EP3999707B1 - Insulation of door and window frames - Google Patents

Insulation of door and window frames Download PDF

Info

Publication number
EP3999707B1
EP3999707B1 EP20739680.5A EP20739680A EP3999707B1 EP 3999707 B1 EP3999707 B1 EP 3999707B1 EP 20739680 A EP20739680 A EP 20739680A EP 3999707 B1 EP3999707 B1 EP 3999707B1
Authority
EP
European Patent Office
Prior art keywords
cavity
polymer composition
insulating
aluminium
foamed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20739680.5A
Other languages
German (de)
French (fr)
Other versions
EP3999707A1 (en
Inventor
Silvain Meessen
Florence SCHÖPGES
Jean-Pierre Mayeres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NMC SA
Original Assignee
NMC SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NMC SA filed Critical NMC SA
Priority to SI202030261T priority Critical patent/SI3999707T1/en
Priority to DE20739680.5T priority patent/DE20739680T1/en
Publication of EP3999707A1 publication Critical patent/EP3999707A1/en
Application granted granted Critical
Publication of EP3999707B1 publication Critical patent/EP3999707B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/26301Frames with special provision for insulation with prefabricated insulating strips between two metal section members
    • E06B3/26303Frames with special provision for insulation with prefabricated insulating strips between two metal section members with thin strips, e.g. defining a hollow space between the metal section members
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/06Single frames
    • E06B3/08Constructions depending on the use of specified materials
    • E06B3/12Constructions depending on the use of specified materials of metal
    • E06B3/14Constructions depending on the use of specified materials of metal of special cross-section
    • E06B3/16Hollow frames of special construction, e.g. made of folded sheet metal or of two or more section parts connected together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/277Frames with special provision for insulation with prefabricated insulating elements held in position by expansion of the extremities of the insulating elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/2632Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section
    • E06B2003/26321Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section with additional prefab insulating materials in the hollow space
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/06Single frames
    • E06B3/08Constructions depending on the use of specified materials
    • E06B3/12Constructions depending on the use of specified materials of metal
    • E06B3/14Constructions depending on the use of specified materials of metal of special cross-section
    • E06B3/16Hollow frames of special construction, e.g. made of folded sheet metal or of two or more section parts connected together
    • E06B3/163Hollow frames of special construction, e.g. made of folded sheet metal or of two or more section parts connected together with a filled cavity

Definitions

  • the present invention relates to the insulation of aluminum sections or frames for doors and windows and more particularly the insulation of the spaces between the interior and exterior sections of a frame.
  • Breaking the thermal bridge by lacing is an insulation technique used on aluminum openings and frames to increase the insulation performance of this type of frame.
  • the principle is simple: a material that is not very thermally conductive (that is to say much less thermally conductive than aluminium) is crimped between the interior and exterior aluminum profiles of the sash and the frame to reduce the reciprocal exchanges of temperature between the interior to the exterior of the building or vice versa.
  • the strips are generally plastic profiles with an elongated cross section and having at each end of this section a mechanical fixing system complementary to a fixing system provided on the internal faces of the inner and outer sections, for example a fixing to dovetail.
  • the interior and exterior aluminum profiles assembled by these strips form a composite profile, also called a frame, thus generally comprising one or more cavities between the two profiles, hereinafter called a bar cavity(ies).
  • a composite profile also called a frame
  • bar cavity(ies) the cavities between the two profiles
  • air convection and/or radiation can negatively influence the insulation performance of the assembly. It is the same in the case of the cavity of barring where the convection of the air and/or especially the radiation between the internal faces of the external and internal profiles increase the flow of energy and thus the losses of energy through the chassis.
  • the bar cavity is at least partially filled with a foamed polymer material.
  • the filling of the cavity of the strapping cannot be coextruded with the profile (as for example in EP 2 501 530 A1 ), but must be done at the time of lacing or after, i.e. during or after the assembly of the two internal and external profiles by means of bars.
  • a polymer foam profile of appropriate section is inserted either by being fixed beforehand to one of the bars (filling during assembly) or even simply by sliding a polymer foam profile into the cavity by one of the ends. of the assembled frame (filling after assembly).
  • Powder coating is a process used to paint profiles in a durable way. Once the profiles have been stripped, cleaned of impurities and pre-treated to ensure perfect adhesion of the lacquer, a paint powder, for example a polyester paint powder, is applied to them via electrostatic powdering, depositing colored particles. In an oven heated to around 200°C, the polymerization then hardens everything to stabilize the chosen coating.
  • the anodizing operation which is an operation not involving high temperatures like powder coating, consists in producing a thin layer of aluminum oxide (alumina) resistant to surface of a profile, which can affect its decorative appearance. It is carried out through oxidation controlled by chemical or electrolytic colorations.
  • the parts to be anodized are immersed in several successive baths, which first ensure the preparation of the surface of the profile or the frame, then the production of the alumina with, if desired, the deposit of a appearance and color and, finally, the stabilization of the alumina layer by a so-called “sealing" operation consisting in hydrating the alumina layer in order to obtain good corrosion resistance.
  • EP 2 799 654 A1 discloses a method for insulating a barrette cavity of an aluminum frame for the opening or frame of a door or window.
  • EP 2 799 654 A1 also discloses a device for isolating a barrette cavity of an aluminum frame for the opening or frame of a door or window.
  • An object of the present invention is therefore to provide a polymeric foam profile of suitable cross-section to insulate an aluminum profile cavity and preferably a lattice cavity by reducing energy losses by convection and/or radiation, which can be used in profiles or frames intended for powder coating.
  • step (b') anodization comprising the immersion of the aluminum profile or the aluminum frame in several successive baths ensuring the preparation of the surface of the profile or the frame, the production of alumina on the said surfaces, optionally with the deposition of a appearance and/or color and stabilization of the alumina layer by a sealing operation.
  • the method comprising steps (a) and (b), further comprises, before or after step (a), a step (x) of spraying a paint powder, for example polyester , preferably by electrostatic powdering, on the outer faces of the aluminum profile or the aluminum frame, the polyester paint powder melting in step (b) to form a protective coating (powder coated).
  • a process comprising steps (a), (x) and (b) is therefore a powder coating process as described above.
  • a device for insulating a cavity of an aluminum profile or of a barrette cavity of an aluminum frame for the opening or frame of a door or window comprising a body foamed with a first polymer composition of polygonal cross-section provided on at least one surface, preferably on (each of) two opposite surfaces with one or more foamed or unfoamed fins of a second polymer composition, in which the foamed body of the first polymer composition comprises a foam based on polyesters, preferably of the polyalkylene terephthalate type, such as for example polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene naphthalate (PEN), polytrimethylene terephthalate (PTT), etc
  • the problem of insulating a cavity is twofold: on the one hand the foam inside the cavity must cover the entire distance between the bars to be able to guarantee the absence of convection and/or radiation between the two internal faces of the two external and internal profiles, and, in the case of powder coating, it must remain intact even after a heating procedure without the strips softened by the heat of powder coating do not deform. Note that in the case of additional anodizing, it will prevent the retention of liquids from successive baths by capillarity, i.e. it must allow the flow and correct rinsing of the surfaces of the profile or frame.
  • the first polymer composition comprises (co)polyesters having good rigidity even at the high temperatures of a powder coating.
  • the inventors have found that by proceeding in this way, the forces exerted by the foam subjected to thermal expansion is likely to deform the strips.
  • the trend is to improve the insulation performance of strips by making them less dense (by foaming for example) and/or thinner, which further increases the risk of deformation during powder coating.
  • the inventors have found that the foam can shrink (at least partially) during cooling to room temperature after heating or powder coating and thus again free up part of the distance between the bars and therefore reduce the insulation performance. of the chassis.
  • the inventors then designed the insulation devices according to the invention by slightly reducing the initial size of the foam body with respect to the distance between two strips and by providing at least on one side of the fins which at the temperature of heating or thermolacquering will soften or melt, will be crushed by the thermally expanding foam, above all, will solidify later (at a lower temperature) than the foam of the body and will thus not only fill in any shrinkage space, even if necessary glue the foam body to the bars.
  • Such bonding depending on the choice of the nature of the second polymer composition, is moreover particularly advantageous, because it makes it possible to increase not only the insulation performance, but also the mechanical rigidity of the assembly.
  • the inventors have determined that in certain variants, for the isolation device to be particularly suitable in an isolation process comprising steps (a) and (b) or steps (a), (x) and (b), it is preferable to choose the second polymer composition preferably from polymer compositions capable of softening or melting at a temperature below a temperature between 180 and 250°C.
  • an isolation device can also be useful in an isolation process comprising steps (a) and (b) or steps (a), (x) and (b), even if the softening or melting temperature of the second composition is only slightly lower, or even identical to that of the first composition, that is to say of the foamed body.
  • the fins being located closer to the surfaces of the profile, they tend to heat up more quickly than the foamed body. It is to highlight that in these cases, the heating step must however be controlled more precisely both in terms of temperature and in terms of heating time.
  • the inventors have determined that it would also possibly be advantageous to provide a foam which, beyond a certain temperature, would be subjected not only to thermal expansion, but also to a new additional foaming, even more important than the thermal expansion, so as to fill said cavity to the maximum, that is to say by means of a post-foaming.
  • the fins provided according to the invention play the role of spacer elements which make it possible to maintain the surface or surfaces of the foam body at a certain distance from the corresponding surfaces of the profile or frame, preferably at a distance of 4 to 8 mm, preferably 5 to 6 mm, so as to ensure the normal flow (without capillarity effect) of the liquids of the treatment baths.
  • the inventors have further determined that it is not essential, in order to avoid losses by convection and/or radiation, that the opposite sides of an insulation device according to the invention cover the entire distance between the corresponding surfaces of the profile or frame (i.e. the isolation device must be in contact on two opposite sides with the profile or frame), but a gap of up to approximately 2 to 3 mm, preferably up to 'at about 1 to 2 mm, does not significantly decrease the insulation performance. Indeed, it has been found that a slot of such small width does not allow significant convection through the slot (and therefore significant heat loss). This is also true for radiation losses which are extremely low and therefore negligible under these conditions.
  • an isolation device according to the invention can be chosen to be up to 3 mm, preferably up to 1 to 2 mm below those of the cavity without reducing the insulation performance, even in the case of an anodizing process without an additional foam expansion step.
  • a particular advantage is that the isolation device is all the easier to insert into said cavity.
  • the fins can be of generally any cross-section, preferably polygonal in shape and particularly preferably of roughly triangular or trapezoidal section.
  • the number of fins per side of the foam body will be chosen appropriately, in particular according to the dimensions of the cavity to be insulated, and will often be between 1 and 10, preferably between 2 and 5.
  • the insertion of the isolation device in step (a) can be done in any suitable way.
  • the insulation device is inserted into the bar cavity after the sections have been assembled into a frame by introducing it through one end of the frame.
  • the isolation device is inserted with one of the strips at the time of assembly.
  • the fixing of the insulation device on the bar is done for example by gluing, welding, coextrusion, etc.
  • the fins are at least on the side opposite the side fixed to the bar and possibly on other sides, but not on the side fixed to the bar. In this context, it should be noted that the side fixed to the strip effectively prevents the capillary effect in the event of anodization.
  • the insulation method according to the invention is used for the insulation of a barrette cavity of an aluminum frame.
  • the fins or at least part of them are located facing a bar, either in direct contact, or at a very small distance of less than 3 mm, or even less than 2 mm.
  • the first polymer composition is preferably a composition comprising (co)polyesters, in particular PET, PBT, PTT, PEN, etc. .., or mixtures thereof, as sole polymers or optionally in combination with other (co)polymers, such as impact modifier polymers known for (co)polyesters, ethylene copolymers, such as ethylene-vinyl acetate (EVA) copolymers, ethylene-methyl acrylate (EMA) copolymers , ethylene-ethyl acrylate (EEA) copolymers, ethylene-butyl acrylate (EBA) copolymers, ethylene copolymers modified with groups such as, for example, maleic anhydride or glycidyl methacrylate, etc., thermoplastic elastomers (TPE), such as thermoplastic elastomers polyesters (TPC), thermoplastic elastomeric olefins unvulcanized (TPE), such as thermoplastic elastomers polyesters (TPC),
  • the second polymer composition comprises one or more polymers chosen from cross-linked polyethylene, copolymers of ethylene modified or not by groups such as for example maleic anhydride, thermoplastic elastomers (TPE, such as TPS, TPU, TPC, TPV, TPO), (co)polyesters (PET, PBT, PTT, PEN, ...) and is optionally foamed.
  • TPE thermoplastic elastomers
  • the densities of the fins will generally be greater than 25 kg/m 3 , preferably between 100 kg/m 3 and the non-foamed density of the second polymer composition.
  • the first polymer composition that is to say the foamed body
  • the second polymer composition that is to say the fins
  • chemical post-foaming in the case of chemical foaming agents is done by the additional volume of gas generated by the decomposition of the chemical foaming agent, the gas initially contained in the cells and the gas generated during heating at higher temperature being further simultaneously subjected to thermal expansion.
  • the first polymer composition and/or the second polymer composition can comprise, as sole foaming agent or in addition to other physical and/or chemical foaming agents commonly used for foaming such compositions, an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular from 0.1 to 2% by weight of at least one physical foaming agent that is liquid at room temperature (and at atmospheric pressure), preferably chosen from alkanes having a boiling point above 25°C, in particular n-pentane, isopentane or cyclopentane, hexanes (all isomers), heptanes, etc., or among ethanol, dimethyl ether, etc., or mixtures thereof.
  • foaming agents in the first and/or second polymer composition will cause post-foaming inside the cavity during heating or powder coating.
  • the phenomenon responsible for the so-called physical post-foaming in the case of liquid physical foaming agents at ambient temperatures results not only from the liquefaction then the re-evaporation of the initial physical foaming agent, but results from a combination with the phenomenon of gas exchange through the cell walls. This phenomenon is well known in the field and is the reason why the gas initially responsible for the foaming will generally be gradually exchanged with atmospheric air.
  • the so-called physical post-foaming described here takes advantage of the air permeability and the liquefaction of agents that are normally liquid at room temperature, which means that the entry of air into the cells is increased by reducing the volume of the agent. of foam becoming liquefied on cooling. After a certain time, the cells therefore not only contain the amount of foaming agent initial (whose volume is reduced by its change of state), but also a large quantity of air. If such a foam is then heated, its volume will correspondingly increase further, when the liquid foaming agent evaporates again.
  • the foaming agents that can be used for the initial foaming of the first and/or second polymer compositions can be physical or chemical foaming agents or a combination of these two types.
  • Physical foaming agents such as in particular molecular nitrogen, carbon dioxide, linear or branched C 1 to C 4 alkanes, are in the form of gases under normal temperature and pressure conditions. These gases or liquids are soluble in the polymer compositions melted at high temperature and under high pressure and form a single phase under the appropriate pressure and temperature conditions. By depressurizing the monophasic system, the nucleation and growth of gas bubbles that have become insoluble generate a cellular structure.
  • the foaming agent or agents are preferably chosen from propane, isobutane, n-butane and/or carbon dioxide.
  • Chemical foaming agents decompose under the effect of a rise in temperature. They can be classified into two families: exothermic chemical foaming agents, such as azodicarbonamide, OxydiBenzeneSulfonyl Hydrazide, etc. which decompose producing heat. For example, azodicarbonamide decomposes around 210°C (see above if its decomposition is not desired during initial foaming), but in the presence of a suitable decomposition accelerator, such as zinc oxide and /or zinc stearate, the decomposition temperature can be lowered by about 60°C. Endothermic chemical foaming agents decompose by absorbing heat. For example, citric acid, baking soda and their mixtures decompose between 150 and 230°C and generally produce less gas volume per gram of chemical foaming agents than exothermic chemical foaming agents.
  • exothermic chemical foaming agents such as azodicarbonamide, OxydiBenzeneSulfonyl Hydrazide, etc. which decompos
  • the invention also relates to aluminum profiles or aluminum frames comprising at least one cavity provided with an insulation device as described here.
  • the aluminum profiles or aluminum frames have been subjected to powder coating and optionally to anodization after the insertion of the insulation device into at least one of the cavities of the profile or frame.
  • the cavity provided with an insulation device according to the invention is a cavity for baring a chassis.
  • the invention envisages in yet another aspect the use of an insulation device according to the invention for the insulation of cavities in aluminum profiles or in the bar cavities of an aluminum frame to improve their performance. insulation.
  • a barrette cavity is the cavity formed when two profiles (generally one intended to be located outside and one intended to be located inside a building) are attached by means of barrettes in order to avoid a bridge heat between the two profiles.
  • a bar cavity is therefore generally of polygonal section, often roughly rectangular, delimited on the one hand by two bars and on the other hand by the internal faces (facing each other) of the two profiles.
  • the strips that can be used for the stripping of two profiles to form a frame are those generally used in the field, preferably they are made of polyamide, in particular polyamide 6.6, a mixture composed of poly(phenylene oxide) and polystyrene (PS/PPO ), for example Noryl, dense or foamed, optionally reinforced with glass fibers, and they have a generally essentially linear central section comprising at each end a partial section allowing mechanical fastening with a corresponding section provided on the profiles, for example a section called dovetail or similar. It should be noted that the strips may have a more complex cross-section, but they nevertheless always comprise at least two mechanical fastening regions for joining (at least) two sections.
  • FIG. 1 shows a variant of an insulation device 40 according to the invention which comprises a foamed body 41 and fins 42 arranged on at least one side (here two opposite sides) of the foamed body 41.
  • the foamed body 41 preferably has the shape of the cross section of the cavity which it is desired to isolate, but its dimensions are smaller (at least in the direction joining the strips), for example 80 to 97% of the distance separating the corresponding opposite sides of the cavity.
  • the fins 42 can be unfoamed (compact) or foamed.
  • FIG. 2 shows the isolation device 40 shown in Fig. 1 after its insertion into a cavity (11, 21, 31), here the bar cavity 31 of a frame formed by the inner profile 10, the outer profile 20 and the bar formed by the strips 30.
  • the insulation device 40 has not yet undergone a post-foaming treatment by heating to higher temperatures than during its extrusion in order to decompose the chemical post-foaming agent.
  • This figure also illustrates in a way the case of the insulation device having undergone heating (step (b)) in the absence of chemical foaming agent after cooling and retraction of the foamed body, except that in this particular case the fins would have lost their initial shape due to compression by the expansion of the foamed body due to heating and their stretching due to the retraction of the foamed body during cooling.
  • the Fig. 3 shows the isolation device 40 of the Fig. 2 after the heating procedure (step (b)), for example after powder coating, in the particular case where the foamed body 41 comprises a certain quantity of chemical foaming agent not yet decomposed before heating and/or a liquid physical foaming agent at room temperature, as described in more detail above, the foamed body having increased in volume by post-foaming (and also by physical expansion of the gas contained in the cells of the foam) and having crushed the softened or molten fins 42, then resolidified after cooling to room temperature.
  • the melted and resolidified fins 42 stick both to the strips 30 and to the foamed body 41, thus forming an effective insulation device against convection and/or radiation between the two outer 20 and inner 10 sections of the frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Refrigerator Housings (AREA)
  • Special Wing (AREA)
  • Wing Frames And Configurations (AREA)
  • Door And Window Frames Mounted To Openings (AREA)

Description

Domaine techniqueTechnical area

La présente invention concerne l'isolation de profilés ou châssis en aluminium pour portes et fenêtres et plus particulièrement l'isolation des espaces entre les profilés intérieur et extérieur d'un châssis.The present invention relates to the insulation of aluminum sections or frames for doors and windows and more particularly the insulation of the spaces between the interior and exterior sections of a frame.

Etat de la techniqueState of the art

La rupture de pont thermique par barrettage est une technique d'isolation employée sur les ouvrants et dormants en aluminium pour augmenter les performances d'isolation de ce type de châssis. Le principe est simple : un matériau peu thermoconducteur (c'est-à-dire nettement moins thermoconducteur que l'aluminium) est serti entre les profilés aluminium intérieur et extérieur de l'ouvrant et du dormant pour réduire les échanges réciproques de température de l'intérieur vers l'extérieur du bâtiment ou inversement. Les barrettes sont généralement des profilés en matière plastique d'une section transversale allongée et présentant à chaque extrémité de cette section un système de fixation mécanique complémentaire à un système de fixation prévus sur les faces internes des profilés intérieur et extérieur, par exemple une fixation à queue-d'aronde. Les profilés aluminium intérieur et extérieur assemblés par ces barrettes forment un profilé composite, encore appelé châssis, comprenant ainsi d'une manière générale une ou plusieurs cavités entre les deux profilés, appelé ci-après cavité(s) de barrettage. Or, il est bien connu que dans les cavités prévues dans les profilés-mêmes en aluminium, la convection de l'air et/ou le rayonnement peut influencer négativement les performances d'isolation de l'ensemble. Il en est de même dans le cas de la cavité de barrettage où la convection de l'air et/ou surtout le rayonnement entre les faces internes des profilés extérieur et intérieur augmentent le flux d'énergie et donc les déperditions d'énergie à travers le châssis.Breaking the thermal bridge by lacing is an insulation technique used on aluminum openings and frames to increase the insulation performance of this type of frame. The principle is simple: a material that is not very thermally conductive (that is to say much less thermally conductive than aluminium) is crimped between the interior and exterior aluminum profiles of the sash and the frame to reduce the reciprocal exchanges of temperature between the interior to the exterior of the building or vice versa. The strips are generally plastic profiles with an elongated cross section and having at each end of this section a mechanical fixing system complementary to a fixing system provided on the internal faces of the inner and outer sections, for example a fixing to dovetail. The interior and exterior aluminum profiles assembled by these strips form a composite profile, also called a frame, thus generally comprising one or more cavities between the two profiles, hereinafter called a bar cavity(ies). However, it is well known that in the cavities provided in the aluminum profiles themselves, air convection and/or radiation can negatively influence the insulation performance of the assembly. It is the same in the case of the cavity of barring where the convection of the air and/or especially the radiation between the internal faces of the external and internal profiles increase the flow of energy and thus the losses of energy through the chassis.

Il existe des solutions dans lesquelles la cavité de barrettage est remplie du moins partiellement d'un matériau polymère moussé. Cependant, contrairement aux cavités des profilés, le remplissage de la cavité de barrettage ne peut pas être coextrudé avec le profilé (comme par exemple dans EP 2 501 530 A1 ), mais doit se faire au moment du barrettage ou après, donc pendant ou après l'assemblage des deux profilés intérieur et extérieur au moyen de barrettes. D'une manière connue, un profilé en mousse polymère de section appropriée est inséré soit en étant fixé au préalable à une des barrettes (remplissage pendant l'assemblage) ou encore simplement en glissant un profilé en mousse polymère dans la cavité par une des extrémités du châssis assemblé (remplissage après l'assemblage). Il est à noter que le glissement d'une mousse dans des cavités longitudinales de grande longueur peut être difficile surtout si la section de la mousse doit remplir entièrement ladite cavité et/ou si le profilé de mousse à insérer est très flexible ou friable. Une autre technique consiste à injecter une mousse polyuréthane (PUR) sous forme liquide sur au moins une des barrettes avant l'assemblage de celles-ci avec les profilés intérieurs et extérieur en aluminium. L'expansion de la mousse PUR se fait librement hors des limites de la barrette. Ce procédé ne permet cependant pas de remplir la totalité de la cavité et la forme de la mousse est généralement arrondie.There are solutions in which the bar cavity is at least partially filled with a foamed polymer material. However, unlike the cavities of the profiles, the filling of the cavity of the strapping cannot be coextruded with the profile (as for example in EP 2 501 530 A1 ), but must be done at the time of lacing or after, i.e. during or after the assembly of the two internal and external profiles by means of bars. In a known way, a polymer foam profile of appropriate section is inserted either by being fixed beforehand to one of the bars (filling during assembly) or even simply by sliding a polymer foam profile into the cavity by one of the ends. of the assembled frame (filling after assembly). It should be noted that the sliding of a foam in very long longitudinal cavities can be difficult, especially if the section of the foam must completely fill said cavity and/or if the foam profile to be inserted is very flexible or friable. Another technique consists in injecting a polyurethane foam (PUR) in liquid form on at least one of the strips before assembling them with the interior and exterior aluminum profiles. The expansion of the PUR foam is done freely beyond the limits of the bar. However, this process does not make it possible to fill the entire cavity and the shape of the foam is generally rounded.

Les châssis en aluminium sont dans la grande majorité couverts d'une (ou plusieurs) couche(s) de finition appliquée(s) suivant des techniques connues. Une technique souvent utilisée est le thermolaquage. Le thermolaquage est un procédé utilisé pour peindre les profilés de manière durable. Une fois les profilés décapés, nettoyés des impuretés et prétraités pour assurer une accroche parfaite de la laque, une poudre de peinture, par exemple une poudre de peinture polyester, leur est appliquée via un poudrage électrostatique, déposant des particules colorées. Dans un four chauffé à environ 200 °C, la polymérisation durcit ensuite le tout pour stabiliser le revêtement choisi.Most aluminum frames are covered with one (or more) finishing coat(s) applied using known techniques. A technique often used is powder coating. Powder coating is a process used to paint profiles in a durable way. Once the profiles have been stripped, cleaned of impurities and pre-treated to ensure perfect adhesion of the lacquer, a paint powder, for example a polyester paint powder, is applied to them via electrostatic powdering, depositing colored particles. In an oven heated to around 200°C, the polymerization then hardens everything to stabilize the chosen coating.

Cependant, à ces températures, de nombreuses matières plastiques (donc en l'occurrence les barrettes) ramollissent, perdent leur rigidité et donc le cas échéant risquent de perdre leur forme et leurs dimensions initiales. De même, certains types de mousses (par exemples polyuréthanes) insérées préalablement dans la cavité de barrettage peuvent également se ramollir et perdre leurs dimensions initiales, voire collapser, ce qui peut résulter en un effet d'isolation moindre, voire nul du profilé de mousse inséré.However, at these temperatures, many plastic materials (therefore in this case the strips) soften, lose their rigidity and therefore, if necessary, risk losing their initial shape and dimensions. Similarly, certain types of foams (for example polyurethanes) inserted beforehand into the lattice cavity can also soften and lose their initial dimensions, or even collapse, which can result in a lesser, or even zero, insulation effect of the foam profile. inserted.

Une autre technique fréquemment utilisée est l'anodisation des profilés en aluminium ou du châssis. De manière simplifiée, l'opération d'anodisation, qui est une opération n'impliquant pas de températures élevées comme le thermolaquage, consiste à produire une mince couche d'oxyde d'aluminium (alumine) résistante à la surface d'un profilé, pouvant agir sur son aspect décoratif. Elle s'effectue au travers d'une oxydation contrôlée par colorations chimiques ou électrolytiques. Pour ce faire, les pièces à anodiser sont immergées dans plusieurs bains successifs, qui assurent d'abord la préparation de la surface du profilé ou du châssis, ensuite la production de l'alumine avec, si on le souhaite, le dépôt d'un aspect et d'une couleur et, finalement, la stabilisation de la couche d'alumine par une opération dite "de colmatage" consistant à hydrater la couche d'alumine afin d'obtenir une bonne résistance à la corrosion.Another frequently used technique is the anodizing of the aluminum profiles or the frame. In a simplified way, the anodizing operation, which is an operation not involving high temperatures like powder coating, consists in producing a thin layer of aluminum oxide (alumina) resistant to surface of a profile, which can affect its decorative appearance. It is carried out through oxidation controlled by chemical or electrolytic colorations. To do this, the parts to be anodized are immersed in several successive baths, which first ensure the preparation of the surface of the profile or the frame, then the production of the alumina with, if desired, the deposit of a appearance and color and, finally, the stabilization of the alumina layer by a so-called "sealing" operation consisting in hydrating the alumina layer in order to obtain good corrosion resistance.

La présence de mousse dans les cavités d'un profilé ou d'un châssis peut affecter l'opération d'anodisation principalement dû au phénomène de capillarité aux endroits de contact de la mousse avec les parois de la cavité. Vu que l'anodisation requiert le contact successif des surfaces à traiter avec des solutions différentes, la capillarité empêche l'écoulement complet et le rinçage correct des surfaces après chaque opération. Le traitement d'anodisation risque donc d'être incomplet aux endroits de contact avec la mousse, respectivement les produits de traitement incomplètement rincés risquent de détériorer la mousse et donc aussi de résulter en un effet d'isolation moindre, voire nul du profilé de mousse inséré. EP 2 799 654 A1 divulgue un procédé d'isolation d'une cavité de barrettage d'un châssis en aluminium d'ouvrant ou de dormant de porte ou fenêtre. EP 2 799 654 A1 divulgue également un dispositif d'isolation d'une cavité de barrettage d'un châssis en aluminium d'ouvrant ou de dormant de porte ou fenêtre.The presence of foam in the cavities of a section or a frame can affect the anodizing operation mainly due to the phenomenon of capillarity at the points of contact of the foam with the walls of the cavity. Since anodizing requires the successive contact of the surfaces to be treated with different solutions, the capillarity prevents the complete flow and the correct rinsing of the surfaces after each operation. The anodizing treatment therefore risks being incomplete at the points of contact with the foam, respectively the incompletely rinsed treatment products risk damaging the foam and therefore also resulting in a lesser or even zero insulation effect of the foam profile inserted. EP 2 799 654 A1 discloses a method for insulating a barrette cavity of an aluminum frame for the opening or frame of a door or window. EP 2 799 654 A1 also discloses a device for isolating a barrette cavity of an aluminum frame for the opening or frame of a door or window.

Objet de l'inventionObject of the invention

Un objet de la présente invention est par conséquent de proposer un profilé de mousse polymère de section transversale appropriée pour isoler une cavité de profilé en aluminium et de préférence une cavité de barrettage par réduction des pertes d'énergie par convection et/ou rayonnement, qui puisse être utilisé dans des profilés ou châssis prévus pour le thermolaquage.An object of the present invention is therefore to provide a polymeric foam profile of suitable cross-section to insulate an aluminum profile cavity and preferably a lattice cavity by reducing energy losses by convection and/or radiation, which can be used in profiles or frames intended for powder coating.

Description générale de l'inventionGeneral description of the invention

Afin de résoudre le problème mentionné ci-dessus, la présente invention propose, dans un premier aspect, un procédé d'isolation d'une cavité d'un profilé en aluminium ou d'une cavité de barrettage d'un châssis en aluminium d'ouvrant ou de dormant de porte ou fenêtre, le procédé comprenant les étapes suivantes :

  1. (a) insertion, dans ladite cavité, d'un dispositif d'isolation comprenant un corps moussé d'une première composition polymère de section transversale polygonale muni sur au moins une surface, de préférence sur (chacune de) deux surfaces opposées d'une ou de plusieurs ailettes moussées ou non-moussées d'une deuxième composition polymère, dans lequel la distance entre ladite surface munie d'ailettes et la surface opposée à celle-ci, respectivement de préférence entre les deux surfaces opposées munies d'ailettes du corps moussé représente 80 à 97 % de la distance séparant les faces correspondantes de la cavité, dans lequel le corps moussé de la première composition polymère est à base d'un ou de plusieurs (co)polyesters, de préférence de type polyalkylène téréphtalate, tels que par exemple le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT), le polybutylène naphtalate (PEN), le polytriméthylène téréphtalate (PTT), etc., et
  2. (b) chauffage du profilé en aluminium ou du châssis en aluminium à une température comprise entre 180 et 250 °C, pour provoquer un ramollissement ou une fusion de la deuxième composition polymère, une expansion du corps moussé et la compression des ailettes contre les parois correspondantes de la cavité par l'effet d'expansion du corps moussé, et refroidissement du profilé en aluminium ou du châssis en aluminium provoquant la solidification de la deuxième composition polymère fixant le dispositif d'isolation à la ou aux faces correspondantes de la cavité.
In order to solve the problem mentioned above, the present invention proposes, in a first aspect, a method for insulating a cavity of an aluminum profile or of a barrette cavity of an aluminum frame of opening or frame of a door or window, the method comprising the following steps:
  1. (a) inserting into said cavity an isolation device comprising a foamed body of a first polymeric composition of polygonal cross-section provided on at least one surface, preferably on (each of) two opposite surfaces of one or more foamed or unfoamed fins of a second polymer composition, wherein the distance between said finned surface and the surface opposite it, respectively preferably between the two opposite surfaces provided with fins of the foamed body represents 80 to 97% of the distance separating the corresponding faces of the cavity, in which the foamed body of the first polymer composition is based on one or more (co)polyesters, preferably polyalkylene terephthalate type, such as for example polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene naphthalate (PEN), polytrimethylene terephthalate (PTT), etc., and
  2. (b) heating the aluminum profile or the aluminum frame to a temperature between 180 and 250°C, to cause softening or melting of the second polymer composition, expansion of the foamed body and compression of the fins against the walls corresponding to the cavity by the expansion effect of the foamed body, and cooling of the aluminum profile or of the aluminum frame causing the solidification of the second polymer composition fixing the insulation device to the corresponding face or faces of the cavity.

Dans certaines variantes du procédé selon l'invention comprenant les étapes (a) et (b), il est d'ailleurs envisagé de réaliser également l'étape (b') suivante :
(b')anodisation comprenant l'immersion du profilé en aluminium ou du châssis en aluminium dans plusieurs bains successifs assurant la préparation de la surface du profilé ou du châssis, la production d'alumine sur lesdites surfaces, optionnellement avec le dépôt d'un aspect et/ou d'une couleur et la stabilisation de la couche d'alumine par une opération de colmatage.
In certain variants of the process according to the invention comprising steps (a) and (b), it is moreover envisaged to also carry out the following step (b'):
(b') anodization comprising the immersion of the aluminum profile or the aluminum frame in several successive baths ensuring the preparation of the surface of the profile or the frame, the production of alumina on the said surfaces, optionally with the deposition of a appearance and/or color and stabilization of the alumina layer by a sealing operation.

Dans une variante avantageuse, le procédé, comprenant les étapes (a) et (b), comprend en outre, avant ou après l'étape (a), une étape (x) de pulvérisation d'une poudre de peinture, par exemple polyester, de préférence par poudrage électrostatique, sur des faces extérieures du profilé en aluminium ou du châssis en aluminium, la poudre de peinture polyester fondant à l'étape (b) pour former un revêtement de protection (thermolaqué). Un procédé comprenant les étapes (a), (x) et (b) est donc un procédé de thermolaquage tel que décrit ci-dessus.In an advantageous variant, the method, comprising steps (a) and (b), further comprises, before or after step (a), a step (x) of spraying a paint powder, for example polyester , preferably by electrostatic powdering, on the outer faces of the aluminum profile or the aluminum frame, the polyester paint powder melting in step (b) to form a protective coating (powder coated). A process comprising steps (a), (x) and (b) is therefore a powder coating process as described above.

Un autre aspect de l'invention concerne un dispositif d'isolation d'une cavité d'un profilé en aluminium ou d'une cavité de barrettage d'un châssis en aluminium d'ouvrant ou de dormant de porte ou fenêtre, comprenant un corps moussé d'une première composition polymère de section transversale polygonale muni sur au moins une surface, de préférence sur (chacune de) deux surfaces opposées d'une ou de plusieurs ailettes moussées ou non-moussées d'une deuxième composition polymère, dans lequel le corps moussé de la première composition polymère comprend une mousse à base de polyesters, de préférence de type polyalkylène téréphtalate, tels que par exemple le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT), le polybutylène naphtalate (PEN), le polytriméthylène téréphtalate (PTT), etc.Another aspect of the invention relates to a device for insulating a cavity of an aluminum profile or of a barrette cavity of an aluminum frame for the opening or frame of a door or window, comprising a body foamed with a first polymer composition of polygonal cross-section provided on at least one surface, preferably on (each of) two opposite surfaces with one or more foamed or unfoamed fins of a second polymer composition, in which the foamed body of the first polymer composition comprises a foam based on polyesters, preferably of the polyalkylene terephthalate type, such as for example polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene naphthalate (PEN), polytrimethylene terephthalate (PTT), etc

Comme mentionné ci-dessus, le problème de l'isolation d'une cavité, en particulier dans le cas d'une cavité de barrettage, est double : d'une part la mousse à l'intérieur de la cavité doit couvrir la distance entière entre les barrettes pour pouvoir garantir l'absence de convection et/ou de rayonnement entre les deux faces internes des deux profilés extérieur et intérieur, et, dans le cas d'un thermolaquage, elle doit rester intacte même après une procédure de chauffe sans que les barrettes ramollies par la chaleur de thermolaquage ne se déforment. A noter que dans le cas d'une anodisation supplémentaire, elle permettra d'éviter la rétention de liquides des bains successifs par capillarité, c'est-à-dire qu'elle doit permettre l'écoulement et le rinçage correct des surfaces du profilé ou châssis.As mentioned above, the problem of insulating a cavity, especially in the case of a barrette cavity, is twofold: on the one hand the foam inside the cavity must cover the entire distance between the bars to be able to guarantee the absence of convection and/or radiation between the two internal faces of the two external and internal profiles, and, in the case of powder coating, it must remain intact even after a heating procedure without the strips softened by the heat of powder coating do not deform. Note that in the case of additional anodizing, it will prevent the retention of liquids from successive baths by capillarity, i.e. it must allow the flow and correct rinsing of the surfaces of the profile or frame.

Or, dans le cas d'un chauffage (étapes (a) et (b)), notamment dans le cas d'un thermolaquage (étapes (a), (x) et (b)) comme indiqué plus haut, une mousse contenue dans une cavité risque de se détériorer, voire de collapser partiellement. En fait, il a été observé que la mousse comprise dans la cavité va s'expanser davantage lorsqu'elle est soumise à des températures plus élevées que celles de son moussage initial, ce phénomène est appelé expansion thermique ci-dessous. Si la mousse est chauffée à des températures trop élevées, les parois cellulaires vont se rompre et la mousse peut collapser. Par conséquent, la première composition polymère comprend des (co)polyesters présentant une bonne rigidité même aux températures élevées d'un thermolaquage. Cependant, les inventeurs ont constaté qu'en procédant de cette manière, les forces exercées par la mousse soumise à l'expansion thermique est susceptible de déformer les barrettes. Actuellement, la tendance est d'améliorer les performances d'isolation des barrettes en les rendant moins denses (par moussage par exemple) et/ou plus fines, ce qui augmente encore le risque de déformation lors du thermolaquage.However, in the case of heating (steps (a) and (b)), in particular in the case of powder coating (steps (a), (x) and (b)) as indicated above, a foam contained in a cavity risks deteriorating, or even partially collapsing. In fact, it has been observed that the foam included in the cavity will expand more when subjected to higher temperatures than those of its initial foaming, this phenomenon is called thermal expansion below. If the foam is heated to too high temperatures, the cell walls will rupture and the foam may collapse. Consequently, the first polymer composition comprises (co)polyesters having good rigidity even at the high temperatures of a powder coating. However, the inventors have found that by proceeding in this way, the forces exerted by the foam subjected to thermal expansion is likely to deform the strips. Currently, the trend is to improve the insulation performance of strips by making them less dense (by foaming for example) and/or thinner, which further increases the risk of deformation during powder coating.

De plus, les inventeurs ont constaté que la mousse peut se recontracter (du moins partiellement) pendant le refroidissement à température ambiante après le chauffage ou thermolaquage et ainsi de nouveau libérer une partie de la distance entre les barrettes et donc diminuer les performances d'isolation du châssis.In addition, the inventors have found that the foam can shrink (at least partially) during cooling to room temperature after heating or powder coating and thus again free up part of the distance between the bars and therefore reduce the insulation performance. of the chassis.

Les inventeurs ont alors conçu les dispositifs d'isolation selon l'invention en réduisant légèrement la taille initiale du corps de mousse par rapport à la distance entre deux barrettes et en prévoyant au moins sur un côté des ailettes qui à la température de chauffage ou thermolaquage vont se ramollir ou fondre, vont être écrasées par la mousse en expansion thermique, surtout, vont se solidifier plus tard (à une température plus basse) que la mousse du corps et vont ainsi non seulement combler tout espace de recontraction, voire le cas échéant coller le corps de mousse aux barrettes. Un tel collage, dépendant du choix de la nature de la deuxième composition polymère, est d'ailleurs particulièrement avantageux, parce qu'il permet d'augmenter non seulement les performances d'isolation, mais également la rigidité mécanique de l'ensemble. Les inventeurs ont déterminé que dans certaines variantes, pour que le dispositif d'isolation soit particulièrement adapté dans un procédé d'isolation comprenant les étapes (a) et (b) ou les étapes (a), (x) et (b), il est préférable de choisir la deuxième composition polymère de préférence parmi les compositions polymères capables de se ramollir ou de fondre à une température inférieure à une température comprise entre 180 et 250 °C. Cependant, ils ont également constaté qu'un dispositif d'isolation peut également être utile dans un procédé d'isolation comprenant les étapes (a) et (b) ou les étapes (a), (x) et (b), même si la température de ramollissement ou de fusion de la deuxième composition n'est que peu inférieure, voire identique à celle de la première composition, c'est-à-dire du corps moussé. En effet, lors du chauffage du profilé ou du châssis en aluminium, les ailettes étant situées plus proche des surfaces du profilé, elles ont tendance à se réchauffer plus rapidement que le corps moussé. Il est à noter que dans ces cas, l'étape de chauffage doit cependant être contrôlée plus précisément tant en termes de température, qu'en termes de temps de chauffage.The inventors then designed the insulation devices according to the invention by slightly reducing the initial size of the foam body with respect to the distance between two strips and by providing at least on one side of the fins which at the temperature of heating or thermolacquering will soften or melt, will be crushed by the thermally expanding foam, above all, will solidify later (at a lower temperature) than the foam of the body and will thus not only fill in any shrinkage space, even if necessary glue the foam body to the bars. Such bonding, depending on the choice of the nature of the second polymer composition, is moreover particularly advantageous, because it makes it possible to increase not only the insulation performance, but also the mechanical rigidity of the assembly. The inventors have determined that in certain variants, for the isolation device to be particularly suitable in an isolation process comprising steps (a) and (b) or steps (a), (x) and (b), it is preferable to choose the second polymer composition preferably from polymer compositions capable of softening or melting at a temperature below a temperature between 180 and 250°C. However, they also found that an isolation device can also be useful in an isolation process comprising steps (a) and (b) or steps (a), (x) and (b), even if the softening or melting temperature of the second composition is only slightly lower, or even identical to that of the first composition, that is to say of the foamed body. Indeed, during the heating of the profile or the aluminum frame, the fins being located closer to the surfaces of the profile, they tend to heat up more quickly than the foamed body. It is to highlight that in these cases, the heating step must however be controlled more precisely both in terms of temperature and in terms of heating time.

Partant de ces constatations, les inventeurs ont déterminé qu'il serait en outre éventuellement intéressant de prévoir une mousse qui, au-delà d'une certaine température serait soumise non seulement à l'expansion thermique, mais de plus à un nouveau moussage supplémentaire, plus important encore que l'expansion thermique, de manière à remplir au maximum ladite cavité, c'est-à-dire au moyen d'un post-moussage. Il est donc optionnellement prévu une certaine quantité de d'agents de moussage chimiques qui ne se décomposent pas aux températures de l'extrusion initiale de la mousse, mais qui se décomposeraient sous l'effet des températures de l'étape (b) de chauffage et/ou une certaine quantité de d'agents de moussage physiques liquides à température ambiante, tel que décrit plus en détail ci-dessous, rendant ainsi possible une isolation encore meilleure.Based on these observations, the inventors have determined that it would also possibly be advantageous to provide a foam which, beyond a certain temperature, would be subjected not only to thermal expansion, but also to a new additional foaming, even more important than the thermal expansion, so as to fill said cavity to the maximum, that is to say by means of a post-foaming. There is therefore optionally provided a certain quantity of chemical foaming agents which do not decompose at the temperatures of the initial extrusion of the foam, but which would decompose under the effect of the temperatures of step (b) of heating and/or a certain amount of physical foaming agents that are liquid at room temperature, as described in more detail below, thereby making even better insulation possible.

Dans le cas d'une anodisation, les ailettes prévues selon l'invention jouent le rôle d'éléments espaceurs qui permettent de maintenir la ou les surfaces du corps de mousse à une certaine distance des surfaces correspondantes du profilé ou châssis, de préférence à une distance de 4 à 8 mm, de préférence de 5 à 6 mm, de manière à assurer l'écoulement normal (sans effet de capillarité) des liquides des bains de traitement.In the case of anodization, the fins provided according to the invention play the role of spacer elements which make it possible to maintain the surface or surfaces of the foam body at a certain distance from the corresponding surfaces of the profile or frame, preferably at a distance of 4 to 8 mm, preferably 5 to 6 mm, so as to ensure the normal flow (without capillarity effect) of the liquids of the treatment baths.

Les inventeurs ont en outre déterminé qu'il n'est pas indispensable pour éviter les déperditions par convection et/ou rayonnement que les côtés opposés d'un dispositif d'isolation selon l'invention couvrent la totalité de la distance entre les surfaces correspondantes du profilé ou du châssis (c'est-à-dire que le dispositif d'isolation doit être en contact sur deux côtés opposés avec le profilé ou châssis), mais qu'un écart jusqu'à environ 2 à 3 mm, de préférence jusqu'à environ 1 à 2 mm, ne diminue pas de manière significative les performances d'isolation. En effet, il a été constaté une fente de si faible largeur ne permet pas une convection notable à travers la fente (et donc une déperdition de chaleur significative). Ceci est également vrai pour les déperditions par rayonnement qui sont extrêmement faibles et donc négligeables dans ces conditions.The inventors have further determined that it is not essential, in order to avoid losses by convection and/or radiation, that the opposite sides of an insulation device according to the invention cover the entire distance between the corresponding surfaces of the profile or frame (i.e. the isolation device must be in contact on two opposite sides with the profile or frame), but a gap of up to approximately 2 to 3 mm, preferably up to 'at about 1 to 2 mm, does not significantly decrease the insulation performance. Indeed, it has been found that a slot of such small width does not allow significant convection through the slot (and therefore significant heat loss). This is also true for radiation losses which are extremely low and therefore negligible under these conditions.

Par conséquent, les dimensions d'un dispositif d'isolation selon l'invention peuvent être choisies de manière à être jusqu'à 3 mm, de préférence jusqu'à 1 à 2 mm en dessous de celles de la cavité sans diminuer les performances d'isolation, même dans le cas d'un procédé d'anodisation sans étape d'expansion supplémentaire de la mousse. Un avantage particulier en est que le dispositif d'isolation est d'autant plus facile à insérer dans ladite cavité.Therefore, the dimensions of an isolation device according to the invention can be chosen to be up to 3 mm, preferably up to 1 to 2 mm below those of the cavity without reducing the insulation performance, even in the case of an anodizing process without an additional foam expansion step. A particular advantage is that the isolation device is all the easier to insert into said cavity.

Les ailettes peuvent être de section transversale généralement quelconque, de préférence de forme polygonale et de manière particulièrement préférée de section grossièrement triangulaire ou trapézoïdale. Le nombre d'ailettes par côté du corps de mousse sera choisi de manière appropriée, notamment selon les dimensions de la cavité à isoler, et se situera souvent entre 1 et 10, de manière préférée entre 2 et 5.The fins can be of generally any cross-section, preferably polygonal in shape and particularly preferably of roughly triangular or trapezoidal section. The number of fins per side of the foam body will be chosen appropriately, in particular according to the dimensions of the cavity to be insulated, and will often be between 1 and 10, preferably between 2 and 5.

L'insertion du dispositif d'isolation à l'étape (a) peut se faire de toute manière appropriée. Dans une variante, le dispositif d'isolation est inséré dans la cavité de barrettage après que les profilés ont été assemblés en châssis en l'introduisant par une extrémité du châssis. Dans une autre variante avantageuse, le dispositif d'isolation est inséré avec une des barrettes au moment de l'assemblage. Dans un tel cas, il est particulièrement avantageux de fixer le dispositif d'isolation par un de ses côtés à une des barrettes, puis d'insérer la barrette munie du dispositif d'isolation dans les rainures des profilés. La fixation du dispositif d'isolation sur la barrette se fait par exemple par collage, soudage, coextrusion, etc. Dans ce cas, les ailettes se trouvent au moins sur le côté opposé au côté fixé à la barrette et éventuellement sur d'autres côtés, mais pas sur le côté fixé à la barrette. Dans ce contexte, il est à noter que le côté fixé à la barrette empêche efficacement l'effet de capillarité en cas d'anodisation.The insertion of the isolation device in step (a) can be done in any suitable way. In a variant, the insulation device is inserted into the bar cavity after the sections have been assembled into a frame by introducing it through one end of the frame. In another advantageous variant, the isolation device is inserted with one of the strips at the time of assembly. In such a case, it is particularly advantageous to fix the insulation device by one of its sides to one of the strips, then to insert the strip provided with the insulation device into the grooves of the sections. The fixing of the insulation device on the bar is done for example by gluing, welding, coextrusion, etc. In this case, the fins are at least on the side opposite the side fixed to the bar and possibly on other sides, but not on the side fixed to the bar. In this context, it should be noted that the side fixed to the strip effectively prevents the capillary effect in the event of anodization.

De manière particulièrement avantageuse, le procédé d'isolation selon l'invention est utilisé pour l'isolation d'une cavité de barrettage d'un châssis en aluminium. Dans ces variantes, les ailettes ou du moins une partie de celles-ci sont situées face à une barrette, soit en contact direct, soit à une distance très faible de moins de 3 mm, voire moins de 2 mm.In a particularly advantageous manner, the insulation method according to the invention is used for the insulation of a barrette cavity of an aluminum frame. In these variants, the fins or at least part of them are located facing a bar, either in direct contact, or at a very small distance of less than 3 mm, or even less than 2 mm.

La première composition polymère, c'est-à-dire celle formant le corps moussé du dispositif d'isolation, est de préférence une composition comprenant des (co)polyesters, en particulier le PET, le PBT, le PTT, le PEN, ..., ou leurs mélanges, en tant que seuls polymères ou éventuellement en combinaison avec d'autre (co)polymères, tels que les polymères modificateurs d'impact connus pour les (co)polyesters, les copolymères d'éthylène, tels que les copolymères éthylène-acétate de vinyle (EVA), les copolymères éthylène-acrylate de méthyle (EMA), les copolymères éthylène-acrylate d'éthyle (EEA), les copolymères éthylène-acrylate de butyle (EBA), les copolymères d'éthylène modifiés par des groupements tels que par exemple l'anhydride maléique ou le méthacrylate de glycidyle, etc., les thermoplastiques élastomères (TPE), tels que les thermoplastiques élastomères polyesters (TPC), les thermoplastiques élastomères oléfiniques non vulcanisés (TPO) ou vulcanisés (TPV), les thermoplastiques élastomères uréthane (TPU), les thermoplastiques élastomères styréniques (TPS), les thermoplastiques élastomères polyamides (TPA), ... Les densités du corps moussé sont généralement situées entre 30 et 400 kg/m3, de préférence entre 60 et 250 kg/m3, de préférence entre 80 kg/m3 et 100 kg/m3.The first polymer composition, that is to say that forming the foamed body of the insulation device, is preferably a composition comprising (co)polyesters, in particular PET, PBT, PTT, PEN, etc. .., or mixtures thereof, as sole polymers or optionally in combination with other (co)polymers, such as impact modifier polymers known for (co)polyesters, ethylene copolymers, such as ethylene-vinyl acetate (EVA) copolymers, ethylene-methyl acrylate (EMA) copolymers , ethylene-ethyl acrylate (EEA) copolymers, ethylene-butyl acrylate (EBA) copolymers, ethylene copolymers modified with groups such as, for example, maleic anhydride or glycidyl methacrylate, etc., thermoplastic elastomers (TPE), such as thermoplastic elastomers polyesters (TPC), thermoplastic elastomeric olefins unvulcanized (TPO) or vulcanized (TPV), thermoplastic elastomers urethane (TPU), thermoplastic elastomers styrenic (TPS), thermoplastics polyamide elastomers (TPA), ... The densities of the foamed body are generally between 30 and 400 kg/m 3 , preferably between 60 and 250 kg/m 3 , preferably between 80 kg/m 3 and 100 kg/m 3 .

La deuxième composition polymère, c'est-à-dire celle formant les ailettes du dispositif d'isolation, comprend un ou plusieurs polymères choisis parmi le polyéthylène réticulé, les copolymères d'éthylène modifiée ou non par des groupements tels que par exemple l'anhydride maléique, les thermoplastiques élastomères (TPE, tels que TPS, TPU, TPC, TPV, TPO), les (co)polyesters (PET, PBT, PTT, PEN, ...) et est éventuellement moussé. Les densités des ailettes seront généralement supérieures à 25 kg/m3, de préférence entre 100 kg/m3 et la densité non-moussée de la deuxième composition polymère.The second polymer composition, that is to say that forming the fins of the insulation device, comprises one or more polymers chosen from cross-linked polyethylene, copolymers of ethylene modified or not by groups such as for example maleic anhydride, thermoplastic elastomers (TPE, such as TPS, TPU, TPC, TPV, TPO), (co)polyesters (PET, PBT, PTT, PEN, ...) and is optionally foamed. The densities of the fins will generally be greater than 25 kg/m 3 , preferably between 100 kg/m 3 and the non-foamed density of the second polymer composition.

Dans une variante avantageuse pour un procédé de chauffage (étapes (a) et (b)) ou de thermolaquage (étapes (a), (x) et (b)), la première composition polymère (c'est-à-dire le corps moussé) et/ou la deuxième composition polymère (c'est-à-dire les ailettes), donc introduite avant le moussage initial du corps moussé et/ou le cas échéant des ailettes, compren(d/nent), comme agent(s) de moussage supplémentaires aux autres agents de moussage physiques et/ou chimiques utilisés pour le moussage initial de ces compositions, une quantité entre 0,001 et 5 % en poids, de préférence entre 0,01 et 3 % en poids, notamment de 0,1 à 2 % en poids d'au moins un agent chimique de moussage choisi parmi les agents chimiques se décomposant à des températures supérieures à celles utilisées pour le moussage initial du corps moussé, de préférence les agents chimiques utilisables se décomposant à des températures supérieures à 180 °C et sont choisis avantageusement parmi les dérivés d'hydrazine, tels que l'azodicarbonamide, les tétrazoles, tels que le 5-phényltétrazole, les mélanges de sels de carbonate et d'acides, tels que les mélanges de bicarbonate de soude et d'acide citrique. Le post-moussage dit chimique dans le cas d'agents de moussage chimiques se fait par le volume supplémentaire de gaz généré par la décomposition de l'agent de moussage chimique, le gaz initialement contenu dans les cellules et le gaz généré lors du chauffage à plus haute température étant de plus simultanément soumis à l'expansion thermique.In an advantageous variant for a heating process (steps (a) and (b)) or powder coating (steps (a), (x) and (b)), the first polymer composition (that is to say the foamed body) and/or the second polymer composition (that is to say the fins), therefore introduced before the initial foaming of the foamed body and/or the fins, if any, comprising(d/nent), as agent( s) additional foaming agents to the other physical and/or chemical foaming agents used for the initial foaming of these compositions, an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular 0, 1 to 2% by weight of at least one chemical foaming agent chosen from chemical agents which decompose at temperatures above those used for the initial foaming of the foamed body, preferably the chemical agents which can be used which decompose at temperatures above 180°C and are chosen advantageously from hydrazine derivatives, such as azodicarbonamide, tetrazoles, such as 5-phenyltetrazole, mixtures of carbonate salts and acids, such as mixtures of sodium bicarbonate and citric acid. The so-called chemical post-foaming in the case of chemical foaming agents is done by the additional volume of gas generated by the decomposition of the chemical foaming agent, the gas initially contained in the cells and the gas generated during heating at higher temperature being further simultaneously subjected to thermal expansion.

En variante ou en outre, la première composition polymère et/ou la deuxième composition polymère, donc introduite avant le moussage initial du corps moussé et/ou le cas échéant des ailettes, peu(t/vent) comprendre, comme seul agent de moussage ou en plus d'autres agents de moussage physiques et/ou chimiques couramment utilisés pour le moussage de tels compositions, une quantité entre 0,001 et 5 % en poids, de préférence entre 0,01 et 3 % en poids, notamment de 0,1 à 2 % en poids d'au moins un agent physique de moussage liquide à température ambiante (et à pression atmosphérique), de préférence choisi parmi les alcanes ayant un point d'ébullition supérieur à 25 °C, notamment le n-pentane, l'isopentane ou le cyclopentane, les hexanes (tous les isomères), les heptanes, etc., ou encore parmi l'éthanol, le diméthyléther, etc., ou leurs mélanges. La présence de ces agents de moussages dans la première et/ou deuxième composition polymère va provoquer un post-moussage à l'intérieur de la cavité lors du chauffage ou thermolaquage. En effet, le phénomène responsable du post-moussage dit physique dans le cas des agents de moussage physiques liquides aux températures ambiantes résulte non seulement de la liquéfaction puis la ré-évaporation de l'agent de moussage physique initial, mais résulte d'une combinaison avec le phénomène d'échange gazeux à travers les parois cellulaires. Ce phénomène est bien connu dans le domaine et est la raison pour laquelle, le gaz initialement responsable du moussage va généralement être échangé progressivement par l'air atmosphérique. Le post-moussage dit physique décrit ici met à bénéfice la perméabilité à l'air et la liquéfaction des agents normalement liquides à température ambiante qui entraîne que l'entrée d'air dans les cellules est augmentée par la réduction du volume de l'agent de moussage en train de se liquéfier en refroidissant. Après un certain temps, les cellules contiennent donc non seulement la quantité d'agent de moussage initial (dont le volume est réduit par son changement d'état), mais également une quantité importante d'air. Si une telle mousse est ensuite chauffée, son volume augmentera en conséquence davantage, lorsque l'agent de moussage liquide s'évapore de nouveau.As a variant or in addition, the first polymer composition and/or the second polymer composition, therefore introduced before the initial foaming of the foamed body and/or, where appropriate, of the fins, can comprise, as sole foaming agent or in addition to other physical and/or chemical foaming agents commonly used for foaming such compositions, an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular from 0.1 to 2% by weight of at least one physical foaming agent that is liquid at room temperature (and at atmospheric pressure), preferably chosen from alkanes having a boiling point above 25°C, in particular n-pentane, isopentane or cyclopentane, hexanes (all isomers), heptanes, etc., or among ethanol, dimethyl ether, etc., or mixtures thereof. The presence of these foaming agents in the first and/or second polymer composition will cause post-foaming inside the cavity during heating or powder coating. Indeed, the phenomenon responsible for the so-called physical post-foaming in the case of liquid physical foaming agents at ambient temperatures results not only from the liquefaction then the re-evaporation of the initial physical foaming agent, but results from a combination with the phenomenon of gas exchange through the cell walls. This phenomenon is well known in the field and is the reason why the gas initially responsible for the foaming will generally be gradually exchanged with atmospheric air. The so-called physical post-foaming described here takes advantage of the air permeability and the liquefaction of agents that are normally liquid at room temperature, which means that the entry of air into the cells is increased by reducing the volume of the agent. of foam becoming liquefied on cooling. After a certain time, the cells therefore not only contain the amount of foaming agent initial (whose volume is reduced by its change of state), but also a large quantity of air. If such a foam is then heated, its volume will correspondingly increase further, when the liquid foaming agent evaporates again.

Il est à noter que la présence d'un tel agent de moussage chimique et/ou physique, bien que non nécessaire dans le cas d'un procédé comprenant l'anodisation (étapes (a), (b) et (b')), n'influence pas négativement les performances du dispositif d'isolation.It should be noted that the presence of such a chemical and/or physical foaming agent, although not necessary in the case of a process comprising anodization (steps (a), (b) and (b')) , does not negatively influence the performance of the isolation device.

Les agents de moussage utilisables pour le moussage initial de la première et/ou deuxième compositions polymères peuvent être des agents de moussage physiques ou chimiques ou une combinaison de ces deux types. Les agents de moussage physiques, tels que notamment l'azote moléculaire, le dioxyde de carbone, les alcanes linéaires ou branchés en C1 à C4, se trouvent sous forme de gaz dans les conditions de température et de pression normales. Ces gaz ou liquides sont solubles dans les compositions polymères fondues à haute température et sous haute pression et forment une seule phase dans les conditions adéquates de pression et de température. En dépressurisant le système monophasique, la nucléation et la croissance des bulles de gaz devenues insolubles génèrent une structure cellulaire. Le ou les agents de moussage sont choisis de préférence parmi le propane, l'isobutane, le n-butane et/ou le dioxyde de carbone. Les agents de moussage chimiques se décomposent sous l'effet d'une élévation de température. Ils peuvent être classés en deux familles : les agents de moussage chimiques exothermiques, comme l'azodicarbonamide, l'OxydiBenzeneSulfonyl Hydrazide, etc. qui se décomposent en produisant de la chaleur. Par exemple, l'azodicarbonamide se décompose vers 210°C (voir ci-dessus si sa décomposition n'est pas souhaitée lors du moussage initial), mais en présence d'un accélérateur de décomposition approprié, tel que l'oxyde de zinc et/ou le stéarate de zinc, la température de décomposition peut être abaissée d'environ 60°C. Les agents de moussage chimiques endothermiques se décomposent en absorbant de la chaleur. Par exemple, l'acide citrique, le bicarbonate de soude et leurs mélanges se décomposent entre 150 et 230°C et produisent généralement moins de volume gazeux par gramme d'agents de moussage chimiques que les agents de moussage chimiques exothermiques.The foaming agents that can be used for the initial foaming of the first and/or second polymer compositions can be physical or chemical foaming agents or a combination of these two types. Physical foaming agents, such as in particular molecular nitrogen, carbon dioxide, linear or branched C 1 to C 4 alkanes, are in the form of gases under normal temperature and pressure conditions. These gases or liquids are soluble in the polymer compositions melted at high temperature and under high pressure and form a single phase under the appropriate pressure and temperature conditions. By depressurizing the monophasic system, the nucleation and growth of gas bubbles that have become insoluble generate a cellular structure. The foaming agent or agents are preferably chosen from propane, isobutane, n-butane and/or carbon dioxide. Chemical foaming agents decompose under the effect of a rise in temperature. They can be classified into two families: exothermic chemical foaming agents, such as azodicarbonamide, OxydiBenzeneSulfonyl Hydrazide, etc. which decompose producing heat. For example, azodicarbonamide decomposes around 210°C (see above if its decomposition is not desired during initial foaming), but in the presence of a suitable decomposition accelerator, such as zinc oxide and /or zinc stearate, the decomposition temperature can be lowered by about 60°C. Endothermic chemical foaming agents decompose by absorbing heat. For example, citric acid, baking soda and their mixtures decompose between 150 and 230°C and generally produce less gas volume per gram of chemical foaming agents than exothermic chemical foaming agents.

L'invention concerne également les profilés en aluminium ou châssis en aluminium comprenant au moins une cavité munie d'un dispositif d'isolation tel que décrit ici. De préférence, les profilés en aluminium ou châssis en aluminium ont été soumis à un thermolaquage et éventuellement à une anodisation après l'insertion du dispositif d'isolation dans au moins une des cavités du profilé ou châssis. Avantageusement, la cavité munie d'un dispositif d'isolation selon l'invention est une cavité de barrettage d'un châssis.The invention also relates to aluminum profiles or aluminum frames comprising at least one cavity provided with an insulation device as described here. Preferably, the aluminum profiles or aluminum frames have been subjected to powder coating and optionally to anodization after the insertion of the insulation device into at least one of the cavities of the profile or frame. Advantageously, the cavity provided with an insulation device according to the invention is a cavity for baring a chassis.

L'invention envisage dans encore un autre aspect l'utilisation d'un dispositif d'isolation selon l'invention pour l'isolation de cavités dans des profilés en aluminium ou dans des cavités de barrettage d'un châssis en aluminium pour améliorer leurs performances d'isolation.The invention envisages in yet another aspect the use of an insulation device according to the invention for the insulation of cavities in aluminum profiles or in the bar cavities of an aluminum frame to improve their performance. insulation.

Une cavité de barrettage est la cavité formée lorsqu'on attache deux profilés (généralement un destiné à se situer à l'extérieur et un destiné à se situer à l'intérieur d'un bâtiment) au moyen de barrettes afin d'éviter un pont thermique entre les deux profilés. Une cavité de barrettage est donc généralement de section polygonale, souvent grossièrement rectangulaire, délimitée d'une part par deux barrettes et d'autre part par les faces internes (se faisant face) des deux profilés.A barrette cavity is the cavity formed when two profiles (generally one intended to be located outside and one intended to be located inside a building) are attached by means of barrettes in order to avoid a bridge heat between the two profiles. A bar cavity is therefore generally of polygonal section, often roughly rectangular, delimited on the one hand by two bars and on the other hand by the internal faces (facing each other) of the two profiles.

Les barrettes utilisables pour le barrettage de deux profilés pour former un châssis sont celles généralement utilisées dans le domaine, de préférence elles sont en polyamide, notamment en polyamide 6.6, en mélange composé de poly(oxyde de phénylène) et de polystyrène (PS/PPO), par exemple Noryl, dense ou moussé, éventuellement renforcé de fibres de verre, et elles présentent une section centrale généralement essentiellement linéaire comprenant à chaque extrémité une section partielle permettant la fixation mécanique avec une section correspondante prévue sur les profilés, par exemple une section dite en queue-d'aronde ou similaire. Il est à noter que les barrettes peuvent présenter une section transversale plus complexe, mais elles comprennent néanmoins toujours au moins deux régions de fixation mécanique de réunion de (au moins) deux profilés.The strips that can be used for the stripping of two profiles to form a frame are those generally used in the field, preferably they are made of polyamide, in particular polyamide 6.6, a mixture composed of poly(phenylene oxide) and polystyrene (PS/PPO ), for example Noryl, dense or foamed, optionally reinforced with glass fibers, and they have a generally essentially linear central section comprising at each end a partial section allowing mechanical fastening with a corresponding section provided on the profiles, for example a section called dovetail or similar. It should be noted that the strips may have a more complex cross-section, but they nevertheless always comprise at least two mechanical fastening regions for joining (at least) two sections.

Brève description des dessinsBrief description of the drawings

D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée de quelques modes de réalisation avantageux présentés ci-dessous, à titre d'illustration, en se référant aux dessins annexés. Ceux-ci montrent :

  • Fig. 1 : est une coupe transversale à travers un mode de réalisation d'un dispositif d'isolation selon l'invention ;
  • Fig. 2 : est une coupe transversale à travers un mode de réalisation de châssis de porte ou de fenêtre, dans lequel une variante d'un dispositif d'isolation selon la Fig. 1 a été inséré dans une cavité de barrettage, avant la procédure de chauffage (b) ; et
  • Fig. 3 : est une coupe transversale à travers le mode de réalisation de châssis de porte ou de fenêtre de la Fig. 2, dans lequel est montré la variante d'un dispositif d'isolation dans la cavité de barrettage après avoir été soumis à un chauffage (étape (b)), par exemple lors d'un thermolaquage.
Other particularities and characteristics of the invention will emerge from the detailed description of some advantageous embodiments presented below, by way of illustration, with reference to the appended drawings. These show:
  • Fig. 1 : is a cross-section through one embodiment of an isolation device according to the invention;
  • Fig. 2 : is a cross-section through an embodiment of a door or window frame, in which a variant of an insulation device according to Fig. 1 was inserted into a strapping cavity, prior to the heating procedure (b); And
  • Fig. 3 : is a cross section through the door or window frame embodiment of the Fig. 2 , in which is shown the variant of an insulation device in the strip cavity after having been subjected to heating (step (b)), for example during powder coating.

Description d'une exécution préféréeDescription of a preferred execution

La Fig. 1 montre une variante d'un dispositif d'isolation 40 selon l'invention qui comprend un corps moussé 41 et des ailettes 42 disposées sur au moins un côté (ici deux côtés opposés) du corps moussé 41. Le corps moussé 41 a de préférence la forme de la section transversale de la cavité que l'on souhaite isoler, mais ses dimensions sont plus faibles (au moins dans la direction joignant les barrettes), par exemple 80 à 97 % de la distance séparant les côtés opposés correspondants de la cavité. Les ailettes 42 peuvent être non-moussée (compactes) ou moussées.There Fig. 1 shows a variant of an insulation device 40 according to the invention which comprises a foamed body 41 and fins 42 arranged on at least one side (here two opposite sides) of the foamed body 41. The foamed body 41 preferably has the shape of the cross section of the cavity which it is desired to isolate, but its dimensions are smaller (at least in the direction joining the strips), for example 80 to 97% of the distance separating the corresponding opposite sides of the cavity. The fins 42 can be unfoamed (compact) or foamed.

La Fig. 2 montre le dispositif d'isolation 40 montré à la Fig. 1 après son insertion dans une cavité (11, 21, 31), ici la cavité de barrettage 31 d'un châssis formé par le profilé intérieur 10, le profilé extérieur 20 et le barrettage formé par les barrettes 30. Le dispositif d'isolation 40 n'a pas encore subi de traitement de post-moussage par chauffage à des températures plus élevées que lors de son extrusion de manière à décomposer l'agent chimique de post-moussage. Cette figure illustre également d'une certaine manière le cas du dispositif d'isolation ayant subi un chauffage (étape (b)) en l'absence d'agent de moussage chimique après refroidissement et recontraction du corps moussé, sauf que dans ce cas particulier les ailettes auraient perdu leur forme initiale à cause de la compression par l'expansion du corps moussé due au chauffage et de leur étirement dû à la recontraction du corps moussé lors du refroidissement.There Fig. 2 shows the isolation device 40 shown in Fig. 1 after its insertion into a cavity (11, 21, 31), here the bar cavity 31 of a frame formed by the inner profile 10, the outer profile 20 and the bar formed by the strips 30. The insulation device 40 has not yet undergone a post-foaming treatment by heating to higher temperatures than during its extrusion in order to decompose the chemical post-foaming agent. This figure also illustrates in a way the case of the insulation device having undergone heating (step (b)) in the absence of chemical foaming agent after cooling and retraction of the foamed body, except that in this particular case the fins would have lost their initial shape due to compression by the expansion of the foamed body due to heating and their stretching due to the retraction of the foamed body during cooling.

Finalement, la Fig. 3 montre le dispositif d'isolation 40 de la Fig. 2 après la procédure de chauffage (étape (b)), par exemple après thermolaquage, dans le cas particulier où le corps moussé 41 comprenait une certaine quantité d'agent de moussage chimique non encore décomposé avant le chauffage et/ou un agent de moussage physique liquide à température ambiante, tel que décrit plus en détail ci-dessus, le corps moussé ayant augmenté de volume par post-moussage (et aussi par expansion physique du gaz contenu dans les cellules de la mousse) et ayant écrasé les ailettes 42 ramollies ou fondues, puis resolidifiées après refroidissement à température ambiante. Les ailettes 42 fondues et resolidifiées collent tant aux barrettes 30 qu'au corps moussé 41 formant ainsi un dispositif d'isolation efficace contre la convection et/ou le rayonnement entre les deux profilés extérieur 20 et intérieur 10 du châssis.Finally, the Fig. 3 shows the isolation device 40 of the Fig. 2 after the heating procedure (step (b)), for example after powder coating, in the particular case where the foamed body 41 comprises a certain quantity of chemical foaming agent not yet decomposed before heating and/or a liquid physical foaming agent at room temperature, as described in more detail above, the foamed body having increased in volume by post-foaming (and also by physical expansion of the gas contained in the cells of the foam) and having crushed the softened or molten fins 42, then resolidified after cooling to room temperature. The melted and resolidified fins 42 stick both to the strips 30 and to the foamed body 41, thus forming an effective insulation device against convection and/or radiation between the two outer 20 and inner 10 sections of the frame.

Légende : Legend :

1010
profilé intérieurinner profile
1111
cavité dans profilé intérieurcavity in inner profile
2020
profilé extérieurouter profile
2121
cavité dans profilé extérieurrecess in outer profile
3030
barrettebarrette
3131
cavité de barrettagebar cavity
4040
dispositif d'isolationisolation device
4141
corps mousséfoamed body
4242
ailettesfins

Claims (16)

  1. Method of insulating a cavity in an aluminium profile or a thermal break cavity (31) of an aluminium frame or leaf/casement frame of a door or window, the method comprising the following steps:
    (a) inserting, into said cavity, an insulating device (40) comprising a foamed body (41) of a first polymer composition of polygonal cross-section provided on at least one surface, preferably on each of two opposing surfaces, with one or more foamed or unfoamed ribs (42) of a second polymer composition, wherein the distance between said surface provided with ribs of the foamed body and the surface opposite thereto, or preferably between the two opposing surfaces provided with ribs of the foamed body amounts to 80 to 97% of the distance between the corresponding faces of the cavity, in which the foamed body of the first polymer composition is based on one or more (co)polyesters, preferably of the polyalkylene terephthalate type, such as for example polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate and/or polytrimethylene terephthalate, and
    (b) heating the aluminium profile or the aluminium frame to a temperature of between 180 and 250°C to bring about softening or melting of the second polymer composition, expansion of the foamed body and compression of the ribs through the effect of expansion of the foamed body, and cooling of the aluminium profile or aluminium frame, bringing about solidification of the second polymer composition and fixing the insulating device to the corresponding face(s) of the cavity.
  2. Insulating method according to claim 1, wherein the insulating device is fixed by one of its sides to one of the bars (30) during assembly of the profiles into a frame, the ribs being located at least on the side opposite the side fixed to the bar, fixing of the insulating device to the bar preferably being effected by adhesive bonding, welding or coextrusion.
  3. Insulating method according to claim 1 or 2, furthermore comprising, before or after step (a), a step (x) of spraying a paint powder, preferably of polyester, in particular by electrostatic powder coating, onto external faces of the aluminium profile or aluminium frame, the paint powder melting in step (b) to form a protective coating.
  4. Insulating method according to one of claims 1 to 3, wherein the foamed body and/or the ribs comprises/comprise a quantity of between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular of 0.1 to 2% by weight of at least one chemical foaming agent which is not yet decomposed and is decomposable at the temperatures of step (b).
  5. Insulating method according to one of claims 1 to 4, wherein the foamed body and/or the ribs comprises/comprise a quantity of between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular of 0.1 to 2% by weight of at least one physical foaming agent which is liquid at ambient temperature, preferably selected from alkanes having a boiling point higher than 25°C, in particular n-pentane, isopentane, cyclopentane, all the isomers of hexane or of heptane, ethanol, dimethyl ether, or mixtures thereof.
  6. Insulating method according to one of claims 1 to 5, wherein the second polymer composition comprises one or more polymers selected from crosslinked polyethylene, ethylene copolymers, modified or not by groups such as for example maleic anhydride, or thermoplastic elastomers and the second polymer composition is preferably foamed.
  7. Insulating method according to one of the preceding claims, for insulating a thermal break cavity of an aluminium frame, wherein at least some of the ribs are in contact with a bar.
  8. Device (40) for insulating a cavity of an aluminium profile or of a thermal break cavity (31) of an aluminium frame or leaf/casement frame of a door or window, comprising a foamed body (41) of a first polymer composition of polygonal cross-section provided on at least one surface, preferably on each of two opposing surfaces, with one or more foamed or unfoamed ribs (42) of a second polymer composition, wherein the foamed body of the first polymer composition is based on polyesters, preferably of the polyalkylene terephthalate type, such as for example polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate and/or polytrimethylene terephthalate, and the second polymer composition has a softening or melting temperature lower than a temperature of between 180 and 250°C.
  9. Insulating device according to claim 8, wherein the foamed body and/or the ribs comprises/comprise a quantity of between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular of 0.1 to 2% by weight of undecomposed chemical foaming agent, preferably selected from hydrazine derivatives, such as azodicarbonamide, tetrazoles, such as 5-phenyltetrazole, or mixtures of carbonate salts and acids, such as mixtures of sodium hydrogen carbonate and citric acid.
  10. Insulating device according to claim 8 or 9, wherein the foamed body and/or the ribs comprises/comprise a quantity of between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular of 0.1 to 2% by weight of at least one physical foaming agent which is liquid at ambient temperature, preferably selected from alkanes having a boiling point higher than 25°C, in particular n-pentane, isopentane, cyclopentane, all the isomers of hexane or of heptane, ethanol, dimethyl ether, or mixtures thereof.
  11. Insulating device according to claims 8 to 10, wherein the ribs have been fixed to the foamed body by coextrusion, by post-extrusion, by adhesive bonding or by thermal welding, and/or wherein the density of the foamed body is between 30 and 400 kg/m3, preferably between 60 and 250 kg/m3, preferably between 80 kg/m3 and 100 kg/m3.
  12. Insulating device according to any one of claims 8 to 11, wherein the second polymer composition comprises one or more polymers selected from crosslinked polyethylene, ethylene copolymers, modified or not by groups such as for example maleic anhydride, thermoplastic elastomers, (co)polyesters, preferably of the polyalkylene terephthalate type, such as for example polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polytrimethylene terephthalate, or mixtures thereof, optionally in combination with other (co)polymers, such as impact-modifying polymers, ethylene copolymers or thermoplastic elastomers, and the second polymer composition is preferably foamed.
  13. Insulating device according to any one of claims 8 to 12, wherein the density of the ribs is greater than 25 kg/m3, preferably between 100 kg/m3 and the unfoamed density of the second polymer composition.
  14. Aluminium profile or aluminium frame comprising at least one cavity provided with an insulating device according to any one of claims 8 to 13, the aluminium profile or the aluminium frame preferably having undergone heating to a temperature of between 180 and 250°C.
  15. Aluminium frame according to claim 14, wherein the cavity provided with an insulating device according to any one of claims 8 to 13 is a thermal break cavity.
  16. Use of an insulating device (40) according to any one of claims 8 to 13 for insulating cavities in aluminium profiles or thermal break cavities (31) of an aluminium frame to improve their insulating performance, the aluminium profiles or the aluminium frame preferably having undergone heating to a temperature of between 180 and 250°C after insertion of the insulating device into the aluminium profiles or the aluminium frames.
EP20739680.5A 2019-07-18 2020-07-13 Insulation of door and window frames Active EP3999707B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI202030261T SI3999707T1 (en) 2019-07-18 2020-07-13 Insulation of door and window frames
DE20739680.5T DE20739680T1 (en) 2019-07-18 2020-07-13 INSULATION FOR DOOR AND WINDOW FRAMES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE20195471A BE1027432B1 (en) 2019-07-18 2019-07-18 DOOR AND WINDOW FRAME INSULATION
PCT/EP2020/069752 WO2021009120A1 (en) 2019-07-18 2020-07-13 Insulation for door- and window-frames

Publications (2)

Publication Number Publication Date
EP3999707A1 EP3999707A1 (en) 2022-05-25
EP3999707B1 true EP3999707B1 (en) 2023-08-09

Family

ID=67997301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20739680.5A Active EP3999707B1 (en) 2019-07-18 2020-07-13 Insulation of door and window frames

Country Status (7)

Country Link
EP (1) EP3999707B1 (en)
BE (1) BE1027432B1 (en)
DE (1) DE20739680T1 (en)
ES (1) ES2961633T3 (en)
PL (1) PL3999707T3 (en)
SI (1) SI3999707T1 (en)
WO (1) WO2021009120A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020114544A1 (en) * 2020-05-29 2021-12-02 Salamander Industrie-Produkte Gmbh Extrusion profile, method for producing an extrusion profile and door and / or window system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008000076U1 (en) * 2008-01-11 2009-02-19 Henkenjohann, Johann A multi-chamber hollow profile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632868B2 (en) 2009-11-21 2014-01-21 Mikron Industries, Inc. Integrated insulation extrusion and extrusion technology for window and door systems
EP2799654B1 (en) * 2013-04-30 2015-11-04 Recticel N.V. Method of assembly of a window profile comprising insulation material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008000076U1 (en) * 2008-01-11 2009-02-19 Henkenjohann, Johann A multi-chamber hollow profile

Also Published As

Publication number Publication date
ES2961633T3 (en) 2024-03-13
BE1027432B1 (en) 2021-02-15
WO2021009120A1 (en) 2021-01-21
BE1027432A1 (en) 2021-02-09
SI3999707T1 (en) 2023-10-30
EP3999707A1 (en) 2022-05-25
DE20739680T1 (en) 2022-09-08
PL3999707T3 (en) 2024-02-05

Similar Documents

Publication Publication Date Title
EP3999707B1 (en) Insulation of door and window frames
CA2175748A1 (en) Construction unit seal
WO2006134079A1 (en) Composite part such as a panel, comprising a honeycomb structure
FR3095156A1 (en) low density polyester foam core composite profiles
EP2660406B1 (en) Thermally insulating building block
EP3227079B1 (en) Method for producing an insulating device and insulating device
FR2576838A1 (en) METHOD FOR MANUFACTURING EXPANDED PLASTICS, IN PARTICULAR DECORATIVE MOLDINGS AND PROTECTORS FOR MOTOR VEHICLES
EP3999300A1 (en) Foamed hollow chamber profiles
EP2746482A1 (en) Heat insulating product and its manufacturing process
CA1100740A (en) Method and device for the manufacture of composite forms for metallic window and door frames comprising a thermal barrier
EP2934842B1 (en) Moulding device, method of manufacture, and thermal insulation product obtained
FR2971808A1 (en) Thermal break profile for assembling two structural parts in joinery of building opening e.g. door, has body comprising assembly structures, where body and one of assembly structures are formed of core covered by skin
FR2860533A1 (en) INSULATING PANEL
EP0308355A1 (en) Self-supporting decorative element made of light-weight composite material, and process for making it
JPS5839064B2 (en) Manufacturing method of insulation box
BE1005424A6 (en) Building element with a cell structure and method for manufacturing construction element.
FR3134107A1 (en) Adhesive composition for a glass article comprising expansion means and laminated glazing for automobiles comprising such a composition
FR2876623A1 (en) Multi-layer insulating panel manufacturing process uses foaming compound poured into forming chamber with outer layers and honeycomb core
FR2522052A1 (en) Composite thermal and acoustic insulation panel - has high vacuum inserts in cellular core material
FR2465863A1 (en) Insulating frame for sliding windows or doors - has two spaced metal profiles joined along one edge by core of low thermal conductivity material
FR2711167A1 (en) Elements for constructing transparent or non-transparent insulating walls and method for manufacturing such elements
FR2878874A1 (en) INSULATING ANGLE PANEL
FR3130870A1 (en) Method of manufacturing an opening door panel, door leaf and door obtained by the method
FR3087813A1 (en) INSULATING GLASS SUB-ASSEMBLY READY TO FILL WITH INSULATING GAS
FR3073247A1 (en) THERMAL CUTTING SLABS EXTRUDED FOR GLAZING

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R210

Ref document number: 602020015497

Country of ref document: DE

Ref country code: DE

Ref legal event code: R210

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020015497

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1597719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230809

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2961633

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809