EP4025262A1 - Vorrichtung zur bestrahlung einer fläche - Google Patents

Vorrichtung zur bestrahlung einer fläche

Info

Publication number
EP4025262A1
EP4025262A1 EP20739978.3A EP20739978A EP4025262A1 EP 4025262 A1 EP4025262 A1 EP 4025262A1 EP 20739978 A EP20739978 A EP 20739978A EP 4025262 A1 EP4025262 A1 EP 4025262A1
Authority
EP
European Patent Office
Prior art keywords
housing
radiation
designed
reflector
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20739978.3A
Other languages
English (en)
French (fr)
Inventor
Norbert Spazier
Valentin Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Mercedes Benz Group AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercedes Benz Group AG filed Critical Mercedes Benz Group AG
Publication of EP4025262A1 publication Critical patent/EP4025262A1/de
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps

Definitions

  • the invention relates to a device for irradiating a surface according to the features of the preamble of claim 1.
  • the lighting arrangement for illumination by means of light in the visible spectral range and for disinfection by means of light in the ultraviolet spectral range comprises at least one UV light-emitting diode illuminant for emitting light in the ultraviolet spectral range, at least one luminous element for emitting light in the visible spectral range, detection means for detecting at least one parameter and control means for controlling the light output of the lighting arrangement, the control means controlling an output of light in the ultraviolet spectral range at least as a function of the at least one detected parameter.
  • the invention is based on the object of specifying a device for irradiating a surface which is improved over the prior art.
  • the object is achieved according to the invention by a device for irradiating a surface with the features of claim 1.
  • a device for irradiating a surface comprises at least one radiation source which is designed to emit ultraviolet radiation, in particular UV-C radiation, and at least one reflector for the directed emission of the ultraviolet radiation onto the surface.
  • the at least one radiation source and the at least one reflector are arranged in an evacuated housing, with at least one housing wall of this housing oriented in the direction of the surface being formed from quartz glass.
  • the solution according to the invention improves the distribution of the ultraviolet radiation over the defined area.
  • one or two radiation sources in particular designed as LEDs, are sufficient.
  • the at least one reflector which, in particular with regard to the at least one radiation source, the area to be irradiated and the arrangement of the at least one radiation source and the area to be irradiated relative to the reflector, is precisely calculated and is designed, is embedded in the evacuated housing for reasons of better distribution of the ultraviolet radiation, wherein the housing wall of this housing, which is oriented in the direction of the surface and is made of quartz glass, forms a radiation exit surface of the housing.
  • This embedding in the evacuated housing results in a low-loss distribution of the ultraviolet radiation in the vacuum of the evacuated housing without absorption, extinction and scattering. Absorption, extinction and / or scattering of the ultraviolet radiation therefore only takes place after it has left the evacuated housing, i. H. only outside the evacuated housing.
  • the solution according to the invention With the solution according to the invention, a greater effect at predetermined target locations for the ultraviolet radiation, in particular in the relevant areas, ie. H. on the surface to be irradiated, achieved in particular by an increase in the intensity of the ultraviolet radiation on the surface to be irradiated by means of the solution according to the invention.
  • the solution according to the invention can be made smaller and thus more space-saving with the same performance, requires, for example, a smaller number of radiation sources and / or smaller and / or less powerful radiation sources and / or has a lower consumption of electrical energy.
  • the device can be used in particular for disinfecting surfaces of objects, for example a surface of a cell phone.
  • the one to be irradiated Area is then an area of the object.
  • germs on the surface to be irradiated are combated by means of the ultraviolet radiation, ie this surface is advantageously sterilized, advantageously by irradiation with a dose of ultraviolet radiation that is lethal for the germs.
  • the device is intended in particular for use in a vehicle, for example for irradiating a surface and / or an object, for example a cell phone, in a storage compartment of the vehicle.
  • a vehicle for example for irradiating a surface and / or an object, for example a cell phone, in a storage compartment of the vehicle.
  • This enables, for example, in addition to electrical charging of the mobile phone, its disinfection by means of the device.
  • a vehicle therefore advantageously has at least one such device.
  • FIG. 1 schematically shows an embodiment of a device for irradiating a surface
  • FIG. 2 schematically shows an embodiment of a device for irradiating a surface which is improved compared to the device shown in FIG.
  • FIG. 3 schematically shows a cross-sectional illustration according to the sectional area III-III in FIG. 2, and
  • FIG. 4 schematically shows a further embodiment of a device for irradiating a surface which is improved compared to the device shown in FIG.
  • FIG. 1 shows a schematic representation of a conventional embodiment of a device 1 for irradiating a surface F.
  • Such devices 1 are used in particular for biological modification, in particular for lethal damage to pathogenic germs, in particular bacteria, viruses, fungi, etc.
  • the embodiment of the device 1 shown in FIG. 1 comprises a radiation source 2 embodied as a UV-C LED, which is thus embodied to emit ultraviolet radiation UV embodied as UV-C radiation.
  • This radiation source 2 is arranged on a printed circuit board 3, covered in the example shown with a cover element 4 made of quartz glass and aligned with the surface F to be irradiated, in particular to be decontaminated.
  • An extinction of the ultraviolet radiation UV, formed as UV-C radiation is approximately 1 / r 2 under atmospheric conditions.
  • the disadvantage of this embodiment of the device 1 is, in particular, that, as can also be seen in FIG. 1, only a relatively small area FA can be irradiated and a larger number of radiation sources 2 are required for larger areas
  • the improved device 1 for irradiating an area F which is described below with reference to the two exemplary embodiments shown in FIGS. 2 to 4, avoids the disadvantages of this embodiment of the device 1 shown in FIG a reduction of radiation losses of the ultraviolet radiation UV. In this way, a distribution of the ultraviolet radiation UV on the defined area F is improved. As a result, for example, depending on the size of this area F to be irradiated, one or two radiation sources 2 are sufficient, which are designed in particular as LEDs, in particular as UV-C LEDs.
  • the device 1 for irradiating a surface F in the improved embodiments according to FIGS. 2 to 4 comprises at least one radiation source 2 that emits ultraviolet radiation UV, in particular UV-C Radiation, is formed, and at least one reflector 5 for the directed emission of the ultraviolet radiation UV onto the surface F.
  • the at least one radiation source 2 and the at least one reflector 5 are arranged in an evacuated housing 6, at least one in the direction of the Housing wall 6.1 of this housing 6 aligned with surface F is made of quartz glass and thus forms a radiation exit surface of the housing 6 for the exit of the ultraviolet radiation UV in the direction of the surface F to be irradiated.
  • the device 1 is advantageously arranged with this housing wall 6.1 forming the radiation exit surface at a predetermined distance a from the surface F to be irradiated.
  • this evacuated housing 6 is designed as an evacuated quartz glass tube. Alternatively, other geometric shapes and hybrid shapes are also possible for the housing 6.
  • the housing 6 is evacuated, ie that a vacuum V, in particular a technical vacuum V, is present in the housing 6, ie in an interior of the housing 6, and that at least the housing wall 6.1 aligned in the direction of the surface F does this Housing 6 is made of quartz glass, for example in the form of a cover plate made of quartz glass, so that the radiation exit surface for the exit of the ultraviolet radiation UV from the housing 6 in the direction of the surface F to be irradiated is ensured.
  • a vacuum V in particular a technical vacuum V
  • a plurality of such reflectors 5 can also be provided and arranged in the evacuated housing 6.
  • the reflector 5 or the respective reflector 5 is formed, for example, from metal or a metal alloy, in particular from aluminum or an aluminum alloy.
  • the respective reflector 5 comprises, for example, free-form surfaces and / or multi-mirrors and / or is designed to be direction-oriented and / or curved.
  • Exemplary configurations of the reflector 5 are shown for the two exemplary embodiments shown in FIGS. 2 to 4, FIG. 3 showing a cross-sectional view of the device 1 along the plane III-III in FIG.
  • the reflector 5 is arranged in the longitudinal direction of the housing 6 in this, extends in particular through the entire free space in the longitudinal direction, in particular the interior, of the housing 6 and is, as can be seen in particular in FIG. 3, in particular in the area arranged in a further housing wall 6.2 of the housing 6, for example arranged adjacent to it, which is opposite the housing wall 6.1 oriented in the direction of the surface F.
  • the reflector 5 comprises a reflector base body 5.1 with several angled in different directions Reflection surfaces and, moreover, several reflection elements 5.2 formed starting from this reflector base body 5.1 with angled reflection surfaces.
  • the housing 6 is encapsulated in such a way that the vacuum V formed therein, in particular the technical vacuum V, is maintained, that is to say, colloquially, cannot escape. That is, the housing 6 is closed in a fluid-tight manner. As a result, in particular no gases, in particular no ambient air, can penetrate into the housing 6 from the outside, in particular from an external environment.
  • the housing 6 is designed as a quartz glass tube
  • the housing 6 designed as a quartz glass tube has a closed end wall 6.3 at one end and a closure element 7 is provided at the other end.
  • such a closure element 7 is provided at each of the two end faces.
  • the device 1 has a radiation source 2 which is designed to emit ultraviolet radiation UV, in particular UV-C radiation.
  • This radiation source 2 is designed in particular as an LED, in particular as a UV-C LED.
  • the radiation source 2 is arranged in one of the two end face areas of the housing 6, in the example shown thus in one of the two face end areas of the quartz glass tube.
  • the device 1 has two radiation sources 2 which are each designed to emit ultraviolet radiation UV, in particular UV-C radiation.
  • these radiation sources 2 are each designed in particular as LEDs, in particular as UV-C LEDs.
  • these two radiation sources 2 are each arranged in one of the two end face areas of the housing 6, in the example shown thus in each case in one of the two end face areas of the quartz glass tube.
  • the radiation source 2 of the embodiment of the device 1 according to Figures 2 and 3 and also the respective radiation source 2 of the embodiment of the device 1 according to Figure 4 is thermally coupled to a cooling unit 8, in particular to a heat sink, to the radiation source 2 by dissipating waste heat , which arises during operation of the device 1 to cool. Furthermore, measures and / or devices not shown here are provided in order to regulate, in particular to compensate, possible pressure differences that arise due to the waste heat from the at least one radiation source 2 or the two radiation sources 2.
  • the respective cooling unit 8 designed in particular as a heat sink, is arranged on the end face area of the housing 6, in the example shown thus at the front end area of the quartz glass tube, in which the radiation source 2 to be cooled by the respective cooling unit 8 is also arranged, and above the circuit board 3 on which this radiation source 2 is arranged, thermally coupled to the radiation source 2 to be cooled.
  • Electrical connection contacts 9 for supplying electrical energy to the radiation source 2 are guided from the outside through the cooling unit 8, which is designed as a heat sink, to the printed circuit board 3.
  • the closure element 7 for the fluid-tight closure of the housing 6 is designed, for example, as a sealing element which is arranged between a region of the cooling unit 8, designed as a heat sink, protruding into the housing 6 and an inside of the housing 6.
  • the respective cooling unit 8 which is designed as a heat sink, also has a positioning element 10 for positioning the device 1, in particular for fastening it to a respective location, for example in the vehicle.
  • the positioning element 10 or the plurality of positioning elements 10 can also be arranged at other locations on the device 1.
  • This solution which has been described with reference to the two embodiments shown by way of example in FIGS. 2 to 4, improves the distribution of the ultraviolet radiation UV on the surface F to be irradiated.
  • one or two radiation sources 2, in particular designed as LEDs are sufficient.
  • This improvement in the distribution of the ultraviolet radiation UV is achieved, as described, in that the at least one precisely calculated and designed reflector 5 is embedded in the evacuated housing 6 for reasons of better distribution of the ultraviolet radiation UV, the in the direction of Housing wall 6.1 of this housing 6, which is aligned with surface F and which is formed from quartz glass, forms the radiation exit surface of the housing 6.
  • this at least one reflector 5 is embedded in a housing 6 designed as an evacuated quartz glass tube.
  • This embedding in the evacuated housing 6 results in a low-loss distribution of the ultraviolet radiation UV in the vacuum V of the evacuated housing 6 without absorption, extinction and / or scattering. Absorption, extinction and / or scattering of the ultraviolet radiation UV thus only takes place after it has left the evacuated housing 6, here the evacuated quartz glass tube, i. H. only outside this evacuated housing 6. Without the vacuum V, in particular the technical vacuum V, a radiation intensity of the ultraviolet radiation UV would be greatly reduced by absorption, extinction and scattering. This is avoided by the solution described here.

Abstract

Die Erfindung betrifft eine Vorrichtung (1) zur Bestrahlung einer Fläche (F), umfassend mindestens eine Strahlungsquelle (2), die zur Emission von Ultraviolett-Strahlung (UV), insbesondere UV-C-Strahlung, ausgebildet ist, und mindestens einen Reflektor (5) zur gerichteten Abstrahlung der Ultraviolett-Strahlung (UV) auf die Fläche (F). Erfindungsgemäß sind die mindestens eine Strahlungsquelle (2) und der mindestens eine Reflektor (5) in einem evakuierten Gehäuse (6) angeordnet, wobei zumindest eine in Richtung der Fläche (F) ausgerichtete Gehäusewand (6.1) dieses Gehäuses (6) aus Quarzglas ausgebildet ist.

Description

Vorrichtung zur Bestrahlung einer Fläche
Die Erfindung betrifft eine Vorrichtung zur Bestrahlung einer Fläche nach den Merkmalen des Oberbegriffs des Anspruchs 1.
Aus dem Stand der Technik ist, wie in der DE 102015207999 A1 beschrieben, eine Beleuchtungsanordnung bekannt. Die Beleuchtungsanordnung zur Beleuchtung mittels Licht im sichtbaren Spektralbereich und zur Desinfektion mittels Licht im ultravioletten Spektralbereich umfasst zumindest ein UV-Leuchtdioden-Leuchtmittel zur Abgabe von Licht im ultravioletten Spektralbereich, zumindest ein Leuchtelement zur Abgabe von Licht im sichtbaren Spektralbereich, Erfassungsmittel zur Erfassung zumindest eines Parameters und Steuermittel zur Steuerung der Lichtabgabe der Beleuchtungsanordnung, wobei die Steuermittel zumindest in Abhängigkeit des zumindest einen erfassten Parameters eine Abgabe von Licht im ultravioletten Spektralbereich steuern.
Der Erfindung liegt die Aufgabe zu Grunde, eine gegenüber dem Stand der Technik verbesserte Vorrichtung zur Bestrahlung einer Fläche anzugeben.
Die Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung zur Bestrahlung einer Fläche mit den Merkmalen des Anspruchs 1.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Eine Vorrichtung zur Bestrahlung einer Fläche umfasst mindestens eine Strahlungsquelle, die zur Emission von Ultraviolett-Strahlung, insbesondere UV-C-Strahlung, ausgebildet ist, und mindestens einen Reflektor zur gerichteten Abstrahlung der Ultraviolett-Strahlung auf die Fläche. Erfindungsgemäß sind die mindestens eine Strahlungsquelle und der mindestens eine Reflektor in einem evakuierten Gehäuse angeordnet, wobei zumindest eine in Richtung der Fläche ausgerichtete Gehäusewand dieses Gehäuses aus Quarzglas ausgebildet ist.
Durch die erfindungsgemäße Lösung wird die Verteilung der Ultraviolett-Strahlung auf die definierte Fläche verbessert. Dadurch sind beispielsweise, abhängig von einer Größe dieser zu bestrahlenden Fläche, bereits eine oder zwei, insbesondere als LED ausgebildete, Strahlungsquellen ausreichend.
Diese Verbesserung der Verteilung der Ultraviolett-Strahlung wird dadurch erreicht, dass der mindestens eine Reflektor, welcher, insbesondere bezüglich der mindestens einen Strahlungsquelle, der zu bestrahlenden Fläche sowie der Anordnung der mindestens einen Strahlungsquelle und der zu bestrahlenden Fläche relativ zum Reflektor, genau berechnet und ausgelegt ist, aus Gründen einer besseren Verteilung der Ultraviolett-Strahlung in dem evakuierten Gehäuse eingebettet ist, wobei die in Richtung der Fläche ausgerichtete Gehäusewand dieses Gehäuses, welche aus Quarzglas ausgebildet ist, eine Strahlungsaustrittsfläche des Gehäuses bildet. Durch dieses Einbetten in das evakuierte Gehäuse wird eine verlustarme Verteilung der Ultraviolett-Strahlung im Vakuum des evakuierten Gehäuses ohne Absorption, Extinktion und Streuung erreicht. Absorption, Extinktion und/oder Streuung der Ultraviolett-Strahlung erfolgt somit erst nach Verlassen des evakuierten Gehäuses, d. h. erst außerhalb des evakuierten Gehäuses.
Mit der erfindungsgemäßen Lösung wird somit eine höhere Wirkung an vorgebebenen Zielorten für die Ultraviolettstrahlung, insbesondere in den relevanten Bereichen, d. h. auf der zu bestrahlenden Fläche, erreicht, insbesondere durch eine mittels der erfindungsgemäßen Lösung erreichte Intensitätssteigerung der Ultraviolett-Strahlung auf der zu bestrahlenden Fläche. Mittels der erfindungsgemäßen Lösung wird somit eine Verbesserung der Performance, d. h. der Leistungsfähigkeit, unter Berücksichtigung aller möglichen Parameter, und zudem eine Erhöhung der Effektivität erreicht. Beispielsweise kann die erfindungsgemäße Lösung bei gleicher Leistungsfähigkeit kleiner und somit bauraumsparender ausgebildet werden, erfordert beispielsweise eine geringere Anzahl von Strahlungsquellen und/oder kleinere und/oder leistungsschwächere Strahlungsquellen und/oder weist einen geringeren Verbrauch elektrischer Energie auf.
Die Vorrichtung ist insbesondere verwendbar zur Desinfektion von Flächen von Gegenständen, beispielsweise einer Fläche eines Mobiltelefons. D. h. die zu bestrahlende Fläche ist dann eine Fläche des Gegenstandes. Hierbei werden Keime auf der zu bestrahlenden Fläche mittels der Ultraviolett-Strahlung bekämpft, d. h. es erfolgt vorteilhafterweise eine Entkeimung dieser Fläche, vorteilhafterweise durch Bestrahlung mit einer für die Keime letalen Dosis der Ultraviolett-Strahlung.
Die Vorrichtung ist insbesondere zur Verwendung in einem Fahrzeug vorgesehen, beispielsweise zur Bestrahlung einer Fläche und/oder eines Gegenstandes, beispielsweise eines Mobiltelefons, in einem Ablagefach des Fahrzeugs. Dadurch wird beispielsweise, zusätzlich zu einem elektrischen Laden des Mobiltelefons, dessen Desinfektion mittels der Vorrichtung ermöglicht. Vorteilhafterweise weist daher ein Fahrzeug mindestens eine solche Vorrichtung auf.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 schematisch eine Ausführungsform einer Vorrichtung zur Bestrahlung einer Fläche,
Fig. 2 schematisch eine gegenüber der in Figur 1 dargestellten Vorrichtung verbesserte Ausführungsform einer Vorrichtung zur Bestrahlung einer Fläche,
Fig. 3 schematisch eine Querschnittdarstellung gemäß der Schnittfläche lll-lll in Figur 2, und
Fig. 4 schematisch eine weitere gegenüber der in Figur 1 dargestellten Vorrichtung verbesserte Ausführungsform einer Vorrichtung zur Bestrahlung einer Fläche.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Figur 1 zeigt eine schematische Darstellung einer herkömmlichen Ausführungsform einer Vorrichtung 1 zur Bestrahlung einer Fläche F. Derartige Vorrichtungen 1 werden insbesondere zur biologischen Modifikation, insbesondere zur letalen Schädigung, pathogener Keime, insbesondere Bakterien, Viren, Pilze usw., verwendet. Die in Figur 1 dargestellte Ausführungsform der Vorrichtung 1 umfasst eine als UV-C-LED ausgebildete Strahlungsquelle 2, die somit zur Emission von als UV-C-Strahlung ausgebildeter Ultraviolett-Strahlung UV ausgebildet ist. Diese Strahlungsquelle 2 ist auf einer Leiterplatte 3 angeordnet, im dargestellten Beispiel mit einem Abdeckelement 4 aus Quarzglas abgedeckt und auf die zu bestrahlende, insbesondere zu dekontaminierende, Fläche F ausgerichtet. Eine Extinktion der als UV-C-Strahlung ausgebildeten Ultraviolett-Strahlung UV ist unter atmosphärischer Voraussetzung annähernd 1/r2. Der Nachteil dieser Ausführungsform der Vorrichtung 1 besteht insbesondere darin, dass, wie auch in Figur 1 erkennbar ist, nur eine relativ kleine Flächenausdehnung FA bestrahlt werden kann und für größere zu bestrahlende Flächen F entsprechend eine größere Anzahl Strahlungsquellen 2 erforderlich sind.
Die verbesserte Vorrichtung 1 zur Bestrahlung einer Fläche F, welche im Folgenden anhand der in den Figuren 2 bis 4 dargestellten beiden beispielhaften Ausführungsformen beschrieben wird, vermeidet die Nachteile dieser in Figur 1 gezeigten Ausführungsform der Vorrichtung 1. Erreicht wird dies insbesondere aufgrund einer verbesserten Effizienz durch eine Reduzierung von Strahlungsverlusten der Ultraviolett-Strahlung UV. Auf diese Weise wird eine Verteilung der Ultraviolett-Strahlung UV auf die definierte Fläche F verbessert. Dadurch sind beispielsweise, abhängig von einer Größe dieser zu bestrahlenden Fläche F, bereits eine oder zwei Strahlungsquellen 2 ausreichend, welche insbesondere als LED, insbesondere als UV-C-LED, ausgebildet sind.
Um diese Verbesserungen gegenüber der in Figur 1 gezeigten Ausführungsform zu erreichen, umfasst die Vorrichtung 1 zur Bestrahlung einer Fläche F in den verbesserten Ausführungsformen gemäß den Figuren 2 bis 4 mindestens eine Strahlungsquelle 2, die zur Emission von Ultraviolett-Strahlung UV, insbesondere UV-C-Strahlung, ausgebildet ist, und mindestens einen Reflektor 5 zur gerichteten Abstrahlung der Ultraviolett-Strahlung UV auf die Fläche F. Dabei sind die mindestens eine Strahlungsquelle 2 und der mindestens eine Reflektor 5 in einem evakuierten Gehäuse 6 angeordnet, wobei zumindest eine in Richtung der Fläche F ausgerichtete Gehäusewand 6.1 dieses Gehäuses 6 aus Quarzglas ausgebildet ist und somit eine Strahlungsaustrittsfläche des Gehäuses 6 zum Austritt der Ultraviolett-Strahlung UV in Richtung der zu bestrahlenden Fläche F bildet. Die Vorrichtung 1 ist mit dieser die Strahlungsaustrittsfläche bildenden Gehäusewand 6.1 vorteilhafterweise in einem vorgegebenen Abstand a zur zu bestrahlenden Fläche F angeordnet. In den hier dargestellten beiden Ausführungsformen gemäß den Figuren 2 bis 4 ist dieses evakuierte Gehäuse 6 als eine evakuierte Quarzglasröhre ausgebildet. Alternativ sind auch andere geometrische Formen und Hybrid-Formen für das Gehäuse 6 möglich. Wichtig ist insbesondere, dass das Gehäuse 6 evakuiert ist, d. h. dass ein Vakuum V, insbesondere ein technisches Vakuum V, im Gehäuse 6, d. h. in einem Innenraum des Gehäuses 6, vorliegt, und dass zumindest die in Richtung der Fläche F ausgerichtete Gehäusewand 6.1 dieses Gehäuses 6 aus Quarzglas ausgebildet ist, beispielsweise in Form einer Abdeckscheibe aus Quarzglas, so dass die Strahlungsaustrittsfläche zum Austritt der Ultraviolett-Strahlung UV aus dem Gehäuse 6 in Richtung der zu bestrahlenden Fläche F sichergestellt ist.
Der mindestens eine Reflektor 5, welcher im evakuierten Gehäuse 6, d. h. in dessen evakuiertem Innenraum, angeordnet ist, in den hier dargestellten Beispielen in der evakuierten Quarzglasröhre, ist vorteilhafterweise speziell auf die zu bestrahlende Fläche F ausgelegt und bewirkt eine vorgegebene Verteilung der vorhandenen, d. h. von der mindestens einen Strahlungsquelle 2 emittierten, Ultraviolett-Strahlung UV, insbesondere UV-C-Strahlung. In anderen Ausführungsbeispielen können auch mehrere solcher Reflektoren 5 vorgesehen sein und im evakuierten Gehäuse 6 angeordnet sein.
Der Reflektor 5 oder der jeweilige Reflektor 5 ist beispielsweise aus Metall oder einer Metalllegierung ausgebildet, insbesondere aus Aluminium oder einer Aluminiumlegierung. Der jeweilige Reflektor 5 umfasst beispielsweise Freiformflächen und/oder Multispiegel und/oder ist richtungsorientiert und/oder gebogen ausgebildet.
Beispielhafte Ausgestaltungen des Reflektors 5 sind für die beiden dargestellten Ausführungsbeispiele in den Figuren 2 bis 4 gezeigt, wobei Figur 3 eine Querschnittdarstellung der Vorrichtung 1 gemäß der Schnittebene lll-lll in Figur 2 zeigt. In den dargestellten Beispielen ist der Reflektor 5 jeweils in Längsrichtung des Gehäuses 6 in diesem angeordnet, erstreckt sich insbesondere durch den gesamten in Längsrichtung freien Raum, insbesondere Innenraum, des Gehäuses 6 hindurch und ist, wie insbesondere in Figur 3 zu erkennen, insbesondere im Bereich einerweiteren Gehäusewand 6.2 des Gehäuses 6 angeordnet, beispielsweise daran anliegend angeordnet, welche der in Richtung der Fläche F ausgerichteten Gehäusewand 6.1 gegenüberliegt.
In den hier dargestellten Beispielen umfasst der Reflektor 5 einen Reflektorgrundkörper 5.1 mit mehreren in verschiedene Richtungen abgewinkelten Reflexionsflächen und zudem mehrere von diesem Reflektorgrundkörper 5.1 ausgehend ausgebildete Reflexionselemente 5.2 mit abgewinkelten Reflexionsflächen.
Das Gehäuse 6 ist derart gekapselt, dass das darin ausgebildete Vakuum V, insbesondere das technische Vakuum V, erhalten bleibt, umgangssprachlich also nicht entweichen kann. D. h das Gehäuse 6 ist fluiddicht verschlossen. Dadurch können insbesondere keine Gase, insbesondere keine Umgebungsluft, von außen, insbesondere aus einer äußeren Umgebung, in das Gehäuse 6 eindringen.
In den hier dargestellten Beispielen, in welchen das Gehäuse 6 als Quarzglasröhre ausgebildet ist, betrifft dies insbesondere die beiden stirnseitigen Enden der Quarzglasröhre. D. h. Öffnungen an diesen beiden stirnseitigen Enden sind entsprechend fluiddicht gekapselt. Bei der Ausführungsform gemäß den Figuren 2 und 3 weist das als Quarzglasröhre ausgebildete Gehäuse 6 hierfür an dem einen stirnseitigen Ende eine geschlossene Stirnwand 6.3 auf und am anderen stirnseitigen Ende ist ein Verschlusselement 7 vorgesehen. Bei der Ausführungsform gemäß Figur 4 ist an beiden stirnseitigen Enden jeweils ein solches Verschlusselement 7 vorgesehen.
In der Ausführungsform gemäß den Figuren 2 und 3 weist die Vorrichtung 1 eine Strahlungsquelle 2 auf, die zur Emission von Ultraviolett-Strahlung UV, insbesondere UV-C-Strahlung, ausgebildet ist. Diese Strahlungsquelle 2 ist insbesondere als LED, insbesondere als UV-C-LED, ausgebildet. Die Strahlungsquelle 2 ist in einem der beiden Stirnseitenbereiche des Gehäuses 6, im dargestellten Beispiel somit in einem der beiden stirnseitigen Endbereiche der Quarzglasröhre, angeordnet.
In der Ausführungsform gemäß Figur 4 weist die Vorrichtung 1 zwei Strahlungsquellen 2 auf, die jeweils zur Emission von Ultraviolett-Strahlung UV, insbesondere UV-C-Strahlung, ausgebildet sind. Auch hier sind diese Strahlungsquellen 2 jeweils insbesondere als LED, insbesondere als UV-C-LED, ausgebildet. In dieser Ausführungsform gemäß Figur 4 sind diese beiden Strahlungsquellen 2 in jeweils einem der beiden Stirnseitenbereiche des Gehäuses 6, im dargestellten Beispiel somit in jeweils einem der beiden stirnseitigen Endbereiche der Quarzglasröhre, angeordnet. Durch eine derartige Verwendung von zwei Strahlungsquellen 2 für die Vorrichtung 1 kann beispielsweise eine größere Fläche F bestrahlt werden oder eine Bestrahlungsleistung auf einer kleineren zu bestrahlenden Fläche F erhöht werden. Die Strahlungsquelle 2 der Ausführungsform der Vorrichtung 1 gemäß den Figuren 2 und 3 und ebenfalls die jeweilige Strahlungsquelle 2 der Ausführungsform der Vorrichtung 1 gemäß Figur 4 ist mit einer Kühleinheit 8, insbesondere mit einem Kühlkörper, thermisch gekoppelt, um die Strahlungsquelle 2 durch Abführen von Abwärme, welche während eines Betriebs der Vorrichtung 1 entsteht, zu kühlen. Des Weiteren sind hier nicht dargestellte Maßnahmen und/oder Einrichtungen vorgesehen, um mögliche Druckunterschiede, die durch die Abwärme der mindestens einen Strahlungsquelle 2 oder der beiden Strahlungsquellen 2 entstehen, zu regeln, insbesondere auszugleichen.
Die insbesondere als Kühlkörper ausgebildete jeweilige Kühleinheit 8 ist in den hier dargestellten Beispielen am Stirnseitenbereich des Gehäuses 6, im dargestellten Beispiel somit am stirnseitigen Endbereich der Quarzglasröhre, angeordnet, in welchem auch die von der jeweiligen Kühleinheit 8 zu kühlende Strahlungsquelle 2 angeordnet ist, und über die Leiterplatte 3, auf der diese Strahlungsquelle 2 angeordnet ist, mit der zu kühlenden Strahlungsquelle 2 thermisch gekoppelt. Elektrische Anschlusskontakte 9 zur elektrischen Energieversorgung der Strahlungsquelle 2 sind dabei von außen durch die als Kühlkörper ausgebildete Kühleinheit 8 zur Leiterplatte 3 hindurchgeführt.
Das Verschlusselement 7 zum fluiddichten Verschluss des Gehäuses 6 ist beispielsweise als ein Dichtungselement ausgebildet, welches zwischen einem in das Gehäuse 6 hineinragenden Bereich der als Kühlkörper ausgebildeten Kühleinheit 8 und einer Innenseite des Gehäuses 6 angeordnet ist. Somit bildet das Verschlusselement 7 zusammen mit der als Kühlkörper ausgebildeten Kühleinheit 8 den fluiddichten Verschluss des Gehäuses 6.
Die jeweilige als Kühlkörper ausgebildete Kühleinheit 8 weist in den dargestellten Beispielen zudem ein Positionierungselement 10 zur Positionierung der Vorrichtung 1 auf, insbesondere zur Befestigung an einem jeweiligen Verwendungsort, beispielsweise im Fahrzeug. In anderen Ausführungsbeispielen kann das Positionierungselement 10 oder können die mehreren Positionierungselemente 10 auch an anderen Stellen der Vorrichtung 1 angeordnet sein.
Durch diese Lösung, welche anhand der beiden in den Figuren 2 bis 4 beispielhaft dargestellten Ausführungsformen beschrieben wurde, wird die Verteilung der Ultraviolett-Strahlung UV auf die zu bestrahlende Fläche F verbessert. Dadurch sind beispielsweise, abhängig von der Größe dieser zu bestrahlenden Fläche F, bereits eine oder zwei, insbesondere als LED ausgebildete, Strahlungsquellen 2 ausreichend.
Diese Verbesserung der Verteilung der Ultraviolett-Strahlung UV wird, wie beschrieben, dadurch erreicht, dass der mindestens eine exakt berechnete und ausgelegte Reflektor 5 aus Gründen einer besseren Verteilung der Ultraviolett-Strahlung UV in dem evakuierten Gehäuse 6 eingebettet ist, wobei die in Richtung der Fläche F ausgerichtete Gehäusewand 6.1 dieses Gehäuses 6, welche aus Quarzglas ausgebildet ist, die Strahlungsaustrittsfläche des Gehäuses 6 bildet. In den dargestellten Beispielen ist dieser mindestens eine Reflektor 5 in einem als evakuierte Quarzglasröhre ausgebildeten Gehäuse 6 eingebettet.
Durch dieses Einbetten in das evakuierte Gehäuse 6 wird eine verlustarme Verteilung der Ultraviolett-Strahlung UV im Vakuum V des evakuierten Gehäuses 6 ohne Absorption, Extinktion und/oder Streuung erreicht. Absorption, Extinktion und/oder Streuung der Ultraviolett-Strahlung UV erfolgt somit erst nach Verlassen des evakuierten Gehäuses 6, hier der evakuierten Quarzglasröhre, d. h. erst außerhalb dieses evakuierten Gehäuses 6. Ohne das Vakuum V, insbesondere das technische Vakuum V, würde durch Absorption, Extinktion und Streuung eine Strahlungsintensität der Ultraviolett-Strahlung UV stark reduziert werden. Dies wird durch die hier beschriebene Lösung vermieden.

Claims

Patentansprüche
1. Vorrichtung (1) zur Bestrahlung einer Fläche (F), umfassend mindestens eine Strahlungsquelle (2), die zur Emission von Ultraviolett-Strahlung (UV), insbesondere UV-C-Strahlung, ausgebildet ist, und mindestens einen Reflektor (5) zur gerichteten Abstrahlung der Ultraviolett-Strahlung (UV) auf die Fläche (F), dadurch gekennzeichnet, dass die mindestens eine Strahlungsquelle (2) und der mindestens eine Reflektor (5) in einem evakuierten Gehäuse (6) angeordnet sind, wobei zumindest eine in Richtung der Fläche (F) ausgerichtete Gehäusewand (6.1) dieses Gehäuses (6) aus Quarzglas ausgebildet ist.
2. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Strahlungsquelle (2) als LED, insbesondere als UV-C-LED, ausgebildet ist.
3. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das evakuierte Gehäuse (6) als eine evakuierte Quarzglasröhre ausgebildet ist.
4. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Strahlungsquelle (2) mit einer Kühleinheit (8), insbesondere mit einem Kühlkörper, thermisch gekoppelt ist.
5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strahlungsquelle (2) in einem Stirnseitenbereich des Gehäuses (6) angeordnet ist.
6. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch zwei Strahlungsquellen (2), die zur Emission von Ultraviolett-Strahlung (UV), insbesondere UV-C-Strahlung, ausgebildet sind.
7. Vorrichtung (1) nach Anspruch 6, dadurch gekennzeichnet, dass die Strahlungsquellen (2) jeweils in einem Stirnseitenbereich des Gehäuses (6) angeordnet sind.
8. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Reflektor (5) in Längsrichtung des Gehäuses (6) in diesem angeordnet ist, sich insbesondere durch einen gesamten in Längsrichtung freien Raum des Gehäuses (6) hindurch erstreckt und insbesondere im Bereich einer der in Richtung der Fläche (F) ausgerichteten Gehäusewand (6.1) gegenüberliegenden weiteren Gehäusewand (6.2) des Gehäuses (6) angeordnet ist.
9. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (6) fluiddicht verschlossen ist.
EP20739978.3A 2019-09-05 2020-07-13 Vorrichtung zur bestrahlung einer fläche Pending EP4025262A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019006275.2A DE102019006275A1 (de) 2019-09-05 2019-09-05 Vorrichtung zur Bestrahlung einer Fläche
PCT/EP2020/069686 WO2021043480A1 (de) 2019-09-05 2020-07-13 Vorrichtung zur bestrahlung einer fläche

Publications (1)

Publication Number Publication Date
EP4025262A1 true EP4025262A1 (de) 2022-07-13

Family

ID=71607999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20739978.3A Pending EP4025262A1 (de) 2019-09-05 2020-07-13 Vorrichtung zur bestrahlung einer fläche

Country Status (4)

Country Link
EP (1) EP4025262A1 (de)
CN (1) CN114450034B (de)
DE (1) DE102019006275A1 (de)
WO (1) WO2021043480A1 (de)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555614B2 (ja) * 1987-07-21 1996-11-20 岩崎電気株式会社 表面処理装置
DE3907805A1 (de) * 1989-03-10 1990-09-13 Karl Gerhard Leuchtpult
EP1071476B1 (de) * 1998-04-17 2006-02-22 Tommy Busted Verfahren und vorrichtung zum sterilisieren von bauteilen
KR20070088999A (ko) * 2006-02-27 2007-08-30 주식회사 대우일렉트로닉스 살균 장치
KR20100060144A (ko) * 2008-11-27 2010-06-07 피엠라이트 주식회사 수처리용 자외선 살균 램프 및 시스템
DE102010042670B4 (de) * 2010-10-20 2013-07-18 Umex Gmbh Dresden Vorrichtung zur UV-Bestrahlung
US10874754B2 (en) * 2013-02-06 2020-12-29 Sterilux Sa Method and arrangement for sterilization and storage of medical devices
US9265849B2 (en) * 2014-01-07 2016-02-23 James Kerr Sanitizing apparatus
CN104324395B (zh) * 2014-10-24 2017-01-25 深圳莱特光电股份有限公司 一种led紫外光杀菌灯
US10772979B2 (en) * 2015-04-24 2020-09-15 Limestone Labs Limited Sanitizing device and method for sanitizing articles
DE102015207999A1 (de) 2015-04-30 2016-11-03 Zumtobel Lighting Gmbh Beleuchtungsanordnung
US11083810B2 (en) * 2019-01-07 2021-08-10 Ghsp, Inc. Control panel having UV disinfection

Also Published As

Publication number Publication date
DE102019006275A1 (de) 2021-03-11
CN114450034B (zh) 2024-04-26
CN114450034A (zh) 2022-05-06
WO2021043480A1 (de) 2021-03-11

Similar Documents

Publication Publication Date Title
DE102009044874B4 (de) Dünne LED-Lampenanordnung
EP2800677B1 (de) Standardlichtquelle laser-diode
EP2404110B1 (de) Beleuchtungsvorrichtung mit mindestens einem kühlkörper
EP1845396B1 (de) Leuchte mit wenigstens einer lichtdurchlässigen Abdeckung
DD274871A5 (de) Polarisiertes licht ausstrahlende behandlungsleuchte
DE102009023645B4 (de) LED-Modul
DE102010047318A1 (de) UV-Halbleiterlichtquellen-Bestrahlungseinrichtung und deren Verwendung
DE202014004365U1 (de) Raumbeleuchtung für die Lack- und Lösemittelverarbeitung
DE102013017141A1 (de) Röhrenförmige LED-Lampe mit Innenliegender, zylindrischer Sammellinse
DE3643354A1 (de) Beleuchtungseinrichtung fuer einen backofen
EP4025262A1 (de) Vorrichtung zur bestrahlung einer fläche
DE202018104105U1 (de) Fahrzeugleuchtbaugruppe mit verbesserter Wärmeableitung
DE19543852A1 (de) Kraftfahrzeugscheinwerfer mit Hochdruckgasentladungslampe
EP0468252B1 (de) Fahrzeugleuchte
DE202014100998U1 (de) LED-Leuchte und LED-Leuchten-Batterie
DE102016200425B3 (de) Flexible, umweltfreundliche Lampenvorrichtung mit Gasentladungslampe und Verwendungen hiervon
EP2746674B1 (de) Gargerät
EP2981984B1 (de) Leuchte
DE10024843A1 (de) Kraftfahrzeugscheinwerfer mit verbesserten Mitteln zur Verringerung von Kondensation
DE102008022414A1 (de) Leuchtmittel zur Verwendung in einer Straßenbeleuchtung sowie eine Vorrichtung zur Straßenbeleuchtung
EP0611916A1 (de) Leuchte für Mikrowellenöfen
DE3928385A1 (de) Mikrowellenherd mit einem heizraum
DE202021103900U1 (de) Beleuchtungsvorrichtung zur Desinfektion von Luft mit ultraviolettem Licht und zur Umgebungsbeleuchtung
WO2009135243A1 (de) Tiefkühlmöbel
DE102021108834A1 (de) Luftreinigungsvorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)