more fluidic paths to said outlet orifice 51.
  • the outlet section of the annular portion 17 of the fluidic path equal to the product of its perimeter and its thickness, is wider than the inlet section of the disc portion 18.
  • the passage section gradually decreases from upstream to downstream, thus leading to a stabilization of the flow.
  • the curved geometry of the radial end face 41 of the nozzle also contributes to reducing the section of the disc portion 18 in the upstream-downstream direction.
  • This decay of the passage section contributes to the stabilization of the flow, but also to the acceleration of the fluid along its flow from upstream to downstream. Thanks to this geometry, it is possible to obtain at the output of the dispensing head a jet of substantially cylindrical shape extending over a distance of 20 centimeters, preferably 50 centimeters, producing at this distance an application quality identical to that produced. at the outlet of an application tube of the same length.
  • the decay of the passage section can be continuous or in stages.
  • the fluidic path consists of a succession of annular portions of decreasing diameters in the upstream-downstream direction, interconnected by convergent portions. Along each annular portion, the section is constant in the upstream-downstream flow direction. Between two annular portions, the section decreases in the direction from upstream to downstream within the converging portion linking two successive annular portions. This geometry therefore has a stepwise decay of the passage section of the fluidic path.
  • the fluidic path (17, 18, 52) has connection radii at the transition between two fluid path portions of different sections or directions.
  • the nozzle 50 has a radius R55 at the transition between its axial inner surface 55 and the bottom of the nozzle 54.
  • the anvil has a radius R42 at the transition between its axial surface 42 and its radial face. end 41.
  • the change of direction at the transition between the annular portion 1 7 and the disc portion 1 8, which extends in a direction transverse to that of the annular portion 1 7, is progressive, which avoids a destabilization of the fluid flow.
  • the nozzle 50 has a radius R52 at the inlet of the outlet channel 52 formed in its bottom 54.
  • the fluid changes direction gradually at the time of the passage of the disc portion 18 to the outlet channel 52, which extends in a direction transverse to the direction of the disc portion 1 8.
  • the radius R52 prevents a destabilization of the fluid during the change of direction of the flow.
  • the rays R42, R55 and R52 have a radius of curvature of the same order of magnitude as the width or diameter of the channels with which they are associated.
  • the rays R42 and R55 associated with the annular portion 17 and the disc portion 18 have a radius of curvature of the order of 0.2mm.
  • the radius R52 associated with the disc portion 18 and the outlet channel 52 has a radius of curvature typically between 0.05 mm and 1 mm, depending on the diameter of the outlet channel 52.
  • the dispensing head comprises a diverging opening 59a into which the outlet orifice opens.
  • An outer radial face 59 of the nozzle 50 has a concave conical portion 59a into which the outlet orifice 51 opens.
  • This conical portion has a divergent profile from upstream to downstream, which offers an advantage for the dispensing of certain fluids, according to their surface tension with air, their density, their viscosity and possibly their viscoelasticity. It is important that a connection 59b of the outlet channel 52 at the diverging opening 59a is at a sharp angle.
  • the diverging aperture 59a does not participate in said one or more fluidic paths stabilizing the fluid flow. Said fluid path (s) terminate at the outlet port 51.
  • a dispensing head 1 comprising an anvil 140 which comprises at least one portion 144 of substantially conical shape at the level of the fluidic path (s) (1 1 7, 18, 152 ) and a nozzle housing 153 of a nozzle 1 50 has a shape complementary to that of an anvil 140, at the substantially conical portion 144 of said anvil 140, the nozzle 150 and the anvil 140 thereby defining a portion 1 1 8 fluidic path of substantially conical shape converging from upstream to downstream.
  • the disc portion 18 of a fluidic path having the shape of a disc channel in the embodiment of FIGS. 1 to 5 is replaced in this new embodiment by the portion 1 1 8 of the fluidic path of FIGS. a conical shape.
  • This configuration of the fluidic path portion has the effect of converging the fluid progressively from an annular portion 11 to the outlet channel 152. It will be apparent to those skilled in the art through the comparison of the two embodiments, that the convergence is more progressive in the case of the conical portion 1 18 of the second embodiment ( Figures 6 and 7) than in that of the disc portion 18 of the first embodiment ( Figures 1 to 5).
  • the second embodiment of Figures 6 and 7 has elements common with the first embodiment which are now briefly discussed.
  • annular portion 1 17 whose thickness is preferably less than 0.2mm.
  • An outer surface 156 of the nozzle 150 has a spear 158 in the form of a protrusion extending over the entire periphery of said outer surface. This harpoon allows the tight fitting of said nozzle 150 in a housing 1 13 of a body 1 14 of the dispensing head 1 10. The nozzle 150 is thus mounted in a coaxial mode controlled around the anvil 140, thus allowing precisely define the annular portion 1 17.
  • the width of the conical portion 1 18 as a function of the viscosity of the fluid to be dispensed by inserting the nozzle 150 more or less deeply into the housing 1 13 of the body 1 14 of the distribution head 1 10 around the anvil 140.
  • the housing 1 13 may be provided on an inner surface 1 15 at least one notch allowing a well defined depression of the nozzle 150 in the housing 13. It is thus possible to produce a plurality of distribution head references 1 10 adapted to a plurality of fluid viscosity range to be dispensed, each reference being characterized by a different location of said notch on the inner surface 1 15 of the housing 1 13 of the body 1 14.
  • a dispensing head having a fluid path (1 17.1 18,152) with a portion 1 18 having the shape of a conical channel of thickness adapted to the viscosity of the fluid to be dispensed.
  • the distance between a radial end surface 141 of the anvil facing the outlet orifice 151 and a bottom 154 of the nozzle facing the anvil can thus be adjusted.
  • a plurality of notches is formed on the inner surface 1 15 of the housing 1 1 3 of the body 1 14 and the nozzle is mounted in the body 1 14 according to an axial depth chosen according to the viscosity of the fluid to be dispensed, said harpoon 158 cooperating with that of the notches of the plurality of said notches which is suitable for the fluid viscosity considered.
  • the thickness of the tapered portion i.e. the distance between the radial end surface 141 of the anvil and the bottom 154 of the nozzle is typically equal to or less than 0.2mm.
  • the annular portion 17 may be of constant thickness at any axial position in the Y direction, as shown in FIGS. 6 and 7.
  • the axial surface 142 of the anvil 140 is cylindrical and the inner surface 155 of the nozzle 1 50 is slightly frustoconical, its diameter decreasing in the direction from upstream to downstream.
  • the diameter of the inner surface 1 55 of the nozzle 1 50 is greater on the upstream side than on the side of the disc portion 1 18.
  • the thickness of the annular portion 1 17 decreases in the upstream-downstream direction . This reduction in thickness and this convergent geometry of the annular portion 1 17 in the upstream-downstream direction contributes to the stabilization of the fluid flow.
  • the fluid path (1 17, 1 18, 152) of the dispensing head comprises radii at the direction changes.
  • the nozzle 1 50 comprises a radius R155 in front of which is formed on the nozzle 140 a radius R142 at the transition of the annular portion 1 17 and the conical portion 1 1 8.
  • the nozzle comprises a radius R152 to the inlet of the outlet channel 1 52 formed in the bottom 154 of said nozzle.
  • An outer radial face 159 of the nozzle 150 has a concave conical portion 59a into which an outlet orifice 1 51 opens.
  • This conical portion has a divergent profile from upstream to downstream, which offers an advantage for the dispensing of certain fluids, depending on their surface tension with air, their density, their viscosity and the case. their viscoelasticity. It is important that a connection 159b of an output channel 152 at the diverging aperture 159 be at a sharp angle.
  • the diverging aperture 159a does not participate in said one or more fluidic paths (1 17, 18, 152) stabilizing the fluid flow. Said fluid path (s) terminate at the outlet port (151).
  • the dispensing head according to one of the embodiments may be associated not only with a dispensing system of the type using a manually operated pump for pressurizing a fluid but also with an aerosol container containing pressurized gas. .

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)

Abstract

The invention concerns a pressurised fluid dispensing head comprising a nozzle (50, 150) and an anvil (40), said nozzle comprising an outlet opening (51), said nozzle and said anvil defining at least one fluid channel (17, 18, 52,) situated at least partially between said nozzle and said anvil, said fluid channel(s) allowing a stabilisation of the fluid from an area upstream from said fluid channel(s) to said outlet opening, said upstream area being situated between said nozzle and said anvil.

Description

Tête de distribution d'un fluide sous pression et bombe aérosol ou pompe à actionnement manuel comprenant une telle tête de distribution  Dispensing head of a pressurized fluid and aerosol can or manually operated pump comprising such a dispensing head
L'invention concerne une tête de distribution pour bombe aérosol ou pompe à actionnement manuel. The invention relates to a dispensing head for an aerosol can or pump with manual actuation.
Certains liquides industriels ou de bricolage tels les lubrifiants ou les dégrippants sont conditionnés dans des récipients sous pression préalable de gaz, munis d'une valve de transfert actionnable par un bouton poussoir dont l'orifice de sortie est prolongé par un long tube permettant l'application précise et ciblée du liquide lorsque l'utilisateur actionne la valve en appuyant sur le bouton poussoir. Des produits de soins, ou pharmaceutiques sont également ainsi conditionnés, par exemple pour des applications capillaires. Mais ce type de conditionnements présente des inconvénients. Certain industrial or DIY fluids, such as lubricants or releasing agents, are packaged in containers under pre-pressurized gas, provided with a transfer valve that can be actuated by a push button, the outlet orifice of which is extended by a long tube allowing precise and targeted application of the liquid when the user actuates the valve by pressing the push button. Care products, or pharmaceuticals are also packaged, for example for hair applications. But this type of packaging has disadvantages.
Premièrement le récipient est sous pression préalable de gaz. Que le gaz soit comprimé ou liquéfié, le récipient doit résister à cette pression surtout lorsqu'elle s'élève avec la température, donc sa matière constitutive, son mode de réalisation, ses contrôles en production et sa forme doivent être adaptés. En général, ces récipients, aussi dénommés « bombes », sont cylindriques, donc encombrants et volumineux afin de contenir 33% de gaz. Leur destruction pose des difficultés à cause des précautions qu'implique la pression résiduelle des gaz dont certains sont inflammables, tel le butane. Deuxièmement, le tube applicateur, souvent collé sur le flanc du récipient par un ruban adhésif au moment de la vente, est rapidement perdu par l'utilisateur qui ne peut efficacement le recoller sur le récipient car il est devenu humidifié par le produit. Contre cela, certains conditionnements sont pourvus d'un tube applicateur relié au corps du bouton poussoir par une charnière permettant son rabattement après application, mais cela n'empêche pas qu'il s'égoutte ensuite et souille le récipient. First the container is under preliminary pressure of gas. Whether the gas is compressed or liquefied, the container must withstand this pressure especially when it rises with temperature, so its constituent material, its embodiment, its controls in production and its shape must be adapted. In general, these containers, also called "bombs", are cylindrical, so bulky and bulky to contain 33% gas. Their destruction is difficult because of the precautions involved in the residual pressure of gases, some of which are flammable, such as butane. Secondly, the applicator tube, often glued to the side of the container by adhesive tape at the time of sale, is quickly lost by the user who can not effectively glue it onto the container because it has become moistened by the product. Against this, some packages are provided with an applicator tube connected to the body of the push button by a hinge allowing its folding after application, but this does not prevent it then drips and contaminates the container.
Il existe donc un besoin pour un système de distribution permettant de stabiliser voire d' accélérer suffisamment le fluide à distribuer pour que ce dernier forme un jet bien défini de forme substantiellement cylindrique afin qu'il puisse atteindre une cible précisément sans nécessité d'un tube applicateur. Le besoin s'étend d'ailleurs aux pompes à actionnement manuel. On connaît de l'art antérieur des organes de transfert impliquant une pompe qui produit en son sein la pression de restitution uniquement par actionnement du bouton poussoir par l'utilisateur. Ces organes de transfert sont classiquement des organes de distribution fixés de manière étanche sur le col d'un récipient contenant un fluide à distribuer. Selon un mode de réalisation connu, un tube de prélèvement plonge dans le fluide contenu dans le récipient. Le fluide est aspiré à travers le tube de prélèvement par l'action de l'organe de transfert, puis pénètre dans un système de canaux logé au sein du bouton poussoir, qui relie ledit tube de prélèvement à un orifice de sortie par lequel le fluide est distribué. There is therefore a need for a distribution system for stabilizing or even accelerating the fluid to be dispensed so that the latter forms a well-defined jet of substantially cylindrical shape so that it can reach a target precisely without the need for a tube. applicator. The need also extends to manually operated pumps. Prior art is known transfer members involving a pump that produces within it the restitution pressure only by actuation of the push button by the user. These transfer members are conventionally dispensing members sealingly attached to the neck of a container containing a fluid to be dispensed. According to a known embodiment, a sampling tube is immersed in the fluid contained in the container. The fluid is sucked through the sampling tube by the action of the transfer member, then enters a channel system housed within the push button, which connects said sampling tube to an outlet port through which the fluid is distributed.
La vitesse et le profil du fluide en sortie du système de distribution dépend d'une part de la pression créée au sein du système de distribution par l'actionnement du bouton poussoir et qui permet la mise en mouvement du fluide depuis le tube de prélèvement jusqu'à l'orifice de sortie à travers ledit système de canaux, et d'autre part de la configuration dudit système de canaux. Des sections de canaux décroissantes d'amont en aval conduisent à une accélération du fluide alors que des changements brutaux de direction des canaux peuvent causer une déstabilisation de l'écoulement. The velocity and the profile of the fluid at the outlet of the distribution system depends on the one hand on the pressure created within the distribution system by the actuation of the push button and which allows the movement of the fluid from the sampling tube to flow. at the exit port through said channel system, and secondly at the configuration of said channel system. Decreasing channel sections from upstream to downstream lead to fluid acceleration, while sudden changes in channel direction can cause flow destabilization.
On connaît de l'art antérieur l'usage d'une pluralité de canaux répartis le long de la périphérie d'une couronne cylindrique et débouchant d'un canal annulaire. Le changement de section lors du passage du canal annulaire, lequel s'étend sur tout le périmètre de la couronne, à la pluralité de canaux qui s'étend de manière discontinue le long de la couronne, a pour effet d'accélérer le fluide. Il est également prévu une diminution du nombre de canaux de l'amont vers l'aval de manière à poursuivre l'accélération du fluide. It is known from the prior art the use of a plurality of channels distributed along the periphery of a cylindrical ring and opening out of an annular channel. The change of section during the passage of the annular channel, which extends over the entire perimeter of the ring, to the plurality of channels which extends discontinuously along the ring, has the effect of accelerating the fluid. It is also expected a decrease in the number of channels from upstream to downstream so as to continue the acceleration of the fluid.
Néanmoins, dans ce mode de réalisation selon l'art antérieur, les canaux de ladite pluralité de canaux convergent vers des orifices de sortie de chaque canal. Ainsi, les jets sortant de ces canaux convergent et se heurtent les uns contre autres. Les jets sont déstabilisés et forment une pulvérisation et non un jet de forme substantiellement cylindrique. Nevertheless, in this embodiment according to the prior art, the channels of said plurality of channels converge to output ports of each channel. Thus, jets emerging from these channels converge and collide with each other. The jets are destabilized and form a spray and not a jet of substantially cylindrical shape.
Il existe donc un besoin général pour un système de distribution de fluide permettant de stabiliser voire d' accélérer suffisamment le fluide à distribuer pour que ce dernier forme un jet bien défini de forme substantiellement cylindrique afin qu'il puisse atteindre une cible précisément sans nécessité d'un tube applicateur. There is therefore a general need for a fluid distribution system to stabilize or accelerate sufficiently the fluid to be dispensed so that the latter form a well-defined jet of substantially cylindrical shape so that it can reach a target precisely without the need for an applicator tube.
A cet effet, selon un premier mode de réalisation, l'invention propose une tête de distribution d'un fluide sous pression comprenant une buse et une enclume, ladite buse comprenant un orifice de sortie, ladite buse et ladite enclume définissant au moins un chemin fluidique situé au moins en partie entre ladite buse et ladite enclume, le ou les chemins fluidiques permettant une stabilisation du fluide depuis une zone amont dudit ou desdits chemins fluidiques jusqu'audit orifice de sortie, ladite zone amont étant située entre ladite buse et ladite enclume. For this purpose, according to a first embodiment, the invention proposes a dispensing head of a fluid under pressure comprising a nozzle and an anvil, said nozzle comprising an outlet orifice, said nozzle and said anvil defining at least one path fluidic fluid located at least partly between said nozzle and said anvil, the fluidic path (s) allowing a stabilization of the fluid from an upstream zone of said fluid path (s) to said outlet orifice, said upstream zone being located between said nozzle and said anvil .
Avantageusement, ce premier mode de réalisation permet de conserver un écoulement stabilisé tout le long du chemin fluidique et particulièrement en sortie de la tête de distribution, le fluide étant ainsi distribué sous la forme d'un jet de forme substantiellement cylindrique. Avantageusement, le jet sortant de l'orifice de sortie ne subit pas d'impact de nature à le déstabiliser. En effet, ce mode de réalisation présentant un orifice de sortie unique évite la génération d'une pluralité de jets susceptibles de se heurter et de se déstabiliser mutuellement. Ladite zone amont, marque le début, dans le sens amont-aval, de la portion du ou des chemins fluidiques assurant une stabilisation de l'écoulement. Dans un mode de réalisation préférentiel, cette zone amont est localisée au niveau d'une portion annulaire laquelle est située entre la buse et l'enclume. Dans un autre mode de réalisation, ladite zone amont est localisée au niveau d'une portion discale, située entre la buse et l'enclume, en aval du canal annulaire. Dans un autre mode de réalisation, ladite zone amont est localisée au niveau du canal de transition, délimité par l'enclume et le corps de la tête distribution. Advantageously, this first embodiment makes it possible to maintain a stabilized flow all along the fluidic path and particularly at the outlet of the dispensing head, the fluid thus being dispensed in the form of a jet of substantially cylindrical shape. Advantageously, the jet exiting the outlet orifice does not undergo an impact likely to destabilize it. Indeed, this embodiment having a single outlet orifice avoids the generation of a plurality of jets likely to collide and destabilize each other. Said upstream zone marks the beginning, in the upstream-downstream direction, of the portion of the fluidic path (s) ensuring a stabilization of the flow. In a preferred embodiment, this upstream zone is located at an annular portion which is located between the nozzle and the anvil. In another embodiment, said upstream zone is located at a disc portion, located between the nozzle and the anvil, downstream of the annular channel. In another embodiment, said upstream zone is located at the transition channel, defined by the anvil and the body of the dispensing head.
Selon une deuxième caractéristique, la section de passage du ou des chemins fluidiques de la tête de distribution décroît depuis ladite zone amont située entre la buse et l'enclume dudit chemin fluidique jusqu'audit orifice de sortie. According to a second characteristic, the passage section of the fluid path (s) of the dispensing head decreases from said upstream zone located between the nozzle and the anvil of said fluid path to said outlet orifice.
Cette décroissance de section dans le sens de l'amont vers l'aval du chemin fluidique peut être continue ou bien par paliers. Elle a pour objet d'accélérer le fluide le long du chemin fluidique de la tête de distribution pour atteindre une vitesse maximale au niveau de l'orifice de sortie. Il est ainsi possible de projeter un jet à une distance d'au moins 20 centimètres et préférentiellement de 50 centimètres. Selon différents modes de réalisation de l'invention, qui pourront être pris ensemble ou séparément: This section decrease in the direction from upstream to downstream of the fluidic path may be continuous or in stages. Its purpose is to accelerate the fluid along the fluidic path of the dispensing head to reach a maximum speed at the outlet orifice. It is thus possible to project a jet at a distance of at least 20 centimeters and preferably 50 centimeters. According to various embodiments of the invention, which may be taken together or separately:
- le chemin fluidique présente une portion annulaire entre ladite buse et ladite enclume.  the fluidic path has an annular portion between said nozzle and said anvil.
- l'épaisseur de ladite portion annulaire est inférieure à 0.2mm.  the thickness of said annular portion is less than 0.2 mm.
- l'enclume comprend au moins une portion de forme substantiellement cylindrique au niveau d'une portion au moins dudit ou desdits chemins fluidiques.  - The anvil comprises at least a portion of substantially cylindrical shape at a portion of at least one or said fluidic paths.
- ladite buse comprend un logement accueillant ladite enclume.  said nozzle comprises a housing accommodating said anvil.
- ledit logement comprend une portion de forme substantiellement cylindrique au niveau d'une portion au moins du ou des chemins fluidiques.  said housing comprises a portion of substantially cylindrical shape at a portion of at least one or more fluidic paths.
- ledit ou lesdits chemins fluidiques comprennent une portion discale située en aval de la portion annulaire et entre la buse et l'enclume,  said fluidic path or paths comprise a disc portion situated downstream from the annular portion and between the nozzle and the anvil,
l'extrémité de l'enclume est bombée.  the end of the anvil is curved.
l'enclume comprend au moins une portion de forme substantiellement conique au niveau du ou des chemins fluidiques et ledit logement de la buse présente une forme complémentaire de celle de ladite enclume, au niveau de la portion substantiellement conique de ladite enclume.  the anvil comprises at least a portion of substantially conical shape at the fluid path or paths and said nozzle housing has a shape complementary to that of said anvil, at the substantially conical portion of said anvil.
la buse et l'enclume définissent une portion de chemin fluidique de forme substantiellement conique convergeant de l'amont vers l'aval.  the nozzle and the anvil define a portion of fluidic path of substantially conical shape converging from upstream to downstream.
- un canal de sortie débouche dans l'orifice de sortie de la buse.  an outlet channel opens into the outlet orifice of the nozzle.
- la longueur du canal de sortie est au moins égal à 0,05mm.  the length of the outlet channel is at least 0.05mm.
- le diamètre du canal de sortie est compris entre 0,1 mm et 1 mm.  the diameter of the outlet channel is between 0.1 mm and 1 mm.
- la distance entre la face de l'enclume tournée vers l'orifice de sortie et la face de la buse en regard de l'enclume est inférieure à 0.2mm.  the distance between the face of the anvil facing the outlet orifice and the face of the nozzle facing the anvil is less than 0.2 mm.
- le chemin fluidique présente des rayons de raccordement à la transition entre deux portions de chemin fluidique de sections ou de directions différentes.  the fluidic path has connection radii at the transition between two portions of fluidic path of different sections or directions.
- l'orifice de sortie débouche dans une ouverture divergente.  the outlet orifice opens into a diverging opening.
- un bouton poussoir déclenche la distribution du fluide.  - a push button triggers the distribution of the fluid.
- la buse est montée par harponnage dans le corps du bouton poussoir. - la tête de distribution fait partie d'une bombe aérosol contenant du gaz sous pression. - The nozzle is mounted by harpooning in the body of the push button. - The dispensing head is part of an aerosol can containing pressurized gas.
- la tête de distribution fait partie d'un dispositif de distribution faisant intervenir une pompe à actionnement manuel.  - The dispensing head is part of a dispensing device involving a manually operated pump.
L'invention sera mieux comprise à la lumière de la description suivante qui n'est donnée qu'à titre indicatif et qui n'a pas pour but de la limiter, accompagnée des dessins joints : The invention will be better understood in the light of the following description which is given for information only and which is not intended to limit it, accompanied by the attached drawings:
- la Figure 1 est une vue en coupe d'un dispositif de distribution de fluide sous pression comprenant une tête de distribution selon un premier mode de réalisation,  - Figure 1 is a sectional view of a pressurized fluid distribution device comprising a dispensing head according to a first embodiment,
- la Figure 2 est une vue en coupe d'une tête de distribution de fluide sous pression selon un premier mode de réalisation,  FIG. 2 is a sectional view of a pressurized fluid distribution head according to a first embodiment,
- la Figure 3a est une vue en coupe d'un ensemble constitué d'une buse montée dans un corps de bouton poussoir et d'une enclume, selon un premier mode de réalisation,  FIG. 3a is a sectional view of an assembly consisting of a nozzle mounted in a pushbutton body and an anvil, according to a first embodiment,
- la Figure 3b est une vue schématique d'un chemin fluidique selon un mode de réalisation alternatif,  FIG. 3b is a schematic view of a fluidic path according to an alternative embodiment,
- La Figure 3c est une vue schématique d'un chemin fluidique, faisant intervenir une buse selon un mode de réalisation alternatif,  FIG. 3c is a schematic view of a fluidic path, involving a nozzle according to an alternative embodiment,
- la Figure 4a est une vue en perspective d'une buse selon un mode de réalisation alternatif,  FIG. 4a is a perspective view of a nozzle according to an alternative embodiment,
- la Figure 4b est une vue en coupe d'une buse selon un mode de réalisation alternatif,  - Figure 4b is a sectional view of a nozzle according to an alternative embodiment,
- la Figure 5 est une vue axiale de la buse selon le plan AA représenté sur la Figure 3a selon un premier mode de réalisation et de l'écoulement de fluide au sein de cette buse,  FIG. 5 is an axial view of the nozzle in the plane AA shown in FIG. 3a according to a first embodiment and of the flow of fluid within this nozzle;
- La Figure 6 est une vue en coupe d'une tête de distribution de fluide sous pression selon un second mode de réalisation,  FIG. 6 is a sectional view of a pressurized fluid distribution head according to a second embodiment,
- la Figure 7 est une vue en coupe d'un ensemble constitué d'une buse montée dans un corps de bouton poussoir et d'une enclume, selon un second mode de réalisation.  - Figure 7 is a sectional view of an assembly consisting of a nozzle mounted in a push button body and an anvil, according to a second embodiment.
La Figure 1 représente un dispositif 1 de distribution de fluide sous pression, ledit fluide pouvant être de toute nature, notamment utilisé en parfumerie, en cosmétique ou dans le cadre de traitements pharmaceutiques. La viscosité dudit fluide est préférentiellement comprise entre I mPa.s et 100mPa.s. FIG. 1 represents a device 1 for distributing pressurized fluid, said fluid can be of any kind, in particular used in perfumery, in cosmetics or in the framework of pharmaceutical treatments. The viscosity of said fluid is preferably between 1 mPa.s and 100mPa.s.
Un dispositif 1 de distribution comprend une tête de distribution 1 0 sous la forme d'un bouton poussoir 21 et un organe de transfert 2, qui est préférentiellement une pompe. L'organe de transfert 2 est positionné sur une bague de montage 3. La bague de montage 3 et la chape 7 ont pour objet de fixer l'organe de transfert 2 sur un col 4 d'un récipient 5 contenant le fluide qui doit être transféré depuis le récipient jusque dans la tête de distribution puis distribué à l'extérieur de celle-ci. Pour ce faire, l'organe de transfert 2 est fixé à l'intérieur de la bague 3 et cette dernière est posée sur un anneau 6, préférentiellement un joint souple, positionné sur le col 4 du récipient 5. Une chape 7 maintient fermement fixée la bague de montage 3, l'anneau 6 sur le col 4 du récipient 5, assurant ainsi un maintien de l'organe de transfert 2 sur le récipient. La tête de distribution comprend un bouton poussoir 21 pour déclencher la distribution du fluide. Une face supérieure 1 1 de la tête de distribution forme une surface de contact sur laquelle l'utilisateur appuie pour mettre en action l'organe de transfert 2 par déplacement selon une direction X. L'organe de transfert 2 met alors sous pression le fluide et finalement la tête distribue le fluide à travers un orifice de sortie 51 . A dispensing device 1 comprises a dispensing head 1 0 in the form of a push button 21 and a transfer member 2, which is preferably a pump. The transfer member 2 is positioned on a mounting ring 3. The mounting ring 3 and the yoke 7 are intended to fix the transfer member 2 on a neck 4 of a container 5 containing the fluid which must be transferred from the container into the dispensing head and distributed outside thereof. To do this, the transfer member 2 is fixed inside the ring 3 and the latter is placed on a ring 6, preferably a flexible seal, positioned on the neck 4 of the container 5. A yoke 7 maintains firmly fixed the mounting ring 3, the ring 6 on the neck 4 of the container 5, thus ensuring a retention of the transfer member 2 on the container. The dispensing head comprises a push button 21 for triggering the dispensing of the fluid. An upper face 1 1 of the dispensing head forms a contact surface on which the user presses to activate the transfer member 2 by displacement in a direction X. The transfer member 2 then pressurizes the fluid and finally the head distributes the fluid through an outlet 51.
Les termes amont et aval sont définis en relation avec la direction d'écoulement du fluide. En relation avec un point donné, « en amont de » signifie « en une partie du chemin fluidique située entre ce point et le récipient contenant le fluide ». « En aval de » signifie « en une partie du chemin fluidique située entre ce point et l'orifice de sortie de la tête de distribution ». Le « sens amont-aval » est le sens de l'écoulement de fluide, lequel s'écoule depuis le récipient contenant le fluide jusqu'à l'orifice de sortie. The upstream and downstream terms are defined in relation to the flow direction of the fluid. In relation to a given point, "upstream of" means "in part of the fluidic path between that point and the container containing the fluid". "Downstream of" means "in part of the fluidic path between that point and the outlet of the dispensing head". The "upstream-downstream direction" is the direction of fluid flow, which flows from the container containing the fluid to the outlet port.
En amont de la tête de distribution 1 0, le fluide est déplacé depuis le récipient 5 à travers le tube de prélèvement 8 et l'organe de transfert 2. Un tube d'amenée 9, ou tube de sortie, fixé en aval de l'organe de transfert 2, est placé au sein de la tête de distribution 10. Ce tube 9 assure le transfert du fluide sous pression depuis l'organe de transfert 2 jusqu'à un canal de raccordement 12, formé au sein de la tête de distribution 10, et localisé au-dessus et à proximité immédiate du tube d'amenée 9. Ce canal de raccordement 12 est en communication avec un système de canaux au sein de la tête de distribution 10. Ce système de canaux conduit le fluide depuis le canal de raccordement 12 jusqu'à l'orifice de sortie 51 par lequel est distribué le jet de fluide. Upstream of the dispensing head 1 0, the fluid is moved from the container 5 through the sampling tube 8 and the transfer member 2. A feed tube 9, or outlet tube, fixed downstream of the transfer member 2, is placed within the dispensing head 10. This tube 9 ensures the transfer of the fluid under pressure from the transfer member 2 to a connecting channel 12, formed within the head of the distribution 10, and located above and in the immediate vicinity of the feed tube 9. This connecting channel 12 is in communication with a system of channels within the head of This channel system conducts the fluid from the connecting channel 12 to the outlet port 51 through which the fluid jet is dispensed.
La tête de distribution comprend un corps 14 formant le canal de raccordement 12 et un logement 13 (Figure 2), lequel est occupé par une enclume 40, comprenant une surface axiale 42, et de forme substantiellement cylindrique, l'axe du cylindre s'étendant selon une direction axiale de distribution de fluide Y, transverse à la direction X de déplacement du bouton poussoir. Ladite enclume 40 est réalisée intégralement avec ledit corps 14. Ladite enclume est délimitée selon la direction axiale Y par une face d'extrémité radiale 41 . Ladite face d'extrémité radiale peut-être plate ou bien bombée, cette dernière configuration favorisant une stabilisation de l'écoulement. The dispensing head comprises a body 14 forming the connecting channel 12 and a housing 13 (Figure 2), which is occupied by an anvil 40, comprising an axial surface 42, and of substantially cylindrical shape, the axis of the cylinder s' extending in an axial direction of fluid distribution Y, transverse to the direction X of displacement of the push button. Said anvil 40 is made integrally with said body 14. Said anvil is delimited in the axial direction Y by a radial end face 41. Said radial end face may be flat or curved, the latter configuration promoting a stabilization of the flow.
Le corps 14 de la tête de distribution 1 0 comprend une ouverture 20 au travers de laquelle une buse 50 est introduite. La buse 50 comprend un logement de buse 53 accueillant l'enclume 40. La buse 50 comprend une surface intérieure 55 substantiellement cylindrique et un fond 54 substantiellement plat. Ladite surface intérieure 55 et ledit fond 54 délimitent le logement de buse 53. La buse comprend un canal de sortie 52 percé dans le fond 54 et réalisant la liaison entre le logement de buse 53 de la buse et l'orifice de sortie 51 . The body 14 of the dispensing head 1 0 comprises an opening 20 through which a nozzle 50 is introduced. The nozzle 50 includes a nozzle housing 53 housing the anvil 40. The nozzle 50 includes a substantially cylindrical inner surface 55 and a substantially flat bottom 54. Said inner surface 55 and said bottom 54 define the nozzle housing 53. The nozzle comprises an outlet channel 52 pierced in the bottom 54 and providing the connection between the nozzle housing 53 of the nozzle and the outlet port 51.
La buse 50 est positionnée autour de l'enclume 40 de façon à définir au moins un chemin fluidique pour le parcours du fluide depuis le canal de raccordement 12 jusqu'à l'orifice de sortie 51 . II apparaît que l'ensemble constitué de la buse 50 et de l'enclume 40 définit au moins un chemin fluidique s'étendant en aval du canal de raccordement 12 jusqu'à l'orifice de sortie 51 de la buse. Plus précisément, le ou les chemins fluidiques sont constitués de la succession : The nozzle 50 is positioned around the anvil 40 so as to define at least one fluid path for the flow of the fluid from the connecting channel 12 to the outlet orifice 51. It appears that the assembly consisting of the nozzle 50 and the anvil 40 defines at least one fluid path extending downstream of the connecting channel 12 to the outlet orifice 51 of the nozzle. More precisely, the fluidic path or paths consist of the succession:
- d'un canal de transition 16, lequel est défini par l'espacement entre l'enclume 40 et une surface intérieure du corps 14 de la tête de distribution 1 0,  a transition channel 16, which is defined by the spacing between the anvil 40 and an inner surface of the body 14 of the distribution head 1 0,
- d'une portion annulaire 17 du ou des chemins fluidiques définie par la position relative de la surface axiale 42 de l'enclume 40 et de la surface intérieure 55 de la buse. Cette portion annulaire 1 7 prend la forme d'un canal annulaire. Ledit canal forme un anneau présentant une épaisseur e constante sur un périmètre de l'anneau à une position axiale Y donnée. Selon le mode de réalisation considéré, l'épaisseur e de l'anneau peut être constante tout le long de l'axe Y de symétrie de ladite enclume cylindrique ou bien elle peut varier selon la position considérée le long de l'axe Y. - An annular portion 17 of the fluid path or paths defined by the relative position of the axial surface 42 of the anvil 40 and the inner surface 55 of the nozzle. This annular portion 17 takes the form of an annular channel. Said channel forms a ring having a thickness e which is constant over a perimeter of the ring at a given axial position Y. According to the embodiment considered, the thickness e of the ring may be constant along the Y axis of symmetry of said cylindrical anvil or it may vary depending on the position along the Y axis.
- d'une portion discale 18 du ou des chemins fluidiques définie par la position relative de la face radiale d'extrémité 41 de l'enclume 40 et du fond 54 de la buse 50,  a disc portion 18 of the fluidic path or paths defined by the relative position of the radial end face 41 of the anvil 40 and the bottom 54 of the nozzle 50,
- enfin du canal de sortie 52 percée dans fond 54 de la buse 50.  - finally the outlet channel 52 pierced in bottom 54 of the nozzle 50.
Selon un mode de réalisation préféré (Figure 3a), l'enclume 40 comprend au moins une portion de forme substantiellement cylindrique 43 au niveau d'une portion au moins dudit ou desdits chemins fluidiques. Une telle géométrie de l'enclume permet ainsi un écoulement régulier et sans heurt du fluide circulant autour de l'enclume. Toujours selon un mode de réalisation privilégié, ladite buse 50 comprend un logement de buse 53 accueillant ladite enclume, ledit logement comprenant une portion de forme substantiellement cylindrique au niveau d'une portion au moins du ou des chemins fluidiques. La buse est emmanchée autour de l'enclume de manière coaxiale avec l'axe de l'enclume cylindrique, si bien que le ou les chemins fluidiques présentent une portion annulaire 17 entre ladite buse et ladite enclume. Cette portion annulaire a pour diamètre extérieur la surface intérieure 55 de la buse 50 et pour diamètre intérieur la surface axiale 42 de l'enclume 40. According to a preferred embodiment (Figure 3a), the anvil 40 comprises at least a portion of substantially cylindrical shape 43 at a portion of at least one or said fluidic paths. Such a geometry of the anvil thus allows a smooth and smooth flow of fluid flowing around the anvil. Still according to a preferred embodiment, said nozzle 50 comprises a nozzle housing 53 accommodating said anvil, said housing comprising a portion of substantially cylindrical shape at a portion of at least one or more fluidic paths. The nozzle is fitted around the anvil coaxially with the axis of the cylindrical anvil, so that the fluid path or paths have an annular portion 17 between said nozzle and said anvil. This annular portion has as outer diameter the inner surface 55 of the nozzle 50 and for inner diameter the axial surface 42 of the anvil 40.
Afin que la portion annulaire 17 de chemin fluidique soit bien définie et d'épaisseur constante sur tout le périmètre de l'anneau et à chaque position axiale selon l'axe Y, il est nécessaire que le montage de la buse dans le corps 14 de la tête de distribution soit parfaitement maîtrisé afin d'avoir un positionnement relatif de la buse et de l'enclume extrêmement précis et coaxial (Figure 3a). Pour cela, la buse est montée par harponnage dans le corps 14 du bouton poussoir 21 . La buse 50 est pourvu d'un harpon 58 prenant la forme d'une surépaisseur annulaire s'étendant sur tout le périmètre d'une surface extérieure 56 de la buse. Cette surépaisseur permet un montage serrant de la buse à l'intérieur du logement 13 de la tête de distribution, le diamètre de la zone harponnée de la buse étant légèrement supérieur au diamètre de l'orifice d'entrée du logement 13. Une face arrière 57 de la buse 50 vient en butée sur un fond 19 du logement 13 de la tête de distribution. Le positionnement de la buse 50 est ainsi parfaitement défini par rapport à l'enclume 40, aussi bien selon la direction axiale (direction Y), que selon la direction radiale (direction X), la distance de la surface axiale 42 de l'enclume à la surface intérieure 55 de la buse étant constante sur tout le périmètre de l'anneau et à toute position axiale Y. So that the annular portion 17 of fluidic path is well defined and of constant thickness over the entire perimeter of the ring and at each axial position along the Y axis, it is necessary that the mounting of the nozzle in the body 14 of the dispensing head is perfectly controlled in order to have an extremely precise and coaxial positioning of the nozzle and anvil (Figure 3a). For this, the nozzle is mounted by harpooning in the body 14 of the push button 21. The nozzle 50 is provided with a harpoon 58 in the form of an annular extra thickness extending over the entire perimeter of an outer surface 56 of the nozzle. This extra thickness allows a tight fitting of the nozzle inside the housing 13 of the dispensing head, the diameter of the harpooned area of the nozzle being slightly greater than the diameter of the inlet orifice of the housing 13. A rear face 57 of the nozzle 50 abuts against a bottom 19 of the housing 13 of the dispensing head. The positioning of the nozzle 50 is thus perfectly defined with respect to the anvil 40, both in the axial direction (Y direction) and in the radial direction (X direction), the distance from the axial surface 42 of the anvil to the inner surface 55 of the nozzle being constant over the entire perimeter of the ring and at any axial position Y.
Selon ce mode de réalisation représenté sur la Figure 3a, la surface axiale 42 de l'enclume 40 et la surface intérieure 55 de la buse 50 sont rigoureusement cylindrique et définissent ainsi une portion annulaire 17 de chemin fluidique formant un anneau dont l'épaisseur est constante le long de l'axe Y. En d'autres termes, l'épaisseur e de la portion annulaire 17, qui est égale à la différence des rayons de la surface intérieure 55 de la buse 50 et de la surface axiale 42 de la buse 40, est la même en un point amont de la portion annulaire 17, c'est-à-dire situé près du canal de transition 16, et en un point aval de la portion annulaire 17, c'est-à-dire situé près de la portion discale 18. Selon un mode de réalisation alternatif (Figure 3b), la surface axiale 42 de l'enclume 40 est cylindrique et la surface intérieure 55 de la buse 50 est légèrement tronconique, son diamètre diminuant dans le sens allant de l'amont vers l'aval. Ainsi, le diamètre de la surface intérieure 55 de la buse 50 est plus grand du côté de la zone amont de la portion annulaire 17 que du côté de la portion discale 18. En conséquence, l'épaisseur e de la portion annulaire 17 décroît dans le sens amont-aval. Cette diminution d'épaisseur et cette géométrie convergente de la portion annulaire 17 dans le sens amont-aval participe à la stabilisation de l'écoulement de fluide. According to this embodiment shown in Figure 3a, the axial surface 42 of the anvil 40 and the inner surface 55 of the nozzle 50 are strictly cylindrical and thus define an annular portion 17 of fluidic path forming a ring whose thickness is constant along the Y axis. In other words, the thickness e of the annular portion 17, which is equal to the difference of the radii of the inner surface 55 of the nozzle 50 and the axial surface 42 of the nozzle 40, is the same at an upstream point of the annular portion 17, that is to say located near the transition channel 16, and at a downstream point of the annular portion 17, that is to say situated near the disc portion 18. According to an alternative embodiment (Figure 3b), the axial surface 42 of the anvil 40 is cylindrical and the inner surface 55 of the nozzle 50 is slightly frustoconical, its diameter decreasing in the direction from upstream to downstream. Thus, the diameter of the inner surface 55 of the nozzle 50 is greater on the side of the upstream zone of the annular portion 17 than on the side of the disc portion 18. As a result, the thickness e of the annular portion 17 decreases in the upstream-downstream direction. This reduction in thickness and this convergent geometry of the annular portion 17 in the upstream-downstream direction contributes to the stabilization of the fluid flow.
Selon un mode de réalisation alternatif non illustré, il peut exister une pluralité de chemins fluidiques qui naissent par exemple de la division d'un chemin fluidique amont au droit du canal de transition 16 ou de la portion annulaire 17 en une pluralité de canaux espacés les uns des autres angulairement autour de l'axe Y de l'enclume. Ces canaux se rejoignent en un ou plusieurs points en amont de l'orifice de sortie 51 . L'objectif de l'invention est d'avoir un écoulement stabilisé au sein du ou des chemins fluidiques, afin de permettre la distribution par l'orifice de sortie 51 de la buse 50 d'un jet de forme substantiellement cylindrique. On entend par stabilisation de l'écoulement le long du ou des chemins fluidiques l'obtention d'un écoulement dans lequel chaque élément de volume fluide se déplace selon une direction qui reste substantiellement parallèle aux surfaces définissant le chemin fluidique entre lesquelles il évolue. According to an alternative embodiment not illustrated, there may be a plurality of fluidic paths that arise for example from the division of an upstream fluid path to the right of the transition channel 16 or the annular portion 17 into a plurality of channels spaced the each other angularly around the Y axis of the anvil. These channels meet at one or more points upstream of the outlet orifice 51. The object of the invention is to have a stabilized flow within the fluid path (s), in order to allow the distribution by the outlet orifice 51 of the nozzle 50 of a jet of substantially cylindrical shape. Stabilization of the flow along the fluid path (s) is intended to obtain a flow in which each fluid volume element moves in a direction that remains substantially parallel to the surfaces defining the fluidic path between which it evolves.
Au contraire, dans le cas d'un écoulement déstabilisé, présentant des instabilités hydrodynamiques du type vortex ou des turbulences, les différents éléments de fluide d'une même section de chemin fluidique se déplacent selon des directions différentes et généralement non parallèles aux surfaces du chemin fluidique avoisinantes. Il est également possible dans le cas d'un écoulement fluidique déstabilisé d'observer des variations temporelles de la vitesse d'écoulement en un point donné du chemin fluidique dans le cas de phénomènes d'intermittence. On the contrary, in the case of a destabilized flow, having hydrodynamic instabilities of the vortex or turbulence type, the different fluid elements of the same section of fluid path move in different directions and generally not parallel to the path surfaces. neighboring fluidic. It is also possible in the case of a destabilized fluid flow to observe temporal variations of the flow velocity at a given point of the fluidic path in the case of intermittency phenomena.
La conséquence d'un tel écoulement déstabilisé est que d'une part, une partie importante de la pression créée dans le fluide par l'organe de transfert 2 est dissipée au sein de turbulences, ce qui conduit à une faible vitesse de sortie du fluide au travers de l'orifice de sortie 51 . D'autre part, l'écoulement étant déstabilisé en amont de l'orifice de sortie, il reste naturellement déstabilisé lors de sa distribution. A la place d'un jet de forme substantiellement cylindrique, on obtient une distribution de fluide de forme dispersée, avec un large cône de distribution et souvent une pulvérisation du jet sous la forme de gouttelettes du type d'un spray. Ce mode de distribution de gouttelettes est apprécié pour certaines applications telles la distribution de parfums et de produits cosmétiques, ainsi que pour des applications pharmaceutiques, mais ne réalise pas un jet du type recherché, en l'occurrence un jet qui se projette à une distance lointaine et de forme substantiellement cylindrique. La stabilisation d'un écoulement est favorisée d'une part par des chemins fluidiques présentant des sections de petites dimensions. La proximité entre les surfaces formant le ou les chemins fluidiques et chaque point de l'écoulement contribue à empêcher le développement d'instabilités hydrodynamiques. D'autre part, une géométrie de canal convergente dans le sens allant de l'amont vers l'aval contribue également à la stabilisation des lignes d'écoulement quand, au contraire, une géométrie de canal divergente dans le sens allant de l'amont vers l'aval, en séparant et en éloignant les lignes de courant les unes des autres, est susceptible d'induire la formation d'instabilités hydrodynamiques et de turbulences. Troisièmement, des changements de direction brusques contribuent à la formation de turbulences, par exemple lorsqu'une couche de fluide s'écoulant à proximité d'une surface est emportée loin de celle-ci sous l'effet de son inertie au niveau d'un changement de direction du chemin fluidique. Ainsi, lorsqu'il n'est pas possible d'éviter des changements de direction, il est important aux fins de stabilisation de l'écoulement de prévoir des changements de direction progressifs, ce qui est rendu possible par des rayons de raccordement entre deux portions de chemin fluidique successives de directions différentes. The consequence of such a destabilized flow is that on the one hand, a significant part of the pressure created in the fluid by the transfer member 2 is dissipated within turbulence, which leads to a low fluid outlet speed. through the outlet 51. On the other hand, the flow being destabilized upstream of the outlet orifice, it remains naturally destabilized during its distribution. Instead of a jet of substantially cylindrical shape, a disperse-shaped fluid distribution is obtained, with a large distribution cone and often a jet spray in the form of droplets of the type of a spray. This mode of distribution of droplets is appreciated for certain applications such as the distribution of perfumes and cosmetics, as well as for pharmaceutical applications, but does not make a jet of the desired type, in this case a jet that projects to a distance distant and of substantially cylindrical form. The stabilization of a flow is favored on the one hand by fluidic paths having small sections. The proximity between the surfaces forming the fluid path (s) and each point of the flow contributes to preventing the development of hydrodynamic instabilities. On the other hand, a convergent channel geometry in the upstream to downstream direction also contributes to the stabilization of the flow lines when, on the contrary, a diverging channel geometry in the direction from upstream downstream, separating and moving the streamlines away from each other, is likely to induce the formation of hydrodynamic instabilities and turbulence. Third, abrupt changes in direction contribute to the formation of turbulence, for example when a layer of fluid flowing near a surface is carried away from it by its inertia at a change of direction of the fluidic path. Thus, when it is not possible to avoid changes of direction, it is important for stabilization of the flow to provide progressive changes of direction, which is made possible by connecting radii between two portions successive fluidic path of different directions.
Un chemin fluidique permettant une stabilisation de l'écoulement doit donc être compris comme reproduisant au moins une de ces trois caractéristiques : des sections de passage décroissantes dans le sens allant de l'amont vers l'aval, une géométrie des chemins fluidiques convergente dans le sens allant de l'amont vers l'aval et des rayons de raccordement entre deux portions de chemin fluidique successives de directions différentes. Ainsi, un canal annulaire de faible épaisseur est favorable à une stabilisation de l'écoulement. Selon un mode de réalisation préféré, l'épaisseur de ladite portion annulaire 17 de chemin fluidique est comprise entre 0.05mm et 1 .5mm, de préférence entre 0.1 mm et 1 mm. Plus particulièrement, l'épaisseur est de 0.15mm. Une épaisseur aussi faible de l'anneau formé par cette portion de chemin fluidique permet d'avoir un écoulement stabilisé par la proximité des surfaces, en l'espèce la surface axiale 42 de l'enclume 40 et la surface intérieure 55 de la buse 50. A fluidic path allowing a stabilization of the flow must therefore be understood as reproducing at least one of these three characteristics: decreasing passage sections in the direction going from the upstream to the downstream, a geometry of the fluidic paths convergent in the direction from upstream to downstream and connecting radii between two successive fluid path portions of different directions. Thus, an annular channel of small thickness is favorable to a stabilization of the flow. According to a preferred embodiment, the thickness of said annular portion 17 of fluid path is between 0.05mm and 1 .5mm, preferably between 0.1 mm and 1 mm. More particularly, the thickness is 0.15mm. Such a small thickness of the ring formed by this portion of the fluidic path makes it possible to have a flow stabilized by the proximity of the surfaces, in this case the axial surface 42 of the anvil 40 and the inner surface 55 of the nozzle 50 .
Vers l'aval, la portion annulaire 1 7 débouche dans la portion discale 1 8, cette portion discale 1 8 étant située entre la face radiale d'extrémité 41 de l'enclume 40 et le fond 54 de l'enclume 50. Au sein de cette portion discale 1 8, les lignes d'écoulement convergent depuis la sortie de la portion annulaire 1 7 vers l'entrée du canal de sortie 52, ledit canal de sortie étant pratiqué dans le fond 54 de la buse 50. Les lignes d'écoulement sont orientées radialement (flèches sur la Figure 5, qui est une coupe axiale de la portion discale 18 selon le plan AA de la Figure 3a) et convergent vers le canal de sortie 52, stabilisant ainsi l'écoulement. Ledit ou lesdits chemins fluidiques comprennent ainsi une portion discale 1 8 située en aval de la portion annulaire 17 et située entre la face d'extrémité radiale 41 de l'enclume 40 et le fond 54 de la buse 50, favorisant une stabilisation de l'écoulement. Selon un mode de réalisation préféré, la face radiale d'extrémité 41 de l'enclume 40 est légèrement bombée, le fond 54 de la buse 50 étant substantiellement plat. Cette face radiale 41 de l'enclume définissant une surface du chemin fluidique au niveau de la portion discale 18, la forme bombée permet une convergence géométrique du chemin fluidique et donc une stabilisation de l'écoulement. En effet, la distance entre la face radiale d'extrémité 41 de l'enclume 40 et le fond 54 de la buse 50 diminue au niveau de la portion de chemin fluidique proche de l'axe de symétrie Y de l'enclume et de la buse. Ainsi, on assiste à une diminution de section de passage de la portion discale de chemin fluide dans le sens amont-aval, ce qui va dans le sens de la stabilisation de l'écoulement au sein de cette portion. Downstream, the annular portion 1 7 opens into the disc portion 1 8, this disc portion 1 8 being located between the radial end face 41 of the anvil 40 and the bottom 54 of the anvil 50. Within of this disc portion 1 8, the flow lines converge from the outlet of the annular portion 1 7 to the inlet of the outlet channel 52, said outlet channel being formed in the bottom 54 of the nozzle 50. The lines flow are oriented radially (arrows in Figure 5, which is an axial section of the disc portion 18 along the plane AA of Figure 3a) and converge to the outlet channel 52, thus stabilizing the flow. Said fluid path (s) thus comprise a disc portion (18) located downstream of the annular portion (17) and located between the radial end face (41) of the anvil (40) and the bottom (54) of the nozzle (50), favoring a stabilization of the flow. According to a preferred embodiment, the radial end face 41 of the anvil 40 is slightly curved, the bottom 54 of the nozzle 50 being substantially flat. This radial face 41 of the anvil defining a surface of the fluidic path at the disc portion 18, the convex shape allows a geometric convergence of the fluid path and thus a stabilization of the flow. Indeed, the distance between the radial end face 41 of the anvil 40 and the bottom 54 of the nozzle 50 decreases at the portion of fluid path close to the axis of symmetry Y of the anvil and the nozzle. Thus, there is a decrease in cross section of the disc portion of the fluid path in the upstream-downstream direction, which is in the direction of the stabilization of the flow within this portion.
Selon un mode de réalisation préféré, la distance entre la face radiale d'extrémité 41 de l'enclume 40 tournée vers l'orifice de sortie 52 et le fond 54 de la buse en regard de l'enclume est comprise entre 0.05mm et 1 .5mm en entrée de la portion discale 18. De préférence cette distance est comprise entre 0.1 mm et 1 mm. Plus particulièrement, cette distance est égale à 0.15mm. According to a preferred embodiment, the distance between the radial end face 41 of the anvil 40 facing the outlet orifice 52 and the bottom 54 of the nozzle facing the anvil is between 0.05mm and 1 .5mm at the inlet of the disc portion 18. Preferably this distance is between 0.1 mm and 1 mm. More particularly, this distance is equal to 0.15mm.
La distance entre la face radiale d'extrémité 41 de l'enclume 40 tournée vers l'orifice de sortie 52 et le fond 54 de la buse en regard de l'enclume est encore inférieure en regard du canal de sortie 52 en raison de la forme bombée de la face d'extrémité radiale 41 en regard du fond 54 substantiellement plat. En regard du canal de sortie 52, cette distance est mesurée entre le plan comprenant le plan fond 54 et la face radiale d'extrémité 41 . The distance between the radial end face 41 of the anvil 40 facing the outlet orifice 52 and the bottom 54 of the nozzle facing the anvil is even smaller with respect to the outlet channel 52 because of the curved shape of the radial end face 41 opposite the bottom 54 substantially flat. Opposite the outlet channel 52, this distance is measured between the plane comprising the bottom plane 54 and the radial end face 41.
Cette gamme de valeur de la distance entre la face radiale d'extrémité 41 de l'enclume 40 tournée vers l'orifice de sortie 52 et le fond 54 de la buse en regard de l'enclume assure une bonne stabilité de l'écoulement. This range of value of the distance between the radial end face 41 of the anvil 40 facing the outlet orifice 52 and the bottom 54 of the nozzle facing the anvil ensures good stability of the flow.
Selon un mode de réalisation alternatif (Figure 3c), l'enclume 40 est conçue avec une face d'extrémité radiale 41 plane. Le fond 54 de la buse 50 étant également plat, la section d'écoulement de la portion discale 18 est constante sur l'ensemble de la portion. La distance entre la face d'extrémité radiale 41 et le fond 54 de la buse 50 est préférentiellement inférieure à 0.2mm. Les différentes caractéristiques présentées ci-dessous, peuvent être combinées entre elles. Ainsi, on peut considérer quatre modes de réalisation comprenant une portion annulaire 17 et une portion discale 1 8 : According to an alternative embodiment (FIG. 3c), the anvil 40 is designed with a flat radial end face 41. The bottom 54 of the nozzle 50 is also flat, the flow section of the disc portion 18 is constant over the entire portion. The distance between the radial end face 41 and the bottom 54 of the nozzle 50 is preferably less than 0.2 mm. The different characteristics presented below can be combined with each other. Thus, four embodiments can be considered comprising an annular portion 17 and a disc portion 18:
- un premier mode de réalisation dans lequel la portion annulaire est d'épaisseur constante selon la direction axiale comme représenté sur la Figure 3a et la portion discale 1 8 est convergente (face d'extrémité radiale 41 bombée) comme représentée sur la Figure 3a.  - A first embodiment in which the annular portion is of constant thickness in the axial direction as shown in Figure 3a and the disc portion 18 is convergent (radial end face 41 curved) as shown in Figure 3a.
- un second mode de réalisation dans lequel la portion annulaire est d'épaisseur constante selon la direction axiale comme représenté sur la Figure 3a et la portion discale 1 8 est d'épaisseur constante (face d'extrémité radiale 41 plate) comme représentée sur la Figure 3c et les Figures 4a et b  a second embodiment in which the annular portion is of constant thickness in the axial direction as shown in FIG. 3a and the disc portion 18 is of constant thickness (radial end face 41) as shown in FIG. Figure 3c and Figures 4a and b
- un troisième mode de réalisation dans lequel la portion annulaire est d'épaisseur décroissante selon la direction axiale, soit une convergence de la portion annulaire comme représenté sur la Figure 3b, et la portion discale 18 est convergente (face d'extrémité radiale 41 bombée) comme représentée sur la Figure 3a.  a third embodiment in which the annular portion is of decreasing thickness in the axial direction, ie a convergence of the annular portion as shown in FIG. 3b, and the disc portion 18 is convergent (radial end face 41 convex ) as shown in Figure 3a.
- un quatrième mode de réalisation dans lequel la portion annulaire est d'épaisseur décroissante selon la direction axiale, soit une convergence de la portion annulaire comme représenté sur la Figure 3b, et la portion discale 18 est d'épaisseur constante (face d'extrémité radiale 41 plate) comme représentée sur la Figure 3c et les Figures 4a et b.  a fourth embodiment in which the annular portion is of decreasing thickness in the axial direction, ie a convergence of the annular portion as shown in FIG. 3b, and the disc portion 18 is of constant thickness (end face radial flat 41) as shown in Figure 3c and Figures 4a and b.
Le canal de sortie 52 ménagé dans le fond 54 de la buse 50 contribue à stabiliser l'écoulement. Ce canal doit être suffisamment étroit et long pour pouvoir stabiliser l'écoulement après que celui-ci a passé le coude formé par le ou les chemins fluidiques lors du passage de la portion discale 1 8 au canal de sortie 52. Ainsi, dans un mode de réalisation préféré, le canal de sortie 52 débouche dans l'orifice de sortie 51 de la buse 50 et présente une longueur au moins égale à 0,05mm et préférentiellement au moins égale à 0.3mm. Une longueur plus faible risquerait de conduire à un jet en sortie de l'orifice de sortie 51 qui présenterait des turbulences. De même, dans un mode de réalisation préféré, ledit canal de sortie 52 présente un diamètre compris entre 0,05mm et 1 mm. Avec un tel diamètre, il est attendu que l'écoulement reste stable. L'unicité de l'orifice de sortie 51 participe à la stabilisation du fluide par le ou les chemins fluidiques. En effet, une pluralité de jets sortant de la pluralité d'orifices de sortie, pourrait conduire à des impacts entre les jets et donc à leur déstabilisation mutuelle. Par conséquent : The outlet channel 52 formed in the bottom 54 of the nozzle 50 contributes to stabilizing the flow. This channel must be sufficiently narrow and long to be able to stabilize the flow after it has passed the elbow formed by the fluid path or paths during the passage of the disc portion 18 to the outlet channel 52. Thus, in a of preferred embodiment, the outlet channel 52 opens into the outlet orifice 51 of the nozzle 50 and has a length at least equal to 0.05 mm and preferably at least equal to 0.3 mm. A shorter length could lead to a jet output of the outlet orifice 51 which would present turbulence. Likewise, in a preferred embodiment, said outlet channel 52 has a diameter of between 0.05 mm and 1 mm. With such a diameter, it is expected that the flow remains stable. The uniqueness of the outlet orifice 51 contributes to the stabilization of the fluid by the fluid path (s). Indeed, a plurality of jets exiting the plurality of outlets, could lead to impacts between the jets and therefore their mutual destabilization. Therefore :
- la portion annulaire 1 7, délimitée par la surface axiale 42 de l'enclume 40 et la surface intérieure 55 de la buse 50 en regard,  the annular portion 17, delimited by the axial surface 42 of the anvil 40 and the inner surface 55 of the nozzle 50 opposite,
- la portion discale 18 délimitée par la face radiale d'extrémité 41 de l'enclume 40 et le fond 54 de la buse 50,  the disc portion 18 delimited by the radial end face 41 of the anvil 40 and the bottom 54 of the nozzle 50,
- le canal de sortie 52 et l'unique orifice de sortie 51 ménagé dans le fond de la buse,  the outlet channel 52 and the single outlet orifice 51 formed in the bottom of the nozzle,
constituent ensemble un chemin fluidique au sein de la tête de distribution visant à stabiliser l'écoulement du fluide sous pression. Ainsi, la tête de distribution 10 d'un fluide sous pression comprend une buse 50 et une enclume 40, ladite buse comprenant un orifice de sortie 51 , ladite buse 50 et ladite enclume 40 définissant au moins un chemin fluidique (17, 1 8,52) situé au moins en partie entre ladite buse et ladite enclume, le ou les chemins fluidiques permettant une stabilisation du fluide depuis une zone amont (17, 18) dudit ou desdits chemins fluidiques jusqu'audit orifice de sortie 51 , ladite zone amont (17, 18) étant située entre ladite buse 50 et ladite enclume 40. Comme mentionné plus haut, il peut également être envisagé un mode de réalisation dans lequel une pluralité de canaux espacés angulairement autour de l'axe Y remplace la portion annulaire 1 7, ces canaux débouchant dans la portion discale 1 8. Dans ce mode de réalisation, il existe donc une pluralité de chemins fluidiques. Dans un mode de réalisation particulier, une sélection seulement de ces chemins fluidiques, voire un seul, permet une stabilisation de l'écoulement. Néanmoins, dans un mode de réalisation préférentiel, tous les chemins fluidiques permettent la stabilisation de l'écoulement. together constitute a fluid path within the dispensing head for stabilizing the flow of the fluid under pressure. Thus, the dispensing head 10 of a fluid under pressure comprises a nozzle 50 and an anvil 40, said nozzle comprising an outlet orifice 51, said nozzle 50 and said anvil 40 defining at least one fluidic path (17, 18, 52) located at least partially between said nozzle and said anvil, the fluid path (s) allowing a stabilization of the fluid from an upstream zone (17, 18) of said fluid path (s) to said outlet orifice 51, said upstream zone ( 17, 18) being located between said nozzle 50 and said anvil 40. As mentioned above, it is also possible to envisage an embodiment in which a plurality of channels angularly spaced about the Y axis replace the annular portion 17, these channels opening into the disc portion 1 8. In this embodiment, there is therefore a plurality of fluidic paths. In a particular embodiment, a selection only of these fluidic paths, or even only one, allows a stabilization of the flow. Nevertheless, in a preferred embodiment, all the fluidic paths allow the stabilization of the flow.
Dans un mode réalisation préférentiel, la section de passage du ou des chemins fluidiques (17, 18,52) décroît depuis ladite zone amont dudit ou desdits chemins fluidiques jusqu'audit orifice de sortie 51 . Ainsi, la section de sortie de la portion annulaire 17 de chemin fluidique, égale au produit de son périmètre et de son épaisseur, est plus large que la section d'entrée de la portion discale 1 8. La section de passage diminue progressivement de l'amont vers l'aval, conduisant ainsi à une stabilisation de l'écoulement. Comme on a vu, la géométrie bombée de la face radiale d'extrémité 41 de la buse contribue également à diminuer la section de la portion discale 18 dans le sens amont-aval. In a preferred embodiment, the passage section of the fluidic path (s) (17, 18, 52) decreases from said upstream zone of said one or more fluidic paths to said outlet orifice 51. Thus, the outlet section of the annular portion 17 of the fluidic path, equal to the product of its perimeter and its thickness, is wider than the inlet section of the disc portion 18. The passage section gradually decreases from upstream to downstream, thus leading to a stabilization of the flow. As we have seen, the curved geometry of the radial end face 41 of the nozzle also contributes to reducing the section of the disc portion 18 in the upstream-downstream direction.
Cette décroissance de la section de passage contribue à la stabilisation de l'écoulement, mais également à l'accélération du fluide le long de son écoulement d'amont vers l'aval. Grâce à cette géométrie, il est possible d'obtenir en sortie de tête de distribution un jet de forme substantiellement cylindrique s'étendant sur une distance de 20 centimètres, préférentiellement 50 centimètres, produisant à cette distance une qualité d'application identique à celle produite à la sortie d'un tube d'application de même longueur. This decay of the passage section contributes to the stabilization of the flow, but also to the acceleration of the fluid along its flow from upstream to downstream. Thanks to this geometry, it is possible to obtain at the output of the dispensing head a jet of substantially cylindrical shape extending over a distance of 20 centimeters, preferably 50 centimeters, producing at this distance an application quality identical to that produced. at the outlet of an application tube of the same length.
La décroissance de la section de passage peut être continue ou par paliers. Dans un mode de réalisation particulier, le chemin fluidique est constitué d'une succession de portions annulaires de diamètres décroissants dans le sens amont-aval, reliées entre elles par des portions convergentes. Le long de chaque portion annulaire, la section est constante dans le sens d'écoulement amont-aval. Entre deux portions annulaires, la section décroit dans le sens de l'amont vers aval au sein de la portion convergente liant deux portions annulaires successives. Cette géométrie présente donc une décroissance par paliers de la section de passage du chemin fluidique. The decay of the passage section can be continuous or in stages. In a particular embodiment, the fluidic path consists of a succession of annular portions of decreasing diameters in the upstream-downstream direction, interconnected by convergent portions. Along each annular portion, the section is constant in the upstream-downstream flow direction. Between two annular portions, the section decreases in the direction from upstream to downstream within the converging portion linking two successive annular portions. This geometry therefore has a stepwise decay of the passage section of the fluidic path.
Dans un mode de réalisation privilégié, le chemin fluidique (1 7, 18,52) présente des rayons de raccordement à la transition entre deux portions de chemin fluidique de sections ou de directions différentes. Ainsi, la buse 50 présente un rayon R55 à la transition entre sa surface intérieure axiale 55 et le fond de la buse 54. De même, l'enclume présente un rayon R42 à la transition entre sa surface axiale 42 et sa face radiale d'extrémité 41 . Ainsi, le changement de direction à la transition entre la portion annulaire 1 7 et la portion discale 1 8, laquelle s'étend selon une direction transverse à celle de la portion annulaire 1 7, est progressive, ce qui évite une déstabilisation de l'écoulement fluide. De même, la buse 50 présente un rayon R52 à l'entrée du canal de sortie 52 ménagé dans son fond 54. Ainsi, le fluide change de direction progressivement au moment du passage de la portion discale 18 au canal de sortie 52, lequel s'étend selon une direction transverse à la direction de la portion discale 1 8. Ici encore, le rayon R52 prévient une déstabilisation du fluide lors du changement de direction de l'écoulement. In a preferred embodiment, the fluidic path (17, 18, 52) has connection radii at the transition between two fluid path portions of different sections or directions. Thus, the nozzle 50 has a radius R55 at the transition between its axial inner surface 55 and the bottom of the nozzle 54. Similarly, the anvil has a radius R42 at the transition between its axial surface 42 and its radial face. end 41. Thus, the change of direction at the transition between the annular portion 1 7 and the disc portion 1 8, which extends in a direction transverse to that of the annular portion 1 7, is progressive, which avoids a destabilization of the fluid flow. Similarly, the nozzle 50 has a radius R52 at the inlet of the outlet channel 52 formed in its bottom 54. Thus, the fluid changes direction gradually at the time of the passage of the disc portion 18 to the outlet channel 52, which extends in a direction transverse to the direction of the disc portion 1 8. Here again, the radius R52 prevents a destabilization of the fluid during the change of direction of the flow.
Préférentiellement, les rayons R42, R55 et R52 ont un rayon de courbure de même ordre de grandeur que la largeur ou le diamètre des canaux auxquels ils sont associés. Ainsi, les rayons R42 et R55 associés à la portion annulaire 17 et à la portion discale 18 ont un rayon de courbure de l'ordre de 0.2mm. Le rayon R52 associé à la portion discale 18 et au canal de sortie 52 présente un rayon de courbure compris typiquement entre 0.05mm et 1 mm, selon le diamètre du canal de sortie 52. Preferably, the rays R42, R55 and R52 have a radius of curvature of the same order of magnitude as the width or diameter of the channels with which they are associated. Thus, the rays R42 and R55 associated with the annular portion 17 and the disc portion 18 have a radius of curvature of the order of 0.2mm. The radius R52 associated with the disc portion 18 and the outlet channel 52 has a radius of curvature typically between 0.05 mm and 1 mm, depending on the diameter of the outlet channel 52.
Selon un mode de réalisation préféré de l'invention, la tête de distribution comprend une ouverture divergente 59a dans laquelle débouche l'orifice de sortie. Une face radiale externe 59 de la buse 50 présente une partie conique concave 59a dans laquelle débouche l'orifice de sortie 51 . Cette partie conique présente un profil divergent de l'amont vers l'aval, ce qui offre un avantage pour la dispense de certains fluides, selon leur tension de surface avec l'air, leur densité, leur viscosité et éventuellement leur viscoélasticité. Il est important qu'un raccordement 59b du canal de sortie 52 à l'ouverture divergente 59a soit à angle vif. L'ouverture divergente 59a ne participe pas audit ou auxdits chemins fluidiques stabilisant l'écoulement de fluide. Ledit ou lesdits chemins fluidiques finissent au niveau de l'orifice de sortie 51 . According to a preferred embodiment of the invention, the dispensing head comprises a diverging opening 59a into which the outlet orifice opens. An outer radial face 59 of the nozzle 50 has a concave conical portion 59a into which the outlet orifice 51 opens. This conical portion has a divergent profile from upstream to downstream, which offers an advantage for the dispensing of certain fluids, according to their surface tension with air, their density, their viscosity and possibly their viscoelasticity. It is important that a connection 59b of the outlet channel 52 at the diverging opening 59a is at a sharp angle. The diverging aperture 59a does not participate in said one or more fluidic paths stabilizing the fluid flow. Said fluid path (s) terminate at the outlet port 51.
Selon un autre mode de réalisation (Figures 6 et 7), une tête de distribution 1 10 comprenant une enclume 140 laquelle comprend au moins une portion 144 de forme substantiellement conique au niveau du ou des chemins fluidiques (1 1 7,1 18, 152) et un logement de buse 153 d'une buse 1 50 présente une forme complémentaire de celle d'une enclume 140, au niveau de la portion 144 substantiellement conique de ladite enclume 140, la buse 150 et l'enclume 140 définissant ainsi une portion 1 1 8 de chemin fluidique de forme substantiellement conique convergeant de l'amont vers l'aval. Ainsi la portion discale 1 8 de chemin fluidique présentant la forme d'un canal discal dans le mode de réalisation des figures 1 à 5 est remplacée dans ce nouveau mode de réalisation par la portion 1 1 8 de chemin fluidique des Figures 6 et 7 présentant une forme conique. Cette configuration de portion de chemin fluidique a pour effet de faire converger le fluide progressivement depuis une portion annulaire 1 1 7 vers le canal de sortie 152. Il apparaîtra à l'homme du métier à travers la comparaison des deux modes réalisation, que la convergence est plus progressive dans le cas de la portion 1 18 conique du second mode de réalisation (Figures 6 et 7) que dans celui de la portion discale 18 du premier mode de réalisation (Figures 1 à 5). Le second mode de réalisation des Figures 6 et 7 présente des éléments communs avec le premier mode de réalisation qui sont maintenant exposés brièvement. Optionnellement, il existe en amont de ladite portion 144 de forme substantiellement conique de ladite buse 140 une portion axiale 143 de forme substantiellement cylindrique dont une surface axiale 142 est en regard d'une surface interne 155 de ladite buse 150. Ces deux surfaces définissent ainsi une portion annulaire 1 17 dont l'épaisseur est préférentiellement inférieure à 0.2mm. Une surface externe 156 de la buse 150 présente un harpon 158 prenant la forme d'une protrusion s'étendant sur l'ensemble de la périphérie de ladite surface externe. Ce harpon permet le montage serrant de ladite buse 150 dans un logement 1 13 d'un corps 1 14 de la tête de distribution 1 10. La buse 150 est ainsi montée selon un mode coaxial maîtrisé autour de l'enclume 140, permettant ainsi de définir précisément la portion annulaire 1 17. According to another embodiment (FIGS. 6 and 7), a dispensing head 1 comprising an anvil 140 which comprises at least one portion 144 of substantially conical shape at the level of the fluidic path (s) (1 1 7, 18, 152 ) and a nozzle housing 153 of a nozzle 1 50 has a shape complementary to that of an anvil 140, at the substantially conical portion 144 of said anvil 140, the nozzle 150 and the anvil 140 thereby defining a portion 1 1 8 fluidic path of substantially conical shape converging from upstream to downstream. Thus, the disc portion 18 of a fluidic path having the shape of a disc channel in the embodiment of FIGS. 1 to 5 is replaced in this new embodiment by the portion 1 1 8 of the fluidic path of FIGS. a conical shape. This configuration of the fluidic path portion has the effect of converging the fluid progressively from an annular portion 11 to the outlet channel 152. It will be apparent to those skilled in the art through the comparison of the two embodiments, that the convergence is more progressive in the case of the conical portion 1 18 of the second embodiment (Figures 6 and 7) than in that of the disc portion 18 of the first embodiment (Figures 1 to 5). The second embodiment of Figures 6 and 7 has elements common with the first embodiment which are now briefly discussed. Optionally, there exists upstream of said portion 144 of substantially conical shape of said nozzle 140 an axial portion 143 of substantially cylindrical shape, an axial surface 142 is opposite an inner surface 155 of said nozzle 150. These two surfaces thus define an annular portion 1 17 whose thickness is preferably less than 0.2mm. An outer surface 156 of the nozzle 150 has a spear 158 in the form of a protrusion extending over the entire periphery of said outer surface. This harpoon allows the tight fitting of said nozzle 150 in a housing 1 13 of a body 1 14 of the dispensing head 1 10. The nozzle 150 is thus mounted in a coaxial mode controlled around the anvil 140, thus allowing precisely define the annular portion 1 17.
Selon le mode de réalisation des Figures 6 et 7, il est possible de piloter la largeur de la portion 1 18 conique en fonction de la viscosité du fluide à distribuer en emmanchant plus ou moins profondément la buse 150 dans le logement 1 13 du corps 1 14 de la tête de distribution 1 10 autour de l'enclume 140. A cette fin, le logement 1 13 peut être pourvu sur une surface intérieure 1 15 d'au moins un cran permettant un enfoncement bien défini de la buse 150 dans le logement 1 13. II est ainsi possible de réaliser une pluralité de références de tête de distribution 1 10 adaptée à une pluralité de gamme de viscosité de fluide à distribuer, chaque référence étant caractérisée par une localisation différente dudit cran sur la surface intérieure 1 15 du logement 1 13 du corps 1 14. Il est ainsi possible de réaliser, après le montage de la buse 150 dans le corps 1 14 autour de l'enclume 140 et la coopération du harpon 158 avec ledit cran, une tête de distribution présentant un chemin fluidique (1 17,1 18,152) avec une portion 1 18 ayant la forme d'un canal conique d'épaisseur adaptée à la viscosité du fluide à distribuer. La distance entre une surface d'extrémité radiale 141 de l'enclume tournée vers l'orifice de sortie 151 et un fond 154 de la buse en regard de l'enclume peut ainsi être ajustée. A titre de mode de réalisation alternatif, une pluralité de crans est formée sur la surface intérieure 1 15 du logement 1 1 3 du corps 1 14 et la buse est montée dans le corps 1 14 selon une profondeur axiale choisie en fonction de la viscosité du fluide à distribuer, ledit harpon 158 coopérant avec celui des crans de la pluralité desdits crans qui convient à la viscosité de fluide considérée. L'épaisseur de la portion 1 1 8 conique, c'est-à-dire la distance entre la surface d'extrémité radiale 141 de l'enclume et le fond 154 de la buse est typiquement égale ou inférieure à 0.2mm. La portion annulaire 1 17 peut être d'épaisseur constante à toute position axiale selon la direction Y, comme représenté aux Figures 6 et 7. Ceci résulte d'une situation dans laquelle la surface intérieure 1 55 de la buse 150 et la surface axiale 142 de l'enclume 140 sont parfaitement cylindriques. Selon un mode de réalisation alternatif, la surface axiale 142 de l'enclume 140 est cylindrique et la surface intérieure 155 de la buse 1 50 est légèrement tronconique, son diamètre diminuant dans le sens allant de l'amont vers l'aval. Ainsi, le diamètre de la surface intérieure 1 55 de la buse 1 50 est plus grand du côté amont que du côté de la portion discale 1 18. En conséquence, l'épaisseur de la portion annulaire 1 17 décroît dans le sens amont-aval. Cette diminution d'épaisseur et cette géométrie convergente de la portion annulaire 1 17 dans le sens amont-aval participe à la stabilisation de l'écoulement de fluide. According to the embodiment of FIGS. 6 and 7, it is possible to control the width of the conical portion 1 18 as a function of the viscosity of the fluid to be dispensed by inserting the nozzle 150 more or less deeply into the housing 1 13 of the body 1 14 of the distribution head 1 10 around the anvil 140. For this purpose, the housing 1 13 may be provided on an inner surface 1 15 at least one notch allowing a well defined depression of the nozzle 150 in the housing 13. It is thus possible to produce a plurality of distribution head references 1 10 adapted to a plurality of fluid viscosity range to be dispensed, each reference being characterized by a different location of said notch on the inner surface 1 15 of the housing 1 13 of the body 1 14. It is thus possible to achieve, after mounting the nozzle 150 in the body 1 14 around the anvil 140 and the cooperation of the harpoon 158 with said notch, a dispensing head having a fluid path (1 17.1 18,152) with a portion 1 18 having the shape of a conical channel of thickness adapted to the viscosity of the fluid to be dispensed. The distance between a radial end surface 141 of the anvil facing the outlet orifice 151 and a bottom 154 of the nozzle facing the anvil can thus be adjusted. As an alternative embodiment, a plurality of notches is formed on the inner surface 1 15 of the housing 1 1 3 of the body 1 14 and the nozzle is mounted in the body 1 14 according to an axial depth chosen according to the viscosity of the fluid to be dispensed, said harpoon 158 cooperating with that of the notches of the plurality of said notches which is suitable for the fluid viscosity considered. The thickness of the tapered portion i.e. the distance between the radial end surface 141 of the anvil and the bottom 154 of the nozzle is typically equal to or less than 0.2mm. The annular portion 17 may be of constant thickness at any axial position in the Y direction, as shown in FIGS. 6 and 7. This results from a situation in which the inner surface 155 of the nozzle 150 and the axial surface 142 the anvil 140 are perfectly cylindrical. According to an alternative embodiment, the axial surface 142 of the anvil 140 is cylindrical and the inner surface 155 of the nozzle 1 50 is slightly frustoconical, its diameter decreasing in the direction from upstream to downstream. Thus, the diameter of the inner surface 1 55 of the nozzle 1 50 is greater on the upstream side than on the side of the disc portion 1 18. As a result, the thickness of the annular portion 1 17 decreases in the upstream-downstream direction . This reduction in thickness and this convergent geometry of the annular portion 1 17 in the upstream-downstream direction contributes to the stabilization of the fluid flow.
Le chemin fluidique (1 17, 1 18, 152) de la tête de distribution selon le mode de réalisation des Figures 6 et 7 comprend des rayons au niveau des changements de direction. Ainsi la buse 1 50 comprend un rayon R155 en face duquel est réalisé sur la buse 140 un rayon R142 à la transition de la portion annulaire 1 17 et de la portion conique 1 1 8. De même la buse comprend un rayon R152 à l'entrée du canal de sortie 1 52 ménagée dans le fond 154 de ladite buse. The fluid path (1 17, 1 18, 152) of the dispensing head according to the embodiment of Figures 6 and 7 comprises radii at the direction changes. Thus the nozzle 1 50 comprises a radius R155 in front of which is formed on the nozzle 140 a radius R142 at the transition of the annular portion 1 17 and the conical portion 1 1 8. Similarly the nozzle comprises a radius R152 to the inlet of the outlet channel 1 52 formed in the bottom 154 of said nozzle.
Une face radiale externe 159 de la buse 150 présente une partie conique concave 1 59a dans laquelle débouche un orifice de sortie 1 51 . Cette partie conique présente un profil divergent de l'amont vers l'aval, ce qui offre un avantage pour la dispense de certains fluides, selon leur tension de surface avec l'air, leur densité, leur viscosité et le cas échéant leur viscoélasticité. Il est important qu'un raccordement 159b d'un canal de sortie 152 à l'ouverture divergente 159 soit à angle vif. L'ouverture divergente 159a ne participe pas audit ou auxdits chemins fluidiques (1 17,1 18,152) stabilisant l'écoulement de fluide. Ledit ou lesdits chemins fluidiques finissent au niveau de l'orifice de sortie 151 . An outer radial face 159 of the nozzle 150 has a concave conical portion 59a into which an outlet orifice 1 51 opens. This conical portion has a divergent profile from upstream to downstream, which offers an advantage for the dispensing of certain fluids, depending on their surface tension with air, their density, their viscosity and the case. their viscoelasticity. It is important that a connection 159b of an output channel 152 at the diverging aperture 159 be at a sharp angle. The diverging aperture 159a does not participate in said one or more fluidic paths (1 17, 18, 152) stabilizing the fluid flow. Said fluid path (s) terminate at the outlet port (151).
La tête de distribution selon l'un des modes de réalisation peut être associée non seulement à un système de distribution du type utilisant une pompe à actionnement manuel pour la mise sous pression d'un fluide mais aussi à une bombe aérosol contenant du gaz sous pression. The dispensing head according to one of the embodiments may be associated not only with a dispensing system of the type using a manually operated pump for pressurizing a fluid but also with an aerosol container containing pressurized gas. .
On peut ainsi réaliser une bombe aérosol contenant du gaz sous pression ou un dispositif de distribution faisant intervenir une pompe à actionnement manuel comprenant la tête de distribution selon l'un des modes réalisation décrits. It is thus possible to produce an aerosol container containing pressurized gas or a dispensing device involving a manually operated pump comprising the dispensing head according to one of the embodiments described.

Claims

REVENDICATIONS
1. Tête de distribution d'un fluide sous pression comprenant une buse (50,150) et une enclume (40,140), ladite buse comprenant un orifice de sortie (51,151), ladite buse et ladite enclume définissant au moins un chemin fluidique (17,18,52,117,118,152) situé au moins en partie entre ladite buse et ladite enclume, ledit ou lesdits chemins fluidiques permettant une stabilisation du fluide depuis une zone amont dudit ou desdits chemins fluidiques jusqu'audit orifice de sortie, ladite zone amont étant située entre ladite buse et ladite enclume. A dispenser head for a pressurized fluid comprising a nozzle (50,150) and an anvil (40,140), said nozzle comprising an outlet (51,151), said nozzle and said anvil defining at least one fluidic path (17,18). , 52,117,118,152) located at least partly between said nozzle and said anvil, said fluid path (s) permitting stabilization of the fluid from an upstream zone of said at least one fluidic path to said outlet orifice, said upstream zone being situated between said nozzle and said anvil.
2. Tête de distribution selon la revendication 1 dans laquelle la section de passage du ou des chemins fluidiques (17,18,52,117,118,152) décroît depuis ladite zone amont dudit ou desdits chemins fluidiques jusqu'audit orifice de sortie (51,151). 2. Dispensing head according to claim 1 wherein the passage section of the fluid path (s) (17,18,52,117,118,152) decreases from said upstream zone of said fluid path (s) to said outlet orifice (51,151).
3. Tête de distribution selon l'une des revendications précédentes dans laquelle le ou les chemins fluidiques présentent une portion annulaire (17,117) entre ladite buse et ladite enclume. 3. Dispensing head according to one of the preceding claims wherein the one or more fluidic paths have an annular portion (17,117) between said nozzle and said anvil.
4. Tête de distribution selon la revendication 3 dans laquelle l'épaisseur de ladite portion annulaire (17,117) est comprise entre 0.05mm et 1.5mm. 4. Dispensing head according to claim 3 wherein the thickness of said annular portion (17,117) is between 0.05mm and 1.5mm.
5. Tête de distribution selon la revendication 3 dans laquelle ledit ou lesdits chemins fluidiques (17,18,52) comprennent une portion discale (18) située en aval de la portion annulaire (17) et entre la buse (50) et l'enclume (40). 5. Dispensing head according to claim 3 wherein said one or more fluidic paths (17,18,52) comprise a disc portion (18) located downstream of the annular portion (17) and between the nozzle (50) and the anvil (40).
6. Tête de distribution selon l'une des revendications précédentes dans laquelle l'enclume (40,140) comprend au moins une portion (43,143) de forme substantiellement cylindrique au niveau d'une portion (17,117) au moins dudit ou desdits chemins fluidiques. 6. Dispensing head according to one of the preceding claims wherein the anvil (40,140) comprises at least one portion (43,143) of substantially cylindrical shape at a portion (17,117) of at least one or said fluidic paths.
7. Tête de distribution selon l'une des revendications précédentes dans laquelle ladite buse (50,150) comprend un logement de buse (53,153) accueillant ladite enclume (40,140), ledit logement comprenant une portion de forme substantiellement cylindrique au niveau d'une portion (17,117) au moins du ou des chemins fluidiques. 7. Dispensing head according to one of the preceding claims wherein said nozzle (50,150) comprises a nozzle housing (53,153) accommodating said anvil (40,140), said housing comprising a portion of substantially cylindrical shape at a portion ( 17,117) of at least one or more fluidic paths.
8. Tête de distribution selon la revendication 7 dans laquelle l'enclume (140) comprend au moins une portion de forme substantiellement conique (144) au niveau du ou des chemins fluidiques et en ce que ledit logement de buse (153) de la buse présente une forme complémentaire de celle de ladite enclume (140), au niveau de la portion substantiellement conique de ladite enclume, la buse et l'enclume définissant ainsi une portion (1 1 8) de chemin fluidique de forme substantiellement conique convergeant de l'amont vers l'aval. The dispensing head of claim 7 wherein the anvil (140) comprises at least one substantially conical portion (144) at the fluid path (s) and wherein said nozzle housing (153) of the nozzle has a shape complementary to that of said anvil (140), at the substantially conical portion of said anvil, the nozzle and the anvil thus defining a portion (1 1 8) of fluidic path of substantially conical shape converging from the upstream downstream.
9. Tête de distribution selon l'une des revendications précédentes dans laquelle une face radiale d'extrémité (41 ) de l'enclume (40) est bombée. 9. Dispensing head according to one of the preceding claims wherein a radial end face (41) of the anvil (40) is curved.
10. Tête de distribution selon l'une des revendications précédentes comprenant un canal de sortie (52, 152) débouchant dans l'orifice de sortie de la buse (51 , 1 51 ) et présentant une longueur au moins égale à 0,05mm. 10. Dispensing head according to one of the preceding claims comprising an outlet channel (52, 152) opening into the outlet orifice of the nozzle (51, 1 51) and having a length at least equal to 0.05mm.
1 1 . Tête de distribution selon la revendication 1 0 dans lequel ledit canal de sortie (52, 1 52) présente un diamètre compris entre 0,05mm et 1 mm. 1 1. Dispensing head according to claim 1 0 wherein said outlet channel (52, 1 52) has a diameter of between 0.05mm and 1mm.
12. Tête de distribution selon l'une des revendications précédentes dans laquelle la distance entre la surface d'extrémité radiale (41 , 141 ) de l'enclume tournée vers l'orifice de sortie (51 , 1 51 ) et le fond (54, 1 54) de la buse en regard de l'enclume est comprise entre 0.05mm et 1 .5mm. 12. Dispensing head according to one of the preceding claims wherein the distance between the radial end surface (41, 141) of the anvil facing the outlet (51, 1 51) and the bottom (54 , 1 54) of the nozzle facing the anvil is between 0.05mm and 1 .5mm.
13. Tête de distribution selon l'une des revendications précédentes dans laquelle le chemin fluidique (1 7, 18,52, 1 17, 1 18, 152) présente des rayons de raccordement (R42,13. Dispensing head according to one of the preceding claims wherein the fluid path (1 7, 18.52, 1 17, 1 18, 152) has connecting radii (R42,
R52, R55, R142, R1 52, R1 55) à la transition entre deux portions de chemin fluidique de sections ou de directions différentes. R52, R55, R142, R1 52, R1 55) at the transition between two fluid path portions of different sections or directions.
14. Tête de distribution selon l'une des revendications précédentes comprenant une ouverture divergente (59a, 1 59a) dans laquelle débouche l'orifice de sortie (51 , 1 51 ). 14. Dispensing head according to one of the preceding claims comprising a diverging opening (59a, 1 59a) into which opens the outlet orifice (51, 1 51).
15. Tête de distribution selon l'une des revendications précédentes comprenant un bouton poussoir (21 ) pour déclencher la distribution du fluide. 15. Dispensing head according to one of the preceding claims comprising a push button (21) for triggering the distribution of the fluid.
16. Tête de distribution selon la revendication 15 dans laquelle la buse est montée par harponnage dans le corps (14) du bouton poussoir (21 ). 16. Dispensing head according to claim 15 wherein the nozzle is mounted by harpooning in the body (14) of the push button (21).
17. Bombe aérosol contenant du gaz sous pression ou dispositif de distribution (1 ) faisant intervenir une pompe à actionnement manuel comprenant la tête de distribution (10) selon l'une des revendications précédentes. 17. Aerosol container containing pressurized gas or dispensing device (1) involving a manually operated pump comprising the dispensing head (10) according to one of the preceding claims.
PCT/EP2017/070346 2016-09-02 2017-08-10 Pressurised fluid dispensing head and aerosol can or manual pump comprising such a dispensing head WO2018041594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1658210 2016-09-02
FR1658210A FR3055560B1 (en) 2016-09-02 2016-09-02 DISTRIBUTION HEAD OF A PRESSURIZED FLUID AND AEROSOL BOMB OR MANUAL ACTION PUMP INCLUDING SUCH A DISTRIBUTION HEAD

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/331,589 A-371-Of-International US11533941B2 (en) 2016-09-13 2017-09-13 Fermented nutritional composition for cow's milk protein allergic subjects
US17/988,169 Continuation US20230079243A1 (en) 2016-09-13 2022-11-16 Fermented nutritional composition for cow's milk protein allergic subjects

Publications (1)

Publication Number Publication Date
WO2018041594A1 true WO2018041594A1 (en) 2018-03-08

Family

ID=57485649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/070346 WO2018041594A1 (en) 2016-09-02 2017-08-10 Pressurised fluid dispensing head and aerosol can or manual pump comprising such a dispensing head

Country Status (2)

Country Link
FR (1) FR3055560B1 (en)
WO (1) WO2018041594A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109869A (en) * 1977-06-16 1978-08-29 Dutton-Lainson Company Oiler with adjustable spray nozzle
EP0604741A2 (en) * 1987-12-11 1994-07-06 DEUTSCHE FORSCHUNGSANSTALT FÜR LUFT- UND RAUMFAHRT e.V. Swirl nozzle for spraying a liquid
US5526985A (en) * 1994-09-21 1996-06-18 Afa Products, Inc. 90° rotation nozzle assembly with swirl chamber configuration
EP2119508A1 (en) * 2008-05-14 2009-11-18 Rexam Dispensing Systems Push button for convergent distribution channels
EP2233211A1 (en) * 2009-03-23 2010-09-29 Rexam Dispensing Systems Push button for a pressurised liquid distribution system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109869A (en) * 1977-06-16 1978-08-29 Dutton-Lainson Company Oiler with adjustable spray nozzle
EP0604741A2 (en) * 1987-12-11 1994-07-06 DEUTSCHE FORSCHUNGSANSTALT FÜR LUFT- UND RAUMFAHRT e.V. Swirl nozzle for spraying a liquid
US5526985A (en) * 1994-09-21 1996-06-18 Afa Products, Inc. 90° rotation nozzle assembly with swirl chamber configuration
EP2119508A1 (en) * 2008-05-14 2009-11-18 Rexam Dispensing Systems Push button for convergent distribution channels
EP2233211A1 (en) * 2009-03-23 2010-09-29 Rexam Dispensing Systems Push button for a pressurised liquid distribution system

Also Published As

Publication number Publication date
FR3055560A1 (en) 2018-03-09
FR3055560B1 (en) 2021-05-07

Similar Documents

Publication Publication Date Title
EP3246096B1 (en) Spraying device and use of same
EP3231516B1 (en) Spray nozzle, in particular for a system for dispensing a pressurized fluid provided with a pushbutton, and dispensing system comprising such a nozzle
EP1344571B1 (en) Packaging for containing and delivering a product, in particular a fluid sample
WO1999059881A1 (en) Sampling-type spraying device
FR2773784A1 (en) Atomizer head for fluid product dispenser with outlet channel and spring-loaded shutter
FR2985202A1 (en) HEAD OF DISTRIBUTION
EP0952090A1 (en) Dosing tip
EP1270431B1 (en) Device for spraying a product, especially in form of sample metering
FR2952360A1 (en) PUSH BUTTON FOR A SYSTEM FOR DISTRIBUTING A PRESSURIZED PRODUCT
FR2827840A1 (en) DEVICE FOR SPRAYING A FLUID PRODUCT
EP2490823A1 (en) Distribution head for a device for distributing a fluid product
EP1588774A1 (en) Dispenser head with automatically closing opening
WO2014080116A1 (en) Fluid product dispensing member
EP1900437B1 (en) Dispensing mechanism for a liquid product, dispenser comprising such a dispensing mechanism and use of such a dispensing mechanism
EP2119508B1 (en) Push button for convergent distribution channels
EP4100168A1 (en) Nozzle for spraying liquid in the form of mist
WO2018041594A1 (en) Pressurised fluid dispensing head and aerosol can or manual pump comprising such a dispensing head
EP2590753B1 (en) Spray head for a fluid dispenser
EP1497201B1 (en) Fluid product dispenser
FR3028571B1 (en) MANUAL PUMP
EP1568417B1 (en) Distribution head with detachable trigger
FR3008002A1 (en) HEAD OF DISTRIBUTION
WO2016079395A1 (en) Device for distribution of fluid product comprising a nasal distribution head
EP1232798A1 (en) Spray device for samples
FR3078271A1 (en) DISTRIBUTION HEAD WITH TURNED SHRUB CHAMBER FOR A DISTRIBUTION SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17754323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17754323

Country of ref document: EP

Kind code of ref document: A1