EP4086216B1 - Energieeffizienter kran und verfahren des krans - Google Patents

Energieeffizienter kran und verfahren des krans Download PDF

Info

Publication number
EP4086216B1
EP4086216B1 EP21172008.1A EP21172008A EP4086216B1 EP 4086216 B1 EP4086216 B1 EP 4086216B1 EP 21172008 A EP21172008 A EP 21172008A EP 4086216 B1 EP4086216 B1 EP 4086216B1
Authority
EP
European Patent Office
Prior art keywords
crane
hydraulic
estimated
energy consumption
hydraulic actuators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21172008.1A
Other languages
English (en)
French (fr)
Other versions
EP4086216A1 (de
EP4086216C0 (de
Inventor
Marcus RÖSTH
Pelle Gustafsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiab AB
Original Assignee
Hiab AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiab AB filed Critical Hiab AB
Priority to EP21172008.1A priority Critical patent/EP4086216B1/de
Priority to AU2022202554A priority patent/AU2022202554A1/en
Priority to CN202210472748.6A priority patent/CN115285857A/zh
Publication of EP4086216A1 publication Critical patent/EP4086216A1/de
Application granted granted Critical
Publication of EP4086216C0 publication Critical patent/EP4086216C0/de
Publication of EP4086216B1 publication Critical patent/EP4086216B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/54Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with pneumatic or hydraulic motors, e.g. for actuating jib-cranes on tractors

Definitions

  • the present disclosure relates to a crane and a method of a crane, and particularly a crane intended to work more energy efficient than presently used cranes which is particularly advantageous if the crane is a hydraulic crane with an electric power source.
  • Waste energy here being defined as supplied energy to the hydraulic system that is not used for movements of crane components.
  • waste energy is not only unwanted because it increases the amount of energy that is needed for the system without performing any actual movements of the crane components, it is furthermore a disadvantage in that waste energy is dissipated as heat which increases the temperature of the hydraulic fluid in the system.
  • the temperature increase degrades the quality of the hydraulic fluid and hence affects the service frequency of the system.
  • by reducing the waste energy the effects of these associated problems will also be reduced.
  • the waste energy may even be larger than the useful energy that is used for actually moving the crane components. This is due to the fact that if one function demands a high pressure, that high pressure will then be the system pressure for all functions. If a concurrently used crane function only requires low pressure but high flow, a large portion of waste energy will be the result.
  • US20190308851A1 discloses a crane arrangement mounted on a vehicle.
  • the crane arrangement comprising a first boom connected to the first column and a second boom connected to the first boom.
  • a hydraulic system is configured to move the crane boom by a hydraulic actuator. The hydraulic flow is dumped into a reservoir if measured pressure of the hydraulic system is higher than a maximum working pressure.
  • US20140060030A1 discloses a crane system on a vehicle and a controller is provided configured to move a work tool in accordance with an operator instruction received via an input device. Accumulator pressure is stored which is associated with the movement of an actuator which is further compared with the current pressure measured by the sensors. An alert is generated if the measured value is not in the range of a threshold value.
  • WO2019206774A1 discloses a truck mounted crane system according to the preamble of claim 1 wherein, the crane system comprises multiple booms connected to each other and the crane is a mobile crane.
  • the hydraulic actuator of the crane boom system is operated by hydraulic fluid flow where the fluid is discharged from the pump using an electric motor. Further, it discloses that the required pressure is measured for the desired movement of the boom, and a computing device collects the data from the pressure sensor to control the pressure of hydraulic drives.
  • US20170268541A1 discloses a crane system with a lifting arm, and a crane maneuvering handle is provided to control the displacement of the first hydraulic power to move the arm. Further, when pressure detected by the first pressure sensor reaches a predetermined minimum working pressure then the hydraulic flow is cut-off to increase the efficiency of the crane system.
  • the present invention relates to cranes and evaluating the operation performance of the crane, in particular in terms of energy efficiency.
  • the main object of the invention is to reduce waste energy and hence save energy in crane applications, and a more specific object is to achieve a more energy efficient operation of the crane.
  • an estimated waste contribution measure is determined, that is the difference between the working pressure of the hydraulic pump and the estimated pressure levels multiplied by the estimated required flow level of each of the hydraulic actuators for each of the wanted movements of the crane components.
  • the estimated waste contribution measure is hence an estimation of the hydraulic power that is wasted by the system, i.e. not utilized for active movements of the boom system.
  • a crane controller is further arranged to identify, in response to determining that the estimated waste contribution measure is larger than the predetermined level, at least one of the hydraulic actuators as a suggested crane function to deactivate for the crane operator via a control interface.
  • the suggested crane function to deactivate may be communicated back to the operator via an input unit on e.g. a display.
  • the present invention may further also be implemented on a crane with a control interface comprising a communication interface to an autonomous system controlling the crane and optionally also the vehicle that the crane is mounted to.
  • a control interface comprising a communication interface to an autonomous system controlling the crane and optionally also the vehicle that the crane is mounted to.
  • an external monitoring service would monitor and evaluate the performance of the crane and the autonomous system in addition to, or instead of, monitoring and evaluating the operation skills of an operator.
  • the main advantage achieved by the crane disclosed herein is the energy saving by reducing waste energy. This is a significant advantage especially for electrically operated cranes where less energy consumption equals longer use time for the customer between charging or a smaller and then a less costly battery with same use time.
  • Another advantage of the solution applied by the present invention is that it does not require any extra sensors or other hardware, as it is a pure software solution which means that it may be implemented in existing products and hardware.
  • One further advantage of the crane according to the present invention is that feedback may be provided to the operator regarding the present status of the waste energy and preferably to generate an alert to the driver when inefficient operation is detected and hence encouraging a more energy efficient operation strategy.
  • the function that requires the largest pressure determines the working pressure level of the hydraulic pump. This implies that there will be a waste component if also other crane functions, requiring a lower working pressure, are activated at the same time.
  • the waste component will further be dependent on the flow requirement of the other crane functions, as the hydraulic power supplied to the system is further dependent on the flow of the hydraulic fluid.
  • a portion of the consumed energy of the hydraulic system is hence waste, i.e. not used for moving the crane components, if operating multiple functions at the same time that are not matched in terms of working pressure and to some extent flow.
  • the waste energy may even be larger than the useful energy that is used for actually moving the crane components. This is due to the fact that if one function demands a high pressure, that high pressure will then be the system pressure for all functions. If a concurrently used crane function only requires low pressure but high flow, a large portion of waste energy will be the result.
  • Figures 1-3 are graphs illustrating the energy consumption during use of an exemplary crane provided with an inner boom (IB), an outer boom (OB), and an extension (EXT).
  • IB inner boom
  • OB outer boom
  • EXT extension
  • SLEW energy consumption during slewing
  • the required energy for the movements is shown by dashed areas, and energy waste is shown by dotted areas.
  • the consumed energy of the hydraulic system is the sum of the required energy for the movements and the waste energy.
  • the Y-axis designates pressure and the X-axis designates flow.
  • FIG 1 an energy consumption graph is shown, where multiple crane functions are operated simultaneously.
  • the inner boom (IB) requires high pressure and the extension (EXT) requires high flow but low pressure.
  • the waste energy for the extension function is larger than the amount of energy used for the actual movements. This happens when all functions are simultaneously driven without taking waste energy into account.
  • the total input is 49.6kW, and the waste is 30.8kW, i.e. the waste energy is 164.44% of the useful energy.
  • the waste energy may be decreased from 30.8 kW to 12.9kW in this specific example, see figure 2 , where the inner boom (IB) is activated at another point in time and is not illustrated in figure 2 .
  • the total energy input is 28.3kW
  • the waste energy is 12.9kW, i.e. 83.78% of the useful energy.
  • the waste energy may be further decreased to 1.3 kW in another specific case, by also refraining from operating the outer boom (OB), see figure 3 (the outer boom function is hence not illustrated in figure 3 as it is activated individually at another point in time).
  • the total input energy is 14.2kW
  • the waste energy is 1.3kW, i.e. 9.68% of the useful energy.
  • the energy supplied by the hydraulic pump to the crane system is dependent on the hydraulic power, which is calculated by the pressure multiplied by the flow supplied by the pump.
  • the different hydraulic cylinders used for crane functions like the slewing of the crane, the first boom movement, the second boom movement and the extension/retraction of a second boom telescopic boom system, have different working requirements in terms of pressure and flow.
  • the required pressure may further be dependent on the load and the position of the respective crane components but may be monitored using pressure sensors and further estimated for future movements based on input from the pressure sensors and/or known parameters of the planned movements.
  • the simplest version of an energy efficient path planner would be moving only one crane function at a time to reach the target angle or length to reach the target position or geometry. As an example, first slew, then the first boom, then the second boom, and then finish by moving the extensions. By doing so we would not get any energy waste at all. However, the time for completing the movement would be considerably longer than compared to the normal case with simultaneous multiple functions and the crane components would likely hit either the vehicle or some obstacles in the environment.
  • the path planner must be smarter, the easiest method is to move the known high pressure functions first, normally the first and the second boom which pressures can be assumed high, or measured.
  • the above-described planner is a "simple" example of the planner to illustrate the crane and method as defined by the appended claims. If this should be implemented in a product, more complex approach in the planner could further take into account effects of bending, pressures, flow needs, the distance from start to end position when planning a path which is as efficient as possible but not slowing down the crane.
  • the present invention relates to a crane 2 arranged to be mounted to e.g. a vehicle 4, or any other object, e.g. a boat, a building, a wind turbine.
  • the crane comprises a crane boom system, comprising crane components 6 that includes a crane tip 8 arranged at a free end of an outermost crane boom.
  • the crane components 6 may comprise a crane column arranged to rotate, or slew, around a vertical axis perpendicular to the plane of the vehicle, a first (inner) boom connected to the crane column, and a second (outer) telescopic boom connected to the first boom and provided with one or more extensions. Additional components, such as additional telescopic booms (also referred to as jibs) or crane tool may form part of the crane components.
  • additional telescopic booms also referred to as jibs
  • crane tool may form part of the crane components.
  • the crane comprises a system 10 of hydraulic actuators of the crane boom system arranged to be operated by hydraulic fluid with a hydraulic flow, where the hydraulic fluid being discharged from a hydraulic pump 12 at a variable working pressure.
  • the hydraulic actuators are further arranged to apply movements to the crane boom system such that the crane tip 8 is moved from a current position to a target position in response to received driving instructions 14.
  • the crane also comprises a sensor system 16 configured to monitor current positions of the crane components, and operating conditions of the system 10 of hydraulic actuators, and to generate sensor signals 18 in response to the monitored current positions and operating conditions.
  • the sensor system is configured to monitor current positions of the crane components, and comprises sensors arranged to measure e.g. an angle of a crane boom compared to a reference plane, or the extension length of the telescopic boom.
  • the sensor system is also configured to monitor the operating conditions of the system of the hydraulic actuators and the hydraulic pump, and to generate sensor signals in response to measured pressures and flows at specific parts of the hydraulic system.
  • the sensor system is hence used to monitor current positions and operating conditions of the crane.
  • the crane comprises a control interface 20 arranged to receive an operating instruction, preferably from an input unit 22, defining wanted movements of the crane components.
  • the crane also comprises a crane controller 24 configured to generate driving instructions 14 to be applied to the system 10 of hydraulic actuators of the crane boom system based on the received set of operating instructions defining wanted movements of the crane components.
  • the input unit 22, e.g. a maneuvering unit, may be used by an operator to operate the crane, remotely or at the site of the working assignment for the crane.
  • the control interface of the crane may alternatively comprise an interface to an autonomous system controlling the crane and optionally also the vehicle that the crane is mounted to.
  • the crane operator may by pulling a first and a second lever at the maneuvering unit, generate operating instructions for raising the first boom of the crane and at the same time extending the second boom telescopic extensions.
  • the operation instructions will be received over the control interface and the crane controller will generate driving instructions to be applied to the hydraulic system so that the hydraulic cylinders of the first boom and extension cylinders are supplied with hydraulic fluid accordingly.
  • the crane controller 24 is further configured to estimate a pressure level of a required working pressure of the hydraulic pump 12 and required flow level of each of the hydraulic actuators for the wanted movements of the crane components 6, based on the generated sensor signals 18 and/or predetermined operating conditions.
  • the crane controller 24 is also configured to estimate a waste contribution measure for the wanted movements of the crane components 6, based on the difference between the working pressure of the hydraulic pump 12 and the estimated pressure levels and further the estimated required flow level, of each of the hydraulic actuators for the wanted movements of the crane components 6.
  • the waste contribution measure is a measure of the energy waste if the wanted movements of the crane components are performed in comparison to the energy required for each of the involved hydraulic actuators at specific point of time.
  • the crane controller 24 is then configured to compare the estimated waste contribution measure to a predetermined level, and in response to determining that the estimated waste contribution measure is larger than the predetermined level, the crane controller 24 is configured to generate an energy consumption status signal 30 indicating that the present crane operations are inefficient from an energy consumption perspective.
  • the energy consumption signal 30 indicates when the present crane operation are inefficient, and may also be configured to indicate when the crane operation again is efficient from an energy consumption perspective, e.g. as a result of changed input operation instructions from the operator. Thereby a positive feedback to the operator will be available.
  • the values of the energy consumption status signal 30 may be stored over time and then be available for further analysis.
  • the predetermined level is a predefined percentage of the hydraulic power required for the wanted movements of the crane components 6.
  • the predetermined level may be in the range of 25%-50% of the hydraulic power required for the wanted movements.
  • the waste contribution measure may be a constant, configurable by e.g. the operator, the fleet manager, or preset when installing the crane on e.g. the vehicle.
  • the energy supplied by the hydraulic pump to the crane components is defined as the integral of the hydraulic power over a time period of operation.
  • the hydraulic power is calculated by the pressure multiplied by the flow supplied by the pump.
  • the different hydraulic cylinders used for crane functions like the slewing of the crane, the first boom movement, the second boom movement and the extension/retraction of the second boom telescopic boom system, have different working requirements in terms of pressure and flow.
  • the required pressure may further be dependent on the load and the position of the respective crane components but may be monitored using pressure sensors and further estimated for future movements based on input from the pressure sensors and/or known parameters of the planned movements.
  • control interface 20 is configured to generate an alert signal 32 if the energy consumption status signal 30 is generated, and that the alert signal 32 is an optical signal, an acoustic signal, and/or a tactile signal.
  • the input unit 22 is a maneuvering unit 22 to be operated by the operator and wherein the alert signal 32 (indicated as a dashed arrow in figure 5 ) to the operator is transmitted by a visual, audio, or tactile communication means through the maneuvering unit 22.
  • the crane interface 20 may further be arranged to receive an operation mode instruction, e.g. from the operator, in response to which the crane controller is arranged to refrain from generating the energy consumption status signal.
  • the crane controller 24 is further configured to identify, in response to determining that the estimated waste contribution measure is larger than the predetermined level, at least one of the hydraulic actuators as a suggested crane function to deactivate, or to reduce energy consumption of, for a crane operator via the control interface 20.
  • the suggested crane function to deactivate, or to reduce energy consumption of is preferably identified as a crane function with a low estimated pressure level and a high estimated flow level relative to the other hydraulic actuators or as a crane function with a high pressure relative to the other hydraulic actuators.
  • the suggested crane function is preferably indicated and presented to the crane operator via the input unit 22 and the operator may then adjust the crane operation accordingly.
  • the crane interface 20 may be further arranged to receive an instruction for the crane controller to enter in an energy efficiency alert mode.
  • the energy efficiency alert mode feedback to the operator will be generated to encourage the operator to operate the crane in an energy efficient manner. This would give the operator of the crane the opportunity to decide when to operate the crane according to the invention, and when to selectively operate the crane in a normal mode according to what is known in the art.
  • the crane further comprises a communication interface 34 for transmitting crane operation data to a crane monitoring service, and that the crane controller 24 is further configured to transmit the generated energy consumption status signal 30 to the crane monitoring service via the communication interface.
  • the optional communication interface 34 is indicated in figure 5 as a dashed box. The communication may be performed using any available wireless communication protocol, e.g. via Bluetooth, Internet.
  • the crane controller may be implemented by one or many processing units. These processing unit may have different dedicated tasks, e.g. by so-called edge computing. Edge computing is a distributed computing method that brings computation and data storage closer to the location where it is needed, in order to improve response times and save bandwidth. As an example, one processing unit may perform the actual control of the crane, and another may perform calculations and analysis by extracting data from the crane operation procedures, that advantageously may be communicated to an external crane monitoring service.
  • the crane comprises at least one electric motor 26 arranged to be powered by a battery system 28, and/or a fuel cell, and further being arranged to drive the hydraulic pump 12.
  • the electrical energy from the battery system to the electric motor is illustrated by a bold arrow in figure 5 , which also indicates the driving power to the hydraulic pump.
  • the hydraulic pump is driven by a diesel engine on the vehicle.
  • a vehicle 4 that comprises a crane 2 as described above.
  • the present invention also relates to a method of a crane 2 arranged to be mounted to e.g. a vehicle 4.
  • the crane has been described in detail above and it is herein referred to that description. The method will now be described with references to the flow diagram shown in figure 6 .
  • the method comprises:
  • the predetermined level is a predefined percentage of the hydraulic power required for the wanted movements of the crane components.
  • the method comprises generating an alert signal if the energy consumption status signal is generated, and that the alert signal is an optical signal, an acoustic signal, and/or a tactile signal.
  • the method comprises identifying, in response to determining that the estimated waste contribution measure is larger than the predetermined level, at least one of the hydraulic actuators as a suggested crane function to deactivate, or to reduce energy consumption of, for a crane operator via the control interface.
  • the suggested crane function to deactivate, or to reduce energy consumption of is preferably identified as a crane function with a low estimated pressure level and a high estimated flow level relative to the other hydraulic actuators or as a crane function with a high pressure relative to the other hydraulic actuators.
  • the method comprises transmitting crane operation data to a crane monitoring service, and transmitting the generated energy consumption status signal to the crane monitoring service via a communication interface.

Claims (15)

  1. Kran (2), der dazu angeordnet ist, an z. B. einem Fahrzeug (4) befestigt zu werden, wobei der Kran Folgendes umfasst:
    - ein Kranauslegersystem, Krankomponenten (6) umfassend, das eine Kranspitze (8) beinhaltet, die an einem freien Ende eines äußersten Kranauslegers angeordnet ist;
    - ein System (10) hydraulischer Stellantriebe des Kranauslegersystems, das dazu angeordnet ist, mit hydraulischer Flüssigkeit mit einer hydraulischen Strömung betrieben zu werden, wobei die hydraulische Flüssigkeit aus einer hydraulischen Pumpe (12) mit einem variablen Arbeitsdruck abgeführt wird und wobei die hydraulischen Stellantriebe ferner dazu angeordnet sind, als Reaktion auf empfangene Fahranweisungen (14) Bewegungen auf das Kranauslegersystem anzuwenden;
    - ein Sensorsystem (16), das dazu konfiguriert ist, aktuelle Positionen der Krankomponenten und Betriebsbedingungen des Systems (10) hydraulischer Stellantriebe zu überwachen und als Reaktion auf die überwachten aktuellen Positionen und Betriebsbedingungen Sensorsignale (18) zu erzeugen;
    - eine Steuerschnittstelle (20), die dazu angeordnet ist, eine Reihe von Betriebsanweisungen zu empfangen, die erwünschte Bewegungen der Krankomponenten definieren, und
    - eine Kransteuerung (24), die dazu konfiguriert ist, Fahranweisungen (14) zu erzeugen, die durch das System (10) hydraulischer Stellantriebe des Kranauslegersystems anzuwenden sind, basierend auf der empfangenen Reihe von Betriebsanweisungen, die erwünschten Bewegungen der Krankomponenten definieren;
    dadurch gekennzeichnet, dass die Kransteuerung (24) ferner dazu konfiguriert ist, einen Druckpegel eines erforderlichen Arbeitsdrucks der hydraulischen Pumpe (12) und einen erforderlichen Strömungspegel eines jeden der hydraulischen Stellantriebe für die erwünschten Bewegungen der Krankomponenten (6) zu schätzen, basierend auf den erzeugten Sensorsignalen (18) und/oder vorbestimmten Betriebsbedingungen,
    und für die erwünschten Bewegungen der Krankomponenten (6) ein Ausmaß des Überschussanteils zu schätzen, basierend auf der Differenz zwischen dem Arbeitsdruck der hydraulischen Pumpe (12) und den geschätzten Druckpegeln und ferner dem geschätzten erforderlichen Strömungspegel eines jeden der hydraulischen Stellantriebe für die erwünschten Bewegungen der Krankomponenten (6), wobei die Kransteuerung (24) dazu konfiguriert ist, das geschätzte Ausmaß des Überschussanteils mit einem vorbestimmten Pegel zu vergleichen, und wobei die Kransteuerung (24) als Reaktion auf Bestimmen, dass das geschätzte Ausmaß des Überschussanteils größer als der vorbestimmte Pegel ist, dazu konfiguriert ist, ein Energieverbrauchstatussignal (30) zu erzeugen, das anzeigt, dass die aktuellen Kranbetriebe aus einer Energieverbrauchperspektive ineffizient sind.
  2. Kran (2) nach Anspruch 1, wobei der vorbestimmte Pegel ein vordefinierter Prozentsatz der hydraulischen Kraft ist, die für die erwünschten Bewegungen der Krankomponenten (6) erforderlich ist.
  3. Kran (2) nach Anspruch 1 oder 2, wobei die Steuerschnittstelle (20) dazu konfiguriert ist, ein Alarmsignal (32) zu erzeugen, wenn das Energieverbrauchstatussignal (30) erzeugt wird, und wobei das Alarmsignal (32) ein optisches Signal, ein akustisches Signal und/oder ein taktiles Signal ist.
  4. Kran (2) nach Anspruch 3, wobei die Steuerschnittstelle (20) eine Manövriereinheit (22) umfasst, die durch den Betreiber zu betreiben ist, und wobei das Alarmsignal (32) an den Betreiber mittels eines visuellen, auditiven oder taktilen Kommunikationsmittels durch die Manövriereinheit (22) übertragen wird.
  5. Kran (2) nach einem der Ansprüche 1-4, wobei die Kransteuerung (24) ferner dazu konfiguriert ist, als Reaktion auf Bestimmen, dass das geschätzte Ausmaß des Überschussanteils größer als der vorbestimmte Pegel ist, mindestens einen der hydraulischen Stellantriebe als eine vorgeschlagene Kranfunktion zum Deaktivieren oder zum Reduzieren des Energieverbrauchs für einen Kranbetreiber über die Steuerschnittstelle (20) zu identifizieren.
  6. Kran (2) nach Anspruch 5, wobei die vorgeschlagene Kranfunktion zum Deaktivieren oder zum Reduzieren des Energieverbrauchs als eine Kranfunktion mit einem niedrigen geschätzten Druckpegel und einem hohen geschätzten Strömungspegel in Bezug auf die anderen hydraulischen Stellantriebe oder als eine Kranfunktion mit einem hohen Druck in Bezug auf die anderen hydraulischen Stellantriebe identifiziert wird.
  7. Kran (2) nach einem der Ansprüche 1-6, ferner eine Kommunikationsschnittstelle (34) zum Übertragen von Kranbetriebsdaten an einen Kranüberwachungsdienst umfassend, wobei die Kransteuerung (24) ferner dazu konfiguriert ist, das erzeugte Energieverbrauchstatussignal (30) über die Kommunikationsschnittstelle an den Kranüberwachungsdienst zu übertragen.
  8. Kran (2) nach einem der Ansprüche 1-7, ferner mindestens einen elektrischen Motor (26) umfassend, der dazu angeordnet ist, durch ein Batteriesystem (28) oder eine Brennstoffzelle versorgt zu werden, und ferner dazu angeordnet ist, die hydraulische Pumpe (12) anzutreiben.
  9. Verfahren eines Kranes nach Anspruch 1,
    dadurch gekennzeichnet, dass das Verfahren Folgendes umfasst:
    A - Schätzen eines Druckpegels des erforderlichen Arbeitsdrucks der hydraulischen Pumpe und eines erforderlichen Strömungspegels eines jeden der hydraulischen Stellantriebe für die erwünschten Bewegungen der Krankomponenten, basierend auf den erzeugten Sensorsignalen und/oder vorbestimmten Betriebsbedingungen,
    B - Schätzen eines Ausmaßes des Überschussanteils für die erwünschten Bewegungen der Krankomponenten, basierend auf der Differenz zwischen dem Arbeitsdruck der hydraulischen Pumpe und den geschätzten Druckpegeln und ferner des geschätzten erforderlichen Strömungspegels eines jeden der hydraulischen Stellantriebe für die erwünschten Bewegungen der Krankomponenten,
    C - Vergleichen des geschätzten Ausmaßes des Überschussanteils mit einem vorbestimmten Pegel, und als Reaktion auf Bestimmen, dass der geschätzte Überschussanteil größer als der vorbestimmte Pegel ist, umfasst das Verfahren ferner Folgendes:
    D - Erzeugen eines Energieverbrauchstatussignals, das anzeigt, dass die aktuellen Kranbetriebe aus einer Energieverbrauchperspektive ineffizient sind.
  10. Verfahren nach Anspruch 9, wobei der vorbestimmte Pegel ein vordefinierter Prozentsatz der hydraulischen Kraft ist, die für die erwünschten Bewegungen der Krankomponenten erforderlich ist.
  11. Verfahren nach Anspruch 9 oder 10, Erzeugen eines Alarmsignals umfassend, wenn das Energieverbrauchstatussignal erzeugt wird, und wobei das Alarmsignal ein optisches Signal, ein akustisches Signal und/oder ein taktiles Signal ist.
  12. Verfahren nach einem der Ansprüche 9-11, Folgendes umfassend:
    Identifizieren, als Reaktion auf Bestimmen, dass das geschätzte Ausmaß des Überschussanteils größer als der vorbestimmte Pegel ist, mindestens eines der hydraulischen Stellantriebe als eine vorgeschlagene Kranfunktion zum Deaktivieren oder zum Reduzieren des Energieverbrauchs für einen Kranbetreiber über die Steuerschnittstelle.
  13. Verfahren nach Anspruch 12, wobei die vorgeschlagene Kranfunktion zum Deaktivieren oder zum Reduzieren des Energieverbrauchs als eine Kranfunktion mit einem niedrigen geschätzten Druckpegel und einem hohen geschätzten Strömungspegel in Bezug auf die anderen hydraulischen Stellantriebe oder als eine Kranfunktion mit einem hohen Druck in Bezug auf die anderen hydraulischen Stellantriebe identifiziert wird.
  14. Verfahren nach einem der Ansprüche 9-13, Übertragen von Kranbetriebsdaten an einen Kranüberwachungsdienst und Übertragen des erzeugten Energieverbrauchstatussignals über eine mobile Kommunikationsschnittstelle an den Kranüberwachungsdienst umfassend.
  15. Fahrzeug (4), das einen Kran (2) nach einem der Ansprüche 1-8 umfasst.
EP21172008.1A 2021-05-04 2021-05-04 Energieeffizienter kran und verfahren des krans Active EP4086216B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21172008.1A EP4086216B1 (de) 2021-05-04 2021-05-04 Energieeffizienter kran und verfahren des krans
AU2022202554A AU2022202554A1 (en) 2021-05-04 2022-04-19 An energy efficient crane, and a method of the crane
CN202210472748.6A CN115285857A (zh) 2021-05-04 2022-04-29 节能型起重机及起重机的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21172008.1A EP4086216B1 (de) 2021-05-04 2021-05-04 Energieeffizienter kran und verfahren des krans

Publications (3)

Publication Number Publication Date
EP4086216A1 EP4086216A1 (de) 2022-11-09
EP4086216C0 EP4086216C0 (de) 2023-11-29
EP4086216B1 true EP4086216B1 (de) 2023-11-29

Family

ID=75801465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21172008.1A Active EP4086216B1 (de) 2021-05-04 2021-05-04 Energieeffizienter kran und verfahren des krans

Country Status (3)

Country Link
EP (1) EP4086216B1 (de)
CN (1) CN115285857A (de)
AU (1) AU2022202554A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8631651B2 (en) * 2009-01-21 2014-01-21 Manitowoc Crane Companies, Llc Hydraulic system thermal contraction compensation apparatus and method
CN103443016B (zh) * 2010-12-22 2015-06-03 特雷克斯起重机德国有限公司 起重机和用于使用从起重机操作回收的能量作为次能量源而操作起重机的方法
US20140060030A1 (en) 2012-08-31 2014-03-06 Caterpillar Inc. Hydraulic accumulator health monitor
US10359063B2 (en) 2014-11-24 2019-07-23 Xuzhou Heavy Machinery Co.., Ltd. Method and system for recovering and utilizing operating energy of crane, and crane
EP3257805B1 (de) 2016-06-13 2018-12-26 Cargotec Patenter AB Hydraulikkran
DE102018206271A1 (de) 2018-04-24 2019-10-24 Putzmeister Engineering Gmbh Verfahren zur Bewegungssteuerung eines Masts und Arbeitsmaschine
CN109292632B (zh) * 2018-10-31 2020-06-12 中船华南船舶机械有限公司 一种多机智慧起重机的工作方法

Also Published As

Publication number Publication date
AU2022202554A1 (en) 2022-11-24
EP4086216A1 (de) 2022-11-09
EP4086216C0 (de) 2023-11-29
CN115285857A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
EP2851475B1 (de) Hybridbaumaschine
US9739036B2 (en) Automatic control system and method for joystick control-based construction equipment
US20170067489A1 (en) Accumulator Assisted Hydrostatic Driveline and Optimization Method Thereof
US20170291501A1 (en) Hybrid Construction Machinery
CN107848773B (zh) 起重机及用于控制起重机的方法
KR101749515B1 (ko) 모터 속도 제어 장치 및 그 방법
EP4086216B1 (de) Energieeffizienter kran und verfahren des krans
US11851846B2 (en) Excavator
EP4086215B1 (de) Energieeffizienter kran und verfahren des krans
SE1551349A1 (en) Adaptive control of hydraulic tool on remote demolition robot
US10160439B2 (en) Power efficiency control mechanism for a working machine
US7665971B1 (en) Method of obtaining required power on demand from an engine
US10570585B2 (en) Control device and control method for construction machine
US11629480B2 (en) Working equipment with electrically powered hydraulically operated arm arrangement
CN102016187A (zh) 控制液压系统的方法
EP2851540B1 (de) Steuerungseinheit zum Schutz vor Drückung und Abwürgen
EP4086214B1 (de) Kran und verfahren eines krans
JP2012158890A (ja) 作業機械の駆動制御装置
JP6493648B1 (ja) クレーン車
JP5808635B2 (ja) ハイブリッド式ショベルの制御方法
KR20130002463A (ko) 전동지게차의 유압펌프시스템을 제어하기 위한 방법
JP7445473B2 (ja) ショベル
US20180258899A1 (en) Work machine and engine stopping control device
JP2023142206A (ja) 電動ショベル、表示装置、及びプログラム
JP2023105757A (ja) 電動ショベルの空調システム、プログラム、及び電動ショベル

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230330

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021007183

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20231205

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329