EP3999707A1 - Insulation for door- and window-frames - Google Patents

Insulation for door- and window-frames

Info

Publication number
EP3999707A1
EP3999707A1 EP20739680.5A EP20739680A EP3999707A1 EP 3999707 A1 EP3999707 A1 EP 3999707A1 EP 20739680 A EP20739680 A EP 20739680A EP 3999707 A1 EP3999707 A1 EP 3999707A1
Authority
EP
European Patent Office
Prior art keywords
cavity
insulation
aluminum
fins
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20739680.5A
Other languages
German (de)
French (fr)
Other versions
EP3999707B1 (en
Inventor
Silvain Meessen
Florence SCHÖPGES
Jean-Pierre Mayeres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NMC SA
Original Assignee
NMC SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NMC SA filed Critical NMC SA
Priority to SI202030261T priority Critical patent/SI3999707T1/en
Priority to DE20739680.5T priority patent/DE20739680T1/en
Publication of EP3999707A1 publication Critical patent/EP3999707A1/en
Application granted granted Critical
Publication of EP3999707B1 publication Critical patent/EP3999707B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/26301Frames with special provision for insulation with prefabricated insulating strips between two metal section members
    • E06B3/26303Frames with special provision for insulation with prefabricated insulating strips between two metal section members with thin strips, e.g. defining a hollow space between the metal section members
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/06Single frames
    • E06B3/08Constructions depending on the use of specified materials
    • E06B3/12Constructions depending on the use of specified materials of metal
    • E06B3/14Constructions depending on the use of specified materials of metal of special cross-section
    • E06B3/16Hollow frames of special construction, e.g. made of folded sheet metal or of two or more section parts connected together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/277Frames with special provision for insulation with prefabricated insulating elements held in position by expansion of the extremities of the insulating elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/2632Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section
    • E06B2003/26321Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section with additional prefab insulating materials in the hollow space
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/06Single frames
    • E06B3/08Constructions depending on the use of specified materials
    • E06B3/12Constructions depending on the use of specified materials of metal
    • E06B3/14Constructions depending on the use of specified materials of metal of special cross-section
    • E06B3/16Hollow frames of special construction, e.g. made of folded sheet metal or of two or more section parts connected together
    • E06B3/163Hollow frames of special construction, e.g. made of folded sheet metal or of two or more section parts connected together with a filled cavity

Definitions

  • the present invention relates to the insulation of aluminum profiles or frames for doors and windows and more particularly the insulation of the spaces between the interior and exterior profiles of a frame.
  • Breaking the thermal bridge by barring is an insulation technique used on aluminum sashes and frames to increase the insulation performance of this type of frame.
  • the principle is simple: a material that is not very thermally conductive (i.e. much less thermally conductive than aluminum) is crimped between the interior and exterior aluminum profiles of the sash and the frame to reduce reciprocal temperature exchanges of the inside to outside the building or vice versa.
  • the bars are generally plastic profiles with an elongated cross section and having at each end of this section a mechanical fastening system complementary to a fastening system provided on the internal faces of the inner and outer profiles, for example a fixing to dovetail.
  • the interior and exterior aluminum profiles assembled by these bars form a composite profile, also called a frame, thus generally comprising one or more cavities between the two profiles, hereinafter called barrettage cavity (s).
  • barrettage cavity s
  • the barrettage cavity is at least partially filled with a foamed polymer material.
  • the filling of the barrettage cavity cannot be coextruded with the profile (as for example in EP 2 501 530 A1), but must be done at the time of the barrettage or after, therefore during or after the assembly of two interior and exterior profiles by means of bars.
  • a polymer foam profile of appropriate cross section is inserted either by being fixed beforehand to one of the bars (filling during assembly) or even simply by sliding a polymer foam profile into the cavity via one of the ends. of the assembled frame (filling after assembly).
  • the aluminum frames are for the most part covered with one (or more) layer (s) of finish applied according to known techniques.
  • a technique often used is powder coating. Powder coating is a process used to paint profiles in a sustainable manner. Once the profiles have been stripped, cleaned of impurities and pretreated to ensure perfect adhesion of the lacquer, a paint powder, for example a polyester paint powder, is applied to them via an electrostatic powder coating, depositing colored particles. In an oven heated to about 200 ° C, the polymerization then hardens everything to stabilize the chosen coating.
  • the anodizing operation which is an operation not involving high temperatures such as powder coating, consists in producing a thin layer of aluminum oxide (alumina) resistant to surface of a profile, which can act on its decorative appearance. It is carried out through controlled oxidation by chemical or electrolytic coloring.
  • the parts to be anodized are immersed in several successive baths, which first ensure the preparation of the surface of the profile or the frame, then the production of alumina with, if desired, the deposition of a appearance and color and, finally, stabilization of the alumina layer by a so-called “sealing" operation consisting in hydrating the alumina layer in order to obtain good corrosion resistance.
  • the presence of foam in the cavities of a profile or a frame can affect the anodizing operation mainly due to the phenomenon of capillarity at the places of contact of the foam with the walls of the cavity. Since anodization requires the successive contact of the surfaces to be treated with different solutions, the capillary action prevents complete flow and the correct rinsing of the surfaces after each operation. The anodization treatment therefore risks being incomplete at the places of contact with the foam, respectively the incompletely rinsed treatment products risk damaging the foam and therefore also resulting in a lesser or even no insulation effect on the foam profile. inserted.
  • An object of the present invention is therefore to provide a polymeric foam profile of suitable cross section for insulating an aluminum profile cavity and preferably a bar cavity by reducing energy losses by convection and / or radiation, which can be used both in profiles or frames likely to be anodized, as those intended for powder coating.
  • the present invention provides, in a first aspect, a method of isolating a cavity of an aluminum profile or of a bar cavity of a frame in aluminum door or window sash or frame, the process comprising the following steps:
  • an insulation device comprising a foamed body of a first polymeric composition of cross section polygonal provided on at least one surface, preferably on (each of) two opposing surfaces with one or more foamed or non-foamed fins of a second polymeric composition, wherein the distance between said finned surface and the surface opposed thereto, respectively preferably between the two opposed surfaces provided with fins of the foamed body represents 80 to 97% of the distance between the corresponding faces of the cavity, in which the foamed body of the first polymer composition is at base of one or more (co) polyesters, preferably of polyalkylene terephthalate type, such as for example polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene naphthalate (PEN), polytrimethylene terephthalate (PTT) , etc.,
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polybutylene naphthalate
  • (b ') anodization comprising immersing the aluminum profile or the aluminum frame in several successive baths ensuring the preparation of the surface of the profile or the frame, the production of alumina on said surfaces, optionally with the deposition of a appearance and / or color and stabilization of the alumina layer by a sealing operation.
  • the process comprising steps (a) and (b), further comprises, before or after step (a), a step (x) of spraying a paint powder, for example polyester, preferably by electrostatic powder coating, on the outer faces of the aluminum profile or the aluminum frame, the polyester paint powder melting in step (b) to form a protective coating (powder coated).
  • a paint powder for example polyester, preferably by electrostatic powder coating
  • a process comprising steps (a), (x) and (b) is therefore a powder coating process as described above.
  • Another aspect of the invention relates to a device for isolating a cavity of an aluminum profile or of a barrettage cavity of an aluminum frame of an opening or a door or window frame, comprising a foamed body of a first polymeric composition of polygonal cross section provided on at least one surface, preferably on (each of) two opposing surfaces with one or more foamed or non-foamed fins of a second polymeric composition, wherein the foamed body of the first polymer composition comprises a foam based on polyesters, preferably of the polyalkylene terephthalate type, such as, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene naphthalate (PEN), polytrimethylene terephthalate (PTT), etc.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polybutylene naphthalate
  • PTT polytrimethylene terephthalate
  • the problem of the insulation of a cavity is twofold: on the one hand the foam inside the cavity must cover the entire distance between the bars to be able to guarantee the absence of convection and / or radiation between the two internal faces of the two outer and inner profiles, and, in the case of a powder coating, it must remain intact even after a heats without the bars softened by the powder coating heat becoming deformed, and in the case of anodization, it must prevent the retention of liquids from successive baths by capillarity, that is to say, it must allow the correct drainage and rinsing of the surfaces of the profile or frame.
  • the first polymer composition comprises (co) polyesters exhibiting good rigidity even at the high temperatures of powder coating.
  • the inventors have found that by proceeding in this manner, the forces exerted by the foam subjected to thermal expansion is liable to deform the bars.
  • the trend is to improve the insulation performance of the strips by making them less dense (by foaming for example) and / or thinner, which further increases the risk of deformation during powder coating.
  • the inventors have observed that the foam can recontact (at least partially) during cooling to room temperature after heating or powder coating and thus again release part of the distance between the strips and therefore reduce performance insulation of the chassis.
  • the inventors then designed the insulation devices according to the invention by slightly reducing the initial size of the foam body relative to the distance between two bars and by providing at least one side of the fins which at the temperature of heating or powder coating will soften or melt, will be crushed by the thermally expanding foam, above all, will solidify later (at a lower temperature) than the foam in the body and will thus not only fill any recontraction space, even if necessary glue the foam body to the bars.
  • Such bonding depending on the choice of the nature of the second polymer composition, is moreover particularly advantageous, because it makes it possible to increase not only the insulation performance, but also the mechanical rigidity of the assembly.
  • the inventors have determined that in certain variants, for the isolation device to be particularly suitable in an isolation process comprising steps (a) and (b) or steps (a), (x) and (b), it is preferable to choose the second polymer composition preferably from polymer compositions capable of softening or of melting at a temperature below a temperature between 180 and 250 ° C.
  • an isolation device can also be useful in an isolation process comprising steps (a) and (b) or steps (a), (x) and (b), even though the softening or melting temperature of the second composition is only slightly lower, or even identical, to that of the first composition, that is to say of the foamed body.
  • the fins being located closer to the surfaces of the profile, they tend to heat up more quickly than the foamed body. It is to highlight that in these cases, however, the heating step must be controlled more precisely both in terms of temperature and in terms of heating time.
  • the fins provided according to the invention play the role of spacer elements which make it possible to maintain the surface or surfaces of the foam body at a certain distance from the corresponding surfaces of the profile or frame, of preferably at a distance of 4 to 8 mm, preferably 5 to 6 mm, so as to ensure the normal flow (without capillary effect) of the liquids from the treatment baths.
  • the inventors have further determined that it is not essential to avoid losses by convection and / or radiation that the opposite sides of an insulation device according to the invention cover the entire distance between the corresponding surfaces of the profile or frame (i.e. the insulation device must be in contact on two opposite sides with the profile or frame), but a gap of up to approx. 2 to 3 mm, preferably up to about 1 to 2 mm, does not significantly decrease the insulation performance. Indeed, it has been observed that a slit of such a small width does not allow significant convection through the slit (and therefore a significant loss of heat). This is also true for the radiation losses which are extremely low and therefore negligible under these conditions.
  • an insulation device according to the invention can be chosen so as to be up to 3 mm, preferably up to 1 to 2 mm below those of the cavity without reducing the insulation performance, even in the case of an anodizing process without an additional expansion step of the foam.
  • a particular advantage is that the isolation device is all the easier to insert into said cavity.
  • the fins can be of generally any cross section, preferably of polygonal shape and particularly preferably of roughly triangular or trapezoidal section.
  • the number of fins per side of the foam body will be chosen appropriately, in particular according to the dimensions of the cavity to be insulated, and will often be between 1 and 10, preferably between 2 and 5.
  • the insertion of the isolation device in step (a) can be done in any suitable manner.
  • the isolation device is inserted into the bar cavity after the profiles have been assembled into a frame by inserting it through one end of the frame.
  • the isolation device is inserted with one of the bars at the time of assembly.
  • the fixing of the insulation device on the bar is done for example by gluing, welding, coextrusion, etc.
  • the fins are located at least on the side opposite to the side attached to the bar and possibly on other sides, but not on the side attached to the bar.
  • the side attached to the bar effectively prevents the capillary effect in the event of anodization.
  • the insulation method according to the invention is used for the insulation of a bar cavity of an aluminum frame.
  • the fins or at least part of them are located facing a bar, either in direct contact or at a very small distance of less than 3 mm, or even less than 2 mm.
  • the first polymer composition is preferably a composition comprising (co) polyesters, in particular PET, PBT, PTT, PEN, ..., or mixtures thereof, as the sole polymers or optionally in combination with other (co) polymers, such as impact modifying polymers known for (co) polyesters, ethylene copolymers, such as ethylene-vinyl acetate (EVA) copolymers, ethylene-methyl acrylate (EMA) copolymers , ethylene-ethyl acrylate (EEA) copolymers, ethylene-butyl acrylate (EBA) copolymers, ethylene copolymers modified with groups such as, for example, maleic anhydride or glycidyl methacrylate, etc., , elastomeric thermoplastics (TPE), such as polyester elastomer thermoplastics (TPC), unvulcanized (TPO) or vulcanized (TPV) ole
  • EVA ethylene-vinyl acetate
  • EMA
  • the second polymer composition comprises one or more polymers chosen from crosslinked polyethylene, copolymers of ethylene modified or not by groups such as by example maleic anhydride, thermoplastic elastomers (TPE, such as TPS, TPU, TPC, TPV, TPO), (co) polyesters (PET, PBT, PTT, PEN, etc.) and is optionally foamed.
  • TPE thermoplastic elastomers
  • the densities of the fins will generally be greater than 25 kg / m 3 , preferably between 100 kg / m 3 and the non-foamed density of the second polymer composition.
  • the first polymer composition that is to say - say the foamed body
  • the second polymer composition that is to say the fins
  • foaming agent (s) additional to the other physical and / or chemical foaming agents used for the initial foaming of these compositions, an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular from 0.1 to 2% by weight of at least one chemical foaming agent chosen from chemical agents which decompose at temperatures higher than those used for the initial foaming of the foamed body, preferably the chemical agents which can be used which decompose at high temperatures temperatures above 180 ° C and are chosen advantageously from hydrazine derivatives, such as azodicarbonamide, t
  • chemical post-foaming in the case of chemical foaming agents is done by the additional volume of gas generated by the decomposition of the chemical foaming agent, the gas initially contained in the cells and the gas generated during heating to more high temperature being moreover simultaneously subjected to thermal expansion.
  • the first polymer composition and / or the second polymer composition therefore introduced before the initial foaming of the foamed body and / or where appropriate of the fins, can (t / vent) understand, as the only agent foaming agent or in addition to other physical and / or chemical foaming agents commonly used for foaming such compositions, an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular 0 , 1 to 2% by weight of at least one physical foaming agent that is liquid at room temperature (and at atmospheric pressure), preferably chosen from alkanes having a boiling point greater than 25 ° C, in particular n-pentane , isopentane or cyclopentane, hexanes (all isomers), heptanes, etc., or else from ethanol, dimethyl ether, etc., or mixtures thereof.
  • the only agent foaming agent or in addition to other physical and / or chemical foaming agents commonly used for foaming such compositions an amount between 0.001 and 5%
  • foaming agents in the first and / or second polymer composition will cause post-foaming inside the cavity during heating or powder coating.
  • the phenomenon responsible for the so-called physical post-foaming in the case of liquid physical foaming agents at ambient temperatures results not only from the liquefaction and then the re-evaporation of the initial physical foaming agent, but results from a combination with the phenomenon of gas exchange through cell walls. This phenomenon is well known in the field and is the reason why the gas initially responsible for foaming will generally be gradually exchanged by atmospheric air.
  • the so-called physical post-foaming described here benefits the air permeability and the liquefaction of normally liquid agents at room temperature which results in the entry of air into the cells being increased by reducing the volume of the agent.
  • the cells therefore not only contain the amount of foaming agent initial (whose volume is reduced by its change of state), but also a large quantity of air. If such a foam is subsequently heated, its volume will consequently increase further, when the liquid foaming agent evaporates again.
  • step (b) does not negatively influence the performance of the isolation device.
  • step (b) it is moreover envisaged to also perform step (b).
  • the foaming agents which can be used for the initial foaming of the first and / or second polymeric compositions can be physical or chemical foaming agents or a combination of these two types.
  • the physical foaming agents such as in particular molecular nitrogen, carbon dioxide, linear or branched C 1 to C 4 alkanes, are present in the form of gas under normal temperature and pressure conditions. These gases or liquids are soluble in the polymer compositions melted at high temperature and under high pressure and form a single phase under the appropriate conditions of pressure and temperature. By depressurizing the monophasic system, the nucleation and growth of gas bubbles that have become insoluble generate a cellular structure.
  • the foaming agent (s) are preferably chosen from propane, isobutane, n-butane and / or carbon dioxide.
  • Chemical foaming agents decompose when the temperature rises. They can be classified into two families: exothermic chemical foaming agents, such as azodicarbonamide, OxydiBenzeneSulfonyl Hydrazide, etc. which decompose by producing heat.
  • exothermic chemical foaming agents such as azodicarbonamide, OxydiBenzeneSulfonyl Hydrazide, etc. which decompose by producing heat.
  • azodicarbonamide decomposes at around 210 ° C (see above if its decomposition is not desired during the initial foaming), but in the presence of a suitable decomposition accelerator, such as zinc oxide and / or zinc stearate, the decomposition temperature can be lowered by about 60 ° C.
  • Endothermic chemical foaming agents break down on absorbing heat. For example, citric acid,
  • the invention also relates to aluminum profiles or aluminum frames comprising at least one cavity provided with an insulation device as described here.
  • the aluminum profiles or aluminum frames have been subjected to powder coating or anodization after the insertion of the insulation device in at least one of the cavities of the profile or frame.
  • the cavity provided with an insulation device according to the invention is a barrettage cavity of a frame.
  • the invention contemplates in yet another aspect the use of an insulation device according to the invention for the insulation of cavities in aluminum profiles or in bar cavities of an aluminum frame for improve their insulation performance.
  • a barrettage cavity is the cavity formed when two profiles are attached (generally one intended to be located outside and one intended to be located inside a building) by means of bars in order to avoid a thermal bridge between the two profiles.
  • a barrettage cavity is therefore generally of polygonal section, often roughly rectangular, delimited on the one hand by two bars and on the other hand by the internal faces (facing each other) of the two profiles.
  • the bars that can be used for the barrettage of two sections to form a frame are those generally used in the field, preferably they are made of polyamide, in particular of polyamide 6.6, as a mixture composed of poly (phenylene oxide) and polystyrene ( PS / PPO), for example Noryl, dense or foamed, possibly reinforced with glass fibers, and they have a generally essentially linear central section comprising at each end a partial section allowing mechanical fixing with a corresponding section provided on the profiles, for example example a so-called dovetail or similar section. It should be noted that the bars may have a more complex cross section, but they nevertheless always comprise at least two regions for mechanical attachment of (at least) two sections. Brief description of the drawings
  • Fig. 1 is a cross section through one embodiment of an insulation device according to the invention
  • Fig. 2 is a cross section through an embodiment of a door or window frame, in which a variant of an insulation device according to Fig. 1 was inserted into a barrette cavity, before the heating procedure (b) or the anodization procedure (b ’); and
  • Fig. 3 is a cross section through the door or window frame embodiment of FIG. 2, in which is shown the variant of an insulation device in the barrettage cavity after having been subjected to heating (step (b)), for example during powder coating.
  • FIG. 1 shows a variant of an insulation device 40 according to the invention which comprises a foamed body 41 and fins 42 arranged on at least one side (here two opposite sides) of the foamed body 41.
  • the foamed body 41 preferably has the shape of the cross section of the cavity to be isolated, but its dimensions are smaller (at least in the direction joining the bars), for example 80 to 97% of the distance between the corresponding opposite sides of the cavity .
  • the fins 42 can be non-foamed (compact) or foamed.
  • FIG. 2 shows the isolation device 40 shown in FIG. 1 after its insertion into a cavity (11, 21, 31), here the bar cavity 31 of a frame formed by the inner profile 10, the outer profile 20 and the bar formed by the bars 30.
  • the isolation device 40 has not yet undergone post-foaming treatment by heating to higher temperatures than during its extrusion so as to decompose the chemical post-foaming agent.
  • the insulation device will remain essentially unchanged (unlike in the case of heating as in step (b)) and it can be seen in Fig. 1 that the configuration of the device insulation makes it possible to avoid capillarity phenomena and therefore allows easy flow of the treatment bath liquids.
  • This figure also illustrates in a certain way the case of the insulation device having undergone heating (step (b)) in the absence of chemical foaming agent after cooling and recontraction of the foamed body, except that in this particular case the fins would have lost their original shape due to the compression by the expansion of the foamed body due to heating and their stretching due to the recontraction of the foamed body on cooling.
  • FIG. 3 shows the isolation device 40 of FIG. 2 after the heating procedure (step (b)), for example after powder coating, in the particular case where the foamed body 41 included a certain quantity of chemical foaming agent not yet decomposed before heating and / or a foaming agent physical liquid at room temperature, as described in more detail above, the foamed body having increased in volume by post-foaming (and also by physical expansion of the gas contained in the cells of the foam) and having crushed the softened fins 42 or melted, then resolidified after cooling to room temperature.
  • the molten and resolidified fins 42 adhere both to the bars 30 and to the foamed body 41 thus forming an effective insulation device against convection and / or radiation between the two outer 20 and inner 10 sections of the frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Refrigerator Housings (AREA)
  • Special Wing (AREA)
  • Wing Frames And Configurations (AREA)
  • Door And Window Frames Mounted To Openings (AREA)

Abstract

The invention relates to a method for insulating a cavity of an aluminium profile section or a thermal-break cavity of an aluminium fixed-frame or opening-frame of a door or window, the method comprising the following steps of: (a) inserting, into said cavity, an insulating device comprising a foam body made of a first polymer composition of polygonal cross section provided on at least one surface, preferably on each of two opposite surfaces, with one or more foam or non-foam fins made of a second polymer composition, in which the distance between said finned surface of the foam body and the opposite surface, or preferably between the two opposite finned surfaces of the foam body, respectively, represents 80 to 97% of the distance separating the corresponding faces of the cavity, in which the foam body made of the first polymer composition is based on one or more (co-)polyesters; and (b) heating the aluminium profile section or the aluminium frame to a temperature higher than a temperature comprised between 180 and 250°C in order to cause the second polymer composition to soften or melt, the foam body to expand and the fins to become compressed through the effect of the expansion of the foam body, and cooling the aluminium profile section or the aluminium frame to cause the second polymer composition to solidify, fixing the insulating device to the corresponding face or faces of the cavity.

Description

ISOLATION DE CHASSIS DE PORTES ET FENÊTRES INSULATION OF DOOR AND WINDOW FRAMES
Domaine technique Technical area
[0001 ] La présente invention concerne l’isolation de profilés ou châssis en aluminium pour portes et fenêtres et plus particulièrement l’isolation des espaces entre les profilés intérieur et extérieur d’un châssis. The present invention relates to the insulation of aluminum profiles or frames for doors and windows and more particularly the insulation of the spaces between the interior and exterior profiles of a frame.
Etat de la technique State of the art
[0002] La rupture de pont thermique par barrettage est une technique d'isolation employée sur les ouvrants et dormants en aluminium pour augmenter les performances d’isolation de ce type de châssis. Le principe est simple : un matériau peu thermoconducteur (c’est-à-dire nettement moins thermoconducteur que l’aluminium) est serti entre les profilés aluminium intérieur et extérieur de l'ouvrant et du dormant pour réduire les échanges réciproques de température de l’intérieur vers l’extérieur du bâtiment ou inversement. Les barrettes sont généralement des profilés en matière plastique d’une section transversale allongée et présentant à chaque extrémité de cette section un système de fixation mécanique complémentaire à un système de fixation prévus sur les faces internes des profilés intérieur et extérieur, par exemple une fixation à queue-d’aronde. Les profilés aluminium intérieur et extérieur assemblés par ces barrettes forment un profilé composite, encore appelé châssis, comprenant ainsi d’une manière générale une ou plusieurs cavités entre les deux profilés, appelé ci-après cavité(s) de barrettage. Or, il est bien connu que dans les cavités prévues dans les profilés-mêmes en aluminium, la convection de l’air et/ou le rayonnement peut influencer négativement les performances d’isolation de l’ensemble. Il en est de même dans le cas de la cavité de barrettage où la convection de l’air et/ou surtout le rayonnement entre les faces internes des profilés extérieur et intérieur augmentent le flux d’énergie et donc les déperditions d’énergie à travers le châssis. [0002] Breaking the thermal bridge by barring is an insulation technique used on aluminum sashes and frames to increase the insulation performance of this type of frame. The principle is simple: a material that is not very thermally conductive (i.e. much less thermally conductive than aluminum) is crimped between the interior and exterior aluminum profiles of the sash and the frame to reduce reciprocal temperature exchanges of the inside to outside the building or vice versa. The bars are generally plastic profiles with an elongated cross section and having at each end of this section a mechanical fastening system complementary to a fastening system provided on the internal faces of the inner and outer profiles, for example a fixing to dovetail. The interior and exterior aluminum profiles assembled by these bars form a composite profile, also called a frame, thus generally comprising one or more cavities between the two profiles, hereinafter called barrettage cavity (s). However, it is well known that in the cavities provided in the aluminum profiles themselves, air convection and / or radiation can negatively influence the insulation performance of the assembly. It is the same in the case of the barrier cavity where the convection of the air and / or especially the radiation between the internal faces of the exterior and interior profiles increase the energy flow and therefore the energy losses through the chassis.
[0003] Il existe des solutions dans lesquelles la cavité de barrettage est remplie du moins partiellement d’un matériau polymère moussé. Cependant, contrairement aux cavités des profilés, le remplissage de la cavité de barrettage ne peut pas être coextrudé avec le profilé (comme par exemple dans EP 2 501 530 A1 ), mais doit se faire au moment du barrettage ou après, donc pendant ou après l’assemblage des deux profilés intérieur et extérieur au moyen de barrettes. D’une manière connue, un profilé en mousse polymère de section appropriée est inséré soit en étant fixé au préalable à une des barrettes (remplissage pendant l’assemblage) ou encore simplement en glissant un profilé en mousse polymère dans la cavité par une des extrémités du châssis assemblé (remplissage après l’assemblage). Il est à noter que le glissement d’une mousse dans des cavités longitudinales de grande longueur peut être difficile surtout si la section de la mousse doit remplir entièrement ladite cavité et/ou si le profilé de mousse à insérer est très flexible ou friable. Une autre technique consiste à injecter une mousse polyuréthane (PUR) sous forme liquide sur au moins une des barrettes avant l’assemblage de celles-ci avec les profilés intérieurs et extérieur en aluminium. L’expansion de la mousse PUR se fait librement hors des limites de la barrette. Ce procédé ne permet cependant pas de remplir la totalité de la cavité et la forme de la mousse est généralement arrondie. [0003] There are solutions in which the barrettage cavity is at least partially filled with a foamed polymer material. However, unlike the profile cavities, the filling of the barrettage cavity cannot be coextruded with the profile (as for example in EP 2 501 530 A1), but must be done at the time of the barrettage or after, therefore during or after the assembly of two interior and exterior profiles by means of bars. In a known manner, a polymer foam profile of appropriate cross section is inserted either by being fixed beforehand to one of the bars (filling during assembly) or even simply by sliding a polymer foam profile into the cavity via one of the ends. of the assembled frame (filling after assembly). It should be noted that the sliding of a foam in longitudinal cavities of great length can be difficult, especially if the section of the foam must completely fill said cavity and / or if the foam profile to be inserted is very flexible or friable. Another technique consists in injecting a polyurethane foam (PUR) in liquid form on at least one of the bars before assembling them with the interior and exterior aluminum profiles. The expansion of the PUR foam takes place freely outside the limits of the strip. However, this method does not allow the entire cavity to be filled and the shape of the foam is generally rounded.
[0004] Les châssis en aluminium sont dans la grande majorité couverts d’une (ou plusieurs) couche(s) de finition appliquée(s) suivant des techniques connues. Une technique souvent utilisée est le thermolaquage. Le thermolaquage est un procédé utilisé pour peindre les profilés de manière durable. Une fois les profilés décapés, nettoyés des impuretés et prétraités pour assurer une accroche parfaite de la laque, une poudre de peinture, par exemple une poudre de peinture polyester, leur est appliquée via un poudrage électrostatique, déposant des particules colorées. Dans un four chauffé à environ 200 °C, la polymérisation durcit ensuite le tout pour stabiliser le revêtement choisi. [0004] The aluminum frames are for the most part covered with one (or more) layer (s) of finish applied according to known techniques. A technique often used is powder coating. Powder coating is a process used to paint profiles in a sustainable manner. Once the profiles have been stripped, cleaned of impurities and pretreated to ensure perfect adhesion of the lacquer, a paint powder, for example a polyester paint powder, is applied to them via an electrostatic powder coating, depositing colored particles. In an oven heated to about 200 ° C, the polymerization then hardens everything to stabilize the chosen coating.
[0005] Cependant, à ces températures, de nombreuses matières plastiques (donc en l’occurrence les barrettes) ramollissent, perdent leur rigidité et donc le cas échéant risquent de perdre leur forme et leurs dimensions initiales. De même, certains types de mousses (par exemples polyuréthanes) insérées préalablement dans la cavité de barrettage peuvent également se ramollir et perdre leurs dimensions initiales, voire collapser, ce qui peut résulter en un effet d’isolation moindre, voire nul du profilé de mousse inséré. [0005] However, at these temperatures, many plastics (therefore in this case the bars) soften, lose their rigidity and therefore, if necessary, risk losing their initial shape and dimensions. Likewise, certain types of foams (for example polyurethanes) inserted beforehand into the barrettage cavity can also soften and lose their initial dimensions, or even collapse, which can result in a lesser or even no insulation effect of the foam profile. inserted.
[0006] Une autre technique fréquemment utilisée est l’anodisation des profilés en aluminium ou du châssis. De manière simplifiée, l'opération d'anodisation, qui est une opération n’impliquant pas de températures élevées comme le thermolaquage, consiste à produire une mince couche d'oxyde d’aluminium (alumine) résistante à la surface d'un profilé, pouvant agir sur son aspect décoratif. Elle s'effectue au travers d'une oxydation contrôlée par colorations chimiques ou électrolytiques. Pour ce faire, les pièces à anodiser sont immergées dans plusieurs bains successifs, qui assurent d’abord la préparation de la surface du profilé ou du châssis, ensuite la production de l'alumine avec, si on le souhaite, le dépôt d'un aspect et d'une couleur et, finalement, la stabilisation de la couche d'alumine par une opération dite "de colmatage" consistant à hydrater la couche d’alumine afin d’obtenir une bonne résistance à la corrosion. Another frequently used technique is the anodizing of the aluminum profiles or of the frame. In a simplified manner, the anodizing operation, which is an operation not involving high temperatures such as powder coating, consists in producing a thin layer of aluminum oxide (alumina) resistant to surface of a profile, which can act on its decorative appearance. It is carried out through controlled oxidation by chemical or electrolytic coloring. To do this, the parts to be anodized are immersed in several successive baths, which first ensure the preparation of the surface of the profile or the frame, then the production of alumina with, if desired, the deposition of a appearance and color and, finally, stabilization of the alumina layer by a so-called "sealing" operation consisting in hydrating the alumina layer in order to obtain good corrosion resistance.
[0007] La présence de mousse dans les cavités d’un profilé ou d’un châssis peut affecter l’opération d’anodisation principalement dû au phénomène de capillarité aux endroits de contact de la mousse avec les parois de la cavité. Vu que l’anodisation requiert le contact successif des surfaces à traiter avec des solutions différentes, la capillarité empêche l’écoulement complet et le rinçage correct des surfaces après chaque opération. Le traitement d’anodisation risque donc d’être incomplet aux endroits de contact avec la mousse, respectivement les produits de traitement incomplètement rincés risquent de détériorer la mousse et donc aussi de résulter en un effet d’isolation moindre, voire nul du profilé de mousse inséré. [0007] The presence of foam in the cavities of a profile or a frame can affect the anodizing operation mainly due to the phenomenon of capillarity at the places of contact of the foam with the walls of the cavity. Since anodization requires the successive contact of the surfaces to be treated with different solutions, the capillary action prevents complete flow and the correct rinsing of the surfaces after each operation. The anodization treatment therefore risks being incomplete at the places of contact with the foam, respectively the incompletely rinsed treatment products risk damaging the foam and therefore also resulting in a lesser or even no insulation effect on the foam profile. inserted.
Objet de l'invention Object of the invention
[0008] Un objet de la présente invention est par conséquent de proposer un profilé de mousse polymère de section transversale appropriée pour isoler une cavité de profilé en aluminium et de préférence une cavité de barrettage par réduction des pertes d’énergie par convection et/ou rayonnement, qui puisse être utilisé tant dans des profilés ou châssis susceptibles d’être anodisés, que ceux prévus pour le thermolaquage. [0008] An object of the present invention is therefore to provide a polymeric foam profile of suitable cross section for insulating an aluminum profile cavity and preferably a bar cavity by reducing energy losses by convection and / or radiation, which can be used both in profiles or frames likely to be anodized, as those intended for powder coating.
Description générale de l'invention General description of the invention
[0009] Afin de résoudre le problème mentionné ci-dessus, la présente invention propose, dans un premier aspect, un procédé d’isolation d’une cavité d’un profilé en aluminium ou d’une cavité de barrettage d’un châssis en aluminium d’ouvrant ou de dormant de porte ou fenêtre, le procédé comprenant les étapes suivantes : In order to solve the problem mentioned above, the present invention provides, in a first aspect, a method of isolating a cavity of an aluminum profile or of a bar cavity of a frame in aluminum door or window sash or frame, the process comprising the following steps:
(a) insertion, dans ladite cavité, d’un dispositif d’isolation comprenant un corps moussé d’une première composition polymère de section transversale polygonale muni sur au moins une surface, de préférence sur (chacune de) deux surfaces opposées d’une ou de plusieurs ailettes moussées ou non- moussées d’une deuxième composition polymère, dans lequel la distance entre ladite surface munie d’ailettes et la surface opposée à celle-ci, respectivement de préférence entre les deux surfaces opposées munies d’ailettes du corps moussé représente 80 à 97 % de la distance séparant les faces correspondantes de la cavité, dans lequel le corps moussé de la première composition polymère est à base d’un ou de plusieurs (co)polyesters, de préférence de type polyalkylène téréphtalate, tels que par exemple le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT), le polybutylène naphtalate (PEN), le polytriméthylène téréphtalate (PTT), etc., (a) inserting into said cavity an insulation device comprising a foamed body of a first polymeric composition of cross section polygonal provided on at least one surface, preferably on (each of) two opposing surfaces with one or more foamed or non-foamed fins of a second polymeric composition, wherein the distance between said finned surface and the surface opposed thereto, respectively preferably between the two opposed surfaces provided with fins of the foamed body represents 80 to 97% of the distance between the corresponding faces of the cavity, in which the foamed body of the first polymer composition is at base of one or more (co) polyesters, preferably of polyalkylene terephthalate type, such as for example polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene naphthalate (PEN), polytrimethylene terephthalate (PTT) , etc.,
et soit l’étape (b), soit l’étape (b’) suivantes : and either step (b) or step (b ’) following:
(b) chauffage du profilé en aluminium ou du châssis en aluminium à une température comprise entre 180 et 250 °C, pour provoquer un ramollissement ou une fusion de la deuxième composition polymère, une expansion du corps moussé et la compression des ailettes contre les parois correspondantes de la cavité par l’effet d’expansion du corps moussé, et refroidissement du profilé en aluminium ou du châssis en aluminium provoquant la solidification de la deuxième composition polymère fixant le dispositif d’isolation à la ou aux faces correspondantes de la cavité, (b) heating the aluminum profile or aluminum frame to a temperature between 180 and 250 ° C, to cause softening or melting of the second polymer composition, expansion of the foamed body and compression of the fins against the walls corresponding of the cavity by the expansion effect of the foamed body, and cooling of the aluminum profile or the aluminum frame causing the solidification of the second polymer composition fixing the insulation device to the corresponding face or faces of the cavity,
(b')anodisation comprenant l’immersion du profilé en aluminium ou du châssis en aluminium dans plusieurs bains successifs assurant la préparation de la surface du profilé ou du châssis, la production d'alumine sur lesdites surfaces, optionnellement avec le dépôt d'un aspect et/ou d'une couleur et la stabilisation de la couche d'alumine par une opération de colmatage. (b ') anodization comprising immersing the aluminum profile or the aluminum frame in several successive baths ensuring the preparation of the surface of the profile or the frame, the production of alumina on said surfaces, optionally with the deposition of a appearance and / or color and stabilization of the alumina layer by a sealing operation.
[0010] Dans une variante avantageuse, le procédé, comprenant les étapes (a) et (b), comprend en outre, avant ou après l’étape (a), une étape (x) de pulvérisation d’une poudre de peinture, par exemple polyester, de préférence par poudrage électrostatique, sur des faces extérieures du profilé en aluminium ou du châssis en aluminium, la poudre de peinture polyester fondant à l’étape (b) pour former un revêtement de protection (thermolaqué). Un procédé comprenant les étapes (a), (x) et (b) est donc un procédé de thermolaquage tel que décrit ci-dessus. [0010] In an advantageous variant, the process, comprising steps (a) and (b), further comprises, before or after step (a), a step (x) of spraying a paint powder, for example polyester, preferably by electrostatic powder coating, on the outer faces of the aluminum profile or the aluminum frame, the polyester paint powder melting in step (b) to form a protective coating (powder coated). A process comprising steps (a), (x) and (b) is therefore a powder coating process as described above.
[0011 ] Un autre aspect de l’invention concerne un dispositif d’isolation d’une cavité d’un profilé en aluminium ou d’une cavité de barrettage d’un châssis en aluminium d’ouvrant ou de dormant de porte ou fenêtre, comprenant un corps moussé d’une première composition polymère de section transversale polygonale muni sur au moins une surface, de préférence sur (chacune de) deux surfaces opposées d’une ou de plusieurs ailettes moussées ou non-moussées d’une deuxième composition polymère, dans lequel le corps moussé de la première composition polymère comprend une mousse à base de polyesters, de préférence de type polyalkylène téréphtalate, tels que par exemple le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT), le polybutylène naphtalate (PEN), le polytriméthylène téréphtalate (PTT), etc. Another aspect of the invention relates to a device for isolating a cavity of an aluminum profile or of a barrettage cavity of an aluminum frame of an opening or a door or window frame, comprising a foamed body of a first polymeric composition of polygonal cross section provided on at least one surface, preferably on (each of) two opposing surfaces with one or more foamed or non-foamed fins of a second polymeric composition, wherein the foamed body of the first polymer composition comprises a foam based on polyesters, preferably of the polyalkylene terephthalate type, such as, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polybutylene naphthalate (PEN), polytrimethylene terephthalate (PTT), etc.
[0012] Comme mentionné ci-dessus, le problème de l’isolation d’une cavité, en particulier dans le cas d’une cavité de barrettage, est double : d’une part la mousse à l’intérieur de la cavité doit couvrir la distance entière entre les barrettes pour pouvoir garantir l’absence de convection et/ou de rayonnement entre les deux faces internes des deux profilés extérieur et intérieur, et, dans le cas d’un thermolaquage, elle doit rester intacte même après une procédure de chauffe sans que les barrettes ramollies par la chaleur de thermolaquage ne se déforment, et dans le cas d’une anodisation, elle doit permettre d’éviter la rétention de liquides des bains successifs par capillarité, c’est-à-dire qu’elle doit permettre l’écoulement et le rinçage correct des surfaces du profilé ou châssis. As mentioned above, the problem of the insulation of a cavity, in particular in the case of a barrettage cavity, is twofold: on the one hand the foam inside the cavity must cover the entire distance between the bars to be able to guarantee the absence of convection and / or radiation between the two internal faces of the two outer and inner profiles, and, in the case of a powder coating, it must remain intact even after a heats without the bars softened by the powder coating heat becoming deformed, and in the case of anodization, it must prevent the retention of liquids from successive baths by capillarity, that is to say, it must allow the correct drainage and rinsing of the surfaces of the profile or frame.
[0013] Or, dans le cas d’un chauffage (étapes (a) et (b)), notamment dans le cas d’un thermolaquage (étapes (a), (x) et (b)) comme indiqué plus haut, une mousse contenue dans une cavité risque de se détériorer, voire de collapser partiellement. En fait, il a été observé que la mousse comprise dans la cavité va s’expanser davantage lorsqu’elle est soumise à des températures plus élevées que celles de son moussage initial, ce phénomène est appelé expansion thermique ci-dessous. Si la mousse est chauffé à des températures trop élevées, les parois cellulaires vont se rompre et la mousse peut collapser. Par conséquent, la première composition polymère comprend des (co)polyesters présentant une bonne rigidité même aux températures élevées d’un thermolaquage. Cependant, les inventeurs ont constaté qu’en procédant de cette manière, les forces exercées par la mousse soumise à l’expansion thermique est susceptible de déformer les barrettes. Actuellement, la tendance est d’améliorer les performances d’isolation des barrettes en les rendant moins denses (par moussage par exemple) et/ou plus fines, ce qui augmente encore le risque de déformation lors du thermolaquage. Now, in the case of heating (steps (a) and (b)), in particular in the case of powder coating (steps (a), (x) and (b)) as indicated above, a foam contained in a cavity risks deteriorating, or even partially collapsing. In fact, it has been observed that the foam included in the cavity will expand more when subjected to higher temperatures than those of its initial foaming, this phenomenon is called thermal expansion below. If the foam is heated to too high temperatures, the cell walls will rupture and the foam may collapse. Therefore, the first polymer composition comprises (co) polyesters exhibiting good rigidity even at the high temperatures of powder coating. However, the inventors have found that by proceeding in this manner, the forces exerted by the foam subjected to thermal expansion is liable to deform the bars. Currently, the trend is to improve the insulation performance of the strips by making them less dense (by foaming for example) and / or thinner, which further increases the risk of deformation during powder coating.
[0014] De plus, les inventeurs ont constaté que la mousse peut se recontracter (du moins partiellement) pendant le refroidissement à température ambiante après le chauffage ou thermolaquage et ainsi de nouveau libérer une partie de la distance entre les barrettes et donc diminuer les performances d’isolation du châssis. [0014] In addition, the inventors have observed that the foam can recontact (at least partially) during cooling to room temperature after heating or powder coating and thus again release part of the distance between the strips and therefore reduce performance insulation of the chassis.
[0015] Les inventeurs ont alors conçu les dispositifs d’isolation selon l’invention en réduisant légèrement la taille initiale du corps de mousse par rapport à la distance entre deux barrettes et en prévoyant au moins sur un côté des ailettes qui à la température de chauffage ou thermolaquage vont se ramollir ou fondre, vont être écrasées par la mousse en expansion thermique, surtout, vont se solidifier plus tard (à une température plus basse) que la mousse du corps et vont ainsi non seulement combler tout espace de recontraction, voire le cas échéant coller le corps de mousse aux barrettes. Un tel collage, dépendant du choix de la nature de la deuxième composition polymère, est d’ailleurs particulièrement avantageux, parce qu’il permet d’augmenter non seulement les performances d’isolation, mais également la rigidité mécanique de l’ensemble. Les inventeurs ont déterminés que dans certaines variantes, pour que le dispositif d’isolation soit particulièrement adapté dans un procédé d’isolation comprenant les étapes (a) et (b) ou les étapes (a), (x) et (b), il est préférable de choisir la deuxième composition polymère de préférence parmi les compositions polymères capables de se ramollir ou de fondre à une température inférieure à une température comprise entre 180 et 250 °C. Cependant, ils ont également constaté qu’un dispositif d’isolation peut également être utile dans un procédé d’isolation comprenant les étapes (a) et (b) ou les étapes (a), (x) et (b), même si la température de ramollissement ou de fusion de la deuxième composition n’est que peu inférieure, voire identique à celle de la première composition, c'est-à- dire du corps moussé. En effet, lors du chauffage du profilé ou du châssis en aluminium, les ailettes étant situées plus proche des surfaces du profilé, elles ont tendance à se réchauffer plus rapidement que le corps moussé. Il est à noter que dans ces cas, l’étape de chauffage doit cependant être contrôlée plus précisément tant en termes de température, qu’en termes de temps de chauffage. The inventors then designed the insulation devices according to the invention by slightly reducing the initial size of the foam body relative to the distance between two bars and by providing at least one side of the fins which at the temperature of heating or powder coating will soften or melt, will be crushed by the thermally expanding foam, above all, will solidify later (at a lower temperature) than the foam in the body and will thus not only fill any recontraction space, even if necessary glue the foam body to the bars. Such bonding, depending on the choice of the nature of the second polymer composition, is moreover particularly advantageous, because it makes it possible to increase not only the insulation performance, but also the mechanical rigidity of the assembly. The inventors have determined that in certain variants, for the isolation device to be particularly suitable in an isolation process comprising steps (a) and (b) or steps (a), (x) and (b), it is preferable to choose the second polymer composition preferably from polymer compositions capable of softening or of melting at a temperature below a temperature between 180 and 250 ° C. However, they also found that an isolation device can also be useful in an isolation process comprising steps (a) and (b) or steps (a), (x) and (b), even though the softening or melting temperature of the second composition is only slightly lower, or even identical, to that of the first composition, that is to say of the foamed body. Indeed, when heating the aluminum profile or frame, the fins being located closer to the surfaces of the profile, they tend to heat up more quickly than the foamed body. It is to highlight that in these cases, however, the heating step must be controlled more precisely both in terms of temperature and in terms of heating time.
[0016] Partant de ces constatations, les inventeurs ont déterminé qu’il serait en outre éventuellement intéressant de prévoir une mousse qui, au-delà d’une certaine température serait soumise non seulement à l’expansion thermique, mais de plus à un nouveau moussage supplémentaire, plus important encore que l’expansion thermique, de manière à remplir au maximum ladite cavité, c’est-à-dire au moyen d’un post-moussage. Il est donc optionnellement prévu une certaine quantité de d’agents de moussage chimiques qui ne se décomposent pas aux températures de l’extrusion initiale de la mousse, mais qui se décomposeraient sous l’effet des températures de l’étape (b) de chauffage et/ou une certaine quantité de d’agents de moussage physiques liquides à température ambiante, tel que décrit plus en détail ci- dessous, rendant ainsi possible une isolation encore meilleure. On the basis of these findings, the inventors have determined that it would also possibly be advantageous to provide a foam which, beyond a certain temperature would be subjected not only to thermal expansion, but also to a new additional foaming, even more important than thermal expansion, so as to fill said cavity as much as possible, that is to say by means of post-foaming. There is therefore optionally provided a certain amount of chemical foaming agents which do not decompose at the temperatures of the initial extrusion of the foam, but which would decompose under the effect of the temperatures of heating step (b). and / or a quantity of physical foaming agents liquid at room temperature, as described in more detail below, thereby making even better insulation possible.
[0017] Dans le cas d’une anodisation, les ailettes prévues selon l’invention jouent le rôle d’éléments espaceurs qui permettent de maintenir la ou les surfaces du corps de mousse à une certaine distance des surfaces correspondantes du profilé ou châssis, de préférence à une distance de 4 à 8 mm, de préférence de 5 à 6 mm, de manière à assurer l’écoulement normal (sans effet de capillarité) des liquides des bains de traitement. In the case of anodization, the fins provided according to the invention play the role of spacer elements which make it possible to maintain the surface or surfaces of the foam body at a certain distance from the corresponding surfaces of the profile or frame, of preferably at a distance of 4 to 8 mm, preferably 5 to 6 mm, so as to ensure the normal flow (without capillary effect) of the liquids from the treatment baths.
[0018] Les inventeurs ont en outre déterminé qu’il n’est pas indispensable pour éviter les déperditions par convection et/ou rayonnement que les côtés opposés d’un dispositif d’isolation selon l’invention couvrent la totalité de la distance entre les surfaces correspondantes du profilé ou du châssis (c’est-à-dire que le dispositif d’isolation doit être en contact sur deux côtés opposés avec le profilé ou châssis), mais qu’un écart jusqu’à environ 2 à 3 mm, de préférence jusqu’à environ 1 à 2 mm, ne diminue pas de manière significative les performances d’isolation. En effet, il a été constaté une fente de si faible largeur ne permet pas une convection notable à travers la fente (et donc une déperdition de chaleur significative). Ceci est également vrai pour les déperditions par rayonnement qui sont extrêmement faibles et donc négligeables dans ces conditions. The inventors have further determined that it is not essential to avoid losses by convection and / or radiation that the opposite sides of an insulation device according to the invention cover the entire distance between the corresponding surfaces of the profile or frame (i.e. the insulation device must be in contact on two opposite sides with the profile or frame), but a gap of up to approx. 2 to 3 mm, preferably up to about 1 to 2 mm, does not significantly decrease the insulation performance. Indeed, it has been observed that a slit of such a small width does not allow significant convection through the slit (and therefore a significant loss of heat). This is also true for the radiation losses which are extremely low and therefore negligible under these conditions.
[0019] Par conséquent, les dimensions d’un dispositif d’isolation selon l’invention peuvent être choisies de manière à être jusqu’à 3 mm, de préférence jusqu’à 1 à 2 mm en dessous de celles de la cavité sans diminuer les performances d’isolation, même dans le cas d’un procédé d’anodisation sans étape d’expansion supplémentaire de la mousse. Un avantage particulier en est que le dispositif d’isolation est d’autant plus facile à insérer dans ladite cavité. [0019] Therefore, the dimensions of an insulation device according to the invention can be chosen so as to be up to 3 mm, preferably up to 1 to 2 mm below those of the cavity without reducing the insulation performance, even in the case of an anodizing process without an additional expansion step of the foam. A particular advantage is that the isolation device is all the easier to insert into said cavity.
[0020] Les ailettes peuvent être de section transversale généralement quelconque, de préférence de forme polygonale et de manière particulièrement préférée de section grossièrement triangulaire ou trapézoïdale. Le nombre d’ailettes par côté du corps de mousse sera choisi de manière appropriée, notamment selon les dimensions de la cavité à isoler, et se situera souvent entre 1 et 10, de manière préférée entre 2 et 5. The fins can be of generally any cross section, preferably of polygonal shape and particularly preferably of roughly triangular or trapezoidal section. The number of fins per side of the foam body will be chosen appropriately, in particular according to the dimensions of the cavity to be insulated, and will often be between 1 and 10, preferably between 2 and 5.
[0021 ] L’insertion du dispositif d’isolation à l’étape (a) peut se faire de toute manière appropriée. Dans une variante, le dispositif d’isolation est inséré dans la cavité de barrettage après que les profilés ont été assemblés en châssis en l’introduisant par une extrémité du châssis. Dans une autre variante avantageuse, le dispositif d’isolation est inséré avec une des barrettes au moment de l’assemblage. Dans un tel cas, il est particulièrement avantageux de fixer le dispositif d’isolation par un de ses côtés à une des barrettes, puis d’insérer la barrette munie du dispositif d’isolation dans les rainures des profilés. La fixation du dispositif d’isolation sur la barrette se fait par exemple par collage, soudage, coextrusion, etc. Dans ce cas, les ailettes se trouvent au moins sur le côté opposé au côté fixé à la barrette et éventuellement sur d’autres côtés, mais pas sur le côté fixé à la barrette. Dans ce contexte, il est à noter que le côté fixé à la barrette empêche efficacement l’effet de capillarité en cas d’anodisation. The insertion of the isolation device in step (a) can be done in any suitable manner. Alternatively, the isolation device is inserted into the bar cavity after the profiles have been assembled into a frame by inserting it through one end of the frame. In another advantageous variant, the isolation device is inserted with one of the bars at the time of assembly. In such a case, it is particularly advantageous to fix the insulation device by one of its sides to one of the bars, then insert the bar provided with the insulation device in the grooves of the profiles. The fixing of the insulation device on the bar is done for example by gluing, welding, coextrusion, etc. In this case, the fins are located at least on the side opposite to the side attached to the bar and possibly on other sides, but not on the side attached to the bar. In this context, it should be noted that the side attached to the bar effectively prevents the capillary effect in the event of anodization.
[0022] De manière particulièrement avantageuse, le procédé d’isolation selon l’invention est utilisé pour l’isolation d’une cavité de barrettage d’un châssis en aluminium. Dans ces variantes, les ailettes ou du moins une partie de celles-ci sont situées face à une barrette, soit en contact direct, soit à une distance très faible de moins de 3 mm, voire moins de 2 mm. [0022] Particularly advantageously, the insulation method according to the invention is used for the insulation of a bar cavity of an aluminum frame. In these variants, the fins or at least part of them are located facing a bar, either in direct contact or at a very small distance of less than 3 mm, or even less than 2 mm.
[0023] La première composition polymère, c’est-à-dire celle formant le corps moussé du dispositif d’isolation, est de préférence une composition comprenant des (co)polyesters, en particulier le PET, le PBT, le PTT, le PEN, ... , ou leurs mélanges, en tant que seuls polymères ou éventuellement en combinaison avec d’autre (co)polymères, tels que les polymères modificateurs d’impact connus pour les (co)polyesters, les copolymères d’éthylène, tels que les copolymères éthylène- acétate de vinyle (EVA), les copolymères éthylène-acrylate de méthyle (EMA), les copolymères éthylène-acrylate d’éthyle (EEA), les copolymères éthylène-acrylate de butyle (EBA), les copolymères d’éthylène modifiés par des groupements tels que par exemple l’anhydride maléique ou le méthacrylate de glycidyle, etc.,, les thermoplastiques élastomères (TPE), tels que les thermoplastiques élastomères polyesters (TPC), les thermoplastiques élastomères oléfiniques non vulcanisés (TPO) ou vulcanisés (TPV), les thermoplastiques élastomères uréthane (TPU), les thermoplastiques élastomères styréniques (TPS), les thermoplastiques élastomères polyamides (TPA), ... Les densités du corps moussé sont généralement situées entre 30 et 400 kg/m3, de préférence entre 60 et 250 kg/m3, de préférence entre 80 kg/m3 et 100 kg/m3. The first polymer composition, that is to say that forming the foamed body of the insulation device, is preferably a composition comprising (co) polyesters, in particular PET, PBT, PTT, PEN, ..., or mixtures thereof, as the sole polymers or optionally in combination with other (co) polymers, such as impact modifying polymers known for (co) polyesters, ethylene copolymers, such as ethylene-vinyl acetate (EVA) copolymers, ethylene-methyl acrylate (EMA) copolymers , ethylene-ethyl acrylate (EEA) copolymers, ethylene-butyl acrylate (EBA) copolymers, ethylene copolymers modified with groups such as, for example, maleic anhydride or glycidyl methacrylate, etc., , elastomeric thermoplastics (TPE), such as polyester elastomer thermoplastics (TPC), unvulcanized (TPO) or vulcanized (TPV) olefinic elastomer thermoplastics, urethane elastomer thermoplastics (TPU), styrene elastomer thermoplastics (TPS), thermoplastic polyamide elastomers (TPA), ... The densities of the foamed body are generally between 30 and 400 kg / m 3 , preferably between 60 and 250 kg / m 3 , preferably between 80 kg / m 3 and 100 kg / m 3 .
[0024] La deuxième composition polymère, c’est-à-dire celle formant les ailettes du dispositif d’isolation, comprend un ou plusieurs polymères choisis parmi le polyéthylène réticulé, les copolymères d’éthylène modifiée ou non par des groupements tels que par exemple l’anhydride maléique, les thermoplastiques élastomères (TPE, tels que TPS, TPU, TPC, TPV, TPO), les (co)polyesters (PET, PBT, PTT, PEN, ... ) et est éventuellement moussé. Les densités des ailettes seront généralement supérieures à 25 kg/m3, de préférence entre 100 kg/m3 et la densité non-moussée de la deuxième composition polymère. The second polymer composition, that is to say that forming the fins of the insulation device, comprises one or more polymers chosen from crosslinked polyethylene, copolymers of ethylene modified or not by groups such as by example maleic anhydride, thermoplastic elastomers (TPE, such as TPS, TPU, TPC, TPV, TPO), (co) polyesters (PET, PBT, PTT, PEN, etc.) and is optionally foamed. The densities of the fins will generally be greater than 25 kg / m 3 , preferably between 100 kg / m 3 and the non-foamed density of the second polymer composition.
[0025] Dans une variante avantageuse pour un procédé de chauffage (étapes (a) et (b)) ou de thermolaquage (étapes (a), (x) et (b)), la première composition polymère (c’est-à-dire le corps moussé) et/ou la deuxième composition polymère (c’est-à-dire les ailettes), donc introduite avant le moussage initial du corps moussé et/ou le cas échéant des ailettes, compren(d/nent), comme agent(s) de moussage supplémentaires aux autres agents de moussage physiques et/ou chimiques utilisés pour le moussage initial de ces compositions, une quantité entre 0,001 et 5 % en poids, de préférence entre 0,01 et 3 % en poids, notamment de 0,1 à 2 % en poids d'au moins un agent chimique de moussage choisi parmi les agents chimiques se décomposant à des températures supérieures à celles utilisées pour le moussage initial du corps moussé, de préférence les agents chimiques utilisables se décomposant à des températures supérieures à 180 °C et sont choisis avantageusement parmi les dérivés d’hydrazine, tels que l’azodicarbonamide, les tétrazoles, tels que le 5-phényltétrazole, les mélanges de sels de carbonate et d’acides, tels que les mélanges de bicarbonate de soude et d’acide citrique. Le post moussage dit chimique dans le cas d’agents de moussage chimiques se fait par le volume supplémentaire de gaz généré par la décomposition de l’agent de moussage chimique, le gaz initialement contenu dans les cellules et le gaz généré lors du chauffage à plus haute température étant de plus simultanément soumis à l’expansion thermique. In an advantageous variant for a heating process (steps (a) and (b)) or powder coating (steps (a), (x) and (b)), the first polymer composition (that is to say - say the foamed body) and / or the second polymer composition (that is to say the fins), therefore introduced before the initial foaming of the foamed body and / or where appropriate of the fins, comprising (d / nent), as foaming agent (s) additional to the other physical and / or chemical foaming agents used for the initial foaming of these compositions, an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular from 0.1 to 2% by weight of at least one chemical foaming agent chosen from chemical agents which decompose at temperatures higher than those used for the initial foaming of the foamed body, preferably the chemical agents which can be used which decompose at high temperatures temperatures above 180 ° C and are chosen advantageously from hydrazine derivatives, such as azodicarbonamide, tetrazoles, such as 5-phenyltetrazole, mixtures of carbonate salts and acids, such as mixtures of sodium bicarbonate and citric acid. The so-called chemical post-foaming in the case of chemical foaming agents is done by the additional volume of gas generated by the decomposition of the chemical foaming agent, the gas initially contained in the cells and the gas generated during heating to more high temperature being moreover simultaneously subjected to thermal expansion.
[0026] En variante ou en outre, la première composition polymère et/ou la deuxième composition polymère, donc introduite avant le moussage initial du corps moussé et/ou le cas échéant des ailettes, peu(t/vent) comprendre, comme seul agent de moussage ou en plus d’autres agents de moussage physiques et/ou chimiques couramment utilisés pour le moussage de tels compositions, une quantité entre 0,001 et 5 % en poids, de préférence entre 0,01 et 3 % en poids, notamment de 0,1 à 2 % en poids d'au moins un agent physique de moussage liquide à température ambiante (et à pression atmosphérique), de préférence choisi parmi les alcanes ayant un point d’ébullition supérieur à 25 °C, notamment le n-pentane, l’isopentane ou le cyclopentane, les hexanes (tous les isomères), les heptanes, etc., ou encore parmi l’éthanol, le diméthyléther, etc., ou leurs mélanges. La présence de ces agents de moussages dans la première et/ou deuxième composition polymère va provoquer un post-moussage à l’intérieur de la cavité lors du chauffage ou thermolaquage. En effet, le phénomène responsable du post-moussage dit physique dans le cas des agents de moussage physiques liquides aux températures ambiantes résulte non seulement de la liquéfaction puis la ré-évaporation de l’agent de moussage physique initial, mais résulte d’une combinaison avec le phénomène d’échange gazeux à travers les parois cellulaires. Ce phénomène est bien connu dans le domaine et est la raison pour laquelle, le gaz initialement responsable du moussage va généralement être échangé progressivement par l’air atmosphérique. Le post-moussage dit physique décrit ici met à bénéfice la perméabilité à l’air et la liquéfaction des agents normalement liquides à température ambiante qui entraîne que l’entrée d’air dans les cellules est augmentée par la réduction du volume de l’agent de moussage en train de se liquéfier en refroidissant. Après un certain temps, les cellules contiennent donc non seulement la quantité d’agent de moussage initial (dont le volume est réduit par son changement d’état), mais également une quantité importante d’air. Si une telle mousse est ensuite chauffée, son volume augmentera en conséquence davantage, lorsque l’agent de moussage liquide s’évapore de nouveau. As a variant or in addition, the first polymer composition and / or the second polymer composition, therefore introduced before the initial foaming of the foamed body and / or where appropriate of the fins, can (t / vent) understand, as the only agent foaming agent or in addition to other physical and / or chemical foaming agents commonly used for foaming such compositions, an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular 0 , 1 to 2% by weight of at least one physical foaming agent that is liquid at room temperature (and at atmospheric pressure), preferably chosen from alkanes having a boiling point greater than 25 ° C, in particular n-pentane , isopentane or cyclopentane, hexanes (all isomers), heptanes, etc., or else from ethanol, dimethyl ether, etc., or mixtures thereof. The presence of these foaming agents in the first and / or second polymer composition will cause post-foaming inside the cavity during heating or powder coating. Indeed, the phenomenon responsible for the so-called physical post-foaming in the case of liquid physical foaming agents at ambient temperatures results not only from the liquefaction and then the re-evaporation of the initial physical foaming agent, but results from a combination with the phenomenon of gas exchange through cell walls. This phenomenon is well known in the field and is the reason why the gas initially responsible for foaming will generally be gradually exchanged by atmospheric air. The so-called physical post-foaming described here benefits the air permeability and the liquefaction of normally liquid agents at room temperature which results in the entry of air into the cells being increased by reducing the volume of the agent. foaming liquefying on cooling. After a while, the cells therefore not only contain the amount of foaming agent initial (whose volume is reduced by its change of state), but also a large quantity of air. If such a foam is subsequently heated, its volume will consequently increase further, when the liquid foaming agent evaporates again.
[0027] Il est à noter que la présence d’un tel agent de moussage chimique et/ou physique, bien que non nécessaire dans le cas d’un procédé comprenant l’anodisation (étapes (a) et (b’)), n’influence pas négativement les performances du dispositif d’isolation. Dans certaines variantes du procédé selon l’invention comprenant les étapes (a) et (b’), il est d’ailleurs envisagé de réaliser également l’étape (b). It should be noted that the presence of such a chemical and / or physical foaming agent, although not necessary in the case of a process comprising anodization (steps (a) and (b ')), does not negatively influence the performance of the isolation device. In certain variants of the process according to the invention comprising steps (a) and (b ’), it is moreover envisaged to also perform step (b).
[0028] Les agents de moussage utilisables pour le moussage initial de la première et/ou deuxième compositions polymères peuvent être des agents de moussage physiques ou chimiques ou une combinaison de ces deux types. Les agents de moussage physiques, tels que notamment l'azote moléculaire, le dioxyde de carbone, les alcanes linéaires ou branchés en Ci à C4, se trouvent sous forme de gaz dans les conditions de température et de pression normales. Ces gaz ou liquides sont solubles dans les compositions polymères fondues à haute température et sous haute pression et forment une seule phase dans les conditions adéquates de pression et de température. En dépressurisant le système monophasique, la nucléation et la croissance des bulles de gaz devenues insolubles génèrent une structure cellulaire. Le ou les agents de moussage sont choisis de préférence parmi le propane, l’isobutane, le n-butane et/ou le dioxyde de carbone. Les agents de moussage chimiques se décomposent sous l’effet d’une élévation de température. Ils peuvent être classés en deux familles : les agents de moussage chimiques exothermiques, comme l'azodicarbonamide, l’OxydiBenzeneSulfonyl Hydrazide, etc. qui se décomposent en produisant de la chaleur. Par exemple, l’azodicarbonamide se décompose vers 210°C (voir ci-dessus si sa décomposition n’est pas souhaitée lors du moussage initial), mais en présence d'un accélérateur de décomposition approprié, tel que l'oxyde de zinc et/ou le stéarate de zinc, la température de décomposition peut être abaissée d’environ 60°C. Les agents de moussage chimiques endothermiques se décomposent en absorbant de la chaleur. Par exemple, l’acide citrique, le bicarbonate de soude et leurs mélanges se décomposent entre 150 et 230°C et produisent généralement moins de volume gazeux par gramme d’agents de moussage chimiques que les agents de moussage chimiques exothermiques. The foaming agents which can be used for the initial foaming of the first and / or second polymeric compositions can be physical or chemical foaming agents or a combination of these two types. The physical foaming agents, such as in particular molecular nitrogen, carbon dioxide, linear or branched C 1 to C 4 alkanes, are present in the form of gas under normal temperature and pressure conditions. These gases or liquids are soluble in the polymer compositions melted at high temperature and under high pressure and form a single phase under the appropriate conditions of pressure and temperature. By depressurizing the monophasic system, the nucleation and growth of gas bubbles that have become insoluble generate a cellular structure. The foaming agent (s) are preferably chosen from propane, isobutane, n-butane and / or carbon dioxide. Chemical foaming agents decompose when the temperature rises. They can be classified into two families: exothermic chemical foaming agents, such as azodicarbonamide, OxydiBenzeneSulfonyl Hydrazide, etc. which decompose by producing heat. For example, azodicarbonamide decomposes at around 210 ° C (see above if its decomposition is not desired during the initial foaming), but in the presence of a suitable decomposition accelerator, such as zinc oxide and / or zinc stearate, the decomposition temperature can be lowered by about 60 ° C. Endothermic chemical foaming agents break down on absorbing heat. For example, citric acid, baking soda and their mixtures decompose between 150 and 230 ° C and generally produce less gas volume per gram of chemical foaming agents than exothermic chemical foaming agents.
[0029] L’invention concerne également les profilés en aluminium ou châssis en aluminium comprenant au moins une cavité munie d’un dispositif d’isolation tel que décrit ici. De préférence, les profilés en aluminium ou châssis en aluminium ont été soumis à un thermolaquage ou à une anodisation après l’insertion du dispositif d’isolation dans au moins une des cavités du profilé ou châssis. Avantageusement, la cavité munie d’un dispositif d’isolation selon l’invention est une cavité de barrettage d’un châssis. [0029] The invention also relates to aluminum profiles or aluminum frames comprising at least one cavity provided with an insulation device as described here. Preferably, the aluminum profiles or aluminum frames have been subjected to powder coating or anodization after the insertion of the insulation device in at least one of the cavities of the profile or frame. Advantageously, the cavity provided with an insulation device according to the invention is a barrettage cavity of a frame.
[0030] L’invention envisage dans encore un autre aspect l’utilisation d’un dispositif d’isolation selon l’invention pour l’isolation de cavités dans des profilés en aluminium ou dans des cavités de barrettage d’un châssis en aluminium pour améliorer leurs performances d’isolation. The invention contemplates in yet another aspect the use of an insulation device according to the invention for the insulation of cavities in aluminum profiles or in bar cavities of an aluminum frame for improve their insulation performance.
[0031 ] Une cavité de barrettage est la cavité formée lorsqu’on attache deux profilés (généralement un destiné à se situer à l’extérieur et un destiné à se situer à l’intérieur d’un bâtiment) au moyen de barrettes afin d’éviter un pont thermique entre les deux profilés. Une cavité de barrettage est donc généralement de section polygonale, souvent grossièrement rectangulaire, délimitée d’une part par deux barrettes et d’autre part par les faces internes (se faisant face) des deux profilés. A barrettage cavity is the cavity formed when two profiles are attached (generally one intended to be located outside and one intended to be located inside a building) by means of bars in order to avoid a thermal bridge between the two profiles. A barrettage cavity is therefore generally of polygonal section, often roughly rectangular, delimited on the one hand by two bars and on the other hand by the internal faces (facing each other) of the two profiles.
[0032] Les barrettes utilisables pour le barrettage de deux profilés pour former un châssis sont celles généralement utilisées dans le domaine, de préférence elles sont en polyamide, notamment en polyamide 6.6, en mélange composé de poly(oxyde de phénylène) et de polystyrène (PS/PPO), par exemple Noryl, dense ou moussé, éventuellement renforcé de fibres de verre, et elles présentent une section centrale généralement essentiellement linéaire comprenant à chaque extrémité une section partielle permettant la fixation mécanique avec une section correspondante prévue sur les profilés, par exemple une section dite en queue-d’aronde ou similaire. Il est à noter que les barrettes peuvent présenter une section transversale plus complexe, mais elles comprennent néanmoins toujours au moins deux régions de fixation mécanique de réunion de (au moins) deux profilés. Brève description des dessins The bars that can be used for the barrettage of two sections to form a frame are those generally used in the field, preferably they are made of polyamide, in particular of polyamide 6.6, as a mixture composed of poly (phenylene oxide) and polystyrene ( PS / PPO), for example Noryl, dense or foamed, possibly reinforced with glass fibers, and they have a generally essentially linear central section comprising at each end a partial section allowing mechanical fixing with a corresponding section provided on the profiles, for example example a so-called dovetail or similar section. It should be noted that the bars may have a more complex cross section, but they nevertheless always comprise at least two regions for mechanical attachment of (at least) two sections. Brief description of the drawings
[0033] D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée de quelques modes de réalisation avantageux présentés ci- dessous, à titre d'illustration, en se référant aux dessins annexés. Ceux-ci montrent:[0033] Other features and characteristics of the invention will emerge from the detailed description of some advantageous embodiments presented below, by way of illustration, with reference to the accompanying drawings. These show:
Fig. 1 : est une coupe transversale à travers un mode de réalisation d’un dispositif d’isolation selon l’invention; Fig. 1: is a cross section through one embodiment of an insulation device according to the invention;
Fig. 2: est une coupe transversale à travers un mode de réalisation de châssis de porte ou de fenêtre, dans lequel une variante d’un dispositif d’isolation selon la Fig. 1 a été inséré dans une cavité de barrettage, avant la procédure de chauffage (b) ou la procédure d’anodisation (b’); et Fig. 2: is a cross section through an embodiment of a door or window frame, in which a variant of an insulation device according to Fig. 1 was inserted into a barrette cavity, before the heating procedure (b) or the anodization procedure (b ’); and
Fig. 3: est une coupe transversale à travers le mode de réalisation de châssis de porte ou de fenêtre de la Fig. 2, dans lequel est montré la variante d’un dispositif d’isolation dans la cavité de barrettage après avoir été soumis à un chauffage (étape (b)), par exemple lors d’un thermolaquage. Fig. 3: is a cross section through the door or window frame embodiment of FIG. 2, in which is shown the variant of an insulation device in the barrettage cavity after having been subjected to heating (step (b)), for example during powder coating.
Description d'une exécution préférée Description of a preferred execution
[0034] La Fig. 1 montre une variante d’un dispositif d’isolation 40 selon l’invention qui comprend un corps moussé 41 et des ailettes 42 disposées sur au moins un côté (ici deux côtés opposés) du corps moussé 41. Le corps moussé 41 a de préférence la forme de la section transversale de la cavité que l’on souhaite isoler, mais ses dimensions sont plus faibles (au moins dans la direction joignant les barrettes), par exemple 80 à 97 % de la distance séparant les côtés opposés correspondants de la cavité. Les ailettes 42 peuvent être non-moussée (compactes) ou moussées. [0034] FIG. 1 shows a variant of an insulation device 40 according to the invention which comprises a foamed body 41 and fins 42 arranged on at least one side (here two opposite sides) of the foamed body 41. The foamed body 41 preferably has the shape of the cross section of the cavity to be isolated, but its dimensions are smaller (at least in the direction joining the bars), for example 80 to 97% of the distance between the corresponding opposite sides of the cavity . The fins 42 can be non-foamed (compact) or foamed.
[0035] La Fig. 2 montre le dispositif d’isolation 40 montré à la Fig. 1 après son insertion dans une cavité (11 , 21 , 31 ), ici la cavité de barrettage 31 d’un châssis formé par le profilé intérieur 10, le profilé extérieur 20 et le barrettage formé par les barrettes 30. Le dispositif d’isolation 40 n’a pas encore subi de traitement de post moussage par chauffage à des températures plus élevées que lors de son extrusion de manière à décomposer l’agent chimique de post-moussage. Dans le cas d’un procédé d’isolation comprenant l’anodisation (étapes (a) et (b’), le dispositif d’isolation restera essentiellement inchangé (contrairement au cas d’un chauffage comme à l’étape (b)) et on peut voir à la Fig. 1 que la configuration du dispositif d’isolation permet d’éviter les phénomènes de capillarité et permet donc un écoulement facile des liquides de bains de traitement. Cette figure illustre également d’une certaine manière le cas du dispositif d’isolation ayant subi un chauffage (étape (b)) en l’absence d’agent de moussage chimique après refroidissement et recontraction du corps moussé, sauf que dans ce cas particulier les ailettes auraient perdues leur forme initiale à cause de la compression par l’expansion du corps moussé due au chauffage et de leur étirement dû à la recontraction du corps moussé lors du refroidissement. [0035] FIG. 2 shows the isolation device 40 shown in FIG. 1 after its insertion into a cavity (11, 21, 31), here the bar cavity 31 of a frame formed by the inner profile 10, the outer profile 20 and the bar formed by the bars 30. The isolation device 40 has not yet undergone post-foaming treatment by heating to higher temperatures than during its extrusion so as to decompose the chemical post-foaming agent. In the case of an insulation process comprising anodization (steps (a) and (b '), the insulation device will remain essentially unchanged (unlike in the case of heating as in step (b)) and it can be seen in Fig. 1 that the configuration of the device insulation makes it possible to avoid capillarity phenomena and therefore allows easy flow of the treatment bath liquids. This figure also illustrates in a certain way the case of the insulation device having undergone heating (step (b)) in the absence of chemical foaming agent after cooling and recontraction of the foamed body, except that in this particular case the fins would have lost their original shape due to the compression by the expansion of the foamed body due to heating and their stretching due to the recontraction of the foamed body on cooling.
[0036] Finalement, la Fig. 3 montre le dispositif d’isolation 40 de la Fig. 2 après la procédure de chauffage (étape (b)), par exemple après thermolaquage, dans le cas particulier où le corps moussé 41 comprenait une certaine quantité d’agent de moussage chimique non encore décomposé avant le chauffage et/ou un agent de moussage physique liquide à température ambiante, tel que décrit plus en détail ci- dessus, le corps moussé ayant augmenté de volume par post-moussage (et aussi par expansion physique du gaz contenu dans les cellules de la mousse) et ayant écrasé les ailettes 42 ramollies ou fondues, puis resolidifiées après refroidissement à température ambiante. Les ailettes 42 fondues et resolidifiées collent tant aux barrettes 30 qu’au corps moussé 41 formant ainsi un dispositif d’isolation efficace contre la convection et/ou le rayonnement entre les deux profilés extérieur 20 et intérieur 10 du châssis. [0036] Finally, FIG. 3 shows the isolation device 40 of FIG. 2 after the heating procedure (step (b)), for example after powder coating, in the particular case where the foamed body 41 included a certain quantity of chemical foaming agent not yet decomposed before heating and / or a foaming agent physical liquid at room temperature, as described in more detail above, the foamed body having increased in volume by post-foaming (and also by physical expansion of the gas contained in the cells of the foam) and having crushed the softened fins 42 or melted, then resolidified after cooling to room temperature. The molten and resolidified fins 42 adhere both to the bars 30 and to the foamed body 41 thus forming an effective insulation device against convection and / or radiation between the two outer 20 and inner 10 sections of the frame.
Légende: Legend:
10 profilé intérieur 10 interior profile
11 cavité dans profilé intérieur 11 cavity in internal profile
20 profilé extérieur 20 external profile
21 cavité dans profilé extérieur 21 cavity in external profile
30 barrette 30 bar
31 cavité de barrettage 31 barrettage cavity
40 dispositif d’isolation 40 isolation device
41 corps moussé 41 foamed body
42 ailettes 42 fins

Claims

Revendications Claims
1. Procédé d’isolation d’une cavité d’un profilé en aluminium ou d’une cavité de barrettage d’un châssis en aluminium d’ouvrant ou de dormant de porte ou fenêtre, le procédé comprenant les étapes suivantes : 1. A method of insulating a cavity of an aluminum profile or a barrettage cavity of an aluminum frame of an opening or a door or window frame, the method comprising the following steps:
(a) insertion, dans ladite cavité, d’un dispositif d’isolation comprenant un corps moussé d’une première composition polymère de section transversale polygonale muni sur au moins une surface, de préférence sur chacune de deux surfaces opposées, d’une ou de plusieurs ailettes moussées ou non-moussées d’une deuxième composition polymère, dans lequel la distance entre ladite surface munie d’ailettes du corps moussé et la surface opposée à celle-ci, respectivement de préférence entre les deux surfaces opposées munies d’ailettes du corps moussé représente 80 à 97 % de la distance séparant les faces correspondantes de la cavité, dans lequel le corps moussé de la première composition polymère est à base d’un ou de plusieurs (co)polyesters, de préférence de type polyalkylène téréphtalate, tels que par exemple le polyéthylène téréphtalate, le polybutylène téréphtalate, le polybutylène naphtalate et/ou le polytriméthylène téréphtalate, et (a) inserting into said cavity an insulation device comprising a foamed body of a first polymeric composition of polygonal cross section provided on at least one surface, preferably on each of two opposing surfaces, with one or a plurality of foamed or non-foamed fins of a second polymeric composition, wherein the distance between said finned surface of the foamed body and the surface opposite thereto, respectively preferably between the two opposing finned surfaces of the foamed body represents 80 to 97% of the distance separating the corresponding faces of the cavity, in which the foamed body of the first polymer composition is based on one or more (co) polyesters, preferably of the polyalkylene terephthalate type, such as, for example polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate and / or polytrimethylene terephthalate, and
(b) chauffage du profilé en aluminium ou du châssis en aluminium à une température supérieure à la température comprise entre 180 et 250 °C pour provoquer un ramollissement ou une fusion de la deuxième composition polymère, une expansion du corps moussé et la compression des ailettes par l’effet d’expansion du corps moussé, et refroidissement du profilé en aluminium ou du châssis en aluminium provoquant la solidification de la deuxième composition polymère fixant le dispositif d’isolation à la ou aux faces correspondantes de la cavité. (b) heating the aluminum profile or aluminum frame to a temperature above the temperature between 180 and 250 ° C to cause softening or melting of the second polymeric composition, expansion of the foamed body and compression of the fins by the expansion effect of the foamed body, and cooling of the aluminum profile or the aluminum frame causing the solidification of the second polymer composition fixing the insulation device to the corresponding face or faces of the cavity.
2. Procédé d’isolation selon la revendication 1 , dans lequel le dispositif d’isolation est fixé par un de ses côtés à une des barrettes lors de l’assemblage des profilés en châssis, les ailettes se trouvent au moins sur le côté opposé au côté fixé à la barrette, la fixation du dispositif d’isolation sur la barrette se faisant de préférence par collage, soudage ou coextrusion. 2. Insulation method according to claim 1, wherein the isolation device is fixed by one of its sides to one of the bars during the assembly of the profiles in the frame, the fins are located at least on the side opposite the side attached to the bar, the fixing of the insulation device on the bar preferably being by gluing, welding or coextrusion.
3. Procédé d’isolation selon la revendication 1 ou 2, comprenant en outre, avant ou après l’étape (a), une étape (x) de pulvérisation d’une poudre de peinture, de préférence polyester, en particulier par poudrage électrostatique, sur des faces extérieures du profilé en aluminium ou du châssis en aluminium, la poudre de peinture fondant à l’étape (b) pour former un revêtement de protection. 3. Insulation method according to claim 1 or 2, further comprising, before or after step (a), a step (x) of spraying a paint powder, preferably polyester, in particular by electrostatic powder coating. , on the outer faces of the aluminum profile or the aluminum frame, the paint powder melting in step (b) to form a protective coating.
4. Procédé d’isolation selon l’une des revendications 1 à 3, dans lequel le corps moussé et/ou les ailettes comprend/comprennent une quantité entre 0,001 et 5 % en poids, de préférence entre 0,01 et 3 % en poids, notamment de 0,1 à 2 % en poids d'au moins un agent chimique de moussage non encore décomposé et décomposable aux températures de l’étape (b). 4. Insulation method according to one of claims 1 to 3, wherein the foamed body and / or the fins comprises / comprise an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight. , in particular from 0.1 to 2% by weight of at least one chemical foaming agent which has not yet decomposed and which can be decomposed at the temperatures of step (b).
5. Procédé d’isolation selon l’une des revendications 1 à 4, dans lequel le corps moussé et/ou les ailettes comprend/comprennent une quantité entre 0,001 et 5 % en poids, de préférence entre 0,01 et 3 % en poids, notamment de 0,1 à 2 % en poids d'au moins un agent physique de moussage liquide à température ambiante, de préférence choisi parmi les alcanes ayant un point d’ébullition supérieur à 25 °C, notamment le n-pentane, l’isopentane, le cyclopentane, tous les isomères de l’hexane ou de l’heptane, l’éthanol, le diméthyléther, ou leurs mélanges. 5. Insulation method according to one of claims 1 to 4, wherein the foamed body and / or the fins comprises / comprise an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight. , in particular from 0.1 to 2% by weight of at least one physical foaming agent which is liquid at room temperature, preferably chosen from alkanes having a boiling point greater than 25 ° C, in particular n-pentane, l isopentane, cyclopentane, all isomers of hexane or heptane, ethanol, dimethyl ether, or mixtures thereof.
6. Procédé d’isolation selon l’une des revendications 1 à 5, dans lequel la deuxième composition polymère comprend un ou plusieurs polymères choisis parmi le polyéthylène réticulé, les copolymères d’éthylène modifié ou non par des groupements, tels que par exemple l’anhydride maléique, les thermoplastiques élastomères et la deuxième composition polymère est de préférence moussée. 6. Insulation method according to one of claims 1 to 5, wherein the second polymer composition comprises one or more polymers chosen from crosslinked polyethylene, copolymers of ethylene modified or not by groups, such as for example l maleic anhydride, the thermoplastic elastomers and the second polymeric composition is preferably foamed.
7. Procédé d’isolation selon l’une des revendications précédentes, pour l’isolation d’une cavité de barrettage d’un châssis en aluminium, dans lequel au moins une partie des ailettes sont en contact avec une barrette. 7. Insulation method according to one of the preceding claims, for the insulation of a bar cavity of an aluminum frame, in which at least part of the fins are in contact with a bar.
8. Dispositif d’isolation d’une cavité d’un profilé en aluminium ou d’une cavité de barrettage d’un châssis en aluminium d’ouvrant ou de dormant de porte ou fenêtre, comprenant un corps moussé d’une première composition polymère de section transversale polygonale muni sur au moins une surface, de préférence sur chacune de deux surfaces opposées d’une ou de plusieurs ailettes moussées ou non-moussées d’une deuxième composition polymère, dans lequel le corps moussé de la première composition polymère est à base de polyesters, de préférence de type polyalkylène téréphtalate, tels que par exemple le polyéthylène téréphtalate, le polybutylène téréphtalate, le polybutylène naphtalate et/ou le polytriméthylène téréphtalate et la deuxième composition polymère a une température de ramollissement ou de fusion inférieure à une température comprise entre 180 et 250 °C. 8. Device for isolating a cavity of an aluminum profile or of a barrettage cavity of an aluminum frame of a door or window sash or frame, comprising a body foamed with a first polymer composition. of polygonal cross section provided on at least one surface, with preferably on each of two opposing surfaces of one or more foamed or non-foamed fins of a second polymeric composition, wherein the foamed body of the first polymeric composition is based on polyesters, preferably of the polyalkylene terephthalate type, such as that, for example, polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate and / or polytrimethylene terephthalate and the second polymer composition has a softening or melting temperature below a temperature between 180 and 250 ° C.
9. Dispositif d’isolation selon la revendication 8, dans lequel le corps moussé et/ou les ailettes comprend/comprennent une quantité entre 0,001 et 5 % en poids, de préférence entre 0,01 et 3 % en poids, notamment de 0,1 à 2 % en poids d'agent chimique de moussage non décomposé, de préférence choisi parmi les dérivés d’hydrazine, tels que l’azodicarbonamide, les tétrazoles, tels que le 5-phényltétrazole, les mélanges de sels de carbonate et d’acides, tels que les mélanges de bicarbonate de soude et d’acide citrique. 9. An insulating device according to claim 8, wherein the foamed body and / or the fins comprises / comprise an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular 0, 1 to 2% by weight of undecomposed foaming chemical agent, preferably chosen from hydrazine derivatives, such as azodicarbonamide, tetrazoles, such as 5-phenyltetrazole, mixtures of carbonate salts and of acids, such as baking soda and citric acid mixtures.
10. Dispositif d’isolation selon la revendication 8 ou 9, dans lequel le corps moussé et/ou les ailettes comprend/comprennent une quantité entre 0,001 et 5 % en poids, de préférence entre 0,01 et 3 % en poids, notamment de 0,1 à 2 % en poids d'au moins un agent physique de moussage liquide à température ambiante, de préférence choisi parmi les alcanes ayant un point d’ébullition supérieur à 25 °C, notamment le n-pentane, l’isopentane, le cyclopentane, tous les isomères de l’hexane ou de l’heptane, l’éthanol, le diméthyléther ou leurs mélanges. 10. Insulation device according to claim 8 or 9, wherein the foamed body and / or the fins comprises / comprise an amount between 0.001 and 5% by weight, preferably between 0.01 and 3% by weight, in particular of 0.1 to 2% by weight of at least one physical foaming agent that is liquid at room temperature, preferably chosen from alkanes having a boiling point greater than 25 ° C, in particular n-pentane, isopentane, cyclopentane, all isomers of hexane or of heptane, ethanol, dimethyl ether or their mixtures.
11. Dispositif d’isolation selon la revendication 8 à 10, dans lequel les ailettes ont été fixées au corps moussé par coextrusion, par post-extrusion, par collage ou par soudage thermique. 11. An insulation device according to claim 8 to 10, wherein the fins have been fixed to the foamed body by coextrusion, by post-extrusion, by gluing or by thermal welding.
12. Dispositif d’isolation selon l’une quelconque des revendications 8 à 11 , dans lequel la densité du corps moussé est située entre 30 et 400 kg/m3, de préférence entre 60 et 250 kg/m3, de préférence entre 80 kg/m3 et 100 kg/m3.12. Insulation device according to any one of claims 8 to 11, wherein the density of the foamed body is between 30 and 400 kg / m 3 , preferably between 60 and 250 kg / m 3 , preferably between 80. kg / m 3 and 100 kg / m 3 .
13. Dispositif d’isolation selon l’une quelconque des revendications 8 à 12, dans lequel la deuxième composition polymère comprend un ou plusieurs polymères choisis parmi le polyéthylène réticulé, les copolymères d’éthylène modifié ou non par des groupements tels que par exemple l’anhydride maléique, les thermoplastiques élastomères, les (co)polyesters, de préférence de type polyalkylène téréphtalate, tels que par exemple le polyéthylène téréphtalate, le polybutylène téréphtalate, le polybutylène naphtalate, le polytriméthylène téréphtalate, ou leurs mélanges, éventuellement en combinaison avec d’autres (co)polymères, tels que les polymères modificateurs d’impact, les copolymères d’éthylène ou les thermoplastiques élastomères, et la deuxième composition polymère est de préférence moussée. 13. Insulation device according to any one of claims 8 to 12, wherein the second polymer composition comprises one or more polymers selected from crosslinked polyethylene, ethylene copolymers. modified or not by groups such as for example maleic anhydride, thermoplastic elastomers, (co) polyesters, preferably of polyalkylene terephthalate type, such as for example polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polytrimethylene terephthalate, or mixtures thereof, optionally in combination with other (co) polymers, such as impact modifying polymers, ethylene copolymers or elastomeric thermoplastics, and the second polymer composition is preferably foamed.
14. Dispositif d’isolation selon l’une quelconque des revendications 8 à 13, dans lequel la densité des ailettes est supérieure à 25 kg/m3, de préférence entre 100 kg/m3 et la densité non-moussée de la deuxième composition polymère.14. Insulation device according to any one of claims 8 to 13, wherein the density of the fins is greater than 25 kg / m 3 , preferably between 100 kg / m 3 and the unfoamed density of the second composition. polymer.
15. Profilé en aluminium ou châssis en aluminium comprenant au moins une cavité munie d’un dispositif d’isolation selon l’une quelconque des revendications 8 à 14, le profilé en aluminium ou le châssis en aluminium ayant de préférence été soumis à un chauffage à une température supérieure à la température comprise entre 180 et 250 °C. 15. Aluminum profile or aluminum frame comprising at least one cavity provided with an insulation device according to any one of claims 8 to 14, the aluminum profile or the aluminum frame having preferably been subjected to heating. at a temperature above the temperature between 180 and 250 ° C.
16. Châssis en aluminium selon la revendication 15, dans lequel la cavité munie d’un dispositif d’isolation selon l’une quelconque des revendications 8 à 14 est une cavité de barrettage. 16. An aluminum frame according to claim 15, wherein the cavity provided with an isolation device according to any one of claims 8 to 14 is a bar cavity.
17. Utilisation d’un dispositif d’isolation selon l’une quelconque des revendications 8 à 14 pour l’isolation de cavités dans des profilés en aluminium ou dans des cavités de barrettage d’un châssis en aluminium pour améliorer leurs performances d’isolation, les profilés en aluminium ou les châssis en aluminium ayant de préférence été soumis à un chauffage à une température supérieure à la température comprise entre 180 et 250 °C après l’insertion du dispositif d’isolation dans les profilés en aluminium ou les châssis en aluminium. 17. Use of an insulation device according to any one of claims 8 to 14 for the insulation of cavities in aluminum profiles or in bar cavities of an aluminum frame to improve their insulation performance. , the aluminum profiles or the aluminum frames having preferably been subjected to heating at a temperature above the temperature between 180 and 250 ° C after the insertion of the insulation device in the aluminum profiles or the frames in aluminum.
EP20739680.5A 2019-07-18 2020-07-13 Insulation of door and window frames Active EP3999707B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI202030261T SI3999707T1 (en) 2019-07-18 2020-07-13 Insulation of door and window frames
DE20739680.5T DE20739680T1 (en) 2019-07-18 2020-07-13 INSULATION FOR DOOR AND WINDOW FRAMES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE20195471A BE1027432B1 (en) 2019-07-18 2019-07-18 DOOR AND WINDOW FRAME INSULATION
PCT/EP2020/069752 WO2021009120A1 (en) 2019-07-18 2020-07-13 Insulation for door- and window-frames

Publications (2)

Publication Number Publication Date
EP3999707A1 true EP3999707A1 (en) 2022-05-25
EP3999707B1 EP3999707B1 (en) 2023-08-09

Family

ID=67997301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20739680.5A Active EP3999707B1 (en) 2019-07-18 2020-07-13 Insulation of door and window frames

Country Status (7)

Country Link
EP (1) EP3999707B1 (en)
BE (1) BE1027432B1 (en)
DE (1) DE20739680T1 (en)
ES (1) ES2961633T3 (en)
PL (1) PL3999707T3 (en)
SI (1) SI3999707T1 (en)
WO (1) WO2021009120A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020114544A1 (en) * 2020-05-29 2021-12-02 Salamander Industrie-Produkte Gmbh Extrusion profile, method for producing an extrusion profile and door and / or window system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008000076U1 (en) * 2008-01-11 2009-02-19 Henkenjohann, Johann A multi-chamber hollow profile
US8632868B2 (en) 2009-11-21 2014-01-21 Mikron Industries, Inc. Integrated insulation extrusion and extrusion technology for window and door systems
EP2799654B1 (en) * 2013-04-30 2015-11-04 Recticel N.V. Method of assembly of a window profile comprising insulation material

Also Published As

Publication number Publication date
DE20739680T1 (en) 2022-09-08
BE1027432A1 (en) 2021-02-09
ES2961633T3 (en) 2024-03-13
WO2021009120A1 (en) 2021-01-21
EP3999707B1 (en) 2023-08-09
BE1027432B1 (en) 2021-02-15
PL3999707T3 (en) 2024-02-05
SI3999707T1 (en) 2023-10-30

Similar Documents

Publication Publication Date Title
EP3999707B1 (en) Insulation of door and window frames
FR2717558A1 (en) Structural element and its manufacturing process.
EP3445578B1 (en) Multilayer panel
FR2520290A1 (en) METHOD FOR MANUFACTURING A PROTECTIVE AND DECORATIVE MOLDING FOR A MOTOR VEHICLE
EP2791441A1 (en) Heat insulation system, and related assembly method
WO2006134079A1 (en) Composite part such as a panel, comprising a honeycomb structure
EP3106335A1 (en) Glazing comprising a reinforcement element and process for its fabrication
EP1956173B1 (en) Frame of a sliding door or window including a single-piece hidden leaf head
WO2010119185A2 (en) Molded single-block frame and collector including same
EP3227079B1 (en) Method for producing an insulating device and insulating device
FR2576838A1 (en) METHOD FOR MANUFACTURING EXPANDED PLASTICS, IN PARTICULAR DECORATIVE MOLDINGS AND PROTECTORS FOR MOTOR VEHICLES
CA1100740A (en) Method and device for the manufacture of composite forms for metallic window and door frames comprising a thermal barrier
EP3999300A1 (en) Foamed hollow chamber profiles
FR2971808A1 (en) Thermal break profile for assembling two structural parts in joinery of building opening e.g. door, has body comprising assembly structures, where body and one of assembly structures are formed of core covered by skin
EP2934842B1 (en) Moulding device, method of manufacture, and thermal insulation product obtained
CH640298A5 (en) PROCESS AND DEVICE FOR THE MANUFACTURE OF A COMPOSITE PROFILE.
FR2876623A1 (en) Multi-layer insulating panel manufacturing process uses foaming compound poured into forming chamber with outer layers and honeycomb core
JPS5839064B2 (en) Manufacturing method of insulation box
FR2465863A1 (en) Insulating frame for sliding windows or doors - has two spaced metal profiles joined along one edge by core of low thermal conductivity material
BE1005424A6 (en) Building element with a cell structure and method for manufacturing construction element.
FR3130870A1 (en) Method of manufacturing an opening door panel, door leaf and door obtained by the method
FR2878874A1 (en) INSULATING ANGLE PANEL
EP2736966B1 (en) Polypropylene resin-based expandable formulation
FR3087813A1 (en) INSULATING GLASS SUB-ASSEMBLY READY TO FILL WITH INSULATING GAS
FR3073247A1 (en) THERMAL CUTTING SLABS EXTRUDED FOR GLAZING

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R210

Ref document number: 602020015497

Country of ref document: DE

Ref country code: DE

Ref legal event code: R210

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020015497

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1597719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230809

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2961633

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020015497

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240614

Year of fee payment: 5

26N No opposition filed

Effective date: 20240513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240617

Year of fee payment: 5