EP1001134B1 - Dispositif d'ancrage avec un capteur sismique - Google Patents

Dispositif d'ancrage avec un capteur sismique Download PDF

Info

Publication number
EP1001134B1
EP1001134B1 EP99120626A EP99120626A EP1001134B1 EP 1001134 B1 EP1001134 B1 EP 1001134B1 EP 99120626 A EP99120626 A EP 99120626A EP 99120626 A EP99120626 A EP 99120626A EP 1001134 B1 EP1001134 B1 EP 1001134B1
Authority
EP
European Patent Office
Prior art keywords
anchor
anchoring device
rod
anchoring
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99120626A
Other languages
German (de)
English (en)
Other versions
EP1001134A1 (fr
Inventor
Günter BORM
Cornelia Schmidt-Hattenberger
Rüdiger Giese
Jens Bribach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GeoForschungsZentrum Potsdam
Original Assignee
GeoForschungsZentrum Potsdam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GeoForschungsZentrum Potsdam filed Critical GeoForschungsZentrum Potsdam
Publication of EP1001134A1 publication Critical patent/EP1001134A1/fr
Application granted granted Critical
Publication of EP1001134B1 publication Critical patent/EP1001134B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • E21F17/185Rock-pressure control devices with or without alarm devices; Alarm devices in case of roof subsidence
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • E21D9/004Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines using light beams for direction or position control

Definitions

  • the invention relates to an anchoring device, in particular An anchor element for the foundation, rock, mining or Solid construction, and a seismic sensor, such. a geophone or an accelerometer, as well as methods for spatially high-resolution Seismic and seismic tomography in the earth's crust or in structures, in particular for underground seismic Mountain exploration (so-called "tunnel seismic prediction” or TSP).
  • Fig. 4 shows a schematic side view of the propulsion of a Tunnels 40 in a mountain range 41 with a tunnel boring machine 42.
  • the tunnel 40 is located behind the tunnel boring machine 42 (or even in blasting without tunnel boring machine) with single blasting or detonating cord 43 triggered a series of seismic blasts, resulting in Vibration signals or acoustic signals, in particular in Propagate propulsion direction.
  • These signals are in areas Modified mountain strength (disturbances, rock changes) due to the changing seismic propagation speed partially reflected in these zones.
  • the reflected Signals are from a seismic sensor 44 detected.
  • the zones 41a and 41b provide different transit times the reflected signals ("echoes") that make up the Location of the zones, the cutting angle with the tunnel axis and the distance to the tunnel breast 45 can be calculated.
  • the transducer 44 consists of a non-positively in Mounted piping containing several groups of highly sensitive Accelerometer contains. The series of seismic blasts is by the single blasting or the detonating cord 43 and implemented an associated ignition control.
  • the conventional pre-exploration method has the following Disadvantage.
  • the attachment of the transducer 44 requires the Introduction of a separate hole and cementation of Piping.
  • must be shot holes for the single blasting or the detonating cord 43 are introduced.
  • These measures are laborious and time consuming.
  • the real one Seismic measurement requires an interruption of the propulsion to trigger the charges in the weft holes and for seismic recording, creating an additional Time is incurred, the actual tunnel construction operation disturbs.
  • Another problem is the limitation of conventional system to a few (e.g., four) measurement channels, thereby the heterogeneities in the mountains are only inaccurately recorded can.
  • the conventional system is on a two-dimensional Detection of heterogeneities in the mountains, namely with respect to the advancing direction or tunnel axis and up the radial distance from this, limited. This can only an incomplete picture of the mountains surrounding the tunnel and thus only an incomplete prediction and documentation of Tunnelbaurelevanten parameters can be achieved.
  • a GRP anchor consists of an anchor rod, one Anchor plate and an anchor nut, of which at least the Anchor rod made of glass fiber reinforced plastic.
  • FRP anchor be in corresponding, from the tunnel in the mountains introduced anchoring bores with synthetic resin adhesives introduced and -glued (adhesive anchor).
  • injection anchors used (from GFK); These are hollow tubes in which the two-component synthetic resin adhesive pressed through the tube will exit at the bottom open end and from there back the Ring gap between anchor and borehole wall fills and glued.
  • the attachment is application-dependent comb or igelartig in the tunnel wall transverse to the direction of advance or as a pre-anchoring in the direction of advance.
  • Be GFK anchor For example, in the publication "Fuse and fastening technology in underground mining "in” Schweizer Baublatt “(No. 24, 1994).
  • WO 98/19044 is an anchoring device on the Basis of a GRP anchor known, the strain measurement in the mountains is set up.
  • the anchoring device is integrated at least one light guide, the at least one Bragg's grid and for strain or force measurement in walls of cavities, for example, of the mountains or in buildings.
  • Such GRP anchor with integrated light guides also allow fast changing Strain measurements (a few kHz), the equipment required for a high-resolution measurement of the seismic vibration amplitude however, with the fiber optic system is much higher as for the geophone transducers.
  • an armored floor pillar which consists of solidified soil material, the soil material solidified by using stabilizing materials, For example, cement is mixed. Furthermore, include described columns one opposite the column biased Steel bar with an anchor-like structure at the end of the steel bar. To check the mechanical properties of the Steel bar is provided a vibration sensor.
  • the object of the invention is therefore to provide an improved device for vibration analysis, in particular in tunneling technology, Seismic and structural engineering, specify with which the respective vibration studies with reduced expenditure of time and increased accuracy can be performed. It should be possible in particular, from the conventional two-dimensional to move to three-dimensional investigations.
  • the object of the invention is also to provide an improved method indicate using such a device.
  • an anchoring device in particular with an anchor rod and an anchor head, indicated, where at or in the anchoring device at least one vibration sensor is appropriate.
  • a vibration sensor for example Geophone and / or accelerometer can be used. It is an integrated attachment to the Ankerkopffernen end of the anchor rod provided so that the vibration sensor (s) with the anchoring device form a unit.
  • the vibration sensor (s) with the anchoring device form a unit.
  • anchoring device may also generally be based on be formed of other types of rock anchors.
  • the at least one vibration sensor by at least one other sensor (for example sound sensor, Sensor for detecting further geophysical variables, such as. Temperature, pressure or the like.) Is replaced.
  • a transducer rod specified as the carrier for at least one Vibration sensor is designed.
  • a vibration sensor Again, for example, geophones and / or accelerometers used.
  • the transducer rod is made of metal (for example steel) or preferably made of glass fiber reinforced plastic.
  • Anchoring device (without anchor head) constructed be.
  • Another important aspect of the invention is in it, from a variety of said anchoring devices or pickup rods Vibration receiver assemblies for spatially high-resolution reflection and refraction seismics or seismic tomography.
  • a preferred Application is the design of a system anchor during the expansion a tunnel wall with at least partial use of the said anchoring devices, so that a seismic Receiver arrangement is created.
  • the pickup rods may also be a system arrangement of these, for example provided in a tunnel wall or a structure be.
  • the invention has the following advantages.
  • the integration allowed by vibration sensors in anchoring devices the attachment of the vibration sensors to the interested Measuring locations simultaneously to the anyway required attachment of the Anchoring devices e.g. when expanding a tunnel wall or for applications in construction technology.
  • the inventive Anchoring device thus has a double function. On the one hand it is the carrier of the vibration sensors and on the other hand it has a securing effect for the removed Wall. Due to this dual function, the invention differs Anchoring device of all conventional Carriers of vibration sensors. This benefit also applies the structure of erfindungsgmä info transducer rod, if this assumes a security effect. This will save you time considerably reduced for carrying out the measurements. Further a relatively dense sensor arrangement is created, the three-dimensional measurement evaluation with increased accuracy allowed.
  • the use of geophones or Accelerometers is advantageous in that a reproducible Data acquisition regardless of any disturbances under Field conditions can be realized. It can be sparsely extended Heterogeneities and / or deformations in the rock or be detected and located in a building.
  • the data acquisition can directly on the anchoring device respectively.
  • the pre-exploration method according to the invention can routinely in the tunnel construction business without special circumstances be implemented.
  • the anchoring device according to the invention with integrated sensor is particularly good for detection dynamic signals suitable, as in the reflection seismic occur.
  • the measuring and evaluation system be designed to be mobile for seismic tomography can.
  • the measuring and evaluation system for example, in the tunnel or in the building at the place of interest to the respective Anchoring devices connected.
  • the measured values of Vibration sensors are detected and evaluated.
  • the Meßund Evaluation system can also be fixed in the tunnel and with a variety or all anchoring devices connected and set up for a parallel or serial poll be so that after suitable vibration generation or Stimulating ongoing images of the surrounding mountains or structure can be determined.
  • Fig. 1 shows a tunnel 10 in a pressure rock area 11 with a system anchor 12 in longitudinal (A) and transverse (B) section (according to S. Flury et al., in "Tunnel", 1998, p. 26 ff.).
  • the system anchor 12 includes side wall anchors 121 and a Vorverank für 122, which as Ortbrustfeld serves.
  • the tunnel diameter is for example in Range from 6 to 12 m.
  • the wall anchors 121, 122 of the system anchor 12th or of pickup rods according to a system arrangement the well-known tunnel construction and to achieve a certain expansion requirements the density and orientation of the wall anchors with respect to the tunnel wall. Accordingly, the wall anchors 121 and the anchors are anchored 122 igelartig, radially or axially in the Mountain rock extending arranged. It may be, however even more oblique wall anchors 123 used, the deviating from the radial arrangement of the lateral wall anchors 121 with the tunnel axis 13 form an angle smaller than 90 ° is. The only shown in the upper part of Fig.
  • Sloping wall anchors 123 can be installed in all tunnel areas be and in terms of the angle of attack against the Tunnel axis 13 vary.
  • the oblique wall anchors 123 have Although a removal function, but also serve in particular to improve the resolution of the seismic tomography of the surrounding mountains (see below).
  • wall anchors 121-123 are all forms of wall anchors or Anchor elements suitable that allow integration of sensors.
  • fiberglass anchors are preferred.
  • Anchoring devices are or at the appropriate Locating inventive pickup rods provided whose details are described below with reference to FIG. 2 be explained.
  • the wall anchors according to the invention with at least equipped with a vibration sensor, form a Receiving antenna arrangement for spatially high resolution seismic Tomography of the mountains.
  • FIG. 2 shows the anchor head (not shown) or in the anchoring state end of a wall anchor facing away from the tunnel axis 20 with the anchor rod 21, which contains a cable guide 22, an anchor rod attachment 23, which has a connection area 24 is connected to the anchor rod 21 and three vibration sensors 25, 26, 27, and a rod tip 28, the for piercing the adhesive cartridge when gluing the wall anchor 20 is set up in mountain rock.
  • the dimensions the wall anchor 20 are the usual dimensions of a GRP anchor customized.
  • the diameter of the anchor rod 21 e.g. approx. 2 to 3 cm.
  • the cable guide 22 to Implementation of the electrical signal lines (not shown) for the vibration sensors 25, 26, 27 has a Diameter of approx. 5 mm (with injection anchors about 10 mm). Of the Diameter of the rod attachment 23 is at the anchor rod 21st customized.
  • the axial length of the rod attachment 23 is in Dependence on the number and size of the vibration sensors is chosen, for example, is approx. 6 cm.
  • the connection area 24 between the rod attachment 23 and the anchor rod 21st For example, by an adhesive, plug or screw educated.
  • the rod attachment 23 contains a plurality of vibration sensors, which include, for example, geophones and / or accelerometers.
  • the vibration sensors should preferably have a measurable frequency range ranging up to 2.5 kHz to 3 kHz, to be used at propagation velocities of seismic waves of approx. 5000 m / s in the bedrock a resolution of approx. 1 to 2 m to achieve.
  • the vibration sensors should be sufficiently small dimensions to be able to be mounted in the anchor rod attachment. They are preferably commercially available, miniaturized vibration sensors, which are shown here only schematically square or circular.
  • a geophone, eg of the type GS-14-LD, GS-14-L3 or GS-14-L9, can, according to FIG. 2 (B), have typical dimensions a ⁇ b of approx. 16 x 18 mm 2 .
  • the three geophones used according to the invention preferably operate in all directional positions, ie they can be applied in all spatial directions.
  • the vibration sensors 25, 26, 27 are so in the rod attachment 23rd arranged that the evaluation of the echo delay or the Time pattern of seismic vibrations received by a common vibration excitation and reflection on mountain heterogeneities have been caused in relation to the spatial propagation direction of the respective vibration measurable are.
  • a first vibration sensor 27 is axially the longitudinal axis of the wall anchor 20 is arranged.
  • the remaining Vibration sensors 25, 26 are in relation to the longitudinal axis the wall anchor 20 off-centered in different directions, each adjacent to the outer wall of the rod attachment 23 arranged.
  • the geometry of this with respect to the longitudinal axis staggered arrangement is more schematic in Fig. 2 (C) Cross-sectional view illustrated. For orientation of the sensor arrangement in the borehole contains the GRP anchor at the anchor head a mark.
  • the geophones used as vibration sensors become application-dependent selected. With a natural frequency of approx. 20 Hz are based on electrodynamic principles of measurement Geophones preferably for speed measurement, whereas Accelerometers e.g. on a piezoelectric basis with Natural frequencies in the kHz range as accelerometer serve.
  • the construction of the rod attachment 23 according to FIG. 2 (A) can be application-dependent be modified. This affects both the arrangement as well as the number of individual recipients who are taller or less than 3.
  • the arrangement may take the form of a slanted with respect to the longitudinal axis of the anchor rod Tripod be selected.
  • the attachment of the vibration sensors in the rod attachment 23 am End of the wall anchor 20 represents a particular advantage of the invention dar.
  • the geophones are frictionally attached to the anchor and on the rod body 21 and the rod attachment 23 and the Zweikomponentenverklebung immediately in mechanical contact with the surrounding mountain rock.
  • the wall anchor 20 is by the rod attachment 23 in its stability and function not weakened.
  • the vibration sensors are not in one Rod attachment, but directly in the body of the anchor rod 21 are integrated, if this is a sufficiently large diameter owns or the vibration sensors sufficiently small (e.g., designed as microsystems).
  • an anchoring device For producing an anchoring device according to the invention becomes essentially as in the production of conventional GFK anchor proceeded, but in the production the glass fiber reinforced plastic from the outset the introduction the cable guide 22 and the design of the connection area 24 are provided.
  • the rod attachment 23 with the Rod tip 28 can then as independently producible cap after Pulling the signal lines (not shown) on the connection area 24 are set up.
  • FIG. Fig. 3 shows a schematic perspective view of a tunnel 30th in the mountains 31 with a tunnel boring machine 32 and a system anchorage 33, which corresponds to the representation of FIG. 1 is trained.
  • the tunnel boring machine 32 is a seismic Excitation device 34 (frequency about 2-6 kHz) equipped.
  • the exciter 34 is for example for mechanical, electrodynamic or piezoelectric generation Seismic vibrations provided and in the propellant head the tunnel boring machine 32 or in a projecting borehole appropriate. If in practice no tunnel boring machine, but a normal blasting is used, the Invention be implemented analogously.
  • the high-resolution reflection or refraction seismic or seismic Tomography performed by starting from the excitation device 34 seismic waves in the mountain rock 31 blasted and with wall anchors of the system anchorage 33 seismic Waves are received at heterogeneities 31a, 31b have been reflected in the mountain rock 31.
  • the system anchor 33 become the reflected signals time, direction and / or amplitude selectively detected and a Evaluation device (not shown) supplied.
  • the Evaluation device is the signal evaluation and generation a picture of the mountain range of interest the heterogeneities or reflective Zones.
  • Deviating from the positioning of the excitation device in Propulsion area may alternatively be provided that the Seismic excitation in the already completed tunnel, i. behind the tunnel boring machine 32, takes place, as for example known from the conventional system TSP 202 ago.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Claims (10)

  1. Dispositif d'ancrage qui est réalisé pour le soutènement de parois dans la technique de la construction et dans l'industrie extractive, comprenant une barre d'ancrage (21), une tête de boulon d'ancrage et au moins un capteur de vibrations (25-27) aménagé sur la barre d'ancrage (21),
       caractérisé en ce que
       le capteur de vibrations (25-27) est disposé sur l'extrémité de la barre d'ancrage (21) opposée à la tête de boulon d'ancrage et la barre d'ancrage (21) comprend un câblage (22) à partir du capteur de vibrations (25-27) jusqu'à la tête de boulon d'ancrage.
  2. Dispositif d'ancrage selon la revendication 1, dans lequel le capteur de vibrations (25-27) est disposé dans un chapeau de barre (23).
  3. Dispositif d'ancrage selon l'une des revendications précédentes, dans lequel sont prévus plusieurs capteurs de vibration (25-27) qui présentent respectivement différentes positions relatives par rapport à l'axe longitudinal de la barre d'ancrage (21).
  4. Dispositif d'ancrage selon l'une des revendications précédentes, dans lequel sont prévus trois capteurs de vibration (25-27) qui sont disposés en fonction d'un tripode orthogonal.
  5. Dispositif d'ancrage selon la revendication 4, dans lequel les capteurs de vibration (25-27) comprennent des géophones et/ou des accéléromètres.
  6. Dispositif d'ancrage selon l'une des revendications précédentes, dans lequel la barre d'ancrage (21) est constituée par une matière plastique renforcée de fibres de verre.
  7. Ancrage de système pour la construction de tunnels ou pour la technique de construction immobilière constitué par une pluralité de barres d'ancrage de paroi, parmi lesquelles au moins une barre d'ancrage de paroi est formée par un dispositif d'ancrage comprenant les caractéristiques selon l'une des revendications 1 à 6.
  8. Procédé de séismologie ou tomographie à haute résolution de zones montagneuses ou de constructions comprenant les étapes suivantes :
    excitation d'ondes sonores dans la roche montagneuse ou dans la construction,
    réflexion des ondes sonores sur les hétérogénéités,
       caractérisé par l'étape de :
    détection des ondes d'écho réfléchies avec au moins un dispositif d'ancrage selon l'une des revendications 1 à 6.
  9. Procédé selon la revendication 8,
       caractérisé par
       l'étape :
    d'utilisation d'un ancrage de système (12, 33) en vue de la séismologie ou la tomographie à haute résolution de la montagne.
  10. Procédé selon la revendication 9,
       caractérisé par
       l'étape :
    d'excitation des ondes sismiques dans la montagne avec un dispositif d'excitation (34) sur la tête de creusement d'une machine de percement de galeries (32) ou dans un trou de situé à l'avant.
EP99120626A 1998-11-13 1999-10-18 Dispositif d'ancrage avec un capteur sismique Expired - Lifetime EP1001134B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19852455 1998-11-13
DE19852455A DE19852455C2 (de) 1998-11-13 1998-11-13 Verankerungseinrichtung mit seismischem Sensor

Publications (2)

Publication Number Publication Date
EP1001134A1 EP1001134A1 (fr) 2000-05-17
EP1001134B1 true EP1001134B1 (fr) 2004-09-15

Family

ID=7887731

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99120626A Expired - Lifetime EP1001134B1 (fr) 1998-11-13 1999-10-18 Dispositif d'ancrage avec un capteur sismique

Country Status (4)

Country Link
EP (1) EP1001134B1 (fr)
JP (1) JP4344440B2 (fr)
AT (1) ATE276429T1 (fr)
DE (1) DE19852455C2 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10231779B3 (de) * 2002-07-13 2004-01-22 Ludger Boese Vorrichtung zur Positionierung eines mit wenigstens einem seismischen Sensor versehenen Messkopfes
DE10231780A1 (de) * 2002-07-13 2004-01-29 Ludger Boese Vorrichtung zur Durchführung seismischer Untersuchungen
EP1624153B1 (fr) * 2004-08-05 2008-04-16 Hochtief Construction AG Procédé pour déterminer des propriétés d'un sol
DE102006007474B4 (de) * 2006-02-17 2008-07-31 GeoForschungsZentrum Potsdam Stiftung des öffentlichen Rechts Verankerungseinrichtung für eine Sensoreinrichtung zur Erfassung von seismischen Signalen in geologischen Strukturen oder Bauwerken
DE102006009246B3 (de) * 2006-02-28 2007-08-02 GeoForschungsZentrum Potsdam Stiftung des öffentlichen Rechts Verfahren und Vorrichtung zur Vorauserkundung beim Tunnelbau
DE102009003457A1 (de) 2009-02-09 2010-08-12 Edilon) (Sedra Gmbh Gleiskörperüberwachungssystem
CN102182510A (zh) * 2011-01-14 2011-09-14 深圳思量微系统有限公司 一种用于煤矿顶板应力监测的单元结构
DE102011119719A1 (de) * 2011-11-30 2013-06-06 GEA CFS Bühl GmbH Verfahren zum Aufschneiden eines Lebensmittelriegels unter Verwendung eines Schwingungssensors
JP6052548B2 (ja) * 2013-03-18 2016-12-27 清水建設株式会社 受信センサー装着具
CN108223012B (zh) * 2018-01-16 2020-05-08 龙岩市腾兴机械维修有限公司 一种锚杆支护围岩变形传感器安装装置
JP6990668B2 (ja) * 2019-02-26 2022-01-12 公益財団法人鉄道総合技術研究所 地盤探査装置
CN109915189A (zh) * 2019-04-09 2019-06-21 湖南科技大学 基于断层采动活化监测的浅表岩溶塌陷防治方法
CN110469354A (zh) * 2019-08-30 2019-11-19 东北大学 一种用于围岩微震监测的抗拉拔锚杆
CN111120000A (zh) * 2019-11-27 2020-05-08 河南理工大学 一种煤矿动力灾害的光纤光栅监测装置
CN111123352B (zh) * 2019-12-16 2024-01-12 山东滨莱高速公路有限公司 适用于隧道超前地质预报的检波器快速固定装置
DE102022201173A1 (de) 2022-02-03 2023-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Vorrichtung und Verfahren zur Drucksondierung von Böden

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128011A (en) * 1974-07-16 1978-12-05 Savage Robert J Investigation of the soundness of structures
US4062227A (en) * 1976-12-23 1977-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration CW ultrasonic bolt tensioning monitor
ATA271479A (de) * 1978-04-13 1985-07-15 Thurner Heinz F Verfahren fuer die untersuchung eines nur an einem ende zugaenglischen stabfoermigen koerpers und vorrichtung zur durchfuehrung des verfahrens
US4198865A (en) * 1978-07-24 1980-04-22 Energy & Minerals Research Co. Apparatus and method of monitoring anchored bolts
US4318302A (en) * 1978-12-13 1982-03-09 Conoco Inc. Method of determining mine roof stability
US4281547A (en) * 1979-05-10 1981-08-04 Conoco, Inc. (Formerly Continental Oil Company) Electronic mine roof bolt tester
DE3207346A1 (de) * 1982-03-02 1983-09-08 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren zur bestimmung oder pruefung der vorspannkraft von schrauben
SE9402423D0 (sv) * 1994-07-08 1994-07-08 Stabilator Ab Förstärkt pelare av stabiliserad jord
AU4868497A (en) * 1996-10-25 1998-05-22 Geoforschungszentrum Potsdam Anchoring device with strain measurement system

Also Published As

Publication number Publication date
JP4344440B2 (ja) 2009-10-14
JP2000147130A (ja) 2000-05-26
DE19852455A1 (de) 2000-05-31
DE19852455C2 (de) 2003-12-24
ATE276429T1 (de) 2004-10-15
EP1001134A1 (fr) 2000-05-17

Similar Documents

Publication Publication Date Title
EP1001134B1 (fr) Dispositif d'ancrage avec un capteur sismique
DE102006009246B3 (de) Verfahren und Vorrichtung zur Vorauserkundung beim Tunnelbau
CN101694163B (zh) 深部巷道顶板支护形式和支护深度的确定方法
DE19530874A1 (de) Einzelschachtsystem zum Zuordnen von Quellen akustischer Energie
DE2531805A1 (de) Methode fuer die untersuchung der integritaet einer struktur
WO2011012406A1 (fr) Dispositif et procédé de détection en résolution locale de mouvements de terrain
EP0934454B1 (fr) Dispositif d'ancrage a systeme de mesure de contrainte
EP3330745A1 (fr) Méthode d'exploration en avant dans la construction de tunnels
EP3287814B1 (fr) Méthode d'exploration en avant et sur le coté dans la construction de tunnels
Djizanne et al. Some aspects of the hydro-mechanical behaviour of Callovo-Oxfordian (COx) claystone around a gallery parallel to the principal horizontal minor stress
DE19521639A1 (de) Verfahren zur Überwachung eines HDI-Verfahrens
EP0464346A1 (fr) Dispositif pour déterminer des déformations linéaires d'un milieu le long d'une section de mesure
EP1114336A2 (fr) Procede geoelectrique de reconnaissance prealable
DE3819818C2 (fr)
EP2806070B1 (fr) Dispositif et procédé de fabrication surveillée d'un corps d'injection haute pression
DE102005038313B4 (de) Verfahren zur Messung der geologischen Lagerungsdichte und zur Detektion von Hohlräumen im Bereich eines Vortriebstunnels
DE2705129C3 (de) Seismisches Verfahren zur Kontrolle untertägiger Prozesse
EP0154821B1 (fr) Dispositif de mesure acoustique pour l'examen de la perméabilité et la fracture des formations rocheuses dans des montagnes
EP0760419B1 (fr) Méthode pour relever une galerie tunnel planifiée
DE60037305T2 (de) Verbesserungen an oder in Bezug auf Seismischenwellenmessgeräte
Hardy Jr Geotechnical field applications of AE/MS techniques at the Pennsylvania State University: a historical review
EP2433158A2 (fr) Procédé et dispositif d'exploration sismique d'une formation géologique
DE102015200530B4 (de) Verfahren zur Bewertung von Düsenstrahlsäulen
EP1624153B1 (fr) Procédé pour déterminer des propriétés d'un sol
CN209640292U (zh) 一种柱状节理松弛效应综合测试洞

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH FR IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000804

AKX Designation fees paid

Free format text: AT CH FR IT LI

17Q First examination report despatched

Effective date: 20030721

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & PARTNER AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: RITSCHER & PARTNER AG;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGS

Free format text: GEOFORSCHUNGSZENTRUM POTSDAM#TELEGRAFENBERG A17#14473 POSTDAM (DE) -TRANSFER TO- HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGSZENTRUM - GFZ#TELEGRAFENBERG#14473 POTSDAM (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHU, DE

Free format text: FORMER OWNER: HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGSZENTRUM - GFZ, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171023

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20171023

Year of fee payment: 19

Ref country code: IT

Payment date: 20171020

Year of fee payment: 19

Ref country code: AT

Payment date: 20171018

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 276429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181018

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181018