EP4003678A1 - Holzkompositwerkstoff - Google Patents

Holzkompositwerkstoff

Info

Publication number
EP4003678A1
EP4003678A1 EP20739976.7A EP20739976A EP4003678A1 EP 4003678 A1 EP4003678 A1 EP 4003678A1 EP 20739976 A EP20739976 A EP 20739976A EP 4003678 A1 EP4003678 A1 EP 4003678A1
Authority
EP
European Patent Office
Prior art keywords
wood
layers
composite material
fabric
veneer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20739976.7A
Other languages
English (en)
French (fr)
Inventor
Richard Wascher
Georg Avramidis
Wolfgang Viöl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hawk Hochschule Fuer Angewandte Wss und Kunst Hildesheim / Holzminden / Goettingen
Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim Holzminden Gottingen
Original Assignee
Hawk Hochschule Fuer Angewandte Wss und Kunst Hildesheim / Holzminden / Goettingen
Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim Holzminden Gottingen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawk Hochschule Fuer Angewandte Wss und Kunst Hildesheim / Holzminden / Goettingen, Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim Holzminden Gottingen filed Critical Hawk Hochschule Fuer Angewandte Wss und Kunst Hildesheim / Holzminden / Goettingen
Publication of EP4003678A1 publication Critical patent/EP4003678A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • B27N7/005Coating boards, e.g. with a finishing or decorating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/088Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of non-plastics material or non-specified material, e.g. supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/685Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by laminating inserts between two plastic films or plates
    • B29C70/687Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by laminating inserts between two plastic films or plates the inserts being oriented, e.g. nets or meshes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/72Encapsulating inserts having non-encapsulated projections, e.g. extremities or terminal portions of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/10Next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/14Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood board or veneer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0082Plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/08Coating on the layer surface on wood layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/026Wood layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/708Isotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships

Definitions

  • Wood composite materials The material wood itself is anisotropic and has different physical properties depending on its type, origin and age. This also applies to widespread
  • Wood-based materials such as plywood and especially plywood.
  • plywood there is usually at least three veneers that cross one another in the grain direction, which are impregnated with synthetic resins and pressed together with certain
  • Temperatures are glued to plates.
  • the structure of a plywood panel is symmetrical to the middle layer, with the face veneers showing the direction of the fibers and thus indicating the direction for the orthotropic properties.
  • Typical for plywood for example, are the significant differences in the directional dependence of the grain:
  • the tensile strength tensile and shear strengths
  • the tensile strength are usually significantly higher in the grain direction of the top layers than in the opposite grain direction ("across the grain") of the top layers. This means that the material is not isotropic in terms of its mechanical properties and its use in certain structural measures is restricted.
  • the task is thus to create new wood composite materials, in particular wood composite materials consisting of renewable raw materials, in which the anisotropy is reduced.
  • Wood composite proposed comprising
  • both the wood veneer layers and the fabric layer (s) are glued, preferably impregnated, with a binding agent.
  • the wood composite material can be produced from renewable raw materials
  • the wood composite material can have a significantly higher dimensional stability and weather resistance as well as a lower susceptibility to biological degradation than non-modified plywood
  • the wood composite material shows less variance than conventional ply wood with mechanical loading
  • Wood veneer refers in particular to layers of wood with a thickness of> 0.5 mm to ⁇
  • wood particularly preferred types are ash (Fraxinus), birch (Betula) and beech
  • Fabric layer is understood to mean in particular woven textiles, preferably those in which the fibers intersect at an angle of approximately 90 °.
  • the fabric layer preferably consists essentially of a cellulosic fiber.
  • Essentially in the context of the present invention means a proportion of> 95% (if applicable weight / weight), preferably> 97%, even more preferably> 99%.
  • Preferred cellulose-containing fibers are natural fibers, in particular from linseed plants (Linum usitatissimum, Linum angustifolium or Cannabis sativa), i.e. flax or hemp. Most preferred is flax.
  • the thickness of the fabric layers is preferably between> 0.2 mm to ⁇ 8 mm, with thicknesses (before pressing) of> 0.4 mm to ⁇ 2 mm, in particular> 0.5 mm to ⁇ 1.2 mm, the most common are preferred.
  • the fibers of the fabric layer preferably have an average length which is at least half of the longest side of the respective fabric layer.
  • the wood composite material comprises more than two layers of wood veneer.
  • not all veneers are arranged parallel to one another, i.e. the wood fibers which form the respective veneer layer do not run in the same or essentially the same direction.
  • a fabric layer is arranged between all the wood foils.
  • the invention is not restricted to this; it is then alternatively a preferred embodiment that the number of fabric layers is at least half the number of wood veneer layers.
  • Layer structure of the wood composite material is symmetrical to the middle layer.
  • the wood composite material comprises two layers of wood veneer
  • the two foam layers are arranged parallel or essentially parallel to one another.
  • the wood foils like fabric layers are glued, preferably impregnated, with binding agent.
  • binders are in particular thermoplastics, thermosets, aminoplasts, phenoplasts, isocyanates, proteins, tannins, starch, synthetic binders or near-natural binders, Biodegradable adhesives or mixtures of binders, such as urea-formaldehyde resin, melamine-formaldehyde resin, melamine-reinforced urea-formaldehyde resin, tannin formaldehyde resin, phenol-formaldehyde resin, polymeric diphenyl in ethane diisocyanate or mixtures thereof are preferred.
  • Particularly preferred binders are melamine-containing binders.
  • the wood veneer and fabric layers were subjected to a plasma treatment before the gluing or impregnation.
  • the present invention also relates to a method for producing a wood composite material according to the invention, comprising the steps
  • the method also comprises a step al) which is carried out after step a): al) plasma treatment of the wood veneer and fabric layers
  • a dielectrically impeded discharge is understood to mean, in particular, a discharge that occurs in a gas when a voltage is applied to the electrodes used, at least one electrode having to be coated with a dielectric. Due to dielectric barriers, the energy coupling into the Discharge has a capacitive character, so that the charge transfer and the flow of current are limited. When a voltage is applied to a given geometry, an electric field is created in which electrons are first driven to the anode.
  • transient micro-discharges conductive plasma channels
  • the ions retain their stationary position to a certain extent due to their low mobility or move slowly.
  • the charge separation creates a surface charge on the dielectric surfaces.
  • the electric field induced thereby counteracts the externally applied field.
  • the pulse length of a DBD discharge is limited in time (depending on the parameters between approx. 10 ns and 100 ns).
  • a DBD discharge is referred to as a non-equilibrium plasma and a "cold plasma ".
  • An atmospheric pressure plasma is preferably used in step al).
  • the present invention also relates to a use of a
  • wood composite material according to the invention in and / or at:
  • Fig. 1 is a diagram showing the density of the wood composite material according to a
  • FIG. 2 is a diagram showing the tensile strength of the wood composite material and of the reference example from FIG. 1, in each case in the longitudinal and transverse directions; such as
  • FIG. 3 is a diagram showing the tensile shear strength of the wood composite material and of the reference example from FIGS. 1 and 2, in each case in the longitudinal and transverse directions.
  • Thermally modified beech veneers (1.2 mm thick) and flax fabric (0.6 mm thick before pressing) with the dimensions 300 * 300 mm 2 were used as the starting material for the new wood composite material.
  • a melamine resin solution with a solids content of 50% was used as a binder
  • the veneers and the flax fabric underwent a plasma treatment according to Wascher et al, Holztechnologie 2016, 12ff. subjected, the plasma treatment time was 5 seconds.
  • the panels were then made.
  • the panels were produced by pressing the prepared semi-finished products (impregnated veneers or impregnated flax fabric) in a hydraulic heating press at a pressure of 250 N / cm 2 , a feed rate of 3 min / mm and a temperature of 130 ° C.
  • Fig. 2 shows the tensile strength
  • Fig. 3 shows the tensile shear strength of the two plates, measured on the basis of DIN 52377 and DIN EN 314-1 / 2, in each case in the longitudinal and transverse directions.
  • the wood composite material according to the invention shows a slight improvement in the samples “across the fiber” (direction of pull) and a slight decrease in tensile strength “along the fiber”. If the directions of pull within the same material are considered, a clear leveling of the tensile strength depending on the direction of pull compared to the reference can be observed with the material according to the invention.
  • the example according to the invention shows a significant increase in the tensile shear force compared to the reference, while this test also shows a decrease in the tensile shear strength along the fiber.
  • the reference shows a compared to the tensile strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Veneer Processing And Manufacture Of Plywood (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung bezieht sich auf einen Holzkompositwerkstoff, umfassend Holzfurnier- und Gewebelagen aus Naturfasern.

Description

Holzkompositwerkstoff B e s c h r e i b u n g
Die vorliegende Erfindung bezieht sich auf das Gebiet der Holzwerkstoffe und
Holzkompositwerkstoffe Der W erkstoff Holz selb st i st ani sotrop und wei st j e nach Art, Herkunft und Alter unterschiedliche physikalische Eigenschaften auf. Dies gilt auch für verbreitete
Holzwerkstoffe wie z.B. bei Lagenholz und hier insbesondere Sperrholz. Bei Sperrholz handelt es sich dabei gängigerweise um mindestens drei sich im Faserverlauf kreuzende Furniere, welche mit Kunstharzen imprägniert und durch Verpressen bei bestimmten
Temperaturen zu Platten verklebt sind. Der Aufbau einer Sperrholzplatte ist zur Mittellage symmetrisch, wobei die Deckfurniere gleichgerichteten Faserverlauf aufweisen und damit die Richtung für die orthotropen Eigenschaften angibt.
Typisch für z.B. Sperrholz sind die signifikanten Unterschiede in der Richtungsabhängigkeit des Faserverlaufs: Die Zugfestigkeit (Zug- und Scherzugfestigkeiten) sind in Faserrichtung der Decklagen meistens deutlich höher als in Gegen-Faserrichtung („quer zur Faser“) der Decklagen. Somit ist der Werkstoff bezüglich seiner mechanischen Eigenschaften nicht isotrop und in der Verwendung bei bestimmten baulichen Maßnahmen eingeschränkt. Es stellt sich somit die Aufgabe, neue Holzkompositwerkstoffe, insbesondere aus nachwachsenden Rohstoffen bestehende Holzkompositwerkstoffe zu schaffen, bei denen die Anisotropie vermindert ist.
Diese Aufgabe wird durch einen Holz- und/oder Holzkompositwerkstoff gemäß Anspruch 1 der vorliegenden Erfindung gelöst. Demgemäß wird ein Holz und/oder
Holzkompositwerkstoff vorgeschlagen, umfassend
- mindestens zwei Lagen Holzfumier, sowie
- mindestens eine, zwischen zwei Lagen Holzfumier angeordnete Gewebelage, umfassend eine zellulosehaltige Faser
wobei sowohl die Holzfurnierlagen wie die Gewebelage(n) mit einem Bindemittel beleimt, vorzugsweise imprägniert sind.
Überraschenderweise hat sich herausgestellt, dass so ein Holzkompositwerkstoff erhalten werden kann, bei der die Anisotropie zumindest einiger mechanischer Eigenschaften vermindert ist.
Weiterhin hat es sich herausgestellt, dass für die meisten Anwendungen der vorliegenden Erfindung einer oder mehrere der folgenden Vorteile erzielt werden kann:
- Der Holzkompositwerkstoff ist aus nachwachsenden Rohstoffen herstellbar
- Der Holzkompositwerkstoff kann eine signifikant höhere Dimensionsstabilität und Witterungsbeständigkeit sowie eine geringere Suszeptibilität gegenüber biologische Degradierung als nicht modifiziertes Lagenholz besitzen
- Der Holzkompositwerkstoff weist bei mechanischer Bealstung eine geringere Varianz auf als herkömmliches Lagenholz
- Man beobachtet häufig eine Nivellierung der für Schichtholzerzeugnisse typischen, orthotropi sehen Differenzen. Diese Nivellierung der orthotropi sehen Unterschiede sowie die genannte Homogenisierung kann vor allem in konstruktiven Bereichen (Automotive, Leichtbau, Bau etc.), bei denen richtungsunabhängige Materialeigenschaften von großer Bedeutung sind, das Anwendungsportfolio für diesen Werkstoff— im Vergleich zu herkömmlichen Lagenholzprodukten— deutlich erweitern.
Unter "Holzfumier" werden insbesondere Holzschichten mit einer Dicke von > 0,5 mm bis <
8 mm verstanden, wobei Dicken von > 0,8 mm bis < 2 mm, insbesondere > 1 mm bis < 1,5 mm besonders bevorzugt sind.
Besonders bevorzugte Holzarten sind dabei Esche ( Fraxinus ), Birke {Betula), Buche
( Fagaceae ), Erle {Ainus), Linde {Tilia), Ahorn {Acer), Eibe {Taxus), Kiefer {Pinus) oder Eiche {Quercus).
Unter "Gewebelage" werden insbesondere gewebte Textilien verstanden, bevorzugt solche, bei denen sich die Fasern im Winkel ca. 90° kreuzen verstanden.
Bevorzugt bestehen die Gewebelage im Wesentlichen aus einer zellulosehaltigen Faser.
„Im Wesentlichen“ im Sinne der vorliegenden Erfindung bedeutet einen Anteil von >95 % (wenn anwendbar Gewicht/Gewicht), bevorzugt >97 %, noch bevorzugt >99 %.
Bevorzugte zellulosehaltige Fasern sind dabei Naturfasern, insbesondere von Leinpflanzen {Linum usitatissimum, Linum angustifolium oder Cannabis sativa), d.h. Flachs oder Hanf. Am meisten bevorzugt ist Flachs.
Die Dicke der Gewebelagen beträgt bevorzugt zwischen von > 0,2 mm bis < 8 mm, wobei Dicken (vor dem Pressen) von > 0,4 mm bis < 2 mm, insbesondere > 0,5 mm bis < 1,2 mm am meisten bevorzugt sind Die Fasern der Gewebelage besitzen bevorzugt eine mittlere Länge, die mindestens die Hälfte der längsten Seite der jeweiligen Gewebelage beträgt.
Gemäß einer bevorzugten Ausführungsform umfasst der Holzkompositwerkstoff mehr als zwei Lagen Holzfurnier.
In diesem Fall ist es besonders bevorzugt, dass nicht alle Furniere parallel zu einander angeordnet sind, d.h. die Holzfasern, welche die jeweilige Furnierschicht ausbilden nicht in dieselbe oder im wesentlichen dieselbe Richtung verlaufen.
Weiterhin ist es in diesem Fall eine bevorzugte Ausführungsform der Erfindung, dass zwischen allen Holzfumi erlagen eine Gewebelage angeordnet ist.
Die Erfindung ist jedoch nicht darauf beschränkt, es ist dann alternativ eine bevorzugte Ausführungsform, dass die Anzahl der Gewebelagen mindestens die Hälfte der Anzahl der Holzfumierlagen beträgt.
In diesem Fall ist es dann eine bevorzugte Ausführungsform der Erfindung dass der
Schichtaufbau des Holzkompositwerkstoffs zur Mittellage symmetrisch ist.
Für den Fall, dass der Holzkompositwerkstoff zwei Lagen Holzfurnier umfasst, ist es bevorzugt, dass die beiden Fumierschicht parallel oder im wesentlichen parallel zu einander angeordnet sind.
Gemäß der vorliegenden Erfindung sind die Holzfumi er- wie Gewebelagen mit Bindemittel beleimt, vorzugsweise imprägniert.
Als Bindemittel sind insbesondere Thermoplasten, Duroplasten, Aminoplasten, Phenoplasten, Isocyanate, Proteine, Tannine, Stärke, synthetische Bindemittel oder natumahe Bindemittel, biologisch abbaubare Klebstoffe oder Mischungen von Bindemitteln, wie z.B. Harn stoffformaldehyd-Harz, Melaminformaldehyd-Harz, Melaminverstärktes Hamstoffform- aldehyd-Harz, Taninformaldehyd-Harz, Phenolformaldehydharz, polymeres Diphenyl in ethandiisocyanat oder Mischungen daraus bevorzugt. Besonders bevorzugte Bindemittel sind melaminhaltige Bindemittel.
Gemäß einer bevorzugten Ausführungsform wurden die Holzfurnier- und Gewebelagen vor der Beleimung oder Imprägnierung einer Plasmabehandlung unterzogen.
Die vorliegende Erfindung bezieht sich ebenfalls auf ein Verfahren zur Herstellung eines erfmdungsgemäßen Holzkompositwerkstoffes, umfassend die Schritte
a) Bereitstellen mindestens zwei Holzfumierlagen und einer Gewebelage, umfassend eine zellulosehaltige Faser
b) Imprägnieren der Holzfurnier- und Gewebelagen mit dem Bindemittel
c) Schichtweises Anordnen der Lagen so, dass jede Gewebelage zwischen zwei
Holzfumierlagen angeordnet ist; sowie
d) Verpressen
Gemäß einer bevorzugten Ausführungsform der Erfindung umfasst das Verfahren noch einen Schritt al) der nach Schritt a) durchgeführt wird: al) Plasmabehandlung der Holzfumier - und Gewebelagen
Bevorzugt wird bei Schritt al) ein kaltes Plasma verwendet. Darunter wird insbesondere verstanden, dass das Plasma auf Basis einer dielektrisch behinderten Entladung (DBD = dielectric barrier discharge) erzeugt wird. Unter einer dielektrisch behinderten Entladung versteht man insbesondere eine Entladung, die in einem Gas beim Anlegen einer Spannung an die verwendeten Elektroden auftritt, wobei mindestens eine Elektrode mit einem Dielektrikum belegt sein muss. Bedingt durch dielektrische Barrieren, besitzt die Energieeinkopplung in die Entladung einen kapazitiven Charakter, sodass der Ladungstransfer und der Stromfluss begrenzt werden. Beim Anlegen einer Spannung an eine gegebene Geometrie entsteht ein elektrisches Feld, in dem Elektronen zunächst zur Anode getrieben werden. Beim Gasdurchbruch entstehen transiente Mikroentladungen (leitfähige Plasmakanäle), die innerhalb des Entladungsraumes zeitlich und räumlich stochastisch verteilt sind. Die Ionen behalten gewissermaßen ihre stationäre Position aufgrund ihrer geringen Mobilität bei bzw. bewegen sich langsam. Durch die Ladungstrennung entsteht eine Oberflächenladung auf den dielektrischen Oberflächen. Das dadurch induzierte elektrische Feld wirkt dem von außen angelegten Feld entgegen. Die Pulslänge einer DBD-Entladung ist zeitlich begrenzt (parameterabhängig zwischen ca. 10 ns und 100 ns). Aus diesem Grund sind für diese Entladungsform einerseits eine relativ hohe mittlere Elektronenenergie (1-10 eV) und anderseits eine niedrige Gastemperatur, die ungefähr der Temperatur der Elektroden gleicht, charakteristisch: Man spricht bei einer DBD-Entladung von einem Nichtgleichgewichtsplasma und einem„kalten Plasma“.
Bevorzugt wird bei Schritt al) ein Atmosphrendruckplasma verwendet.
Bevorzugt wird bei Schritt al) ein DBD-Plasma verwendet. Darunter wird insbesondere eine Plasmaerzeugung unter Zuhilfenahme einer dielektrisch behinderten Entladung (DBD = dielectric barrier discharge) verstanden.
Es hat sich herausgestellt, dass so die Imprägnierung auf einfache Weise, insbesondere bei den meisten Anwendungen ohne Vakuumbehandlung, durchgeführt werden kann.
Die vorliegende Erfindung bezieht sich ausserdem auf eine Verwendung eines
erfmdungsgemäßen Holzkompositwerkstoffs in und/oder bei:
konstruktiven Bereichen (Automotive, Leichtbau, Bau etc.),
im Außenbereich (Fassaden, Bootsbau, Gartenmöbel)
in robuster Umgebung (Lagerhallen, Industriefahrzeuge etc.) Die vorgenannten sowie die beanspruchten und in den Ausführungsbeispielen beschriebenen erfindungsgemäß zu verwendenden Bauteile unterliegen in ihrer Größe, Formgestaltung, Materialauswahl und technischen Konzeption keinen besonderen Ausnahmebedingungen, so dass die in dem Anwendungsgebiet bekannten Auswahlkriterien uneingeschränkt Anwendung finden können.
Weitere Einzelheiten, Merkmale und Vorteile des Gegenstandes der Erfindung ergeben sich aus den Unteransprüchen sowie aus der nachfolgenden Beschreibung der zugehörigen Zeichnungen, in denen - beispielhaft - ein Ausführungsbeispiel des erfindungsgemäßen Holzkompositwerkstoffs dargestellt sind. In den Zeichnungen zeigt:
Fig. 1 ein Diagramm, aufzeigend die Dichte des Holzkompositwerkstoffs gemäß einer
erfindungsgemäßen Ausführungsform sowie eines Referenzbeispiels,
Fig. 2 ein Diagramm, aufzeigend die Zugfestigkeit des Holzkompositwerkstoffs sowie des Referenzbeispiels aus Fig. 1, jeweils in Längs- und Querrichtung; sowie
Fig. 3 ein Diagramm, aufzeigend die Scherzugfestigkeit des Holzkompositwerkstoffs sowie des Referenzbeispiels aus Fig. 1 und 2, jeweils in Längs- und Querrichtung.
Die vorliegende Erfindung wird anhand eines Beispiels erläutert, welches rein illustrativ und nicht als beschränkend zu verstehen ist.
Als Ausgangswerkstoff des neuen Holzkompositwerkstoffs wurden thermisch modifizierte Buchenfurniere (1,2 mm Dicke) sowie Flachsgewebe (0,6 mm Dicke vor dem Verpressen) mit den Abmessungen 300*300 mm2 verwendet. Als Bindemittel wurde eine Melaminharzlösung mit einem Feststoff anteil von 50%
eingesetzt.
Vor der Imprägnierung wurden die Furniere und das Flachsgewebe einer Plasmabehandlung gemäß Wascher et al, Holztechnologie 2016, 12ff. unterzogen, die Plasmabehandlungszeit betrug 5 s.
Anschließend wurden sowohl die Furniere als auch das Gewebe in einem
Melaminharzlösungsbad 1 s lang getränkt und mittels einer Abstreifvorrichtung die überschüssige Flüssigkeit vom Material entfernt. Das imprägnierte Material wurde für 24 Stunden konditioniert (getrocknet). Anschließend wurde das Material einsortiert, so dass sich jeweils eine imprägnierte Gewebelage zwischen zwei einzelnen Fumi erlagen (5 Furnierlagen, 4 Gewebelagen) befand.
Für die„Referenz“ wurden 5 einzelne Furnierlagen im Faserverlauf kreuzend (90°) gestapelt, sodass die oberen und unteren Decklagen die gleiche Faserverlaufsrichtung aufweisen.
Anschließend wurden zwei Platten hergestellt. Die Herstellung der Platten erfolgte, indem die vorbereiteten Halbzeuge (imprägnierte Furniere bzw. imprägniertes Flachsgewebe) in einer hydraulischen Heizpresse bei einem Pressdruck von 250 N/cm2, einem Vorschub 3min/mm und einer Temperatur von 130°C verpresst wurden.
Fig. 1 zeigt die Dichte der erfindungsgemäßen Platte ("Beispiel") sowie der Referenz, gemessen gemäß DIN EN 323. Erwartungsgemäß ist die Dichte der erfindungsgemäßen Platte etwas höher.
Fig. 2 zeigt die Zugfestigkeit, Fig. 3 die Scherzugfestigkeit der beiden Platten, gemessen in Anlehnung an DIN 52377 bzw. DIN EN 314-1/2, jeweils in Längs- und Querrichtung. Der erfmdungsgemäße Holzkompositwerkstoff zeigt dabei eine leichte Verbesserung der Proben„quer zur Faser“ (Zugrichtung) und eine geringfügige Abnahme der Zugfestigkeit „längs zur Faser“. Betrachtet man die Zugrichtungen innerhalb desselben Materials, so ist beim erfindungsgemäßen Werkstoff eine deutliche Nivellierung der Zugfestigkeit abhängig von der Zugrichtung im Vergleich zur Referenz zu beobachten.
Ähnliche Ergebnisse zeigen sich bei der Scherzugfestigkeit: Quer zur Faser zeigt das erfmdungsgemäße Beispiel eine signifikante Erhöhung der Scherzugkraft im Vergleich zur Referenz, während auch bei diesem Test eine Verringerung der Scherzugfestigkeit längs zur Faser zu verzeichnen ist. Die Referenz zeigt im Vergleich zur Zugfestigkeit eine
ausgeprägtere Divergenz bezüglich der Zugrichtung, während die Scherzugkraft in
Abhängigkeit von der Zugrichtung beim erfindungsgemäßen Beispiel nivelliert wird
Die einzelnen Kombinationen der Bestandteile und der Merkmale von den bereits erwähnten Ausführungen sind exemplarisch; der Austausch und die Substitution dieser Lehren mit anderen Lehren, die in dieser Druckschrift enthalten sind mit den zitierten Druckschriften werden ebenfalls ausdrücklich erwogen. Der Fachmann erkennt, dass Variationen,
Modifikationen und andere Ausführungen, die hier beschrieben werden, ebenfalls auftreten können ohne von dem Erfindungsgedanken und dem Umfang der Erfindung abzuweichen. Entsprechend ist die obengenannte Beschreibung beispielhaft und nicht als beschränkend anzusehen. Das in den Ansprüchen verwendete Wort„umfassen“ schließt nicht andere Bestandteile oder Schritte aus. Der unbestimmte Artikel„ein“ schließt nicht die Bedeutung eines Plurals aus. Die bloße Tatsache, dass bestimmte Maße in gegenseitig verschiedenen Ansprüchen rezitiert werden, verdeutlicht nicht, dass eine Kombination von diesen Maßen nicht zum Vorteil benutzt werde kann. Der Umfang der Erfindung ist in den folgenden Ansprüchen definiert und den dazugehörigen Äquivalenten.

Claims

P a t e n t a n s p r ü c h e
1. Holz- und/oder Holzkompositwerkstoff, umfassend:
- mindestens zwei Lagen Holzfurnier, sowie
- mindestens eine, zwischen zwei Lagen Holzfurnier angeordnete Gewebelage, umfassend eine zellulosehaltige Faser wobei sowohl die Holzfumierlagen wie die Gewebelage(n) mit einem Bindemittel beleimt sind
2. Holz- und/oder Holzkompositwerkstoff gemäß Anspruch 1, wobei sowohl die
Holzfumierlagen wie die Gewebelage(n) mit einem Bindemittel imprägniert sind.
3. Holz- und/oder Holzkompositwerkstoff gemäß Anspruch 1 oder 2, wobei die
Gewebelage im Wesentlichen aus einer zellulosehaltigen Faser besteht
4. Holz- und/oder Holzkompositwerkstoff gemäß einem der Ansprüche 1 bis 3, wobei die Dicke der Gewebelagen beträgt bevorzugt zwischen von > 0,2 mm bis < 8 beträgt.
5. Holz- und/oder Holzkompositwerkstoff gemäß einem der Ansprüche 1 bis 4, wobei die Holzfurnier- und Gewebelagen einer Plasmabehandlung unterzogen wurden.
6. Verfahren zum Herstellen eines Holz- und/oder Holzkompositwerkstoff gemäß der Ansprüche 1 bis 5, umfassend: a) Bereitstellen mindestens zwei Holzfurnierlagen und einer Gewebelage, umfassend eine zellulosehaltige Faser
b) Imprägnieren der Holzfumier- und Gewebelagen mit dem Bindemittel c) Schichtweises Anordnen der Lagen so, dass jede Gewebelage zwischen zwei Holzfurnierlagen angeordnet ist; sowie
d) Verpressen
7. Verfahren gemäß Anspruch 6, zusätzlich einen Schritt al) der nach Schritt a)
durchgeführt wird: al) Plasmabehandlung der Holzfurnier - und Gewebelagen
8. Verfahren nach Anspruch 7, wobei bei Schritt al) ein kaltes Plasma verwendet wird.
9. Verfahren nach Anspruch 7 oder 8, wobei bei Schritt al) ein
Atmosphärendruckplasma verwendet wird
10. Verwendung eines Holzwerkstoffes gemäß einem der Ansprüche 1 bis 5 und/oder eines gemäß eines der Ansprüche 6 bis 9 hergestellten Holzwerkstoffes in und/oder bei: konstruktiven Bereichen (Automotive, Leichtbau, Bau etc.),
im Außenbereich (Fassaden, Bootsbau, Gartenmöbel)
in robuster Umgebung (Lagerhallen, Industriefahrzeuge etc.)
EP20739976.7A 2019-07-24 2020-07-10 Holzkompositwerkstoff Pending EP4003678A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019120050.4A DE102019120050A1 (de) 2019-07-24 2019-07-24 Holzkompositwerkstoff
PCT/EP2020/069654 WO2021013591A1 (de) 2019-07-24 2020-07-10 Holzkompositwerkstoff

Publications (1)

Publication Number Publication Date
EP4003678A1 true EP4003678A1 (de) 2022-06-01

Family

ID=71607997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20739976.7A Pending EP4003678A1 (de) 2019-07-24 2020-07-10 Holzkompositwerkstoff

Country Status (3)

Country Link
EP (1) EP4003678A1 (de)
DE (1) DE102019120050A1 (de)
WO (1) WO2021013591A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100027476A1 (it) * 2021-10-26 2023-04-26 Sozzi Arredamenti S P A Pannello stratificato in massello di legno e metodo di produzione dello stesso.
DE102022203336A1 (de) 2022-04-04 2023-10-05 Alexander Heggen Verbundplatte sowie Verfahren zu deren Herstellung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1391873B1 (it) * 2008-11-13 2012-01-27 Abet Laminati Spa Procedimento per l'ottenimento di pannelli decorativi a base di resina termoplastica, impianto per la realizzazione di detto procedimento e pannelli così ottenuti.
US20110271616A1 (en) * 2010-04-16 2011-11-10 E2E Materials Naturally sourced building materials
FI128490B (fi) * 2017-11-22 2020-06-15 Teemu Aittamaa Vanerinen pakkausvyöte
CN108127748A (zh) * 2017-12-19 2018-06-08 北京林业大学 一种以麻纤维增强的杨木单板层积材

Also Published As

Publication number Publication date
WO2021013591A1 (de) 2021-01-28
DE102019120050A1 (de) 2021-01-28

Similar Documents

Publication Publication Date Title
DE60032125T2 (de) Verbundbauelemente und herstellungsverfahren
AT504841B1 (de) Gleitbrettkern für schi oder snowboards
DE3306287A1 (de) Zusammengesetztes material und verfahren zu seiner herstellung
WO2021013591A1 (de) Holzkompositwerkstoff
WO2016026801A1 (de) Verbundplatte aus holzwerkstoff
DE112007000900T5 (de) Verstärkte Holzplatte und Verfahren zur Herstellung derselben
WO2017137217A1 (de) Verbundplatte aus holzwerkstoff mit einer mittellage aus sperrholz
WO2011151300A1 (de) Verfahren und anlage zur herstellung einer mehrschichtigen werkstoffplatte zur aufteilung in balkenförmige produkte und eine werkstoffplatte
DE102008010869A1 (de) Tragstruktur sowie Verfahren zur Herstellung und Verwendung einer derartigen Tragstruktur
EP1918080B1 (de) Werkstoffplatte aus Bambus
WO2010139077A1 (de) Verfahren zur herstellung eines verbundwerkstoffs
WO2010066783A2 (de) Schalungsträger
DE102009021016A1 (de) Verfahren zur Herstellung einer hochdichten Werkstoffplatte aus holz- oder holzähnlichen Rohstoffen, eine Werkstoffplatte und eine Verwendung der Werkstoffplatte
AT519940B1 (de) Holzverbundelement
DE3721664C2 (de)
DE29603564U1 (de) Verbundwerkstoff
WO2015097155A1 (de) Verbundkörper und sitzschale
DE102009032663B4 (de) Hochelastischer Verbundwerkstoff sowie Sportbogen aus einem hochelastischen Verbundwerkstoff
EP3421200B1 (de) Holzwerkstoffplatte mit hohlkugeln
DE102009009431A1 (de) Platte, deren Verwendung sowie Herstellungsverfahren dafür
DE102009047142A1 (de) Verfahren zur Modifizierung von Holzwerkstoffen
EP3384810A1 (de) Möbelplatte und verfahren zu deren herstellung
DE202018101347U1 (de) Brettsperrholzelement
WO2016087601A1 (de) Werkstoffplatte
EP2319671B1 (de) Verfahren zur Herstellung einer OSB-Platte

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)