EP4038075A1 - Procede de preparation d'alcenylaminoboranes et de leurs derives, et leurs utilisations - Google Patents
Procede de preparation d'alcenylaminoboranes et de leurs derives, et leurs utilisationsInfo
- Publication number
- EP4038075A1 EP4038075A1 EP20780757.9A EP20780757A EP4038075A1 EP 4038075 A1 EP4038075 A1 EP 4038075A1 EP 20780757 A EP20780757 A EP 20780757A EP 4038075 A1 EP4038075 A1 EP 4038075A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- formula
- alkenylaminoborane
- preparing
- group
- chosen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- -1 alkenyl aminoboranes Chemical class 0.000 title abstract description 9
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 20
- 239000003054 catalyst Substances 0.000 claims abstract description 19
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 18
- FEJUGLKDZJDVFY-UHFFFAOYSA-N 9-borabicyclo(3.3.1)nonane Chemical compound C1CCC2CCCC1B2 FEJUGLKDZJDVFY-UHFFFAOYSA-N 0.000 claims abstract description 15
- TVJORGWKNPGCDW-UHFFFAOYSA-N aminoboron Chemical compound N[B] TVJORGWKNPGCDW-UHFFFAOYSA-N 0.000 claims abstract description 14
- XNYOSXARXANYPB-UHFFFAOYSA-N dicyclohexylborane Chemical compound C1CCCCC1BC1CCCCC1 XNYOSXARXANYPB-UHFFFAOYSA-N 0.000 claims abstract description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 60
- 150000001345 alkine derivatives Chemical group 0.000 claims description 41
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 39
- 150000001875 compounds Chemical class 0.000 claims description 35
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 238000002360 preparation method Methods 0.000 claims description 25
- UFXPFCDHJCIVDO-UHFFFAOYSA-N [di(propan-2-yl)amino]boron Chemical compound CC(C)N([B])C(C)C UFXPFCDHJCIVDO-UHFFFAOYSA-N 0.000 claims description 21
- 238000000746 purification Methods 0.000 claims description 21
- 125000001424 substituent group Chemical group 0.000 claims description 20
- 125000004432 carbon atom Chemical group C* 0.000 claims description 19
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 claims description 16
- 238000006136 alcoholysis reaction Methods 0.000 claims description 15
- 230000000707 stereoselective effect Effects 0.000 claims description 15
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 238000006467 substitution reaction Methods 0.000 claims description 14
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims description 14
- 229910000085 borane Inorganic materials 0.000 claims description 12
- 238000005580 one pot reaction Methods 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 125000003545 alkoxy group Chemical group 0.000 claims description 9
- 238000011065 in-situ storage Methods 0.000 claims description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- 150000002009 diols Chemical class 0.000 claims description 8
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 8
- 125000003342 alkenyl group Chemical group 0.000 claims description 7
- 125000000304 alkynyl group Chemical group 0.000 claims description 7
- 125000003277 amino group Chemical group 0.000 claims description 7
- 229910052794 bromium Inorganic materials 0.000 claims description 6
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 229910052740 iodine Inorganic materials 0.000 claims description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 6
- NTNWKDHZTDQSST-UHFFFAOYSA-N naphthalene-1,2-diamine Chemical compound C1=CC=CC2=C(N)C(N)=CC=C21 NTNWKDHZTDQSST-UHFFFAOYSA-N 0.000 claims description 6
- HZVDYSVTUQSGSN-UHFFFAOYSA-N N-boranyl-N-cyclohexylcyclohexanamine Chemical group C1CCCCC1N(B)C1CCCCC1 HZVDYSVTUQSGSN-UHFFFAOYSA-N 0.000 claims description 4
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 4
- 238000005658 halogenation reaction Methods 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 150000002390 heteroarenes Chemical class 0.000 claims description 4
- 238000005809 transesterification reaction Methods 0.000 claims description 4
- 238000006964 Chan-Lam coupling reaction Methods 0.000 claims description 3
- 238000005990 Petasis reaction Methods 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 3
- 238000006161 Suzuki-Miyaura coupling reaction Methods 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 2
- 125000004366 heterocycloalkenyl group Chemical group 0.000 claims description 2
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 125000002355 alkine group Chemical group 0.000 abstract 1
- 230000008569 process Effects 0.000 description 35
- 239000000543 intermediate Substances 0.000 description 32
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- 238000006197 hydroboration reaction Methods 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000012429 reaction media Substances 0.000 description 9
- 150000001336 alkenes Chemical class 0.000 description 8
- 230000001747 exhibiting effect Effects 0.000 description 8
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 7
- 239000000741 silica gel Substances 0.000 description 7
- 229910002027 silica gel Inorganic materials 0.000 description 7
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 238000006140 methanolysis reaction Methods 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 6
- 229940117969 neopentyl glycol Drugs 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- KKAXNAVSOBXHTE-UHFFFAOYSA-N boranamine Chemical class NB KKAXNAVSOBXHTE-UHFFFAOYSA-N 0.000 description 5
- 229960004132 diethyl ether Drugs 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- ITQYPUFOGQVEHR-UHFFFAOYSA-N boron;n-propan-2-ylpropan-2-amine Chemical compound [B].CC(C)NC(C)C ITQYPUFOGQVEHR-UHFFFAOYSA-N 0.000 description 4
- 230000031709 bromination Effects 0.000 description 4
- 238000005893 bromination reaction Methods 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 150000001638 boron Chemical class 0.000 description 3
- ZDQWVKDDJDIVAL-UHFFFAOYSA-N catecholborane Chemical compound C1=CC=C2O[B]OC2=C1 ZDQWVKDDJDIVAL-UHFFFAOYSA-N 0.000 description 3
- 239000007806 chemical reaction intermediate Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- ZYCMDWDFIQDPLP-UHFFFAOYSA-N hbr bromine Chemical compound Br.Br ZYCMDWDFIQDPLP-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 125000002734 organomagnesium group Chemical group 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- COERJHDMQUPDCV-UHFFFAOYSA-N [K].FB(F)F Chemical compound [K].FB(F)F COERJHDMQUPDCV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- NIXOIRLDFIPNLJ-UHFFFAOYSA-M magnesium;benzene;bromide Chemical compound [Mg+2].[Br-].C1=CC=[C-]C=C1 NIXOIRLDFIPNLJ-UHFFFAOYSA-M 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- LZPWAYBEOJRFAX-UHFFFAOYSA-N 4,4,5,5-tetramethyl-1,3,2$l^{2}-dioxaborolane Chemical compound CC1(C)O[B]OC1(C)C LZPWAYBEOJRFAX-UHFFFAOYSA-N 0.000 description 1
- ZFCVRAIVFDZEKV-UHFFFAOYSA-N B.C1CCC(CC1)NC1CCCCC1 Chemical compound B.C1CCC(CC1)NC1CCCCC1 ZFCVRAIVFDZEKV-UHFFFAOYSA-N 0.000 description 1
- DRSHXJFUUPIBHX-UHFFFAOYSA-N COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 Chemical compound COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 DRSHXJFUUPIBHX-UHFFFAOYSA-N 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- YNVGQYHLRCDXFQ-XGXHKTLJSA-N Lynestrenol Chemical compound C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 YNVGQYHLRCDXFQ-XGXHKTLJSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- QDEOKXOYHYUKMS-UHFFFAOYSA-N but-3-ynylbenzene Chemical compound C#CCCC1=CC=CC=C1 QDEOKXOYHYUKMS-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- AFMVESZOYKHDBJ-UHFFFAOYSA-N fluoren-9-ol Chemical compound C1=CC=C2C(O)C3=CC=CC=C3C2=C1 AFMVESZOYKHDBJ-UHFFFAOYSA-N 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000007242 hydrozirconation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000012035 limiting reagent Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229960001910 lynestrenol Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006362 organocatalysis Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0803—Compounds with Si-C or Si-Si linkages
- C07F7/081—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/025—Boronic and borinic acid compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J51/00—Normal steroids with unmodified cyclopenta(a)hydrophenanthrene skeleton not provided for in groups C07J1/00 - C07J43/00
Definitions
- the present invention relates to a process for preparing alkenylaminoboranes and their derivatives, and their uses.
- Alkenylaminoboranes are compounds exhibiting both the peculiarities of alkenylboranes and aminoboranes.
- Alkenylboranes are versatile synthetic intermediates which find application in numerous organic synthesis strategies. They are in particular of great interest as synthesis intermediates, in particular in post-functionalization steps (halogenation, cross-coupling) allowing the introduction of chemical functions useful for obtaining natural or biological products. Vinyl units are indeed very present in many molecules of biological interest. The stereoselective synthesis of these compounds is in particular very important because it conditions the properties of the molecules.
- 1-Alkenylboronates can be obtained by hydroboration of terminal alkynes.
- the hydroboration reaction of terminal alkynes consists of the addition of a boron-hydrogen bond to the triple bond giving rise to the corresponding alkenylborane.
- the hydroboration of alkynes can be done without a catalyst but requires the use of specific boranes such as dialkoxyboranes, catecholborane or pinalcolborane.
- these reagents are expensive and / or unstable.
- Catecholborane for example, exhibits great instability in air and moisture and requires purification steps before use.
- the reaction with cathecholborane leads to by-products and the relative instability of the catechol alkenylboronates obtained necessitates an additional transformation into more stable boron esters.
- the stereoselectivity of uncatalyzed hydroboration is not general, a mixture of regioisomers can be obtained.
- the hydroboration of alkynes can be catalyzed by transition metals, or it can be carried out by heterogeneous catalysis or organocatalysis.
- the hydroboration of alkynes catalyzed by transition metals has mainly been studied with pinacolborane and catecholborane, expensive reagents.
- the hydroboration reaction is stereospecific and the formation of (E) isomers is favored.
- a method of obtaining alkenylboranes catalyzed by a transition metal is described in document (WO2006 / 132896), but it implements the addition of a dialkoxyborane and does not make it possible to obtain alkenylaminoborane.
- a method for obtaining known aminoboranes is that described in patent EP 1 458 729.
- the method described in this patent comprises the reaction between diisopropylaminoborane (DIPOB) of formula (iPr) 2 NBH 2 and a compound of formula AX, wherein A may be a vinyl group and X is a halogenated leaving group, in the presence of a palladium catalyst.
- DIPOB diisopropylaminoborane
- iPr formula
- AX is a halogenated leaving group
- One aspect of the present invention is a process for preparing alkenylaminoboranes by hydroboration of a terminal alkyne in the presence of an aminoborane and a specific catalyst.
- alkenylaminoborane as an intermediate compound for the preparation of various families of boron derivatives, such as alkenyldiaminoboranes, alkenyldialkoxyboranes or alkenylfluoroborates.
- Another aspect of the present invention is the use of alkenylaminoboranes and derivative families obtained from alkenylaminoboranes, as reaction intermediates for coupling or multistage syntheses.
- Another aspect of the present invention is the use of an alkenylaminoborane as an intermediate for the stereoselective preparation of bromoalkenes.
- the inventors have shown that it is possible to prepare alkenylaminoboranes by contacting a terminal alkyne and an aminoborane in the presence of a specific catalyst.
- alkenyl or alkynyl group of 2 to 18 carbon atoms linear or branched, optionally carrying at least one substituent
- aryl group of 2 to 12 carbon atoms where the aryl is chosen from the group of aromatics or heteroaromatics, optionally carrying at least one substituent
- alkyl aryl group an alkyl aryl group, where the aryl is chosen from the group of aromatics or heteroaromatics, optionally carrying at least one substituent,
- halogen chosen from F, Cl, Br, and I
- R a , R , R c and R d which may be identical or different, represent H, Cl, alkyl, alkenyl, linear or branched alkynyl, cycloalkyl, cycloalkenyl, aryl, in particular phenyl, or aromatic or non-aromatic heterocyclic groups of 1 to 18 carbon atoms, optionally bearing at least one substituent, where said substituents are chosen from:
- R 1 is a group chosen from isopropyl and cyclohexyl, n is an integer from 1 to 3, comprising the contacting, preferably in a single synthetic step: of a terminal alkyne, of the following formula: R having the meanings indicated above, of an aminoborane of formula BH 2 -N (R I ) 2, and of a catalyst chosen from: Schwartz's reagent (Cp 2 ZrHCl), dicyclohexylborane (HBCy), diisopinocamphenylborane (HBipc2), 9-borabicyclo (3.3.1) nonane (9-BBN).
- a catalyst chosen from: Schwartz's reagent (Cp 2 ZrHCl), dicyclohexylborane (HBCy), diisopinocamphenylborane (HBipc2), 9-borabicyclo (3.3.1) nonane (9-BBN).
- formula (I) it is understood that when n
- R is a C1 alkyl group, that is to say that R has a carbon atom: R is a -CH 3 group if n is equal to 1, R is a -CH 2 group - if n is equal to 2 and R is a -CH- group if n is equal to 3.
- R is a C2 alkynyl group
- R is a CHoC- group if n is equal to 1
- R is a -CoC- group if is equal to 2
- the valence n cannot be equal to 3 because the R group does not cannot carry three alkenylaminoborane functions.
- the alkenylaminoborane function can:
- R a cannot be H or Cl .
- the invention relates to a process for preparing an alkenylaminoborane of formula (I) in which n is equal to 1, R is a silyl group -SiR a R b R c, in particular R a , R b and R c, which are identical or different, are chosen from H, Cl atoms, alkyl groups with 1 to 18 carbon atoms or phenyls,
- Ri and R 2 are identical, and have the following formula (1-1-1):
- the aminoborane of formula BH 2 -N (R I ) 2 is preferably chosen from diisopropylaminoborane (DIPOB) and dicyclohexylaminoborane (DICOB).
- DIPOB diisopropylaminoborane
- DICOB dicyclohexylaminoborane
- the steric hindrance provided by the two isopropyl or cyclohexyl substituents prevents, by their arrangement and their volume, the approach of a reagent to the amine function.
- DIPOB and DICOB exhibit steric hindrance limiting access to the nitrogen atom, thus making the nitrogen atom not very reactive.
- These two aminoborans DIPOB and DICOB are in particular inexpensive.
- the specific catalysts used for the hydroboration of the alkyne by an aminoborane are chosen from Schwartz's reagent (Cp 2 ZrHCI), dicyclohexylborane (HBCy), diisopinocamphenylborane (HBipc2) and 9-borabicyclo (3.3.1) nonane (9-BBN). These molecules have the following structures:
- the process for forming alkenylaminoboranes of formula (I) according to the present invention can be carried out in a single synthesis step, ie a so-called one-pot procedure.
- the use of low-cost raw materials (alkyne, aminoboranes or amine-borane complexes) is advantageous in particular for carrying out the reaction on an industrial scale.
- the process for forming alkenylaminoboranes of formula (I) according to the present invention is stereospecific and forms isomers (E).
- the process is carried out in the absence of an additive to promote the stereoselectivity of the reaction.
- the method according to the invention advantageously makes it possible to dispense with the use in the medium of an additive such as an amine to promote stereoselectivity.
- the catalyst alone is capable of reacting the alkyne and the borane to form only (E) isomers.
- the process is performed in the absence of a base.
- the method according to the invention advantageously makes it possible to dispense with the use in the medium of an additional base which can promote the formation of uncontrolled secondary products.
- the catalyst alone is capable of reacting the alkyne and the borane.
- the process according to the invention does not require the addition of a base such as triethylamine (Et 3 N), unlike reactions using a transition metal complex as catalyst.
- n is equal to 1, 2 or 3, preferably n is equal to 1.
- the invention relates to a process for preparing an alkenylaminoborane of formula (I), in which the process is carried out at a temperature ranging from 20 ° C to 80 ° C, preferably at 70 ° C. .
- reaction temperature When the reaction temperature is higher than room temperature, the reaction is carried out with an amount of catalyst less than that used for a reaction carried out at room temperature.
- ambient temperature is meant temperatures of 10 ° C to 40 ° C, in particular of the order of 20 ° C to 30 ° C.
- reaction temperature is above 80 ° C.
- impurities such as boron-free alkenes obtained from photodeborylation.
- the invention relates to a process for preparing an alkenylaminoborane of formula (I), in which the catalyst is the Schwartz reagent of formula (C 5 H 5 ) 2 ZrHCl or Cp 2 ZrHCl. In one embodiment, the invention relates to a process for preparing an alkenylaminoborane of formula (I), in which the catalyst is used in an amount ranging from 0.5% to 20%, in particular from 1% to 12% , preferably 12%. The amounts are expressed as a molar percentage relative to the limiting reagent.
- the process is carried out in less than 24 hours, preferably in less than an hour.
- the process according to the invention is carried out in a solvent, in particular an aprotic solvent, preferably chosen from N, N-Dimethylformamide (DMF), tetrahydrofuran (THF), methylterbutylether (MTBE) , diethylether (Et 2 0), benzene, toluene, xylene, dioxane, or mixtures thereof, in particular MTBE or THF.
- a solvent in particular an aprotic solvent, preferably chosen from N, N-Dimethylformamide (DMF), tetrahydrofuran (THF), methylterbutylether (MTBE) , diethylether (Et 2 0), benzene, toluene, xylene, dioxane, or mixtures thereof, in particular MTBE or THF.
- aprotic solvent preferably chosen from N, N-Dimethylformamide (DMF), tetrahydrofuran (THF),
- MTBE and THF with a respective boiling point of 66 ° C and 55 ° C used as solvent in the process of the invention, make it possible to isolate alkenylaminoboranes of formula (I) having a boiling point greater than 70 ° C by proceeding by evaporation of the solvent, for example using a rotary evaporator.
- the invention relates to a process in which the degree of conversion of the alkyne to alkenylaminoborane is greater than 80%, preferably greater than 97%.
- the yield of the process for preparing the alkenylaminoborane of formula (I) according to the invention is quantitative.
- conversion rate is understood to mean the level of terminal alkyne which has reacted during the process. This level can be determined by analyzing the final product obtained by 1 H NMR. The comparison of the signal of the propargyl proton, on which the hydroboration reaction is carried out, with that of the other protons of the alkyne serving as a reference, makes it possible to evaluate the quantity of alkyne having reacted during the process according to the invention .
- the alkenylaminoborane of formula (I) obtained according to the process of the invention does not require an additional purification step because the purity of the product obtained is greater than 90%, in particular greater than 91%, 92% , 93%, 94%, 95%, 96%, 97%, 98% or 99%.
- the alkenylaminoborane is obtained with a purity allowing other reactions to be carried out directly in the same reaction medium in order to obtain other families of boron derivatives.
- the alkenylaminoborane of formula (I) can be isolated by simple filtration of the reaction medium through kielselghur or through diatomaceous earth, preferably over Celite®, using an eluent.
- the term "purification step” means any step subsequent to the synthesis step making it possible to increase the purity of the product.
- a purification step mention may be made of liquid chromatography, high performance liquid chromatography, recrystallization or distillation.
- the step of filtering the mixture for example over kielselghur or diatomaceous earth, and evaporating the solvent.
- the alkenylaminoborane of formula (I) can be isolated in the form of a liquid or a solid with a product purity greater than 90%, in particular greater than 91%, 92%, 93%, 94%, 95%, 96%. , 97%, 98% or 99%.
- the aminoborane used in the process of the invention can be obtained commercially or synthetically. It can also be generated from an amine-borane complex during the hydroboration reaction.
- the invention relates to a process for preparing an alkenylaminoborane of formula (I) in which the aminoborane of formula BH 2 -N (R I ) 2 is formed in situ by a dehydrogenation reaction of 'an amine-borane complex of formula H 3 B ⁇ - NH (R I ) 2 , preferably during a single synthesis step.
- the dehydrogenation reaction of the amine-borane H 3 B ⁇ - NH (R I ) 2 is carried out using an organomagnesium agent.
- amine-borane complex of formula H 3 B ⁇ - NH (R I ) 2 is understood to mean a compound comprising a BH 3 group in which the vacant p orbital is filled by the pair of electrons of an amine NH (R I ) 2 .
- DIPAB diisopropylamine-borane
- DICAB dicyclohexylamine-borane
- the term “formed in situ” is understood to mean the fact that the aminoborane is formed directly during the implementation of the process by mixing the amine-borane complex and an organomagnesium agent, for example, during the reaction of hydroborylation.
- the process of the invention can thus be carried out in a single simultaneous step of formation of the aminoborane and of hydroborylation of the alkyne.
- an organomagnesium agent is used for the in situ generation of the aminoborane from the amine-borane complex and is a Grignard reagent, preferably PhMgBr or CH 3 MgBr.
- Amine-borane complexes are known for their stability towards water, air and light. They are relatively simple to produce and can be stored over the long term. It is thus possible to select amine-borane complexes, some of which are more chemically stable and / or commercially available than their aminoborane counterparts.
- the object of the process is the preparation of an alkenylaminoborane of formula (I), in which formula (I) corresponds to one of the following structures:
- Another object of the invention is the use of a terminal alkyne, of diisopropylaminoborane (DIPOB) or of dicyclohexylaminoborane (DICOB) and of a catalyst chosen from Schwartz's reagent (Cp 2 ZrHCI), dicyclohexylborane (HBCy) , diisopinocamphenylborane (HBipc2), 9-borabicyclo (3.3.1) nonane (9-BBN), for the implementation of a process for preparing an alkenylaminoborane of formula (I) according to the invention.
- DIPOB diisopropylaminoborane
- DIOB dicyclohexylaminoborane
- a catalyst chosen from Schwartz's reagent (Cp 2 ZrHCI
- Another object of the invention is the use of diisopropylaminoborane (DIPOB) or dicyclohexylaminoborane (DICOB) for carrying out a process for preparing an alkenylaminoborane of formula (I) according to the invention.
- DIPOB diisopropylaminoborane
- DIOB dicyclohexylaminoborane
- Another object of the invention is the use of a catalyst chosen from Schwartz's reagent (Cp 2 ZrHCI), dicyclohexylborane (HBCy), diisopinocamphenylborane (HBipc2), 9-borabicyclo (3.3.1) nonane ( 9-BBN), for the implementation of a process for preparing an alkenylaminoborane of formula (I) according to the invention.
- a catalyst chosen from Schwartz's reagent (Cp 2 ZrHCI), dicyclohexylborane (HBCy), diisopinocamphenylborane (HBipc2), 9-borabicyclo (3.3.1) nonane ( 9-BBN), for the implementation of a process for preparing an alkenylaminoborane of formula (I) according to the invention.
- Another subject of the invention is the use of Schwartz's reagent (Cp 2 ZrHCl), for the implementation of a process for preparing an alkenylaminoborane of formula (I) according to the invention.
- a reaction mechanism is proposed according to the scheme below for a process for preparing an alkenylaminoborane of formula (I) using DIPOB and Schwartz's reagent.
- a step of hydrozirconation of the alkyne by the reagent of Schwartz takes place. It is followed by the addition of the DIPOB. The addition is made with retention of configuration.
- the zirconium diisopropylaminoborohydride thus formed can then release a hydride in the medium to form the alkenylaminoborane of formula (I).
- the hydride is immediately captured by the positively charged zirconium derivative.
- the Schwartz reagent is thus regenerated and the catalytic cycle is initiated.
- the invention also relates to the use of an alkenylaminoborane of formula (I) prepared according to the process of the invention for the preparation of one of the compounds of following formulas (II), (III) or (IV): in which R and n have the meanings indicated above, R 2 , R 3 , R 4 , and R 5 , are identical or different and represent hydrogens, alkyl groups, alkenyls, linear or branched alkynyls, cycloalkyls, cycloalkenyls, aryls, or aromatic or non-aromatic heterocyclics, from 1 to 18 carbon atoms, optionally carrying at least one substituent, where said substituents are chosen from alkyl groups of 1 to 18 carbon atoms, linear, branched or cyclic, and halogens F, Cl, Br and I, where R 2 and R 3 can be linked together to form a ring.
- Another object of the present invention relates to a process for preparing an alkenyldiaminoborane compound of formula (II): in which
- R and n have the meanings indicated above,
- R 2 , R 3 , R 4 , and R 5 have the meanings indicated above, comprising the following steps: a) a step of preparing an alkenylaminoborane of formula (I) according to the invention, b) a step of alcoholysis by an alcohol R'-OH of the alkenylaminoborane of formula (I) into an intermediate alkenylboronate of formula ( lM):
- (lM) in particular the alcohol R'-OH is chosen from MeOH, EtOH, PrOH or iPrOH, c) a step of substitution of the R'O alkoxyl groups of the compound of formula (lM) by an amino group comprising the groups R 2 , R 3 , R 4 and R 5 where R 2 , R 3 , R 4 , and R 5 have the meanings indicated above, making it possible to obtain the compound of formula (II), d) optionally a purification step .
- steps a), b) and c) are carried out in one-pot.
- the alcohol used in alcoholysis step b) is methanol.
- the alcoholysis is advantageously carried out using 3 equivalents of alcohol molecule per alkenylaminoborane function.
- the methanolysis is carried out at low temperature (-40 ° C) by adding to the reaction medium 3 equivalents of methanol molecule per alkenylaminoborane function.
- the amino group is a diamine containing the groups R 2 , R 3 , R 4 and R 5.
- the amino group is advantageously bidentate and the groups R 2 and R 3 are linked together to form a ring.
- the invention relates to a process for preparing alkenyldiaminoborane compounds of formula (II), wherein said amino group is diaminonaphthalene of following formula:
- step c) of substitution of the alkoxyl groups with diaminonaphthalene (dan) is carried out in the presence of FeCl 3 and imidazole in a mixture of MeCN: H 2 0 (1: 1) solvents at temperature (AT) for 4 hours.
- Another object of the present invention relates to a process for preparing an alkenylboronate compound of formula (III): in which
- R and n have the meanings indicated above,
- R 2 and R 3 have the meanings indicated above, comprising the following steps: a) a step of preparing an alkenylaminoborane of formula (I) according to the invention; b) a step of alcoholysis with an alcohol R'-OH of the alkenylaminoborane of formula (I) into an intermediate alkenylboronate of formula (1M):
- (1M) in particular the alcohol is chosen from MeOH, EtOH, PrOH or iPrOH; c) a stage of substitution of the R'O alkoxyl groups of the compound of formula (1M) by an alcohol or diol comprising groups R 2 and R 3 , in particular by a transesterification reaction; d) optionally a purification step; preferably steps a), b) and c) are carried out in one-pot.
- the alcohol used in alcoholysis step b) is methanol.
- the alcoholysis is advantageously carried out using 3 equivalents of alcohol molecule per alkenylaminoborane function.
- a diol containing the R 2 , R 3 groups is used during substitution step c) .
- the diol group is advantageously bidentate and the R 2 and R 3 groups are linked together to form a ring.
- the substitution of the alkoxyl groups is carried out by a transesterification reaction.
- the transesterification is carried out by adding to the reaction medium the alcohol or the diol in diethyl ether at -40 ° C. and the solution is brought from -40 ° C. to room temperature.
- the invention relates to a process for preparing an alkenylboronate compound of formula (III), in which said diol used is pinacol or neopentylgycol.
- the process for preparing an alkenylboronate compound of formula (III), in which said diol used is pinacol or neopentylgycol does not require a step of purification of the final product.
- Another subject of the invention relates to a process for preparing an alkenylfluoroborate compound of formula (IV): in which
- R and n have the meanings indicated above, comprising the following steps: a) a step of preparing an alkenylaminoborane of formula (I) according to the invention; b) a step of alcoholysis with an alcohol R'-OH of the alkenylaminoborane of formula (I) into an intermediate alkenylboronate of formula (1M):
- (1M) in particular the alcohol R'-OH is chosen from MeOH, EtOH, PrOH or iPrOH; b) a stage of substitution of the R'O alkoxyl groups of the compound of formula (1M) by a fluorinated group, in particular carried out by bringing into contact with KHF 2 ; d) optionally a purification step; preferably steps a), b) and c) are carried out in one-pot.
- the alcohol used in alcoholysis step b) is methanol.
- the alcoholysis is advantageously carried out using 3 equivalents of alcohol molecule per alkenylaminoborane function.
- step c) of transformation of the intermediate alkenylboronate of formula (1M) into potassium trifluoroborate salt by substitution of the alkoxyl groups is carried out by adding to the reaction medium a solution of KHF 2 prepared in methanol at -40 ° C and the mixture is brought from -40 ° C to room temperature (AT).
- the object of the process is the preparation of one of the compounds of formulas (II), (III) or (IV), corresponding to one of the following structures: eo where Bdan represents i where Bpin represents: where Bneo represents i
- Another subject of the invention is the use of the compounds of formulas (I), (II), (III) or (IV) prepared according to one of the processes of the invention, as reaction intermediate compounds, in particular for the implementation of stereoselective, multistage or coupling syntheses, in particular for SuzukhMiyaura, Chan-Lam, Petasis and halogenation reactions.
- Another object of the invention is the use of the process according to the invention for carrying out the preparation of the compounds of formulas (I), (II), (III) or (IV), as reaction intermediate compounds , in particular for the implementation of stereoselective, multistage or coupling syntheses, in particular for Suzuki-Miyaura, Chan-Lam, Petasis and halogenation reactions.
- the invention also relates to the use of an alkenylaminoborane of formula (I) for carrying out a stereoselective synthesis of bromoalkenes (Z) or (E).
- the invention also relates to the use of an alkenylaminoborane of formula (I) prepared according to the process of the invention for the implementation of a stereoselective synthesis of bromoalkenes (Z) or (E ).
- Another object of the present invention relates to a process for the stereoselective preparation of the bromoalkenes (Z) or (E) of the following formulas: in which R and n have the meanings indicated above, comprising the following steps: a) a step of alcoholysis with an alcohol R'-OH of an alkenylaminoborane of formula (I) into an intermediate alkenylboronate of formula (1M) :
- (1M) R'OH being in particular chosen from MeOH, EtOH, PrOH or iPrOH; b) a step of bromination of the intermediate alkenylboronate of formula (1M) in the presence of CuBr 2 , in order to obtain mainly the bromoalkene (E); c) optionally a step of purification of the bromoalkene (E) obtained, preferably on silica gel; to obtain mainly the isomer (E); or else: a) a step of adding dibroma Br 2 to an alkenylaminoborane of formula (I) to form an anti-addition of Br 2 to the alkene function of alkenylaminoborane and lead to a dibromoalkane via a bromonium bromonium, b) a step of anti-elimination of the aminoborane function and of a bromide of said dibromoalkane, preferably by adding a strong alkoxide base (R ”
- “predominantly” means an isomer level (isomer yield) greater than or equal to 50%, preferably greater than or equal to 70%, even more preferably greater than or equal to 90%.
- Another object of the present invention relates to a process for the stereoselective preparation of the bromoalkenes (Z) or (E) of the following formulas: in which R and n have the meanings indicated above, comprising the following steps: a) a step of preparing an alkenylaminoborane of formula (I) according to the invention; b) a step of alcoholysis with an alcohol R'-OH of the alkenylaminoborane of formula (I) into an intermediate alkenylboronate of formula (1M):
- steps a), b) and c) are carried out in one-pot for the two sequences.
- the alcoholysis step leading to the alkenylboronate of formula (1M) is carried out by adding 3 equivalents of methanol molecule per alkenylaminoborane function and carrying the reaction medium at -78 ° C for one hour.
- the step of bromination by electrophilic trapping of the alkenylboronate of formula (1M) is carried out by adding CuBr 2 in a THF: H 2 0 mixture. (1: 1) and bringing the reaction medium to 70 ° C for 16 hours.
- the step of adding anti Br 2 to the alkene function, forming the dibromoalkane via a bromonium bromonium is carried out by introducing the dibromium Br 2 in solution in MTBE at 0 ° C and maintaining the reaction medium at 0 ° C for one hour.
- the anti elimination step is carried out by adding MeONa at 0 ° C and maintaining the reaction medium at 0 ° C for 2 hours.
- the invention also relates to the use of an alkenylaminoborane of formula (I) prepared according to the process of the invention for carrying out a stereoselective synthesis of haloalkenes.
- the invention also relates to the use of an alkenylaminoborane of formula (I) prepared according to the process of the invention for carrying out a stereoselective synthesis of alkenes.
- alkenylaminoboranes of formula (I) are prepared according to the following scheme:
- the conversion relates to the disappearance of the alkyne.
- the conversion rate is determined using the 1 H NMR signals by comparison between the signals of the protons of the alkyne not brought into play during the reaction which serve as a reference and the signal of the propargyl proton.
- a total conversion of 100% corresponds to the total disappearance of the quantity of starting alkyne introduced, indicating that all the alkynes have been transformed during the process.
- the alkenyldiaminoboranes are prepared according to the following scheme:
- the alkenylaminoborane of formula (I) is prepared according to Example 1 then:
- the intermediate is subjected to a substitution of the methoxyl groups by diaminonaphthalene (dan) in the presence of FeCl 3 and imidazole in a mixture of MeCN: H 2 0 solvents (1: 1) at room temperature (AT) for 4h.
- methanolysis (3 equiv.) Is carried out at low temperature (-40 ° C), for 1 h, to form the intermediate methyl alkenylboronate; 2. the intermediate is transesterified by adding a solution of pinacol in diethyl ether at -40 ° C, the solution being brought from -40 ° C to room temperature (AT), for 4 h: the methoxyl groups are substituted by pinacol (pine).
- a methanolysis (3 equiv.) Is carried out at low temperature (-40 ° C), for 1 h, in order to form the intermediate methyl alkenylboronate; 2.the intermediate is transesterified to allow the substitution of the methoxyl groups by neopentylglycol (neo): the neopentylglycol is added in solution in diethyl ether at -40 ° C and the solution is brought from -40 ° C to room temperature (TA), for 4 hours. Tests have been carried out with several terminal alkynes exhibiting different R groups. The results of the conversion rate of the alkynes and the yield after washing of the products without a purification step are reported in Table 4.
- a methanolysis (3 equiv.) Is carried out at low temperature (-40 ° C), for 1 h, in order to form the intermediate methyl alkenylboronate; 2. the intermediate methyl alkenylboronate is converted into a potassium trifluoroborate salt by substitution of the methoxyl groups, in the presence of a solution of KHF 2 prepared in methanol at -40 ° C; the solution is brought from -40 ° C. to ambient temperature (AT) for 4 h.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
La présente invention concerne un procédé de préparation d'alcénylaminoboranes et de leurs dérivés, et leurs utilisations. Le procédé de préparation d'alcénylaminoboranes comprend la mise en contact, de préférence en une étape de synthèse unique, d'un alcyne terminal, d'un aminoborane et d'un catalyseur choisi parmi le réactif de Schwartz (Cp2ZrHCl), le dicyclohexylborane (HBCy), le diisopinocamphenylborane (HBipc2) et le 9-borabicyclo(3.3.1)nonane (9-BBN).
Description
DESCRIPTION
Titre : Procédé de préparation d’alcénylaminoboranes et de leurs dérivés, et leurs utilisations
La présente invention concerne un procédé de préparation d’alcénylaminoboranes et de leurs dérivés, et leurs utilisations.
Les alcénylaminoboranes sont des composés présentant à la fois les particularités des alcénylboranes et des aminoboranes.
Les alcénylboranes sont des intermédiaires synthétiques polyvalents qui trouvent application dans de nombreuses stratégies de synthèses organiques. Ils présentent notamment un grand intérêt en tant qu’intermédiaires de synthèse notamment dans des étapes de post- fonctionnalisation (halogénation, couplages croisés) permettant l’introduction de fonctions chimiques utiles pour l’obtention de produits naturels ou biologiques. Les motifs vinyliques sont en effet très présents dans de nombreuses molécules d’intérêt biologique. La synthèse stéréosélective de ces composés est notamment très importante car elle conditionne les propriétés des molécules.
Les 1-alcénylboronates peuvent être obtenus par l’hydroboration d’alcynes terminaux. La réaction d’hydroboration des alcynes terminaux consiste en l’addition d’une liaison bore- hydrogène sur la liaison triple donnant lieu à l’alcénylborane correspondant.
L’hydroboration des alcynes peut se faire sans catalyseur mais nécessite l’utilisation de boranes spécifiques tels que les dialkoxyboranes, le catécholborane ou le pinalcolborane. Cependant ces réactifs sont onéreux et/ou instables. Le catécholborane, par exemple, présente une grande instabilité à l’air et à l’humidité et nécessite des étapes de purification avant utilisation. De plus, la réaction avec le cathécholborane conduit à des sous-produits et la relative instabilité des alcénylboronates de catéchol obtenus nécessite une transformation supplémentaire en esters de bore plus stables. En outre, la stéréosélectivité de l’hydroboration non catalysée n’est pas générale, un mélange de régioisomères peut être obtenu.
L’hydroboration des alcynes peut être catalysée par des métaux de transition, ou elle peut être réalisée en catalyse hétérogène ou en organocatalyse. L’hydroboration des alcynes catalysée par des métaux de transition a majoritairement été étudiée avec le pinacolborane et le catécholborane, réactifs onéreux. La réaction d’hydroboration est stéréospécifique et la formation des isomères (E) est favorisée. Une méthode d’obtention des alcénylboranes
catalysée par un métal de transition est décrite dans le document (W02006/132896), mais elle met en œuvre l’addition d’un dialcoxyborane et ne permet pas d’obtenir l’alcénylaminoborane.
En outre, ces méthodes de préparation des alcénylboranes par hydroboration des alcynes ne sont pas entièrement satisfaisantes.
En particulier, il existe un besoin de disposer d’un procédé de préparation d’alcénylaminoboranes, permettant de s’affranchir de l’utilisation de réactifs onéreux requis par les procédés de l’art antérieur, ne nécessitant pas l’emploi de composés instables et permettant la préparation stéréosélective d’un alcénylaminoborane ou de l’un de ses dérivés dans un état stable, avec un rendement élevé et/ou une excellente pureté.
Une méthode d’obtention d’aminoboranes connue est celle décrite dans le brevet EP 1 458 729. La méthode décrite dans ce brevet comprend la réaction entre le diisopropylaminoborane (DIPOB) de formule (iPr)2NBH2 et un composé de formule A-X, dans laquelle A peut-être un groupe vinyle et X est un groupe partant halogéné, en présence d’un catalyseur au palladium. Le procédé décrit dans ce document met en œuvre une substitution du groupe X et ne s’effectue pas par hydroboration de la liaison triple d’un alcyne, la fonction vinyle portée par le groupe A n’étant pas réactive lors du procédé décrit.
Un aspect de la présente invention est un procédé de préparation d’alcénylaminoboranes par hydroboration d’un alcyne terminal en présence d’un aminoborane et d’un catalyseur spécifique.
Un autre aspect de la présente invention est l’utilisation d’un alcénylaminoborane comme composé intermédiaire pour la préparation de diverses familles de dérivés du bore, tels que les alcényldiaminoboranes, les alcényldialcoxyboranes ou les alcénylfluoroborates.
Un autre aspect de la présente invention est l’utilisation d’alcénylaminoboranes et des familles dérivées obtenues à partir d’alcénylaminoboranes, comme intermédiaires de réaction pour des synthèses par couplage ou multiétapes.
Un autre aspect de la présente invention est l’utilisation d’un alcénylaminoborane comme composé intermédiaire pour la préparation stéréosélective de bromoalcènes.
Les Inventeurs ont montré qu’il est possible de préparer des alcénylaminoboranes par mise en contact d’un alcyne terminal et d’un aminoborane en présence d’un catalyseur spécifique.
Ainsi, l’invention a pour objet un procédé de préparation d’un alcénylaminoborane de formule (I) suivante :
dans laquelle R est :
- un groupement alkyle de 1 à 18 atomes de carbone, linéaire ou ramifié, portant éventuellement au moins un substituant,
- un groupement alcényle ou alcynyle de 2 à 18 atomes de carbone, linéaire ou ramifié, portant éventuellement au moins un substituant,
- un groupement cycloalkyle ou cycloalcényle de 3 à 18 atomes de carbone, portant éventuellement au moins un substituant,
- un groupement hétérocycloalkyle ou hétérocycloalcényle, portant éventuellement au moins un substituant
- un groupement aryle de 2 à 12 atomes de carbone, où l’aryle est choisi dans le groupe des aromatiques ou des hétéroaromatiques, portant éventuellement au moins un substituant,
- un groupement alkyl aryle, où l’aryle est choisi dans le groupe des aromatiques ou des hétéroaromatiques, portant éventuellement au moins un substituant,
- un halogène choisi parmi F, Cl, Br, et I,
- un groupement silyle -SiRaRbRc , -RaSiR RcRd, -RaOSiRbRcRd,
- un groupement -ORa, -NHRa, -NRaR , -SRa, -CF3, -N02, -RaOR , -RaNHR , -RaNR Rc, - RaSRb dans lesquels Ra, R , Rc et Rd identiques ou différents représentent des atomes H, Cl, des groupements alkyles, alcényles, alcynyles linéaires ou ramifiés, cycloalkyles, cycloalcényles, aryles, notamment phényles, ou hétérocycliques aromatiques ou non aromatiques, de 1 à 18 atomes de carbone, portant éventuellement au moins un substituant, où lesdits substituants sont choisis parmi :
- les groupements alkyles de 1 à 18 atomes de carbone, linéaires, ramifiés ou cycliques,
- les halogènes F, Cl, Br et I,
- OH,
Ri est un groupement choisi parmi l’isopropyle, le cyclohexyle, n est entier de 1 à 3, comprenant la mise en contact, de préférence en une étape de synthèse unique: d’un alcyne terminal, de formule suivante :
R ayant les significations indiquées ci-dessus, d’un aminoborane de formule BH2-N(RI)2, et d’un catalyseur choisi parmi : le réactif de Schwartz (Cp2ZrHCI), le dicyclohexylborane (HBCy), le diisopinocamphenylborane (HBipc2), le 9-borabicyclo(3.3.1)nonane (9-BBN). Dans la formule (I), on comprend que lorsque n varie de 1 à 3, le groupement R présente une valence n de fonctions alcénylaminoboranes et les possibilités structurelles du groupement de R sont adaptées en conséquence.
Par exemple lorsque que R est un groupement alkyle en C1, c’est-à-dire que R présente un atome de carbone : R est un groupement -CH3 si n est égal 1 , R est un groupement -CH2- si n est égal à 2 et R est un groupement -CH- si n est égal à 3.
Lorsque R est un groupement alcényle en C2, c’est-à-dire que R présente 2 atomes de carbone : R est un groupement CH2=CH si n est égal 1, R est un groupement -CH=CH- si n est égal à 2 et R est un groupement -C=CH- si n est égal à 3.
Lorsque R est un groupement alcynyle en C2, R est un groupement CHºC- si n est égal 1, R est un groupement -CºC- si est égal à 2 et la valence n ne peut pas être égale à 3, car le groupement R ne peut pas porter trois fonctions alcénylaminoboranes.
Pour les groupements amines dans les variantes de R, la fonction alcénylaminoborane peut :
- être liée directement à l’atome N, par exemple dans le cas des groupements -NHRa et - NRaRb, -ou être liée par l’intermédiaire des groupements Ra, par exemple dans le cas des groupements -RaNHR et -RaNRbRc; où l’on comprend que Ra ne peut être H ou Cl.
Il en est de même pour les groupements variants de R comportant Si, O ou S.
Dans un mode de réalisation, l’invention concerne un procédé de préparation d’un alcénylaminoborane de formule (I) dans laquelle n est égal à 1,
R est un groupement silyle -SiRaRbRc, en particulier Ra, Rb et Rc identiques ou différents sont choisis parmi des atomes H, Cl, des groupements alkyles de 1 à 18 atomes de carbone ou phényles,
Ri et R2sont identiques, et présente la formule (1-1-1) suivante :
(1-1-1) dans laquelle R a les significations indiquées précédemment. L’aminoborane de formule BH2-N(RI)2 est choisi de préférence parmi le diisopropylaminoborane (DIPOB) et le dicyclohexylaminoborane (DICOB). L’encombrement stérique procuré par les deux substituants isopropyle ou cyclohexyle empêche, par leur disposition et leur volume, l’approche d’un réactif sur la fonction amine. Dit autrement, le DIPOB et le DICOB présentent un encombrement stérique limitant l’accès à l’atome d’azote, rendant ainsi l’atome d’azote peu réactif. Ces deux aminoboranes DIPOB et DICOB sont notamment peu onéreux.
Les catalyseurs spécifiques utilisés pour l’hydroboration de l’alcyne par un aminoborane sont choisis parmi le réactif de Schwartz (Cp2ZrHCI), le dicyclohexylborane (HBCy), le diisopinocamphenylborane (HBipc2) et le 9-borabicyclo(3.3.1)nonane (9-BBN). Ces molécules ont les structures suivantes :
Réactif de Schwartz Dicyclohexylborane 9-BBN Diisopinocamphenylborane
Le procédé de formation des alcénylaminoboranes de formule (I) selon la présente invention peut être effectué en une étape de synthèse unique, soit une procédure dite one-pot. L’utilisation de matières premières de faible coût (alcyne, les aminoboranes ou les complexes amine-boranes) est avantageuse notamment pour une mise en œuvre de la réaction à l’échelle industrielle.
Le procédé de formation des alcénylaminoboranes de formule (I) selon la présente invention est stéréospécifique et forme des isomères (E).
Dans un mode de réalisation, le procédé est effectué en l’absence d’un additif pour favoriser la stéréosélectivité de la réaction.
Le procédé selon l’invention permet avantageusement de s’affranchir de l’utilisation dans le milieu d’un additif tel qu’une amine pour favoriser la stéréosélectivité. Dans la présente invention, le catalyseur est capable à lui seul de faire réagir l’alcyne et le borane pour former uniquement des isomères (E).
Dans un mode de réalisation, le procédé est effectué en l’absence d’une base.
Le procédé selon l’invention permet avantageusement de s’affranchir de l’utilisation dans le milieu d’une base supplémentaire qui peut favoriser la formation de produits secondaires non contrôlés. Dans la présente invention, le catalyseur est capable à lui seul de faire réagir l’alcyne et le borane. Le procédé selon l’invention ne nécessite pas l’ajout d’une base telle que la triéthylamine (Et3N) contrairement aux réactions mettant en œuvre un complexe de métal de transition comme catalyseur.
Dans un autre mode de réalisation du procédé de l’invention, n est égal à 1, 2 ou 3, de préférence n est égal à 1.
Dans un mode de réalisation particulier, l’invention concerne un procédé de préparation d’un alcénylaminoborane de formule (I), dans lequel le procédé est effectué à une température allant de 20°C à 80°C, de préférence à 70°C.
Lorsque la température réactionnelle est supérieure à la température ambiante, la réaction est réalisée avec une quantité de catalyseur inférieure à celle utilisée pour une réaction réalisée à température ambiante. Par température ambiante, on entend des températures comprises de 10°C à 40°C, notamment de l’ordre de 20°C à 30°C.
Lorsque la température de réaction est supérieure à 80°C, les Inventeurs ont observé la présence d’impuretés telles que des alcènes exempt de bore issus de la photodéborylation.
Dans un mode de réalisation, l’invention concerne un procédé de préparation d’un alcénylaminoborane de formule (I), dans lequel le catalyseur est le réactif de Schwartz de formule (C5H5)2ZrHCI ou Cp2ZrHCI.
Dans un mode de réalisation, l’invention concerne un procédé de préparation d’un alcénylaminoborane de formule (I), dans lequel le catalyseur est utilisé en quantité allant de 0,5% à 20%, en particulier de 1% à 12%, de préférence 12%. Les quantités sont exprimées en pourcentage molaire par rapport au réactif limitant.
Avantageusement, dans un mode de réalisation, le procédé est réalisé en moins de 24h, de préférence en moins d’une heure.
Selon un mode de réalisation avantageux, le procédé selon l’invention est réalisé dans un solvant, en particulier un solvant aprotique, de préférence choisi parmi le N,N- Diméthylformamide (DMF), le tétrahydrofurane (THF), le méthylterbutylether (MTBE), le diethylether (Et20), le benzène, le toluène, le xylène, le dioxane, ou leurs mélanges, en particulier le MTBE ou le THF. Le procédé selon l’invention permet l’utilisation d’une gamme élargie de solvants. En effet, il peut être mis en œuvre avec des solvants utilisés usuellement en industrie. Le solvant peut ainsi être choisi pour des raisons de coût, de toxicité ou d’adaptation aux éventuelles autres étapes de synthèse.
Avantageusement le MTBE et le THF de température d’ébullition respective de 66°C et 55°C, utilisés comme solvant dans le procédé de l’invention permettent d’isoler des alcénylaminoboranes de formule (I) possédant une température d’ébullition supérieure à 70°C en procédant par évaporation du solvant, par exemple à l’aide d’un évaporateur rotatif.
Avantageusement, l’invention concerne un procédé dans lequel le taux de conversion de l’alcyne en alcénylaminoborane est supérieur à 80%, de préférence supérieur à 97%. En particulier, le rendement du procédé de préparation de l’alcénylaminoborane de formule (I) selon l’invention est quantitatif.
On entend par « taux de conversion », le taux d’alcyne terminal ayant réagi lors du procédé. Ce taux peut être déterminé en analysant par RMN 1H le produit final obtenu. La comparaison du signal du proton propargylique, sur lequel s’effectue la réaction d’hydroboration, avec celui des autres protons de l’alcyne servant de référence, permet d’évaluer la quantité d’alcyne ayant réagi lors du procédé selon l’invention.
Dans une variante, l’alcénylaminoborane de formule (I) obtenu selon le procédé de l’invention ne nécessite pas d’étape de purification supplémentaire car la pureté du produit obtenu est supérieure à 90%, en particulier supérieure à 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% ou à 99%.
Avantageusement, l’alcénylaminoborane est obtenu avec une pureté permettant de réaliser directement d’autres réactions dans le même milieu réactionnel afin d’obtenir d’autres familles de dérivés du bore.
L’alcénylaminoborane de formule (I) peut être isolé par simple filtration du milieu réactionnel sur kielselghur ou sur de la terre de diatomée, de préférence sur Celite®, en utilisant un éluant.
Par « étape de purification », on entend au sens de la présente invention toute étape consécutive à l’étape de synthèse permettant d’augmenter la pureté du produit. A titre d’exemple d’étape de purification, on peut citer la chromatographie liquide, la chromatographie liquide haute performance, la recristallisation ou la distillation. Ne sont pas comprises dans les étapes de purification, l’étape de filtration du mélange, par exemple sur kielselghur ou sur de la terre de diatomée, et d’évaporation du solvant.
Avantageusement, l’alcénylaminoborane de formule (I) peut être isolé sous forme de liquide ou solide avec une pureté du produit supérieure à 90%, en particulier supérieure à 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% ou à 99%.
L’aminoborane utilisé dans le procédé de l’invention peut être obtenu commercialement ou par synthèse. Il peut aussi être généré à partir d’un complexe amine-borane lors de la réaction d’hydroboration.
Dans un autre mode de réalisation, l’invention concerne un procédé de préparation d’un alcénylaminoborane de formule (I) dans lequel l’aminoborane de formule BH2-N(RI)2 est formé in situ par une réaction de déshydrogénation d’un complexe amine-borane de formule H3B<— NH(RI)2, de préférence lors d’une étape de synthèse unique. Par exemple, la réaction de déshydrogénation de l’amine-borane H3B<— NH(RI)2 est réalisée à l’aide d’un organomagnésien.
Au sens de la présente invention, on entend par « complexe amine-borane » de formule H3B<— NH(RI)2, un composé comprenant un groupe BH3 dont l’orbitale p vacante est remplie par la paire d’électrons d’une amine NH(RI)2. On peut citer, à titre d’exemple d’un complexe amine-borane, le diisopropylamine-borane (DIPAB) de formule H3B<— NH(iPr)2 ou le dicyclohexylamine-borane (DICAB) de formule H3B<— NH(Cy)2.
Au sens de la présente invention, on entend par « formé in situ » le fait que l’aminoborane est formé directement pendant la mise en œuvre du procédé en mélangeant le complexe amine-borane et un organomagnésien, par exemple, lors de la réaction d’hydroborylation. Le
procédé de l’invention peut ainsi s’effectuer en une seule étape simultanée de formation de l’aminoborane et d’hydroborylation de l’alcyne.
Dans un mode avantageux du procédé de l’invention, un organomagnésien est utilisé pour la génération in situ de l’aminoborane à partir du complexe amine-borane et est un réactif de Grignard, de préférence PhMgBr ou CH3MgBr.
Les complexes amine-boranes sont connus pour leur stabilité vis-à-vis de l’eau, de l’air et de la lumière. Ils sont relativement simples à produire et stockables durablement. Il est ainsi possible de sélectionner des complexes amine-boranes dont certains sont plus stables chimiquement et/ou disponibles commercialement que leurs homologues aminoboranes. De façon avantageuse, dans un autre mode de réalisation, le procédé a pour objet la préparation d’un alcénylaminoborane de formule (I), dans lequel la formule (I) répond à l’une des structures suivantes :
Un autre objet de l’invention est l’utilisation d’un alcyne terminal, du diisopropylaminoborane (DIPOB) ou du dicyclohexylaminoborane (DICOB) et d’un catalyseur choisi parmi le réactif de Schwartz (Cp2ZrHCI), le dicyclohexylborane (HBCy), le diisopinocamphenylborane (HBipc2), le 9-borabicyclo(3.3.1)nonane (9-BBN), pour la mise en œuvre d’un procédé de préparation d’un alcénylaminoborane de formule (I) selon l’invention.
Un autre objet de l’invention est l’utilisation du diisopropylaminoborane (DIPOB) ou du dicyclohexylaminoborane (DICOB) pour la mise en œuvre d’un procédé de préparation d’un alcénylaminoborane de formule (I) selon l’invention.
Un autre objet de l’invention est l’utilisation d’un catalyseur choisi parmi le réactif de Schwartz (Cp2ZrHCI), le dicyclohexylborane (HBCy), le diisopinocamphenylborane (HBipc2), le 9-borabicyclo(3.3.1)nonane (9-BBN), pour la mise en œuvre d’un procédé de préparation d’un alcénylaminoborane de formule (I) selon l’invention.
Un autre objet de l’invention est l’utilisation du réactif de Schwartz (Cp2ZrHCI), pour la mise en œuvre d’un procédé de préparation d’un alcénylaminoborane de formule (I) selon l’invention.
Sans être lié par la théorie, il est proposé un mécanisme réactionnel selon le schéma ci- dessous pour un procédé de préparation d’un alcénylaminoborane de formule (I) mettant en œuvre le DIPOB et le réactif de Schwartz.
Lors du procédé, une étape d’hydrozirconation de l’alcyne par le réactif de Schwartz ( syn - addition) a lieu. Elle est suivie d’addition du DIPOB. L’addition se fait avec rétention de
configuration. Le diisopropylaminoborohydrure de zirconium ainsi formé peut alors relâcher un hydrure dans le milieu pour former l’alcénylaminoborane de formule (I). L’hydrure est aussitôt capté par le dérivé zirconium chargé positivement. Le réactif de Schwartz est ainsi régénéré et le cycle catalytique est amorcé. L’invention concerne également l’utilisation d’un alcénylaminoborane de formule (I) préparé selon le procédé de l’invention pour la préparation de l’un des composés de formules (II), (III) ou (IV) suivantes :
dans lesquelles R et n ont les significations indiquées ci-dessus, R2, R3, R4, et R5, sont identiques ou différents et représentent des hydrogènes, des groupements alkyles, alcényles, alcynyles linéaires ou ramifiés, cycloalkyles, cycloalcényles, aryles, ou hétérocycliques aromatiques ou non aromatiques, de 1 à 18 atomes de carbone, portant éventuellement au moins un substituant, où lesdits substituants sont choisis parmi les groupements alkyles de 1 à 18 atomes de carbone, linéaires, ramifiés ou cycliques, et les halogènes F, Cl, Br et I, où R2et R3 pouvant être reliés pour former ensemble un cycle.
De préférence par la mise en œuvre d’un procédé en one-pot.
Un autre objet de la présente invention concerne un procédé de préparation d’un composé alcényldiaminoborane de formule (II) :
dans laquelle
R et n ont les significations indiquées ci-dessus,
R2, R3, R4, et R5 ont les significations indiquées ci-dessus, comprenant les étapes suivantes :
a) une étape de préparation d’un alcénylaminoborane de formule (I) selon l’invention, b) une étape d’alcoolyse par un alcool R’-OH de l’alcénylaminoborane de formule (I) en un alcénylboronate intermédiaire de formule (l-M):
(l-M) en particulier l’alcool R’-OH est choisi parmi MeOH, EtOH, PrOH ou iPrOH, c) une étape de substitution des groupements alcoxyle R’O du composé de formule (l-M) par un groupe aminé comprenant les groupements R2, R3, R4 et R5où R2, R3, R4, et R5 ont les significations indiquées ci-dessus, permettant d’obtenir le composé de formule (II), d) éventuellement une étape de purification.
De préférence les étapes a), b) et c) sont réalisées en one-pot.
De préférence, l’alcool utilisé dans l’étape b) d’alcoolyse est le méthanol. L’alcoolyse s’effectue avantageusement à l’aide de 3 équivalents de molécule d’alcool par fonction alcénylaminoborane. A titre d’exemple, la méthanolyse s’effectue à basse température (-40°C) par l’ajout dans le milieu réactionnel de 3 équivalents de molécule de méthanol par fonction alcénylaminoborane.
Dans un autre mode de réalisation, le groupe aminé est une diamine contenant les groupements R2, R3, R4 et R5. Le groupe aminé est avantageusement bidentate et les groupements R2 et R3 sont reliés pour former ensemble un cycle.
Dans un autre mode de réalisation, l’invention concerne un procédé de préparation des composés alcényldiaminoboranes de formule (II), dans lequel ledit groupe aminé est le diaminonaphtalène de formule suivante :
A titre d’exemple, l’étape c) de substitution des groupements alcoxyle par le diaminonaphtalène (dan) est réalisée en présence de FeCI3 et d’imidazole dans un mélange de solvants MeCN : H20 (1 : 1) à température ambiante (TA) pendant 4 heures.
Un autre objet de la présente invention concerne un procédé de préparation d’un composé alcénylboronate de formule (III) :
dans laquelle
R et n ont les significations indiquées ci-dessus,
R2 et R3 ont les significations indiquées ci-dessus, comprenant les étapes suivantes : a) une étape de préparation d’un alcénylaminoborane de formule (I) selon l’invention ; b) une étape d’alcoolyse par un alcool R’-OH de l’alcénylaminoborane de formule (I) en un alcénylboronate intermédiaire de formule (l-M):
(l-M) en particulier l’alcool est choisi parmi MeOH, EtOH, PrOH ou iPrOH ; c) une étape de substitution des groupements alcoxyle R’O du composé de formule (l-M) par un alcool ou diol comprenant des groupements R2et R3, en particulier par une réaction de transestérification ; d) éventuellement une étape de purification ; de préférence les étapes a), b) et c) sont réalisées en one-pot.
Avantageusement, l’alcool utilisé dans l’étape b) d’alcoolyse est le méthanol.
L’alcoolyse s’effectue avantageusement à l’aide de 3 équivalents de molécule d’alcool par fonction alcénylaminoborane.
Dans un autre mode de réalisation, un diol contenant les groupements R2, R3 est utilisé lors de l’étape c) de substitution. Le groupe diol est avantageusement bidentate et les groupements R2 et R3 sont reliés pour former ensemble un cycle.
Dans un mode de réalisation de l’invention particulier, la substitution des groupements alcoxyle est réalisée par une réaction de transestérification.
A titre d’exemple, la transestérification est réalisée en ajoutant dans le milieu réactionnel l’alcool ou le diol dans l’éther diéthylique à -40°C et la solution est portée de -40°C à température ambiante.
Dans un mode de réalisation particulier, l’invention concerne un procédé de préparation d’un composé alcénylboronate de formule (III), dans lequel ledit diol utilisé est le pinacol ou le néopentylgycol.
Avantageusement, le procédé de préparation d’un composé alcénylboronate de formule (III), dans lequel ledit diol utilisé est le pinacol ou le néopentylgycol ne nécessite pas d’étape de purification du produit final. Une simple étape de séchage par l’addition d’un agent desséchant, par exemple le Na2S04, puis une filtration et une concentration par évaporation du solvant, permet d’obtenir les produits purs.
Un autre objet de l’invention concerne un procédé de préparation d’un composé alcénylfluoroborate de formule (IV) :
dans laquelle
R et n ont les significations indiquées ci-dessus, comprenant les étapes suivantes : a) une étape de préparation d’un alcénylaminoborane de formule (I) selon l’invention ; b) une étape d’alcoolyse par un alcool R’-OH de l’alcénylaminoborane de formule (I) en un alcénylboronate intermédiaire de formule (l-M):
(l-M) en particulier l’alcool R’-OH est choisi parmi MeOH, EtOH, PrOH ou iPrOH ; b) une étape de substitution des groupements alcoxyle R’O du composé de formule (l-M) par un groupe fluoré, en particulier effectuée par mise en contact avec KHF2 ; d) éventuellement une étape de purification ; de préférence les étapes a), b) et c) sont réalisées en one-pot.
Avantageusement, l’alcool utilisé dans l’étape b) d’alcoolyse est le méthanol. L’alcoolyse s’effectue avantageusement à l’aide de 3 équivalents de molécule d’alcool par fonction alcénylaminoborane.
A titre d’exemple, l’étape c) de transformation de l’alcénylboronate intermédiaire de formule (l-M) en sel de trifluoroborate de potassium par substitution des groupements alcoxyle, est réalisée en ajoutant dans le milieu réactionnel une solution de KHF2 préparée dans le méthanol à -40°C et le mélange est porté de -40°C à température ambiante (TA).
De façon avantageuse, dans un mode de réalisation, le procédé a pour objet la préparation de l’un des composés de formules (II), (III) ou (IV), répondant à l’une des structures suivantes :
eo où Bdan représente i où Bpin représente :
où Bneo représente i
Un autre objet de l’invention est l’utilisation des composés de formules (I), (II), (III) ou (IV) préparés selon l’un des procédés de l’invention, comme composés intermédiaires de réaction, en particulier pour la mise en œuvre de synthèses stéréosélectives, multiétapes ou de couplage, en particulier pour des réactions de SuzukhMiyaura, Chan-Lam, Petasis et d’halogénation.
Un autre objet de l’invention est l’utilisation du procédé selon l’invention pour la mise en œuvre de la préparation des composés de formules (I), (II), (III) ou (IV) , comme composés intermédiaires de réaction, en particulier pour la mise en oeuvre de synthèses stéréosélectives, multiétapes ou de couplage, en particulier pour des réactions de Suzuki- Miyaura, Chan-Lam, Petasis et d’halogénation.
L’invention concerne également l’utilisation d’un alcénylaminoborane de formule (I) pour la mise en œuvre d’une synthèse stéréosélective de bromoalcènes (Z) ou (E).
Dans un autre mode de réalisation, l’invention concerne également l’utilisation d’un alcénylaminoborane de formule (I) préparé selon le procédé de l’invention pour la mise en œuvre d’une synthèse stéréosélective de bromoalcènes (Z) ou (E).
Un autre objet de la présente invention concerne un procédé de préparation stéréosélectif des bromoalcènes (Z) ou (E) de formules suivantes:
dans lesquelles R et n ont les significations indiquées ci-dessus, comprenant les étapes suivantes : a) une étape d’alcoolyse par un alcool R’-OH d’un alcénylaminoborane de formule (I) en un alcénylboronate intermédiaire de formule (l-M):
(l-M) R’OH étant en particulier choisi parmi MeOH, EtOH, PrOH ou iPrOH ; b) une étape de bromation de l’alcénylboronate intermédiaire de formule (l-M) en présence de CuBr2, pour obtenir majoritairement le bromoalcène (E) ; c) éventuellement une étape de purification du bromoalcène (E) obtenu, de préférence sur gel de silice ; pour obtenir majoritairement l’isomère (E) ; ou bien : a) une étape d’addition de dibrome Br2 sur un alcénylaminoborane de formule (I) pour former une addition anti de Br2 sur la fonction alcène de l’alcénylaminoborane et conduire à un dibromoalcane via un bromonium ponté, b) une étape d’élimination anti de la fonction aminoborane et d’un bromure dudit dibromoalcane, de préférence par ajout d’une base forte alcoolate (R”0 ), de préférence le
méthanolate de sodium (MeONa), pour obtenir majoritairement le bromoalcène (Z), c) éventuellement une étape de purification du bromoalcène (Z) obtenu, de préférence sur gel de silice pour obtenir majoritairement l’isomère (Z). De préférence les étapes a), b) et c) sont réalisées en one-pot pour les deux séquences.
On entend au sens de l’invention par « majoritairement », un taux d’isomère (rendement en isomère) supérieur ou égal à 50%, de préférence supérieur ou égal à 70%, encore plus préférentiellement supérieur ou égal à 90%.
Un autre objet de la présente invention concerne un procédé de préparation stéréosélectif des bromoalcènes (Z) ou (E) de formules suivantes:
dans lesquelles R et n ont les significations indiquées ci-dessus, comprenant les étapes suivantes : a) une étape de préparation d’un alcénylaminoborane de formule (I) selon l’invention; b) une étape d’alcoolyse par un alcool R’-OH de l’alcénylaminoborane de formule (I) en un alcénylboronate intermédiaire de formule (l-M):
(l-M) en particulier R’OH étant choisi parmi MeOH, EtOH, PrOH ou iPrOH ; c) une étape de bromation de l’alcénylboronate intermédiaire de formule (l-M) en présence de CuBr2, pour obtenir majoritairement le bromoalcène (E); d) éventuellement une étape de purification du bromoalcène (E) obtenu, de préférence sur gel de silice ; pour obtenir majoritairement l’isomère (E) ; ou bien : a) une étape de préparation d’un alcénylaminoborane de formule (I) selon l’invention; b) une étape d’addition de dibrome Br2 sur l’alcénylaminoborane de formule (I) pour former une addition anti de Br2 sur la fonction alcène de l’alcénylaminoborane et conduire à un
dibromoalcane via un bromonium ponté, c) une étape d’élimination anti de la fonction aminoborane et d’un bromure dudit dibromoalcane, de préférence par ajout d’une base forte alcoolate (R”0_), de préférence le méthanolate de sodium (MeONa), pour obtenir majoritairement le bromoalcène (Z), d) éventuellement une étape de purification, de préférence sur gel de silice ; pour obtenir majoritairement l’isomère (Z).
De préférence les étapes a), b) et c) sont réalisées en one-pot pour les deux séquences.
De préférence, pour la séquence des étapes menant majoritairement à l’isomère (E), l’étape d’alcoolyse menant à l’alcénylboronate de formule (l-M) est réalisée en ajoutant 3 équivalents de molécule de méthanol par fonction alcénylaminoborane et en portant le milieu réactionnel à -78°C pendant une heure.
De préférence, pour la séquence des étapes menant majoritairement à l’isomère (E), l’étape de bromation par piégeage électrophile de l’alcénylboronate de formule (l-M) est réalisée en ajoutant le CuBr2 dans un mélange THF :H20 (1 : 1) et en portant le milieu réactionnel à 70°C pendant 16 heures.
De préférence, pour la séquence des étapes menant majoritairement à l’isomère (Z), l’étape d’addition anti de Br2 sur la fonction alcène, formant le dibromoalcane via un bromonium ponté, est réalisée en introduisant le dibrome Br2 en solution dans le MTBE à 0°C et en maintenant le milieu réactionnel à 0°C pendant une heure. De préférence, pour la séquence des étapes menant majoritairement à l’isomère (Z), l’étape d’élimination anti est réalisée en ajoutant le MeONa à 0°C et en maintenant le milieu réactionnel à 0°C pendant 2 heures.
Sans être lié par la théorie, il est proposé un mécanisme réactionnel selon le schéma suivant pour la préparation d’un bromoalcène (E) à partir d’un alcénylaminoborane de formule (I) :
RO
Elimination
H BHNfi-Pr Alcoolysa H B -OR' Tra H Br
W nsmétalation réductrice
>=<
R H R'OH R H
R >=< H
Sans être lié par la théorie, il est proposé un mécanisme réactionnel selon le schéma suivant pour la préparation d’un bromoalcène (Z) à partir d’un alcénylaminoborane de formule (I) :
Addition anti de Br2
Rotation
R Br Elimination anti B S|r, J3r Base forte Br Pr
BÎOR’% + Br© OR” OR
L’invention concerne également l’utilisation d’un alcénylaminoborane de formule (I) préparé selon le procédé de l’invention pour la mise en œuvre d’une synthèse stéréosélective d’halogénoalcènes. L’invention concerne également l’utilisation d’un alcénylaminoborane de formule (I) préparé selon le procédé de l’invention pour la mise en œuvre d’une synthèse stéréosélective d’alcènes.
La présente invention est décrite ci-après à l’aide d’exemples auxquels elle n’est toutefois pas limitée.
PARTIE EXPERIMENTALE
EXEMPLE 1 : Préparation des alcénylaminoboranes de formule (I) : Protocole général de préparation des alcénylaminoboranes:
Les alcénylaminoboranes de formule (I) sont préparés selon le schéma suivant :
1. DIPOB (1.1 équiv )
, ,
(1 ,0 équiv)
A une solution d’alcyne terminal (10 mmol, 1 éq ) et de DIPOB (10 mmol, 1,1 éq) dans 20 mL de MTBE, est ajouté le réactif de Schwartz en quantité catalytique (12 mol%). Le mélange est porté à 70°C pendant 4 heures.
Les produits sont analysés en RMN 1H et 11B. Taux de conversion :
La conversion est relative à la disparition de l’alcyne. Le taux de conversion est déterminé à l’aide des signaux RMN 1H par comparaison entre les signaux des protons de l’alcyne non mis en jeu lors de la réaction qui servent de référence et le signal du proton propargylique. Ainsi une conversion totale de 100% correspond à la disparition totale de la quantité d’alcyne de départ introduite indiquant que tous les alcynes ont été transformés lors du procédé.
Des essais ont été effectués avec plusieurs alcynes terminaux présentant des groupements R différents et les résultats du taux de conversion des alcynes sont reportés dans le tableau 1. Pour le composé l-l, le taux de conversion (*) est de 92% lorsque la réaction est effectuée pendant 4h et de 100% lorsque la réaction est effectuée pendant 8h.
Tableau 1. Alcénylaminoboranes de formule (I)
EXEMPLE 2 : Préparation des alcényldiaminoboranes de formule (II) avec le diaminonaphtalène (dan)
Les alcényldiaminoboranes sont préparés selon le schéma suivant:
L’alcénylaminoborane de formule (I) est préparé selon l’exemple 1 puis :
1. une méthanolyse (3 équiv.) est réalisée à basse température (-40°C), pendant 1 h, afin de former l’alcénylboronate de méthyle intermédiaire ;
2. l’intermédiaire est soumis à une substitution des groupements méthoxyle par le diaminonaphtalène (dan) en présence de FeCI3 et d’imidazole dans un mélange de solvants MeCN : H20 (1 :1) à température ambiante (TA) pendant 4h.
Des essais ont été effectués avec plusieurs alcynes terminaux présentant des groupements R différents. Les résultats du taux de conversion des alcynes et le rendement après purification par chromatographie sur colonne (gel de silice) sont reportés dans le tableau 2.
Tableau 2. Alcényldiaminoboranes de formule (II) préparés avec le diaminonaphthalène (dan) EXEMPLE 3 : Préparation des alcénylboronates de formule (III) avec le pinacol
Les alcénylboronates de formule (III) avec le pinacol sont préparés selon le schéma suivant: [Chem 19]
1. RIR0B (1.1 équiv.),
2. Schwartz (12 mol%) H BHN(/-Pr)2 1 · MeOH (3 équiv ; - 0 à TA, 1h H Bpin
Alcénylaminoborane intermédiaire de formule fl) Alcênylboronate de formule fil!) AJcène E où Bpïn représente :
L’alcénylaminoborane de formule (I) est préparé selon l’exemple 1 puis :
1. une méthanolyse (3 équiv.) est réalisée à basse température (-40°C), pendant 1 h, afin de former l’alcénylboronate de méthyle intermédiaire; 2. l’intermédiaire est transestérifié par ajout d’une solution de pinacol dans l’éther diéthylique à -40°C, la solution étant portée de -40°C à température ambiante (TA), pendant 4h : les groupements méthoxyle sont substitués par le pinacol (pin).
Des essais ont été effectués avec plusieurs alcynes terminaux présentant des groupements R différents. Les résultats du taux de conversion des alcynes et le rendement après lavage des produits sans étape de purification sont reportés dans le tableau 3.
Tableau 3. Alcénylboronates de formule (III) préparés avec le pinacol
EXEMPLE 4 : Préparation des alcénylboronates de formule (III) avec le néopentyglycol Les alcénylboronates de formule (III) avec le néopentylglycol sont préparés selon le schéma suivant :
1 DIPOB (1.1 équiv,),
2. Schwartz (12 mol%) H SHN(i-Pr)2 1. MeOH (3 équiv.), - 4Q°C à TA, 1h H Bneo
R — - H
MTBE, 70°C, 1 â 8h
2. Néopentylglycol, Et20 R>_'H
- 40*C à TA, 4h
Alcénylaminoborane intermédiaire Alcénylboronates de de formule (I) formule (III) Alcène E où Bneo représente :
L’alcénylaminoborane de formule (I) est préparé selon l’exemple 1 puis:
1. une méthanolyse (3 équiv.) est réalisée à basse température (-40°C), pendant 1 h, afin de former l’alcénylboronate de méthyle intermédiaire; 2. l’intermédiaire est transestérifié pour permettre la substitution des groupements méthoxyle par le néopentylglycol (néo) : le néopentylglycol est ajouté en solution dans l’éther diéthylique à -40°C et la solution est portée de -40°C à température ambiante (TA), pendant 4h. Des essais ont été effectués avec plusieurs alcynes terminaux présentant des groupements R différents. Les résultats du taux de conversion des alcynes et le rendement après lavage des produits sans étape de purification sont reportés dans le tableau 4.
Tableau 4. Alcénylboronates de formule (III) préparés avec le néopentylglycol (néo)
EXEMPLE 5 : Préparation des alcénylfluoroborates de formule (IV) Les alcénylfluoroborates de formule (IV) sont préparés selon le schéma suivant:
1. 0IPOB. L MeOH (3 équjv.). -40*C. 1h
2. Schwartz H BHN(i-Pr)2 2. KHFZ, MeOH - 40°C â TA, 4b
R - : - H
MISE, ?0'C, 4b. R H
Alcénylaminoboranes Alcénylfluoroborates de
Intermédiaires de formule fl) formule (IV)
Aîoéne E
L’alcénylaminoborane de formule (I) est préparé selon l’exemple 1 puis :
1. une méthanolyse (3 équiv.) est réalisée à basse température (-40°C), pendant 1 h, afin de former l’alcénylboronate de méthyle intermédiaire ;
2. l’alcénylboronate de méthyle intermédiaire est transformé en sel de trifluoroborate de potassium par substitution des groupements méthoxyle, en présence d’une solution de KHF2 préparée dans le méthanol à -40°C ; la solution est portée de -40°C à température ambiante (TA), pendant 4h.
Des essais ont été effectués avec plusieurs alcynes terminaux présentant des groupements R différents. Les résultats du taux de conversion des alcynes et le rendement après précipitation dans l’acétone en utilisant du diéthylethersont reportés dans le tableau 5.
Tableau 5. Alcénylfluoroborates de formule (IV)
EXEMPLE 6 : Synthèse des alcénylaminoboranes de formule (I) à partir du DIPOB généré in situ Les alcénylboronates de formule (III) sont préparés avec le néopentylglycol à partir des alcénylaminoboranes de formule (I) obtenus à partir du DIPOB généré in situ selon le schéma suivant, les étapes 1. et 2. étant réalisées selon le protocole de l’exemple 4:
1. DIPAB (1.1 équiv.),
+ 5 mol% PhMgir
- 4Q°C à TA, 4h
Alcénylaniiootîorane alcêne E intermédiaire de formule (I)
Les essais réalisés avec le Fluorénol, le Lynestrénol et le 4-Phényl-1-butyne comme alcyne, impliquant la génération in situ du DIPOB via la déshydrogénation du DIPAB en présence de PhMgBr (5mol%), ont permis des rendements quantitatifs, respectivement de 92%, 86% et 96%.
EXEMPLE 7 : Synthèse stéréosélective des bromoalcènes à partir de l’intermédiaire de formule (I)
Préparation des bromoalcènes (E) La préparation des bromoalcènes (E) à partir de l’intermédiaire de formule (I) est réalisée selon le schéma suivant :
1. DIPOB in situ (ίL équiv.), 1. MeOH {3 équiv.), -78 X, 1h
2. Schwartz {12 moi%) H BHN{r-Pr)2 2 Cuir, THFIHJO (1/,) 70 X, 16h H Br
R — - H W
MTBE, 70*C, 1 à 8li R H intermédiaire alcène E ma). de formule (I)
L’alcénylaminoborane de formule (I) préparé selon l’exemple 1 subit:
1. une méthanolyse (3 équiv.) à basse température (-78°C) pendant 1 heure afin de former l’alcénylboronate de méthyle intermédiaire ;
2. une bromation en présence de CuBr2 dans un mélange THF : H20 (1 :1) à 70°C pendant 16h.
Des essais ont été effectués avec plusieurs alcynes terminaux présentant des groupements R différents. Le ratio (Z :E) obtenu et le rendement après purification sur gel de silice sont reportés dans le tableau 6.
Tableau 6. Bromoalcènes (E) obtenus à partir de l’intermédiaire alcénylaminoborane de formule (I)
Préparation des bromoalcènes (Z)
La préparation des bromoalcènes (Z) à partir de l’intermédiaire de formule (I) est réalisée selon le schéma suivant :
1 OlTOB in situ, 1.8¾ (1.1 éipw.j, MTBE 0*C» lit 2, Schwartz H BHN(/-Pr)2 2. MeONa (2,2 équîv.) 0X, 2h R Br
R — = — H
MTBE, 7QX, 1 â 8h R H ' H H
Intermédiaire aicene Z rraj. de formule (I) L’alcénylaminoborane de formule (I) est préparé selon l’exemple 1 puis :
1. du dibrome Br2 en solution dans le MTBE à 0°C est ajouté et la solution est maintenue à 0°C pendant une heure ;
2. du MeONa à 0°C est ajouté et la solution est maintenue à 0°C pendant 2h.
Des essais ont été effectués avec plusieurs alcynes terminaux présentant des groupements R différents. Le ratio (Z : E) obtenu et le rendement après purification sur gel de silice sont reportés dans le tableau 6.
Tableau 7. Bromoalcènes (E) obtenus à partir de l’intermédiaire alcénylaminoborane de formule (I)
Claims
1. Procédé de préparation d’un alcénylaminoborane de formule (I) suivante :
dans laquelle R est :
- un groupement alkyle de 1 à 18 atomes de carbone, linéaire ou ramifié, portant éventuellement au moins un substituant,
- un groupement alcényle ou alcynyle de 2 à 18 atomes de carbone, linéaire ou ramifié, portant éventuellement au moins un substituant,
- un groupement cycloalkyle ou cycloalcényle de 3 à 18 atomes de carbone, portant éventuellement au moins un substituant,
- un groupement hétérocycloalkyle ou hétérocycloalcényle, portant éventuellement au moins un substituant,
- un groupement aryle de 2 à 12 atomes de carbone, où l’aryle est choisi dans le groupe des aromatiques ou des hétéroaromatiques, portant éventuellement au moins un substituant,
- un groupement alkyl aryle, où l’aryle est choisi dans le groupe des aromatiques ou des hétéroaromatiques, portant éventuellement au moins un substituant,
- un halogène choisi parmi F, Cl, Br, et I,
- un groupement silyle -SiRaRbRc , -RaSiR RcRd, -RaOSiRbRcRd,
- un groupement -ORa, -NHRa, -NRaR , -SRa, -CF3, -N02, -RaOR , -RaNHR , -RaNR Rc, - RaSRb, dans lesquels Ra, R , Rc et Rd identiques ou différents représentent des atomes H, Cl, des groupements alkyles, alcényles, alcynyles linéaires ou ramifiés, cycloalkyles, cycloalcényles, aryles, notamment phényles, ou hétérocycliques aromatiques ou non aromatiques, de 1 à 18 atomes de carbone, portant éventuellement au moins un substituant, où lesdits substituants sont choisis parmi :
- les groupements alkyles de 1 à 18 atomes de carbone, linéaires, ramifiés ou cycliques
- les halogènes F, Cl, Br et I,
- OH,
Ri est un groupement choisi parmi l’isopropyle, le cyclohexyle, n est entier de 1 à 3,
comprenant la mise en contact, de préférence en une étape de synthèse unique: - d’un alcyne terminal, de formule suivante :
R ayant les significations indiquées ci-dessus, - d’un aminoborane de formule BH2-N(R1)2,
- et d’un catalyseur choisi parmi : le réactif de Schwartz (Cp2ZrHCI ), le dicyclohexylborane (HBCy), le diisopinocamphenylborane (HBipc2), le 9-borabicyclo(3.3.1)nonane (9-BBN).
2. Procédé selon la revendication 1, dans lequel le procédé est effectué à une température allant de 20°C à 80°C, de préférence à 70°C.
3. Procédé selon l’une des revendications 1 ou 2, dans lequel le catalyseur est le réactif de
Schwartz de formule (C5H5)2ZrHCI).
4. Procédé selon l’une des revendications 1 à 3, dans lequel le catalyseur est utilisé en quantité allant de 0,5% à 20%, en particulier de 1% à 12%, de préférence 12%, en pourcentage molaire.
5. Procédé selon l’une des revendications 1 à 4 dans lequel l’aminoborane de formule BH2- N(RI)2 est formé in situ par une réaction de déshydrogénation d’un complexe amine- borane de formule H3B<— NH(R1)2, de préférence lors de l’étape de synthèse unique.
6. Procédé de préparation d’un alcénylaminoborane de formule (I) selon l’une des revendications de 1 à 5, dans lequel la formule (I) répond à l’une des structures suivantes :
7. Utilisation d’un alcyne terminal, du diisopropylaminoborane (DIPOB) ou du dicyclohexylaminoborane (DICOB) et d’un catalyseur choisi parmi le réactif de Schwartz (Cp2ZrHCI), le dicyclohexylborane (HBCy), le diisopinocamphenylborane (HBipc2), le 9- borabicyclo(3.3.1)nonane (9-BBN), pour la mise en œuvre d’un procédé de préparation d’un alcénylaminoborane de formule (I) selon l’une quelconque des revendications 1 à 6.
8. Utilisation d’un alcénylaminoborane de formule (I) préparé selon l’une des revendications 1 à 6 pour la préparation de l’un des composés de formules (II), (III) ou (IV) suivantes:
dans lesquelles R et n ont les significations indiquées dans la revendication 1,
R2, R3, R4, et R5, sont identiques ou différents et représentent des hydrogènes, des groupements alkyles, alcényles, alcynyles linéaires ou ramifiés, cycloalkyles, cycloalcényles, aryles, ou hétérocycliques aromatiques ou non aromatiques, de 1 à 18 atomes de carbone, portant éventuellement au moins un substituant, où lesdits substituants sont choisis parmi les groupements alkyles de 1 à 18 atomes de carbone, linéaires, ramifiés ou cycliques, et les halogènes F, Cl, Br et I, où R2et R3 pouvant être reliés pour former ensemble un cycle, de préférence par la mise en œuvre d’un procédé en one-pot.
9. Procédé de préparation d’un composé alcényldiaminoborane de formule (II) :
dans laquelle
R et n ont les significations indiquées dans la revendication 1 ou 8,
R2, R3, R4, et R5 ont les significations indiquées dans la revendication 8, comprenant les étapes suivantes : a) une étape de préparation d’un alcénylaminoborane de formule (I) selon l’une des revendications de 1 à 6, b) une étape d’alcoolyse par un alcool R’-OH de l’alcénylaminoborane de formule (I) en un alcénylboronate intermédiaire de formule (l-M):
(l-M) en particulier l’alcool R’-OH est choisi parmi MeOH, EtOH, PrOH ou iPrOH, c) une étape de substitution des groupements alcoxyle R’O du composé de formule (l-M) par un groupe aminé comprenant les groupements R2, R3, R4 et R5où R2, R3, R4, et R5 ont les significations indiquées ci-dessus, permettant d’obtenir le composé de formule (II),
d) éventuellement une étape de purification, de préférence les étapes a), b) et c) sont réalisées en one-pot.
10. Procédé de préparation d’un composé alcényldiaminoborane selon la revendication 9, dans lequel ledit groupe aminé est le diaminonaphtalène de formule suivante :
11. Procédé de préparation d’un composé alcénylboronate de formule (III) :
dans laquelle
R et n ont les significations indiquées dans la revendication 1 ou 8,
R2 et R3 ont les significations indiquées dans la revendication 8, comprenant les étapes suivantes : a) une étape de préparation d’un alcénylaminoborane de formule (I) selon l’une des revendications de 1 à 6 ; b) une étape d’alcoolyse par un alcool R’-OH de l’alcénylaminoborane de formule (I) en un alcénylboronate intermédiaire de formule (l-M):
en particulier l’alcool est choisi parmi MeOH, EtOH, PrOH ou iPrOH ; c) une étape de substitution des groupements alcoxyle R’O du composé de formule (l-M) par un alcool ou diol comprenant des groupements R2et R3, en particulier par une réaction de
transestérification ; d) éventuellement une étape de purification ; de préférence les étapes a), b) et c) sont réalisées en one-pot.
12. Procédé de préparation d’un composé alcénylboronate de formule (III) selon la revendication 11, dans lequel ledit diol utilisé est le pinacol ou le néopentylgycol.
13. Procédé de préparation d’un composé alcénylfluoroborate de formule (IV) :
dans laquelle
R et n ont les significations indiquées dans la revendication 1 ou 8, comprenant les étapes suivantes : a) une étape de préparation d’un alcénylaminoborane de formule (I) selon l’une des revendications de 1 à 6 ; b) une étape d’alcoolyse par un alcool R’-OH de l’alcénylaminoborane de formule (I) en un alcénylboronate intermédiaire de formule (l-M):
(l-M) en particulier l’alcool R’-OH est choisi parmi MeOH, EtOH, PrOH ou iPrOH ; c) une étape de substitution des groupements alcoxyle R’O du composé de formule (l-M) par un groupe fluoré, en particulier effectuée par mise en contact avec KHF2 ; d) éventuellement une étape de purification ; de préférence les étapes a), b) et c) sont réalisées en one-pot.
14. Procédé de préparation de l’un des composés de formules (II), (III) ou (IV) selon l’une des revendications 9 à 13, répondant à l’une des structures suivantes :
où Bdan représente : où Bpin représente ;
où Bneo représente i
15. Utilisation du procédé selon l’une des revendications 1 à 6 et 9 à 14 pour la mise en œuvre de la préparation des composés de formules (I), (II), (III) ou (IV) , comme composés intermédiaires de réaction, en particulier pour la mise en oeuvre de synthèses stéréosélectives, multiétapes ou de couplage, en particulier pour des réactions de Suzuki- Miyaura, Chan-Lam, Petasis et d’halogénation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1911003A FR3101633B1 (fr) | 2019-10-04 | 2019-10-04 | Procédé de préparation d’alcénylaminoboranes et de leurs dérivés, et leurs utilisations |
PCT/EP2020/077718 WO2021064205A1 (fr) | 2019-10-04 | 2020-10-02 | Procede de preparation d'alcenylaminoboranes et de leurs derives, et leurs utilisations |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4038075A1 true EP4038075A1 (fr) | 2022-08-10 |
Family
ID=69190946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20780757.9A Pending EP4038075A1 (fr) | 2019-10-04 | 2020-10-02 | Procede de preparation d'alcenylaminoboranes et de leurs derives, et leurs utilisations |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220396591A1 (fr) |
EP (1) | EP4038075A1 (fr) |
FR (1) | FR3101633B1 (fr) |
WO (1) | WO2021064205A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3139338A1 (fr) * | 2022-09-06 | 2024-03-08 | Universite de Bordeaux | Procédé de préparation d’alcénylaminoboranes avec ou sans catalyseur, et de leurs dérivés, et leurs utilisations |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2833957B1 (fr) | 2001-12-21 | 2004-02-13 | Centre Nat Rech Scient | Composes(aryl)(amino)boranes, procede pour leur preparation |
WO2006132896A2 (fr) * | 2005-06-08 | 2006-12-14 | Wyeth | Synthese stereoselective d'esters (e)-vinylboroniques au moyen d'une hydroboration d'alcynes mediee par zr |
-
2019
- 2019-10-04 FR FR1911003A patent/FR3101633B1/fr active Active
-
2020
- 2020-10-02 US US17/765,986 patent/US20220396591A1/en active Pending
- 2020-10-02 EP EP20780757.9A patent/EP4038075A1/fr active Pending
- 2020-10-02 WO PCT/EP2020/077718 patent/WO2021064205A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
US20220396591A1 (en) | 2022-12-15 |
FR3101633B1 (fr) | 2021-10-15 |
FR3101633A1 (fr) | 2021-04-09 |
WO2021064205A1 (fr) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2694469B1 (fr) | Procede de preparation de composes formamides | |
CN111217844A (zh) | 一种烯烃选择性1,1-二硼化制备偕二硼类化合物的方法 | |
WO2012080682A1 (fr) | Procede de preparation d'ether de polyol | |
EP4038075A1 (fr) | Procede de preparation d'alcenylaminoboranes et de leurs derives, et leurs utilisations | |
EP0748326A1 (fr) | Diphosphines optiquement actives, leur preparation par dedoublement du melange racemique | |
CA2672619A1 (fr) | Procede de preparation de composes 1,3,2-oxazaborolidines | |
EP1458729B1 (fr) | Composes (aryl) (amino)boranes, procede pour leur preparation | |
WO2005095307A1 (fr) | Procede de formation d'une liaison carbone-carbone comprenant une reaction d’un arenediazoether | |
WO2001058834A1 (fr) | Procede de preparation d'un compose polyaromatique | |
FR2613718A1 (fr) | Tetramines cycliques monofonctionnalisees, leur procede de preparation, leurs polymeres et utilisation de ces polymeres | |
WO2016063227A1 (fr) | Synthese d'esters par fonctionnalisation du co2 | |
EP0319384A2 (fr) | Hydrocarbylsilyloxydes cériques et leur procédé de fabrication | |
WO2003011844A2 (fr) | Reactif et procede pour la perfluoroalcoylation | |
EP4038074A1 (fr) | Nouveaux alcynylaminoboranes, leur methode de preparation et leurs utilisations | |
FR2812638A1 (fr) | Utilisation de diphosphines chirales comme ligands optiquement actifs pour la preparation de complexes diphosphino-metalliques, les complexes ainsi obtenus et les procedes de catalyse asymetrique les mettant en oeuvre | |
EP0968220A1 (fr) | Diphosphines de 6,6'-bis-(1-phosphanorbornadiene) | |
WO2024052250A1 (fr) | Procédé de préparation d'alcénylaminoboranes avec ou sans catalyseur, et de leurs dérivés, et leurs utilisations | |
EP2906532A1 (fr) | Procede de preparation de formamidines | |
JP2018135292A (ja) | 光学活性アルコールの製造方法及び不斉触媒 | |
EP1387846B1 (fr) | Catalyseur pour reduction enantioselective de cetones | |
WO2019175235A1 (fr) | Procede de preparation de s,s'-dialkyldithiocarbonate a partir de disulfure de dialkyle | |
FR2734823A1 (fr) | Nouveaux complexes metalliques optiquement actifs et leur utilisation en catalyse asymetrique | |
WO2003106463A1 (fr) | Procede de preparation de dihalogenures de magnesium et de derives dialkyl-magnesiens | |
WO2004065347A1 (fr) | Esters d'allyle substitue par un groupe difluoromethylene, leur procede de synthese et leur utilisation | |
JP2007238480A (ja) | 高純度な光学活性ラクタムアルコール誘導体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220304 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |