EP4085182B1 - Tunnel boring machine - Google Patents

Tunnel boring machine Download PDF

Info

Publication number
EP4085182B1
EP4085182B1 EP21719108.9A EP21719108A EP4085182B1 EP 4085182 B1 EP4085182 B1 EP 4085182B1 EP 21719108 A EP21719108 A EP 21719108A EP 4085182 B1 EP4085182 B1 EP 4085182B1
Authority
EP
European Patent Office
Prior art keywords
distance
boring machine
tunnel boring
distance sensors
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21719108.9A
Other languages
German (de)
French (fr)
Other versions
EP4085182C0 (en
EP4085182A1 (en
Inventor
Werner Burger
Gerhard WEHRMEYER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herrenknecht AG
Original Assignee
Herrenknecht AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herrenknecht AG filed Critical Herrenknecht AG
Publication of EP4085182A1 publication Critical patent/EP4085182A1/en
Application granted granted Critical
Publication of EP4085182B1 publication Critical patent/EP4085182B1/en
Publication of EP4085182C0 publication Critical patent/EP4085182C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines

Definitions

  • the invention relates to a tunnel boring machine according to the preamble of claim 1.
  • Such a tunnel boring machine is out CN 106 437 731 B known.
  • This previously known tunnel boring machine has a shield casing extending in a longitudinal direction and is equipped with a sensor unit having distance sensors. There is also a central unit with which the distance values of the distance sensors can be evaluated to determine convergences.
  • This previously known tunnel boring machine has a shield jacket extending in a longitudinal direction and a sensor unit equipped with distance sensors for detecting convergences. To carry out a continuous measuring process, the distance sensors work with a continuous spring force and are in constant contact with the surrounding mountains during advance.
  • a tunnel boring machine is known with a shield jacket extending in a longitudinal direction and with a sensor unit having a number of laser distance meters, which are attached to the inside of the shield jacket in the longitudinal direction and in the circumferential direction.
  • the invention has for its object to provide a tunnel boring machine of the type mentioned, which is characterized by a reliable measurement of an annular gap existing between the shield shell and the rock.
  • the local accuracy in the position of the distance sensors is very reliably and easily ensured in terms of measurement technology and also ensures that the distance sensors are extremely accurate during the advance phases not be damaged in harsh environments.
  • the sensor unit in the tunnel boring machine has at least two, expediently more than two, hydraulic distance sensors with an extendable probe head with extension distance measurement, which are arranged in the longitudinal direction at at least one measuring distance and, in the case of more than two distance sensors, expediently also in the circumferential direction, As advance progresses, convergences in the area of the shield jacket can be determined in changing distance values and evaluated using the central unit.
  • Fig. 1 shows a sectioned side view of an exemplary embodiment of a tunnel boring machine for driving a tunnel in a mountain 103 in the area of a shield shell 106.
  • a number of feed presses 109 are attached to the shield shell 106, which act in a longitudinal direction of the shield shell 106 and are located on segments 112 during the advance of a ring structure to line a tunnel.
  • segments 112 On the front end opposite the segments 112 in the direction of advance
  • Tunnel boring machine is an in Fig. 1 Cutting wheel, not shown, is available with which a tunnel cavity can be introduced into the mountains 103.
  • the tunnel cavity created by the mining effect of the cutting wheel has a larger diameter than the diameter of the shield shell 106, so that an annular gap 115 is formed between the mountains 103 and the outside of the shield shell 106.
  • the annular gap 115 is usually at least partially filled with liquid and solid, granular components from the mining operation.
  • convergences of the mountain range 103 usually lead, as in Fig. 1 shown, to the fact that the annular gap 115 tapers in the longitudinal direction of the shield jacket 106 away from the cutting wheel in the direction of the segments 112. If the convergence is too strong and the mountain 103 comes into contact with the shield jacket 106, there is a risk that the tunnel boring machine will become jammed.
  • the exemplary embodiment has according to Fig. 1 via a sensor unit 118, which has a number of hydraulic distance sensors 121, which are arranged at a measuring distance in the longitudinal direction of the shield jacket 106 and preferably also at regular intervals along the circumference of the shield jacket 106.
  • Each distance sensor 121 has a probe 124 which extends into the annular gap 115 in the radial direction can be advanced and is set up as a distance value as part of an extension path measurement for measuring the distance between the shield jacket 106 in the area of the relevant distance sensor 121 and the mountains 103.
  • Fig. 2 shows in a cross section in the exemplary embodiment according to Fig. 1 the shield jacket 106 in the ridge area.
  • the sensor unit 118 in addition to distance sensors 121 arranged at a measuring distance in the longitudinal direction of the shield jacket 106, also has distance sensors 121 that are arranged along the circumference of the shield jacket 106.
  • the distance sensors 121 arranged along the circumference of the shield jacket 106 are positioned essentially symmetrically to a central vertical axis 203.
  • the angle of the distance sensors 121 to the central vertical axis 203 is expediently between approximately 15 degrees and approximately 45 degrees, preferably in the range of approximately 30 degrees.
  • distance sensors 121 are also arranged in the middle of the ridge area on the central vertical axis 203.
  • Fig. 3 shows a block diagram of the sensor unit 118 with the distance sensors 121, which are connected to a measurement data memory 303 for storing the distance values obtained via the distance sensors 121.
  • a timer 306 and a position transmitter 309 are also connected to measurement data memory 303.
  • Time data can be generated with the timer 306, which can be linked in the measurement data memory 303 with the distance values obtained at the relevant time.
  • position transmitter 309 position data of the shield jacket 106 can be generated, which can also be linked to the distance values obtained at certain positions of the shield jacket 106.
  • the distance values of the various distance sensors 121 are available in a time profile and in a location profile.
  • the measurement data memory 303 is connected to a central unit 312, with which the distance values with the linked time data and position data can be evaluated to the extent that convergences of the mountains 103 can be evaluated in particular as to whether certain minimum distance values between the mountains 103 and the shield shell 106 are maintained. Furthermore, the central unit 312 can be used to generate a prediction about expected convergences, especially in the area facing away from the cutting wheel and adjacent to the segments 112, based on the temporally and spatially resolved distance values, in order to ensure as far as possible that there is no risk of the tunnel boring machine becoming jammed .
  • a signal generator 315 and a display 318 are expediently connected to the central unit 312.
  • the signal generator 315 is set up to issue a warning, for example in the form of a signal tone or a visual warning signal, when critical distance values between the mountains 103 and the shield shell 106 are reached.
  • the display 318 in turn is set up to graphically display the temporal and spatial progression of the distance values recorded by the distance sensors 121 as well as predicted distance values.
  • the central unit 312 has advance data representing the trajectory of the tunnel boring machine, which can be taken into account when evaluating the convergences with regard to critical values in such a way that an annular gap 115 that decreases in a controlled manner in some areas due to cornering does not lead to false alarms.
  • Fig. 4 to Fig. 7 show accordingly in a sectioned side view Fig. 1 a further exemplary embodiment of a tunnel boring machine in the area of a shield shell 106 in different phases of advance.
  • Fig. 4 shows the arrangement accordingly Fig. 1 after completing a ring on segments 112 with a ring width B with retracted feed presses 109 and retracted probe heads 124 from here in the longitudinal direction two distance sensors 121.
  • the distance sensors 121 are arranged at a measuring distance D. Based on the order according to Fig. 4 A tunneling cycle begins, which will be completed with the construction of the next ring on segment 112.
  • Fig. 5 shows the arrangement according to Fig. 4 with fully extended feed presses 109 shortly before the shoring of segments 112.
  • the advance is interrupted, so that, as in Fig. 5 shown, the probe heads 124 of the distance sensors 121 are extended, possibly displacing pieces of rock, and rest against the mountain 103.
  • the distance values obtained at this point in time and at this position of the shield shell 106 can be fed into the measurement data memory 303.
  • Fig. 6 shows the next phase of the advance that begins after the next ring has been installed on segments 112, in which the probes 124 of the distance sensors 121 are retracted again and remain retracted until the end of this phase of the advance.
  • Fig. 7 shows accordingly Fig. 5 the feed presses 109 in the maximum extended position again with the probe heads 124 of the distance sensors 121 extended again to obtain distance values.
  • the measuring distance D between the two distance sensors 121 corresponds to the ring width B of the segments 112. This ensures that each measuring point on the mountain 103 is recorded twice, or if a number of more than two distance sensors 121 are provided, each time at a corresponding measuring distance D several times, in terms of its distance from the shield shell 106. This makes it possible to determine the convergences very precisely and also to generate reliable forecasts for the area of the shield jacket 106 at the rear in the direction of advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)

Description

Die Erfindung betrifft eine Tunnelbohrmaschine gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a tunnel boring machine according to the preamble of claim 1.

Eine derartige Tunnelbohrmaschine ist aus CN 106 437 731 B bekannt. Diese vorbekannte Tunnelbohrmaschine verfügt über einen sich in einer Längsrichtung erstreckenden Schildmantel und ist mit einer Abstandssensoren aufweisenden Sensoreinheit ausgestattet. Weiterhin ist eine Zentraleinheit vorhanden, mit der die Abstandswerte der Abstandssensoren zum Feststellen von Konvergenzen auswertbar sind.Such a tunnel boring machine is out CN 106 437 731 B known. This previously known tunnel boring machine has a shield casing extending in a longitudinal direction and is equipped with a sensor unit having distance sensors. There is also a central unit with which the distance values of the distance sensors can be evaluated to determine convergences.

Eine weitere Tunnelbohrmaschine ist aus CN 107 607 082 A bekannt. Diese vorbekannte Tunnelbohrmaschine weist einen sich in einer Längsrichtung erstreckenden Schildmantel und eine mit Abstandssensoren ausgestattete Sensoreinheit zum Erfassen von Konvergenzen auf. Die Abstandssensoren arbeiten zum Durchführen eines kontinuierlichen Messverfahrens mit einer kontinuierlichen Federkraft und sind im Vortrieb in andauernder Anlage an dem anstehenden Gebirge.Another tunnel boring machine is out CN 107 607 082 A known. This previously known tunnel boring machine has a shield jacket extending in a longitudinal direction and a sensor unit equipped with distance sensors for detecting convergences. To carry out a continuous measuring process, the distance sensors work with a continuous spring force and are in constant contact with the surrounding mountains during advance.

Aus US 4 152 027 A ist eine mit einem Schildschwanz ausgestattete Tunnelbohrmaschine bekannt, die zum Verhindern von Tunneleinbrüchen eine Anzahl von verschiebbaren Stabteilen aufweist.Out of US 4,152,027 A A tunnel boring machine equipped with a shield tail is known, which has a number of movable rod parts to prevent tunnel collapses.

Aus CN 207 879 337 U ist eine Tunnelbohrmaschine mit einem Konvergenz- und Verformungsüberwachungssystem mit einer laserbasierten Umfangsüberwachung sowie mit Dehnungsmessern bekannt.Out of CN 207 879 337 U A tunnel boring machine with a convergence and deformation monitoring system with laser-based circumference monitoring and with strain gauges is known.

Eine weitere Tunnelbohrmaschine ist aus dem Fachartikel von D. Harding mit dem Titel " Difficult Ground Solutions (DGS): New TBM Solutions carve a Path to Success", erschienen in Proceedings of the World Tunnel Congress 2017 - Surface challenges - Underground solutions, Bergen, Norway , bekannt. Bei dieser vorbekannten Tunnelbohrmaschine, die über einen sich in eine Längsrichtung erstreckenden Schildmantel verfügt, ist eine Sensoreinheit in Gestalt eines hydraulischen Zylinders vorgesehen, der nahe des Schneidrads im Firstbereich an dem Schildmantel verbaut ist. Mit diesem Hydraulikzylinder ist die Dicke des Ringspalts an der Tunnelkrone messbar, um Konvergenzen zu erfassen.Another tunnel boring machine is from the specialist article by D. Harding entitled " Difficult Ground Solutions (DGS): New TBM Solutions carve a Path to Success", published in Proceedings of the World Tunnel Congress 2017 - Surface challenges - Underground solutions, Bergen, Norway , known. In this previously known tunnel boring machine, which has a shield jacket extending in a longitudinal direction, a sensor unit in the form of a hydraulic cylinder is provided, which is installed on the shield jacket near the cutting wheel in the ridge area. With this hydraulic cylinder, the thickness of the annular gap at the tunnel crown can be measured in order to record convergences.

Aus CN 207879337 U ist eine Tunnelbohrmaschine mit einem sich in eine Längsrichtung erstreckenden Schildmantel und mit einer eine Anzahl von Laserentfernungsmessern aufweisenden Sensoreinheit bekannt, die in Längsrichtung und in Umfangsrichtung innenseitig an dem Schildmantel angebracht sind.Out of CN 207879337 U a tunnel boring machine is known with a shield jacket extending in a longitudinal direction and with a sensor unit having a number of laser distance meters, which are attached to the inside of the shield jacket in the longitudinal direction and in the circumferential direction.

Der Erfindung liegt die Aufgabe zugrunde, eine Tunnelbohrmaschine der eingangs genannten Art anzugeben, die sich durch eine verlässliche Messung eines zwischen dem Schildmantel und dem Gebirge vorhandenen Ringspalts auszeichnet.The invention has for its object to provide a tunnel boring machine of the type mentioned, which is characterized by a reliable measurement of an annular gap existing between the shield shell and the rock.

Diese Aufgabe wird bei einer Tunnelbohrmaschine der eingangs genannten Art erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This object is achieved according to the invention in a tunnel boring machine of the type mentioned with the characterizing features of claim 1.

Durch das bei der vorliegenden Erfindung geschaffene diskontinuierliche Arbeiten in Vortriebspausen und Erfassen von Abstandswerten bei durch zu verbauende Tübbinge festgelegten Messabständen ist zum einen die Ortstreue in der Position der Abstandssensoren sehr verlässlich sowie messtechnisch einfach sichergestellt und ebenfalls gewährleistet, dass die Abstandssensoren in der während Vortriebsphasen äußerst rauen Umgebung nicht beschädigt werden. Zudem hat sich herausgestellt, dass sich durch das Vorschieben der Tastköpfe in den Ringspalt in radialer Richtung auch größere bewegliche Komponenten wie Gesteinsstücke verdrängen lassen, so dass sich eine verhältnismäßig hohe Messgenauigkeit ergibt.Due to the discontinuous work created in the present invention during advance breaks and the recording of distance values at measuring distances determined by the segments to be installed, on the one hand the local accuracy in the position of the distance sensors is very reliably and easily ensured in terms of measurement technology and also ensures that the distance sensors are extremely accurate during the advance phases not be damaged in harsh environments. In addition, it has been found that by advancing the probe heads into the annular gap in the radial direction, larger moving components such as pieces of rock can also be displaced, resulting in a relatively high measurement accuracy.

Dadurch, dass die Sensoreinheit bei der Tunnelbohrmaschine gemäß der Erfindung über wenigstens zwei, zweckmäßigerweise mehr als zwei, hydraulische Abstandssensoren mit einem ausfahrbaren Tastkopf mit Ausfahrwegmessung aufweist, die in Längsrichtung in wenigstens einem Messabstand und bei mehr als zwei Abstandssensoren zweckmäßigerweise auch in Umfangsrichtung angeordnet sind, lassen sich bei fortschreitendem Vortrieb Konvergenzen im Bereich des Schildmantels in sich verändernden Abstandswerten feststellen und mittels der Zentraleinheit auswerten.Because the sensor unit in the tunnel boring machine according to the invention has at least two, expediently more than two, hydraulic distance sensors with an extendable probe head with extension distance measurement, which are arranged in the longitudinal direction at at least one measuring distance and, in the case of more than two distance sensors, expediently also in the circumferential direction, As advance progresses, convergences in the area of the shield jacket can be determined in changing distance values and evaluated using the central unit.

Weitere zweckmäßige Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Further expedient embodiments of the invention are the subject of the subclaims.

Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels der Erfindung mit Bezug auf die Figuren der Zeichnung.Further expedient refinements and advantages of the invention result from the following description of an exemplary embodiment of the invention with reference to the figures in the drawing.

Es zeigen:

Fig. 1
in einer Seitenansicht ein Ausführungsbeispiel eines Schildmantels einer Tunnelbohrmaschine mit einer Sensoreinheit, die in einer Längsrichtung eine Anzahl von Abstandssensoren aufweist,
Fig. 2
in einer Schnittansicht durch einen Schildmantel einer Tunnelbohrmaschine eines Ausführungsbeispiels der Erfindung im Firstbereich,
Fig. 3
in einem Blockschaubild eine beispielhafte Ausgestaltung einer Sensoreinheit und einer Zentraleinheit mit weiteren Komponenten bei einem Ausführungsbeispiel einer Tunnelbohrmaschine gemäß der Erfindung und
Fig. 4 bis Fig. 7
in Schnittansichten ein weiteres Ausführungsbeispiel einer Tunnelbohrmaschine gemäß der Erfindung im Bereich eines Schildmantels in verschiedenen Etappen eines Vortriebs.
Show it:
Fig. 1
in a side view an embodiment of a shield shell of a tunnel boring machine with a sensor unit which has a number of distance sensors in a longitudinal direction,
Fig. 2
in a sectional view through a shield jacket of a tunnel boring machine of an embodiment of the invention in the ridge area,
Fig. 3
in a block diagram an exemplary embodiment of a sensor unit and a central unit with further components in an exemplary embodiment of a tunnel boring machine according to the invention and
Fig. 4 to Fig. 7
in sectional views a further exemplary embodiment of a tunnel boring machine according to the invention in the area of a shield shell in different stages of a tunneling operation.

Fig. 1 zeigt in einer geschnittenen Seitenansicht ein Ausführungsbeispiel einer Tunnelbohrmaschine zum Vortreiben eines Tunnels in einem Gebirge 103 im Bereich eines Schildmantels 106. An dem Schildmantel 106 sind eine Anzahl von Vorschubpressen 109 angebracht, die in einer Längsrichtung des Schildmantels 106 wirken und sich im Vortrieb an Tübbingen 112 eines Ringbaus zum Auskleiden eines Tunnels abstützen. Auf der den Tübbingen 112 gegenüberliegenden, in Vortriebsrichtung vorderen Stirnseite der Fig. 1 shows a sectioned side view of an exemplary embodiment of a tunnel boring machine for driving a tunnel in a mountain 103 in the area of a shield shell 106. A number of feed presses 109 are attached to the shield shell 106, which act in a longitudinal direction of the shield shell 106 and are located on segments 112 during the advance of a ring structure to line a tunnel. On the front end opposite the segments 112 in the direction of advance

Tunnelbohrmaschine ist ein in Fig. 1 nicht dargestelltes Schneidrad vorhanden, mit dem in das Gebirge 103 ein Tunnelhohlraum einbringbar ist.Tunnel boring machine is an in Fig. 1 Cutting wheel, not shown, is available with which a tunnel cavity can be introduced into the mountains 103.

Der durch die Abbauwirkung des Schneidrads geschaffene Tunnelhohlraum weist gegenüber dem Durchmesser des Schildmantels 106 einen größeren Durchmesser auf, so dass zwischen dem Gebirge 103 und der Außenseite des Schildmantels 106 ein Ringspalt 115 ausgebildet ist. Der Ringspalt 115 ist aus dem Abbaubetrieb üblicherweise mit flüssigen und festen, körnigen Bestandteilen wenigstens teilweise gefüllt. Konvergenzen des Gebirges 103 führen üblicherweise jedoch, wie in Fig. 1 dargestellt, dazu, dass sich der Ringspalt 115 in Längsrichtung des Schildmantels 106 von dem Schneidrad wegweisend in Richtung der Tübbinge 112 verjüngt. Bei zu starken Konvergenzen und einem Kontakt des Gebirges 103 mit dem Schildmantel 106 besteht daher die Gefahr, dass die Tunnelbohrmaschine eingeklemmt wird.The tunnel cavity created by the mining effect of the cutting wheel has a larger diameter than the diameter of the shield shell 106, so that an annular gap 115 is formed between the mountains 103 and the outside of the shield shell 106. The annular gap 115 is usually at least partially filled with liquid and solid, granular components from the mining operation. However, convergences of the mountain range 103 usually lead, as in Fig. 1 shown, to the fact that the annular gap 115 tapers in the longitudinal direction of the shield jacket 106 away from the cutting wheel in the direction of the segments 112. If the convergence is too strong and the mountain 103 comes into contact with the shield jacket 106, there is a risk that the tunnel boring machine will become jammed.

Zum Erfassen von Konvergenzen des Gebirges 103 über Änderungen der Dimensionen des Ringspalts 115 verfügt das Ausführungsbeispiel gemäß Fig. 1 über eine Sensoreinheit 118, die eine Anzahl von hydraulischen Abstandssensoren 121 aufweist, die in Längsrichtung des Schildmantels 106 in einem Messabstand und vorzugsweise auch entlang des Umfangs des Schildmantels 106 regelmäßig beabstandet angeordnet sind. Jeder Abstandssensor 121 verfügt über einen Tastkopf 124, der in radialer Richtung in den Ringspalt 115 vorschiebbar und im Rahmen einer Ausfahrwegmessung zum Messen des Abstands zwischen dem Schildmantel 106 im Bereich des betreffenden Abstandssensors 121 sowie dem Gebirge 103 als Abstandswert eingerichtet ist.To detect convergences of the mountains 103 via changes in the dimensions of the annular gap 115, the exemplary embodiment has according to Fig. 1 via a sensor unit 118, which has a number of hydraulic distance sensors 121, which are arranged at a measuring distance in the longitudinal direction of the shield jacket 106 and preferably also at regular intervals along the circumference of the shield jacket 106. Each distance sensor 121 has a probe 124 which extends into the annular gap 115 in the radial direction can be advanced and is set up as a distance value as part of an extension path measurement for measuring the distance between the shield jacket 106 in the area of the relevant distance sensor 121 and the mountains 103.

Fig. 2 zeigt in einem Querschnitt bei dem Ausführungsbeispiel gemäß Fig. 1 den Schildmantel 106 im Firstbereich. Aus Fig. 2 ist ersichtlich, dass die Sensoreinheit 118 neben in Längsrichtung des Schildmantels 106 in einem Messabstand angeordneten Abstandssensoren 121 auch über Abstandssensoren 121 verfügt, die entlang des Umfangs des Schildmantels 106 angeordnet sind. Bei der Anordnung gemäß Fig. 2 sind die entlang des Umfangs des Schildmantels 106 angeordneten Abstandssensoren 121 im Wesentlichen symmetrisch zu einer Mittelhochachse 203 positioniert. Der Winkel der Abstandssensoren 121 zu der Mittelhochachse 203 liegt zweckmäßigerweise zwischen etwa 15 Grad und etwa 45 Grad, bevorzugt im Bereich von etwa 30 Grad. Fig. 2 shows in a cross section in the exemplary embodiment according to Fig. 1 the shield jacket 106 in the ridge area. Out of Fig. 2 It can be seen that the sensor unit 118, in addition to distance sensors 121 arranged at a measuring distance in the longitudinal direction of the shield jacket 106, also has distance sensors 121 that are arranged along the circumference of the shield jacket 106. When arranged according to Fig. 2 the distance sensors 121 arranged along the circumference of the shield jacket 106 are positioned essentially symmetrically to a central vertical axis 203. The angle of the distance sensors 121 to the central vertical axis 203 is expediently between approximately 15 degrees and approximately 45 degrees, preferably in the range of approximately 30 degrees.

Bei einer nicht dargestellten Weiterbildung ist vorgesehen, dass Abstandssensoren 121 auch in der Mitte des Firstbereichs auf der Mittelhochachse 203 angeordnet sind.In a further development, not shown, it is provided that distance sensors 121 are also arranged in the middle of the ridge area on the central vertical axis 203.

Fig. 3 zeigt in einem Blockschaubild die Sensoreinheit 118 mit den Abstandssensoren 121, die an einen Messdatenspeicher 303 zum Speichern der über die Abstandssensoren 121 gewonnenen Abstandswerte angeschlossen sind. An den Messdatenspeicher 303 sind weiterhin ein Zeitgeber 306 und ein Positionsgeber 309 angeschlossen. Mit den Zeitgeber 306 sind Zeitdaten erzeugbar, die in dem Messdatenspeicher 303 mit den zu der betreffenden Zeit gewonnenen Abstandswerten verknüpfbar sind. Mit dem Positionsgeber 309 sind Positionsdaten des Schildmantels 106 erzeugbar, die ebenfalls mit den bei bestimmten Positionen des Schildmantels 106 gewonnenen Abstandswerten verknüpfbar sind. Fig. 3 shows a block diagram of the sensor unit 118 with the distance sensors 121, which are connected to a measurement data memory 303 for storing the distance values obtained via the distance sensors 121. To the A timer 306 and a position transmitter 309 are also connected to measurement data memory 303. Time data can be generated with the timer 306, which can be linked in the measurement data memory 303 with the distance values obtained at the relevant time. With the position transmitter 309, position data of the shield jacket 106 can be generated, which can also be linked to the distance values obtained at certain positions of the shield jacket 106.

Auf diese Art und Weise liegen die Abstandswerte der verschiedenen Abstandssensoren 121 in einem Zeitprofil und in einem Ortsprofil vor.In this way, the distance values of the various distance sensors 121 are available in a time profile and in a location profile.

Der Messdatenspeicher 303 steht mit einer Zentraleinheit 312 in Verbindung, mit der die Abstandswerte mit den verknüpften Zeitdaten und Positionsdaten dahingehend auswertbar sind, dass Konvergenzen des Gebirges 103 insbesondere dahingehend auswertbar sind, ob bestimmte Mindestabstandswerte zwischen dem Gebirge 103 und dem Schildmantel 106 eingehalten werden. Weiterhin lässt sich mit der Zentraleinheit 312 aufgrund der zeitlich und örtlich aufgelösten Abstandswerte eine Prognose über zu erwartende Konvergenzen insbesondere auch in dem dem Schneidrad abgewandten und an die Tübbinge 112 angrenzenden Bereich erzeugen, um soweit als möglich sicherzustellen, dass kein Festklemmen der Tunnelbohrmaschine zu befürchten ist.The measurement data memory 303 is connected to a central unit 312, with which the distance values with the linked time data and position data can be evaluated to the extent that convergences of the mountains 103 can be evaluated in particular as to whether certain minimum distance values between the mountains 103 and the shield shell 106 are maintained. Furthermore, the central unit 312 can be used to generate a prediction about expected convergences, especially in the area facing away from the cutting wheel and adjacent to the segments 112, based on the temporally and spatially resolved distance values, in order to ensure as far as possible that there is no risk of the tunnel boring machine becoming jammed .

An die Zentraleinheit 312 sind zweckmäßigerweise ein Signalgeber 315 und eine Anzeige 318 angeschlossen. Der Signalgeber 315 ist dazu eingerichtet, bei Erreichen von kritischen Abstandswerten zwischen dem Gebirge 103 und dem Schildmantel 106 eine Warnung beispielsweise in Gestalt eines Signaltons oder eines optischen Warnsignals auszugeben. Die Anzeige 318 wiederum ist dazu eingerichtet, den zeitlichen und räumlichen Verlauf der von den Abstandssensoren 121 aufgenommenen Abstandswerte sowie von prognostizierten Abstandswerten grafisch anzuzeigen.A signal generator 315 and a display 318 are expediently connected to the central unit 312. The signal generator 315 is set up to issue a warning, for example in the form of a signal tone or a visual warning signal, when critical distance values between the mountains 103 and the shield shell 106 are reached. The display 318 in turn is set up to graphically display the temporal and spatial progression of the distance values recorded by the distance sensors 121 as well as predicted distance values.

Des Weiteren verfügt die Zentraleinheit 312 über die Trajektorie der Tunnelbohrmaschine repräsentierende Vortriebsdaten, die bei dem Auswerten der Konvergenzen hinsichtlich kritischer Werte dahingehend berücksichtigbar sind, dass ein sich aufgrund einer Kurvenfahrt bereichsweise kontrolliert verringernder Ringspalt 115 nicht zu Fehlalarmen führt.Furthermore, the central unit 312 has advance data representing the trajectory of the tunnel boring machine, which can be taken into account when evaluating the convergences with regard to critical values in such a way that an annular gap 115 that decreases in a controlled manner in some areas due to cornering does not lead to false alarms.

Fig. 4 bis Fig. 7 zeigen in einer geschnittenen Seitenansicht entsprechend Fig. 1 ein weiteres Ausführungsbeispiel einer Tunnelbohrmaschine im Bereich eines Schildmantels 106 in verschiedenen Phasen des Vortriebs. Fig. 4 to Fig. 7 show accordingly in a sectioned side view Fig. 1 a further exemplary embodiment of a tunnel boring machine in the area of a shield shell 106 in different phases of advance.

Fig. 4 zeigt die Anordnung entsprechend Fig. 1 nach Fertigstellen eines Rings an Tübbingen 112 mit einer Ringbreite B mit eingefahrenen Vorschubpressen 109 und eingefahrenen Tastköpfen 124 von hier in Längsrichtung zwei Abstandssensoren 121. Die Abstandssensoren 121 sind in einem Messabstand D angeordnet. Ausgehend von der Anordnung gemäß Fig. 4 beginnt ein Vortriebszyklus, der mit dem Verbau eines nächsten Rings an Tübbingen 112 abgeschlossen sein wird. Fig. 4 shows the arrangement accordingly Fig. 1 after completing a ring on segments 112 with a ring width B with retracted feed presses 109 and retracted probe heads 124 from here in the longitudinal direction two distance sensors 121. The distance sensors 121 are arranged at a measuring distance D. Based on the order according to Fig. 4 A tunneling cycle begins, which will be completed with the construction of the next ring on segment 112.

Fig. 5 zeigt die Anordnung gemäß Fig. 4 mit vollständig ausgefahrenen Vorschubpressen 109 kurz vor dem Verbau von Tübbingen 112. In dieser Phase ist der Vortrieb unterbrochen, so dass, wie in Fig. 5 dargestellt, die Tastköpfe 124 der Abstandssensoren 121, gegebenenfalls unter Verdrängen von Gesteinsstücken, ausgefahren sind und an dem Gebirge 103 anliegen. Die zu diesem Zeitpunkt und an dieser Position des Schildmantels 106 gewonnenen Abstandswerte sind in den Messdatenspeicher 303 einspeisbar. Fig. 5 shows the arrangement according to Fig. 4 with fully extended feed presses 109 shortly before the shoring of segments 112. In this phase, the advance is interrupted, so that, as in Fig. 5 shown, the probe heads 124 of the distance sensors 121 are extended, possibly displacing pieces of rock, and rest against the mountain 103. The distance values obtained at this point in time and at this position of the shield shell 106 can be fed into the measurement data memory 303.

Fig. 6 zeigt die nach dem Verbau des nächsten Rings an Tübbingen 112 beginnende nächste Phase des Vortriebs, bei der die Tastköpfe 124 der Abstandssensoren 121 wieder eingefahren sind und bis zum Ende dieser Phase des Vortriebs eingefahren bleiben. Fig. 6 shows the next phase of the advance that begins after the next ring has been installed on segments 112, in which the probes 124 of the distance sensors 121 are retracted again and remain retracted until the end of this phase of the advance.

Fig. 7 zeigt entsprechend Fig. 5 die Vorschubpressen 109 in wieder maximal ausgefahrener Stellung mit den zum Gewinnen von Abstandswerten wieder ausgefahrenen Tastköpfen 124 der Abstandssensoren 121. Fig. 7 shows accordingly Fig. 5 the feed presses 109 in the maximum extended position again with the probe heads 124 of the distance sensors 121 extended again to obtain distance values.

In der Abfolge von Fig. 4 bis Fig. 7 lässt sich weiterhin deutlich erkennen, dass bei diesem Ausführungsbeispiel der Messabstand D zwischen den hier zwei Abstandssensoren 121 der Ringbreite B der Tübbinge 112 entspricht. Dadurch ist sichergestellt, dass jede Messstelle an dem Gebirge 103 zweimal, oder bei Vorsehen von einer Anzahl von mehr als zwei Abstandssensoren 121 jeweils in einem entsprechenden Messabstand D mehrfach, in ihrem Abstand zu dem Schildmantel 106 erfasst wird. Dadurch lassen sich die Konvergenzen sehr genau bestimmen und darüber hinaus verlässliche Prognosen für den in Vortriebsrichtung rückseitigen Bereich des Schildmantels 106 erzeugen.In the sequence of Fig. 4 to Fig. 7 It can also be clearly seen that in this exemplary embodiment the measuring distance D between the two distance sensors 121 corresponds to the ring width B of the segments 112. This ensures that each measuring point on the mountain 103 is recorded twice, or if a number of more than two distance sensors 121 are provided, each time at a corresponding measuring distance D several times, in terms of its distance from the shield shell 106. This makes it possible to determine the convergences very precisely and also to generate reliable forecasts for the area of the shield jacket 106 at the rear in the direction of advance.

Claims (8)

  1. Tunnel boring machine, having a shield casing (106) extending in a longitudinal direction, having a sensor unit (118) with distance sensors (121) for capturing convergences and having a central unit (312), with which the distance values of the distance sensors (121) can be evaluated for detecting convergences, characterised in that the sensor unit (118) has at least two hydraulic distance sensors (121) with an extendable probe (124) for measuring the extension path, with which the distance between the shield casing (106) in the area of the relevant distance sensor (121) and the upcoming rock (103) can be captured as a distance value, in that the distance sensors (121) in the longitudinal direction of the shield casing (106) are arranged at a measuring distance (D), wherein the measuring distance (D) of the distance sensors (121) in the longitudinal direction of the shield casing (106) corresponds to the typical ring width (B) of a lining segment (112), and in that the probes (124) are extendable during interrupted advance and retractable during advance.
  2. Tunnel boring machine according to Claim 1, characterised in that a position sensor (309) is present, with which the position of the shield casing (106) is determinable, such that the distance values at certain positions of the distance sensors (121) in the longitudinal direction can be evaluated.
  3. Tunnel boring machine according to Claim 1 or Claim 2, characterised in that in the longitudinal direction of the shield casing (106) at least three distance sensors (121) are present.
  4. Tunnel boring machine according to one of Claims 1 to 3, characterised in that along the circumference of the shield casing (106) at least two distance sensors (121) are present.
  5. Tunnel boring machine according to Claim 4, characterised in that the distance sensors (121) arranged along the circumference of the shield casing (106) are arranged symmetrically to the central vertical axis (203).
  6. Tunnel boring machine according to one of Claims 1 to 5, characterised in that a timer (306) is present, with which the times when recording distance values are determinable, such that the distance values at certain times can be evaluated.
  7. Tunnel boring machine according to one of Claims 1 to 6, characterised in that a signal transmitter (315) connected to the central unit (312) is present, with which a warning signal can be generated at critical convergences.
  8. Tunnel boring machine according to one of Claims 1 to 7, characterised in that a visual display (318) connected to the central unit (312) is present, with which the timeline and/or path of the distance values can be graphically displayed.
EP21719108.9A 2020-04-28 2021-04-13 Tunnel boring machine Active EP4085182B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020111585.7A DE102020111585A1 (en) 2020-04-28 2020-04-28 Tunnel boring machine
PCT/EP2021/059587 WO2021219369A1 (en) 2020-04-28 2021-04-13 Tunnel boring machine

Publications (3)

Publication Number Publication Date
EP4085182A1 EP4085182A1 (en) 2022-11-09
EP4085182B1 true EP4085182B1 (en) 2024-03-20
EP4085182C0 EP4085182C0 (en) 2024-03-20

Family

ID=75539331

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21719108.9A Active EP4085182B1 (en) 2020-04-28 2021-04-13 Tunnel boring machine

Country Status (7)

Country Link
US (1) US20230135570A1 (en)
EP (1) EP4085182B1 (en)
CN (1) CN115244270B (en)
AU (1) AU2021263785A1 (en)
CA (1) CA3174494A1 (en)
DE (1) DE102020111585A1 (en)
WO (1) WO2021219369A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117967307B (en) * 2024-04-01 2024-06-07 枣庄矿业集团新安煤业有限公司 Data processing method for remotely controlling rotation adjustment mining of coal mining machine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111630A (en) * 1977-03-11 1978-09-29 Tekken Constr Co Method of shield excavating and shield excavator
JPS53135140A (en) * 1977-04-28 1978-11-25 Tekken Constr Co Excessive excavation detector for muddy water shield excavator
DE3222556C1 (en) * 1982-06-16 1983-12-22 Wayss & Freytag Ag, 6000 Frankfurt Method and device for producing a tunnel in pressurized mountains by means of shield driving
JPS6250294U (en) * 1985-09-19 1987-03-28
DE4131673C2 (en) * 1991-09-24 1995-05-04 Bodenseewerk Geraetetech Control device for a tunnel boring machine
JPH07217380A (en) * 1994-02-01 1995-08-15 Kawasaki Heavy Ind Ltd Method and device for measuring stroke of copy cutter of shield excavator
DE19532605A1 (en) * 1995-09-04 1997-03-06 Flowtex Technologie Import Von Procedure for exploring planned tunnel routes
JP3498687B2 (en) * 2000-07-13 2004-02-16 石川島播磨重工業株式会社 Tail clearance measuring device for shield machine
JP2013108834A (en) * 2011-11-21 2013-06-06 Tamagawa Seiki Co Ltd Method and apparatus for measuring hole path position
US9500077B2 (en) * 2014-01-07 2016-11-22 Shandong University Comprehensive advanced geological detection system carried on tunnel boring machine
CN103713335B (en) * 2014-01-07 2015-04-22 山东大学 Comprehensive advance geological detection system carried by tunnel boring machine
CN103742156B (en) * 2014-01-13 2015-08-12 中国科学院武汉岩土力学研究所 Unidirectional driving opportunity and mode defining method is changed in opposite directions before buried hard rock tunnel is through
CN103867202B (en) * 2014-03-28 2016-07-06 辽宁瀚石机械制造有限公司 Unmanned intelligence Mars Miner
CN106194221B (en) * 2016-08-30 2018-06-22 中国铁建重工集团有限公司 Development machine, tunnel duct piece adjusting apparatus and its control method for development machine
CN106437731B (en) * 2016-10-09 2018-06-15 中国电建集团成都勘测设计研究院有限公司 Early warning type double-shielded TBM
CN107545124B (en) * 2017-09-29 2019-11-12 天津大学 The prediction technique of the normal section disk cutter wear condition of rock tunnel development machine
CN107607082A (en) 2017-10-24 2018-01-19 成都理工大学 TBM construction surrouding rock deformation monitoring systems
CN108035724B (en) * 2017-11-24 2024-04-16 徐工集团凯宫重工南京有限公司 Shield machine and cutter abrasion detection and automatic compensation device thereof
CN108286433B (en) * 2018-02-09 2020-12-04 安徽恒诺机电科技有限公司 Shield tunnel detection mechanism and using method thereof
CN207879337U (en) 2018-02-24 2018-09-18 黄河勘测规划设计有限公司 The shield formula TBM of system is monitored with country rock convergent deformation
CN108278117B (en) * 2018-03-15 2024-04-09 中铁工程装备集团有限公司 Grabbing and lifting detection device for duct piece vacuum chuck
CN208950583U (en) * 2018-09-28 2019-06-07 中铁工程装备集团有限公司 Shield tail clearance of shield machine real-time measurement system based on ultrasonic distance measurement
CN109738022A (en) * 2019-02-18 2019-05-10 中国科学院武汉岩土力学研究所 TBM tunneling process country rock and TBM interaction monitoring method and device
GB2592699B (en) * 2020-09-21 2022-03-16 Hypertunnel Ip Ltd Tunnelling shield
EP4141212A1 (en) * 2021-08-23 2023-03-01 Sandvik Mining and Construction Oy Apparatus, method and software program product for designing drilling patterns

Also Published As

Publication number Publication date
CA3174494A1 (en) 2021-11-04
WO2021219369A1 (en) 2021-11-04
AU2021263785A1 (en) 2022-10-20
CN115244270B (en) 2024-06-18
DE102020111585A1 (en) 2021-10-28
CN115244270A (en) 2022-10-25
EP4085182C0 (en) 2024-03-20
EP4085182A1 (en) 2022-11-09
US20230135570A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
EP3701126B1 (en) Tunnel boring machine and tunnelling method
EP4085182B1 (en) Tunnel boring machine
US4167290A (en) Shield type hydraulic tunnel boring machine
US4152027A (en) Shield type hydraulic tunnel boring machine
EP2035767B1 (en) Method and device for determining displacements and/or deformations in underground working
CN206655690U (en) A kind of drilling peeping device with support guide effect
JP5189866B2 (en) Drilling section soil layer judgment device and judgment method for shield machine
EP1001134B1 (en) Anchoring device with a seismic sensor
EP0203978B1 (en) Process and system for monitoring wheel-type boring machines
DE60123545T2 (en) CREATING A PITCH BY TAPPING
FI80323B (en) FOERFARANDE OCH ANORDNING FOER STYRNING AV BERGBORRNING.
EP2834464B1 (en) Face equipment comprising hose levels placed on the shield support frames of said face equipment
EP0394617B1 (en) Measuring system for determining the pressure of concrete
DE102005038313B4 (en) Method for measuring the geological storage density and for detecting cavities in the area of a tunnel tunneling
WO2011144223A1 (en) Face equipment set up for inertial navigation, and method for operating said equipment
JP2004316117A (en) Measuring device for face forward bedrock displacement and measuring method
Shepherd et al. Instrumentation of roof support for colliery pillar extraction
EP2740895A2 (en) Tubing distance sensor for a tunnel boring machine
JP3622163B2 (en) Tunnel collapse prediction method
EP0912816B1 (en) Cutting control process and device for detecting the depth of cut of kirving tools
EP1911929A1 (en) Method for determining changes in the position of tubbing rings
EP3252234B1 (en) Method and device for removing a pile element from a base
US3538755A (en) Device and method for determining rock stress
GB1590276A (en) Shield-type tunnel boring machine
CN118243038A (en) Multi-point displacement meter

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20240126

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003046

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240320

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240327

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240529

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240613

Year of fee payment: 4