EP4085182B1 - Tunnelier - Google Patents
Tunnelier Download PDFInfo
- Publication number
- EP4085182B1 EP4085182B1 EP21719108.9A EP21719108A EP4085182B1 EP 4085182 B1 EP4085182 B1 EP 4085182B1 EP 21719108 A EP21719108 A EP 21719108A EP 4085182 B1 EP4085182 B1 EP 4085182B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- distance
- boring machine
- tunnel boring
- distance sensors
- machine according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 claims description 9
- 239000011435 rock Substances 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/003—Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
Definitions
- the invention relates to a tunnel boring machine according to the preamble of claim 1.
- Such a tunnel boring machine is out CN 106 437 731 B known.
- This previously known tunnel boring machine has a shield casing extending in a longitudinal direction and is equipped with a sensor unit having distance sensors. There is also a central unit with which the distance values of the distance sensors can be evaluated to determine convergences.
- This previously known tunnel boring machine has a shield jacket extending in a longitudinal direction and a sensor unit equipped with distance sensors for detecting convergences. To carry out a continuous measuring process, the distance sensors work with a continuous spring force and are in constant contact with the surrounding mountains during advance.
- a tunnel boring machine is known with a shield jacket extending in a longitudinal direction and with a sensor unit having a number of laser distance meters, which are attached to the inside of the shield jacket in the longitudinal direction and in the circumferential direction.
- the invention has for its object to provide a tunnel boring machine of the type mentioned, which is characterized by a reliable measurement of an annular gap existing between the shield shell and the rock.
- the local accuracy in the position of the distance sensors is very reliably and easily ensured in terms of measurement technology and also ensures that the distance sensors are extremely accurate during the advance phases not be damaged in harsh environments.
- the sensor unit in the tunnel boring machine has at least two, expediently more than two, hydraulic distance sensors with an extendable probe head with extension distance measurement, which are arranged in the longitudinal direction at at least one measuring distance and, in the case of more than two distance sensors, expediently also in the circumferential direction, As advance progresses, convergences in the area of the shield jacket can be determined in changing distance values and evaluated using the central unit.
- Fig. 1 shows a sectioned side view of an exemplary embodiment of a tunnel boring machine for driving a tunnel in a mountain 103 in the area of a shield shell 106.
- a number of feed presses 109 are attached to the shield shell 106, which act in a longitudinal direction of the shield shell 106 and are located on segments 112 during the advance of a ring structure to line a tunnel.
- segments 112 On the front end opposite the segments 112 in the direction of advance
- Tunnel boring machine is an in Fig. 1 Cutting wheel, not shown, is available with which a tunnel cavity can be introduced into the mountains 103.
- the tunnel cavity created by the mining effect of the cutting wheel has a larger diameter than the diameter of the shield shell 106, so that an annular gap 115 is formed between the mountains 103 and the outside of the shield shell 106.
- the annular gap 115 is usually at least partially filled with liquid and solid, granular components from the mining operation.
- convergences of the mountain range 103 usually lead, as in Fig. 1 shown, to the fact that the annular gap 115 tapers in the longitudinal direction of the shield jacket 106 away from the cutting wheel in the direction of the segments 112. If the convergence is too strong and the mountain 103 comes into contact with the shield jacket 106, there is a risk that the tunnel boring machine will become jammed.
- the exemplary embodiment has according to Fig. 1 via a sensor unit 118, which has a number of hydraulic distance sensors 121, which are arranged at a measuring distance in the longitudinal direction of the shield jacket 106 and preferably also at regular intervals along the circumference of the shield jacket 106.
- Each distance sensor 121 has a probe 124 which extends into the annular gap 115 in the radial direction can be advanced and is set up as a distance value as part of an extension path measurement for measuring the distance between the shield jacket 106 in the area of the relevant distance sensor 121 and the mountains 103.
- Fig. 2 shows in a cross section in the exemplary embodiment according to Fig. 1 the shield jacket 106 in the ridge area.
- the sensor unit 118 in addition to distance sensors 121 arranged at a measuring distance in the longitudinal direction of the shield jacket 106, also has distance sensors 121 that are arranged along the circumference of the shield jacket 106.
- the distance sensors 121 arranged along the circumference of the shield jacket 106 are positioned essentially symmetrically to a central vertical axis 203.
- the angle of the distance sensors 121 to the central vertical axis 203 is expediently between approximately 15 degrees and approximately 45 degrees, preferably in the range of approximately 30 degrees.
- distance sensors 121 are also arranged in the middle of the ridge area on the central vertical axis 203.
- Fig. 3 shows a block diagram of the sensor unit 118 with the distance sensors 121, which are connected to a measurement data memory 303 for storing the distance values obtained via the distance sensors 121.
- a timer 306 and a position transmitter 309 are also connected to measurement data memory 303.
- Time data can be generated with the timer 306, which can be linked in the measurement data memory 303 with the distance values obtained at the relevant time.
- position transmitter 309 position data of the shield jacket 106 can be generated, which can also be linked to the distance values obtained at certain positions of the shield jacket 106.
- the distance values of the various distance sensors 121 are available in a time profile and in a location profile.
- the measurement data memory 303 is connected to a central unit 312, with which the distance values with the linked time data and position data can be evaluated to the extent that convergences of the mountains 103 can be evaluated in particular as to whether certain minimum distance values between the mountains 103 and the shield shell 106 are maintained. Furthermore, the central unit 312 can be used to generate a prediction about expected convergences, especially in the area facing away from the cutting wheel and adjacent to the segments 112, based on the temporally and spatially resolved distance values, in order to ensure as far as possible that there is no risk of the tunnel boring machine becoming jammed .
- a signal generator 315 and a display 318 are expediently connected to the central unit 312.
- the signal generator 315 is set up to issue a warning, for example in the form of a signal tone or a visual warning signal, when critical distance values between the mountains 103 and the shield shell 106 are reached.
- the display 318 in turn is set up to graphically display the temporal and spatial progression of the distance values recorded by the distance sensors 121 as well as predicted distance values.
- the central unit 312 has advance data representing the trajectory of the tunnel boring machine, which can be taken into account when evaluating the convergences with regard to critical values in such a way that an annular gap 115 that decreases in a controlled manner in some areas due to cornering does not lead to false alarms.
- Fig. 4 to Fig. 7 show accordingly in a sectioned side view Fig. 1 a further exemplary embodiment of a tunnel boring machine in the area of a shield shell 106 in different phases of advance.
- Fig. 4 shows the arrangement accordingly Fig. 1 after completing a ring on segments 112 with a ring width B with retracted feed presses 109 and retracted probe heads 124 from here in the longitudinal direction two distance sensors 121.
- the distance sensors 121 are arranged at a measuring distance D. Based on the order according to Fig. 4 A tunneling cycle begins, which will be completed with the construction of the next ring on segment 112.
- Fig. 5 shows the arrangement according to Fig. 4 with fully extended feed presses 109 shortly before the shoring of segments 112.
- the advance is interrupted, so that, as in Fig. 5 shown, the probe heads 124 of the distance sensors 121 are extended, possibly displacing pieces of rock, and rest against the mountain 103.
- the distance values obtained at this point in time and at this position of the shield shell 106 can be fed into the measurement data memory 303.
- Fig. 6 shows the next phase of the advance that begins after the next ring has been installed on segments 112, in which the probes 124 of the distance sensors 121 are retracted again and remain retracted until the end of this phase of the advance.
- Fig. 7 shows accordingly Fig. 5 the feed presses 109 in the maximum extended position again with the probe heads 124 of the distance sensors 121 extended again to obtain distance values.
- the measuring distance D between the two distance sensors 121 corresponds to the ring width B of the segments 112. This ensures that each measuring point on the mountain 103 is recorded twice, or if a number of more than two distance sensors 121 are provided, each time at a corresponding measuring distance D several times, in terms of its distance from the shield shell 106. This makes it possible to determine the convergences very precisely and also to generate reliable forecasts for the area of the shield jacket 106 at the rear in the direction of advance.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Earth Drilling (AREA)
Claims (8)
- Tunnelier doté d'une enveloppe de bouclier (106) s'étendant dans une direction longitudinale, avec une unité de détection (118) présentant des capteurs de distance (121) destinée à enregistrer des convergences et avec une unité centrale (312) avec laquelle les valeurs de distance des capteurs de distance (121) peuvent être évaluées pour déterminer des convergences, caractérisé en ce que l'unité de détection (118) présente au moins deux capteurs de distance hydrauliques (121) dotés d'une sonde (124) télescopique à mesure de course de sortie, avec lesquels la distance entre l'enveloppe de bouclier (106) dans la zone du capteur de distance (121) concerné et la roche (103) en place peut être détectée comme valeur de distance, en ce que les capteurs de distance (121) sont montés dans la direction longitudinale de l'enveloppe de bouclier (106) à une distance de mesure (D), la distance de mesure (D) des capteurs de distance (121) dans la direction longitudinale de l'enveloppe de bouclier (106) correspondant à la largeur annulaire (B) typique d'un cuvelage (112) et en ce que les sondes (124) peuvent être sorties lorsque l'avancement est interrompu et rentrées lorsque l'avancement est en cours.
- Tunnelier selon la revendication 1, caractérisé en ce qu'il existe un capteur de position (309) permettant de déterminer la position de l'enveloppe de bouclier (106), de sorte que les valeurs de distance par rapport à des positions déterminées des capteurs de distance (121) peuvent être évaluées dans la direction longitudinale.
- Tunnelier selon la revendication 1 ou la revendication 2, caractérisé en ce qu'au moins trois capteurs de distance (121) sont présents dans la direction longitudinale de l'enveloppe de bouclier (106).
- Tunnelier selon l'une des revendications 1 à 3, caractérisé en ce qu'au moins deux capteurs de distance (121) sont présents le long de la périphérie de l'enveloppe de bouclier (106).
- Tunnelier selon la revendication 4, caractérisé en ce que les capteurs de distance (121) disposés le long de la périphérie de l'enveloppe de bouclier (106) sont disposés symétriquement par rapport à l'axe vertical central (203).
- Tunnelier selon l'une des revendications 1 à 5, caractérisé en ce qu'il existe une horloge (306) permettant de déterminer les temps lors de l'enregistrement des valeurs de distance, de sorte que les valeurs de distance peuvent être évaluées à des moments déterminés.
- Tunnelier selon l'une des revendications 1 à 6, caractérisé en ce qu'il est prévu un générateur de signaux (315) relié à l'unité centrale (312), avec lequel un signal d'avertissement peut être émis en cas de convergences critiques.
- Tunnelier selon l'une des revendications 1 à 7, caractérisé en ce qu'il existe un affichage (318) relié à l'unité centrale (312), avec lequel l'évolution dans le temps et/ou en distance des valeurs de distance peut être affichée graphiquement.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020111585.7A DE102020111585A1 (de) | 2020-04-28 | 2020-04-28 | Tunnelbohrmaschine |
PCT/EP2021/059587 WO2021219369A1 (fr) | 2020-04-28 | 2021-04-13 | Tunnelier |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4085182A1 EP4085182A1 (fr) | 2022-11-09 |
EP4085182B1 true EP4085182B1 (fr) | 2024-03-20 |
EP4085182C0 EP4085182C0 (fr) | 2024-03-20 |
Family
ID=75539331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21719108.9A Active EP4085182B1 (fr) | 2020-04-28 | 2021-04-13 | Tunnelier |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230135570A1 (fr) |
EP (1) | EP4085182B1 (fr) |
CN (1) | CN115244270B (fr) |
AU (1) | AU2021263785A1 (fr) |
CA (1) | CA3174494A1 (fr) |
DE (1) | DE102020111585A1 (fr) |
WO (1) | WO2021219369A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117967307B (zh) * | 2024-04-01 | 2024-06-07 | 枣庄矿业集团新安煤业有限公司 | 一种用于远程控制采煤机旋转调采的数据处理方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53111630A (en) * | 1977-03-11 | 1978-09-29 | Tekken Constr Co | Method of shield excavating and shield excavator |
JPS53135140A (en) * | 1977-04-28 | 1978-11-25 | Tekken Constr Co | Excessive excavation detector for muddy water shield excavator |
DE3222556C1 (de) * | 1982-06-16 | 1983-12-22 | Wayss & Freytag Ag, 6000 Frankfurt | Verfahren und Vorrichtung zum Herstellen eines Tunnels in druckhaftem Gebirge mittels Schildvortrieb |
JPS6250294U (fr) * | 1985-09-19 | 1987-03-28 | ||
DE4131673C2 (de) * | 1991-09-24 | 1995-05-04 | Bodenseewerk Geraetetech | Steuereinrichtung für eine Tunnelbohrmaschine |
JPH07217380A (ja) * | 1994-02-01 | 1995-08-15 | Kawasaki Heavy Ind Ltd | シールド掘進機のコピーカッタのストローク測定方法および装置 |
DE19532605A1 (de) * | 1995-09-04 | 1997-03-06 | Flowtex Technologie Import Von | Verfahren zum Erkunden von geplanten Tunnelstrecken |
JP3498687B2 (ja) * | 2000-07-13 | 2004-02-16 | 石川島播磨重工業株式会社 | シールド掘進機のテールクリアランス計測装置 |
JP2013108834A (ja) * | 2011-11-21 | 2013-06-06 | Tamagawa Seiki Co Ltd | 孔路位置計測方法及び装置 |
CN103713335B (zh) * | 2014-01-07 | 2015-04-22 | 山东大学 | 隧道掘进机搭载的综合超前地质探测系统 |
US9500077B2 (en) * | 2014-01-07 | 2016-11-22 | Shandong University | Comprehensive advanced geological detection system carried on tunnel boring machine |
CN103742156B (zh) * | 2014-01-13 | 2015-08-12 | 中国科学院武汉岩土力学研究所 | 深埋硬岩隧道贯通前相向改单向掘进时机与方式确定方法 |
CN103867202B (zh) * | 2014-03-28 | 2016-07-06 | 辽宁瀚石机械制造有限公司 | 无人智能采矿机 |
CN106194221B (zh) * | 2016-08-30 | 2018-06-22 | 中国铁建重工集团有限公司 | 掘进机、用于掘进机的隧道管片调整装置及其控制方法 |
CN106437731B (zh) * | 2016-10-09 | 2018-06-15 | 中国电建集团成都勘测设计研究院有限公司 | 预警式双护盾tbm |
CN107545124B (zh) * | 2017-09-29 | 2019-11-12 | 天津大学 | 岩石隧道掘进机常截面盘形滚刀磨损状况的预测方法 |
CN107607082A (zh) | 2017-10-24 | 2018-01-19 | 成都理工大学 | Tbm施工围岩变形监测系统 |
CN108035724B (zh) * | 2017-11-24 | 2024-04-16 | 徐工集团凯宫重工南京有限公司 | 一种盾构机及其刀具磨损检测及自动补偿装置 |
CN108286433B (zh) * | 2018-02-09 | 2020-12-04 | 安徽恒诺机电科技有限公司 | 一种盾构隧道检测机构及其使用方法 |
CN207879337U (zh) | 2018-02-24 | 2018-09-18 | 黄河勘测规划设计有限公司 | 具有围岩收敛变形监测系统的护盾式tbm |
CN108278117B (zh) * | 2018-03-15 | 2024-04-09 | 中铁工程装备集团有限公司 | 一种用于管片真空吸盘的抓举检测装置 |
CN208950583U (zh) * | 2018-09-28 | 2019-06-07 | 中铁工程装备集团有限公司 | 基于超声波测距的盾构机盾尾间隙实时测量系统 |
CN109738022A (zh) * | 2019-02-18 | 2019-05-10 | 中国科学院武汉岩土力学研究所 | Tbm掘进过程围岩与tbm相互作用监测方法及装置 |
GB2592699B (en) * | 2020-09-21 | 2022-03-16 | Hypertunnel Ip Ltd | Tunnelling shield |
EP4141212A1 (fr) * | 2021-08-23 | 2023-03-01 | Sandvik Mining and Construction Oy | Appareil, procédé et produit programme logiciel pour concevoir des motifs de forage |
-
2020
- 2020-04-28 DE DE102020111585.7A patent/DE102020111585A1/de active Pending
-
2021
- 2021-04-13 US US17/911,685 patent/US20230135570A1/en active Pending
- 2021-04-13 EP EP21719108.9A patent/EP4085182B1/fr active Active
- 2021-04-13 CA CA3174494A patent/CA3174494A1/fr active Pending
- 2021-04-13 AU AU2021263785A patent/AU2021263785A1/en active Pending
- 2021-04-13 CN CN202180017726.4A patent/CN115244270B/zh active Active
- 2021-04-13 WO PCT/EP2021/059587 patent/WO2021219369A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
EP4085182A1 (fr) | 2022-11-09 |
US20230135570A1 (en) | 2023-05-04 |
AU2021263785A1 (en) | 2022-10-20 |
CN115244270A (zh) | 2022-10-25 |
CN115244270B (zh) | 2024-06-18 |
WO2021219369A1 (fr) | 2021-11-04 |
CA3174494A1 (fr) | 2021-11-04 |
DE102020111585A1 (de) | 2021-10-28 |
EP4085182C0 (fr) | 2024-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4085182B1 (fr) | Tunnelier | |
US4167290A (en) | Shield type hydraulic tunnel boring machine | |
US4152027A (en) | Shield type hydraulic tunnel boring machine | |
EP2035767B1 (fr) | Procédé et dispositif pour déterminer des déplacement et/ou des déformations dans une construction souterraine | |
CN206655690U (zh) | 一种具有支撑导向作用的钻孔窥视装置 | |
EP1001134B1 (fr) | Dispositif d'ancrage avec un capteur sismique | |
KR102593217B1 (ko) | 접촉식 탐촉자를 이용한 tbm 디스크커터 마모도 측정장치 | |
EP2834464B1 (fr) | Équipement de taille muni de niveaux à eau posés sur ses éléments de soutènement bouclier | |
EP0203978B1 (fr) | Procede et systeme pour surveiller les foreuses a roues | |
DE60123545T2 (de) | Erzeugen eines pfahles durch schneckenbohren | |
JP2009221802A (ja) | シールド掘進機の掘削断面土層判定装置および判定方法 | |
FI80323C (fi) | Foerfarande och anordning foer styrning av bergborrning. | |
DE3225342C2 (de) | Schubkolbengetriebe mit Positionsgeber für den Ausbau oder für Vorschubvorrichtungen von Gewinnungs- oder Fördereinrichtungen des Bergbaues | |
JP2009299316A (ja) | 変位測定装置及び変位測定方法 | |
EP0394617B1 (fr) | Dispositif pour mesurer la pression de béton | |
JP2004316117A (ja) | 切羽前方地山変位の測定装置及び測定方法 | |
WO2011144223A1 (fr) | Équipement de taille destiné à une navigation par inertie et procédé pour son fonctionnement | |
Shepherd et al. | Instrumentation of roof support for colliery pillar extraction | |
CN116464452A (zh) | 地质感知方法及系统 | |
EP2740895A2 (fr) | Capteur de distance de cuvelage pour tunnelier | |
EP0912816B1 (fr) | Procede pour commander le processus de coupe et dispositif pour detecter la profondeur de penetration d'outils de havage | |
EP1911929A1 (fr) | Procédé destiné à la détermination de la modification de la position d'anneaux de cuvelage | |
DE3128940A1 (de) | Verfahren zur ueberwachung des gebirgsdruckes und pruefeinrichtung zur durchfuehrung des verfahrens | |
EP3252234B1 (fr) | Procédé et dispositif d'élimination d'un élément de pieu hors d'un sol | |
US3538755A (en) | Device and method for determining rock stress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220802 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20240126 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021003046 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240320 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240327 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 4 Effective date: 20240326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240320 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240620 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240529 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240613 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240620 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240620 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240320 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240720 |