EP3957808A1 - Grossmanipulator mit dezentraler hydraulik - Google Patents

Grossmanipulator mit dezentraler hydraulik Download PDF

Info

Publication number
EP3957808A1
EP3957808A1 EP21195714.7A EP21195714A EP3957808A1 EP 3957808 A1 EP3957808 A1 EP 3957808A1 EP 21195714 A EP21195714 A EP 21195714A EP 3957808 A1 EP3957808 A1 EP 3957808A1
Authority
EP
European Patent Office
Prior art keywords
mast
control
manipulator
controlled
drive unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21195714.7A
Other languages
English (en)
French (fr)
Inventor
Johannes HENIKL
Reiner VIERKOTTEN
Andreas Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Wilhelm Schwing GmbH
Original Assignee
Friedrich Wilhelm Schwing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Wilhelm Schwing GmbH filed Critical Friedrich Wilhelm Schwing GmbH
Publication of EP3957808A1 publication Critical patent/EP3957808A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0454Devices for both conveying and distributing with distribution hose with booms with boom vibration damper mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/027Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • F15B13/0444Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors with rotary electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/202Externally-operated valves mounted in or on the actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/008Reduction of noise or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8613Control during or prevention of abnormal conditions the abnormal condition being oscillations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8633Pressure source supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8636Circuit failure, e.g. valve or hose failure

Definitions

  • the invention relates to a manipulator, in particular a large manipulator for truck-mounted concrete pumps, with an articulated mast that has a turntable that can be rotated about a vertical axis and a plurality of mast segments, the mast segments being limited at articulated joints in each case by means of a drive unit in relation to a neighboring mast segment or the turntable by means of a drive unit can be pivoted, and with a remote control device having at least one control lever, with the control lever being adjustable in a plurality of setting directions, with a travel command being able to be generated by moving the control lever in at least one setting direction, which command indicates a desired movement of the mast tip of the articulated mast or of an end hose attached thereto , And with a control device for controlling the drive units, wherein the control unit converts the driving command into movement specifications for the drive units, and the drive units each using an ele ktrisch controlled proportional valve can be actuated, which is connected to hydraulic working lines of the respective drive unit for its control.
  • Such a manipulator is out EP 2 347 988 A1 famous. From the EP 0 686 224 B1 another manipulator is known. These manipulators are usually controlled via a hydraulic control circuit with a central mast control block and lowering brake valves attached to the individual drive units to ensure the load holding function.
  • This configuration is disadvantageous, in particular with regard to the response behavior of the manipulator. Due to the considerable line lengths between the lowering brake valves and the control valves in the central Mast control block, as well as due to the dynamic behavior of the lowering brake valves, there are noticeable delays in these hydraulic control circuits between the adjustment of the control lever in one direction and the execution of a movement by the drive units on the individual articulated joints.
  • This delay is generally not the same for all articulated joints, but there are differences due to the different line lengths between the lowering brake valves and the control valves and due to the pressure conditions and the required movement speed. Especially at the beginning of a movement of the manipulator, initiated by the adjustment of the control lever in an actuating direction, these delays are of great disadvantage, especially if several articulated joints are moved simultaneously during this initiated movement in order to carry out the requested movement. The differences in the response behavior of the individual articulated joints can then produce undesirable pivoting movements of the mast in unintended directions, particularly at the beginning of a movement.
  • a manipulator according to claim 1.
  • the proportional valves are arranged directly on an associated drive unit to be controlled, ie at the attachment location of the drive unit.
  • the proportional valves can be arranged on the drive units to be controlled in such a way that the proportional valves together with the drive units on mast segments of the articulated mast change their position relative to the turntable or the concrete pump.
  • the at least one proportional valve can be controlled with a stepper motor. This allows a manipulator to be implemented that ensures excellent response behavior of the mast segments.
  • proportional valves that can be controlled with a stepper motor are significantly lighter and smaller than similarly powerful conventional valves with proportional magnets, which enables significant weight savings and a reduction in the required installation space. Due to the particularly small size and the low weight of the at least one proportional valve, this is particularly suitable for a decentralized hydraulic control circuit.
  • the at least one proportional valve has a housing which contains a valve piston, a return spring and the stepping motor.
  • a proportional valve has a simple design and is not susceptible to faults, which is of particular advantage when used in manipulators.
  • the proportional valve is arranged directly on the associated drive unit to be controlled, where the proportional valve can be difficult to access for repairs.
  • valves used for the load holding function are designed as hydraulically pilot-operated check valves. This offers great dynamic advantages, especially for the implementation of active vibration damping, since these valves offer particularly good response.
  • the position of the check valves can be changed by the first control unit and/or a further control unit independently of the position of the at least one proportional valve arranged directly on an assigned drive unit to be controlled. This makes it possible to significantly improve the response behavior of the large manipulator, particularly when implementing the load-holding function. It has been shown that electronic control of the check valves ensures a defined opening state even at low pivoting speeds in the articulated joints.
  • the manipulator has a hydraulic emergency circuit parallel to the at least one proportional valve, with the emergency circuit preferably having at least one controllable switching valve which is arranged directly on or in the immediate vicinity of the drive unit to be controlled and is preferably supplied via its own pressure supply line , as well as hydraulically operated check valves or lowering brake valves to achieve a load holding function. This allows the manipulator to be controlled even if the proportional valve fails.
  • a configuration in which the control unit is set up for active vibration damping is particularly advantageous, with the control unit generating control signals for the drive units for damping vibrations of the articulated mast. This has particular advantages when operating the manipulator, since vibrations of the articulated mast can be dampened better than in the prior art by direct activation of the at least one proportional valve by the control unit.
  • the movement specifications are converted into control signals for the at least one proportional valve arranged directly on an assigned drive unit to be controlled by a local control unit. This significantly reduces the amount of electrical wiring and the utilization of the BUS system used.
  • a manipulator 1 in particular a large manipulator for truck-mounted concrete pumps, is shown schematically, with an articulated mast 2 which can be folded out, which has a turntable 5 rotatable about a vertical axis 4 and a plurality of mast segments 6, 6a, 6b, 6c.
  • the mast segments 6, 6a, 6b, 6c are articulated at articulated joints 7, 7a, 7b in each case about bending axes relative to an adjacent mast segment 6, 6a, 6b, 6c or the turntable 5 by means of a drive unit 11 ( 2 ) limited pivoting.
  • a Control lever 8 on a remote control device 9 which can be adjusted in several directions, can be used to transmit movement specifications to a central control unit 10.
  • the control lever 8 is adjusted in one direction and the central control unit 10 receives the generated driving command.
  • the central control unit 10 converts the travel command into movement specifications for the individual drive units 11 ( 2 ) around.
  • the central control unit 10 processes the measured position of the manipulator 1, which can be implemented, for example, by inclination sensors on the mast segments 6, 6a, 6b, 6c or angle of rotation sensors in the articulated joints 7, 7a, 7b.
  • the figure 2 shows a schematic representation of an electrohydraulic control circuit 17 for controlling a hydraulically actuated drive unit 11, by means of which a mast segment 6, 6a, 6b, 6c ( 1 ) of manipulator 1 ( 1 ) is adjustable in terms of its orientation, with an electrically controlled proportional valve 12, which is connected to the hydraulic working lines 13, 14 of the drive unit 11 to control it.
  • a control circuit 17 for a drive unit 11 is shown, with at least one articulated joint or in the in 2 illustrated embodiment of the invention on each articulated joint, one drive unit 11 each with its own control circuit 17 is provided.
  • the proportional valves 12 assigned to the individual drive units 11 are arranged parallel to one another on the first pressure supply (P1) 24 and on the first return (T1) 25 .
  • the proportional valve 12 can be controlled with a stepping motor 15 , the proportional valve 12 having a housing which contains a valve piston, a restoring spring and the stepping motor 15 .
  • the valve piston on the proportional valve 12 is actuated via a toothed rack by means of the stepping motor 15.
  • a monitoring unit is located on the stepping motor 15 for monitoring the values generated by the stepping motor 15 carried out adjustment steps provided.
  • a memory is also provided for storing the adjustment steps of the stepper motor 15 that have been carried out. Activation by means of the stepper motor 15 enables precise adjustment of the proportional valve 12 independently of the flow forces that occur, which is a particularly allows precise control of the drive unit 11 and the response of the manipulator 1 ( 1 ) sustainably improved.
  • the electrically controlled proportional valve 12 can also be seen, with which the drive unit 11, in particular the hydraulic cylinder, can be moved by the proportional valve 12 applying a pressure difference to the working lines 13, 14 assigned to the drive unit 11.
  • the working lines 13, 14 are optionally connected to a first pressure supply (P1) 24 or a first return (T1) 25 through the proportional valve 12.
  • the proportional valve 12 is controlled via an associated stepping motor 15 by a local electronic control device ECU (electronic control unit) 10a. This monitors and controls the state of the local electro-hydraulic control circuit 17 together with the associated drive unit 11, enables the implementation of complex algorithms, offers an interface for external communication via a BUS system (e.g.
  • control device 10a receives the data transmitted by the central control device 10 ( 1 ) transmitted motion specification, which the central control device 10 ( 1 ) based on the adjustment of the control lever 8 ( 1 ) Generated drive command is calculated for the associated drive unit and processes this into a control signal for the proportional valve 12, which is thereby switched and the drive unit 11 is actuated.
  • a supply pressure assigned to the pressure supply (P1) 24 is switched to a working line 13 or 14 of the assigned drive assembly 11.
  • the check valves 16, 16a perform a load holding function when the Control circuit 17 is in an inactive state or safe state. These check valves 16, 16a are designed as hydraulically piloted check valves 16, 16a, which can be opened and closed independently of the position of the proportional valve 12 by the local control device 10a.
  • the check valve 23 also has a safety function, in particular it prevents the check valves or check valves 16, 16a from being pressed open in the event of a jammed valve piston outside the central position in the proportional valve 12.
  • the sensors 18, 18a, 18b measure the supply pressure of the feed line P1, by sensor 18, in the active state of the electrohydraulic control circuit 17, and the pressures in the working lines 13, 14, by sensors 18a, 18b, to the hydraulic drive unit 11 are measured.
  • the electrohydraulic control circuit 17 also includes an optional hydraulic emergency circuit connected in parallel with the proportional valve 12 for emergency operation. This emergency circuit enables the drive unit 11 to be moved if the components assigned to the proportional valve 12 (upstream or downstream) fail.
  • Each proportional valve 12 for controlling a drive unit 11 is preferably assigned its own emergency circuit.
  • the emergency circuit includes a control valve 21 for controlling the direction of travel of the drive unit 11 in emergency operation and two mutually coupled valves 20, 20a, which are designed as hydraulically piloted check valves or lowering brake valves 20, 20a in a classic configuration.
  • the drive unit 11, in particular the hydraulic cylinder can be moved in emergency operation in that the control valve 11 for the emergency operation applies a pressure difference to the working lines 13, 14 assigned to the drive unit 11.
  • the working lines 13, 14 are optionally connected to a second pressure supply (P2) 26 or a second return (T2) 27 from the control valve 21.
  • the drive unit 11 is preferably supplied with pressure via the separate pressure supply (P2) 26 and the separate return (T2) 27, so that if there is a leak in the pressure supply (P1) 24 or the return (T1) 25, the drive unit 11 can still be controlled.
  • the control valves 21 assigned to each proportional valve 12 are arranged parallel to one another on the separate pressure supply (P2) 26 and on the separate return (T2) 27 .
  • the local electronic control device 10a also monitors the status and behavior of the control circuit 17 using the available sensors. As soon as the local electronic control device 10a detects an error, it automatically switches the control circuit 17 to a safe state.
  • the tasks of the local control units 10a could be taken over directly by the central control unit 10, so that the local control units 10a can be dispensed with.
  • this has the disadvantage that the electrical wiring effort and the utilization of the BUS system used is significantly increased. It would also be conceivable as a compromise to combine several local control units so that they each take over the control of more than one drive unit.
  • check valves switch to a defined opening state.
  • the manipulator can be easily and safely operated by the user on the control lever, even at low pivoting speeds in the individual articulated joints.
  • the individual drive units 11 By minimizing and shortening the hydraulic working lines between the proportional valves 12 and the hydraulic drive unit 11 and the defined opening state of the valves 16, 16a for the load holding function, which is independent of the position of the proportional valve 12 and the pressure conditions that occur, the individual drive units 11 an optimal response with minimized delay time between the adjustment of the control lever 8 in a Adjusting direction and the execution of a movement by the drive units 11 achieved.
  • this delay time is approximately identical for all drive units 11 of the articulated mast 2, so that when a movement of the articulated mast 2 is initiated with the simultaneous actuation of several drive units 11, the movement can be implemented very precisely without undesired pivoting movements of the articulated mast 2 occurring at the beginning of the movement intended directions are generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manipulator (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

Die Erfindung betrifft einen Manipulator (1), insbesondere Großmanipulator für Autobetonpumpen, mit einem ausfaltbaren Knickmast (2), der einen um eine Hochachse (4) drehbaren Drehschemel (5) und eine Mehrzahl von Mastsegmenten (6, 6a, 6b, 6c) aufweist, wobei die Mastsegmente (6, 6a, 6b, 6c) an Knickgelenken (7, 7a, 7b) jeweils um Knickachsen gegenüber einem benachbarten Mastsegment (6, 6a, 6b, 6c) oder dem Drehschemel (5) mittels je eines Antriebsaggregates (11) begrenzt verschwenkbar sind, und mit einer mindestens einen Steuerhebel (8) aufweisenden Fernsteuereinrichtung (9), wobei der Steuerhebel (8) in mehrere Stellrichtungen verstellbar ist, wobei ein Fahrbefehl durch eine Verstellung des Steuerhebels (8) in wenigstens eine Stellrichtung erzeugbar ist, der eine gewünschte Bewegung der Mastspitze (3) des Knickmastes oder eines daran angebrachten Endschlauchs angibt, und mit einer Steuereinrichtung (10) zur Ansteuerung der Antriebsaggregate (11), wobei die Steuereinheit (10) den Fahrbefehl in Bewegungsvorgaben für die Antriebsaggregate (11) umsetzt, und wobei die Antriebsaggregate (11) mittels jeweils eines elektrisch angesteuerten Proportionalventils (12) betätigbar sind, welches mit hydraulischen Arbeitsleitungen (13, 14) des jeweiligen Antriebsaggregates (11) zu dessen Ansteuerung verbunden ist. Aufgabe der Erfindung ist, einen Manipulator anzugeben, der eine einfache Bedienung und ein hervorragendes Ansprechverhalten ermöglicht. Diese Aufgabe löst die Erfindung dadurch, dass alle Proportionalventile (12) direkt an oder in unmittelbarer Nähe zu den zu steuernden Antriebsaggregaten (11) angeordnet sind, wobei der Fahrbefehl eine gewünschte Bewegung der Mastspitze (3) des Knickmastes oder eines daran angebrachten Endschlauchs in Richtung kartesischer oder Polar-Koordinaten angibt.

Description

  • Die Erfindung betrifft einen Manipulator, insbesondere Großmanipulator für Autobetonpumpen, mit einem ausfaltbaren Knickmast, der einen um eine Hochachse drehbaren Drehschemel und eine Mehrzahl von Mastsegmenten aufweist, wobei die Mastsegmente an Knickgelenken jeweils um Knickachsen gegenüber einem benachbarten Mastsegment oder dem Drehschemel mittels je eines Antriebsaggregates begrenzt verschwenkbar sind, und mit einer mindestens einen Steuerhebel aufweisenden Fernsteuereinrichtung, wobei der Steuerhebel in mehrere Stellrichtungen verstellbar ist, wobei ein Fahrbefehl durch eine Verstellung des Steuerhebels in wenigstens eine Stellrichtung erzeugbar ist, der eine gewünschte Bewegung der Mastspitze des Knickmastes oder eines daran angebrachten Endschlauchs angibt, und mit einer Steuereinrichtung zur Ansteuerung der Antriebsaggregate, wobei die Steuereinheit den Fahrbefehl in Bewegungsvorgaben für die Antriebsaggregate umsetzt, und wobei die Antriebsaggregate mittels jeweils eines elektrisch angesteuerten Proportionalventils betätigbar sind, welches mit hydraulischen Arbeitsleitungen des jeweiligen Antriebsaggregates zu dessen Ansteuerung verbunden ist.
  • Ein solcher Manipulator ist aus EP 2 347 988 A1 bekannt. Aus der EP 0 686 224 B1 ist ein weiterer Manipulator bekannt. Üblicherweise werden diese Manipulatoren über einen hydraulischen Steuerkreis mit einem zentralen Maststeuerblock sowie an den einzelnen Antriebsaggregaten angebrachten Senkbremsventilen zur Gewährleistung der Lasthaltefunktion gesteuert. Diese Ausgestaltung ist jedoch nachteilig, insbesondere im Hinblick auf das Ansprechverhalten des Manipulators. Aufgrund der erheblichen Leitungslängen zwischen den Senkbremsventilen und den Steuerventilen im zentralen Maststeuerblock, sowie aufgrund des dynamischen Verhaltens der Senkbremsventile kommt es bei diesen hydraulischen Steuerkreisen zu merkbaren Verzögerungen zwischen der Verstellung des Steuerhebels in eine Stellrichtung und der Ausführung einer Bewegung durch die Antriebsaggregate an den einzelnen Knickgelenken. Diese Verzögerung ist im Allgemeinen nicht für alle Knickgelenke gleich, sondern es ergeben sich Unterschiede bedingt durch die unterschiedlichen Leitungslängen zwischen den Senkbremsventilen und den Steuerventilen sowie aufgrund der Druckverhältnisse und der angeforderten Bewegungsgeschwindigkeit. Besonders zu Beginn einer Bewegung des Manipulators, eingeleitet durch die Verstellung des Steuerhebels in eine Stellrichtung, sind diese Verzögerungen von großem Nachteil, insbesondere wenn bei dieser eingeleiteten Bewegung mehrere Knickgelenke gleichzeitig verfahren werden, um die angeforderte Bewegung auszuführen. Die Unterschiede hinsichtlich des Ansprechverhaltens der einzelnen Knickgelenke können dann besonders zu Beginn einer Bewegung unerwünschte Verschwenkbewegungen des Mastes in nicht beabsichtigte Richtungen erzeugen. Insbesondere bei kleinen Verschwenkgeschwindigkeiten der einzelnen Knickgelenke führen die üblichen Senkbremsventile oft zu einer ungleichförmigen, undefinierten Bewegung, da bei diesen geringen Geschwindigkeiten der Öffnungszustand der Senkbremsventile nicht eindeutig ist. In diesem Fall entspricht die ausgeführte Bewegung nicht der Vorgabe durch den Steuerhebel. Hierdurch sind das Ansprechverhalten und die Genauigkeit insbesondere bei kleinen Verschwenkgeschwindigkeiten erheblich beeinträchtigt.
  • Aufgabe der Erfindung ist es daher, einen Manipulator anzugeben, der die beschriebenen Nachteile behebt und eine einfache Bedienung und ein hervorragendes Ansprechverhalten ermöglicht.
  • Gelöst wird diese Aufgabe durch einen Manipulator gemäß Anspruch 1. Dadurch, dass alle Proportionalventile direkt an oder in unmittelbarer Nähe zu den zu steuernden Antriebsaggregaten angeordnet sind, wobei der Fahrbefehl eine gewünschte Bewegung der Mastspitze des Knickmastes oder eines daran angebrachten Endschlauchs in Richtung kartesischer oder Polar-Koordinaten angibt, lässt sich ein Manipulator realisieren, der ein hervorragendes Ansprechverhalten gewährleistet. Außerdem ist eine besonders einfache Bedienung des Manipulators möglich. Die Proportionalventile sind direkt an einem zugeordneten, zu steuernden Antriebsaggregat, d.h. am Anbringungsort des Antriebsaggregates, angeordnet. So können die Proportionalventile an den zu steuernden Antriebsaggregaten derart angeordnet sein, dass die Proportionalventile zusammen mit den Antriebsaggregaten an Mastsegmenten des Knickmastes ihre Position gegenüber dem Drehschemel bzw. der Betonpumpe ändern. Durch die direkte Anordnung der Proportionalventile an den zugeordneten, zu steuernden Antriebsaggregaten kann die Länge der Arbeitsleitungen zwischen den Proportionalventilen und den Antriebsaggregaten deutlich reduziert werden, wodurch das Ansprechverhalten des Manipulators verbessert wird und sich dieser agiler und dynamischer verfahren lässt.
  • Der Effekt, den die Erfindung bewirkt ist am stärksten, da alle Proportionalventile in der Nähe der zu steuernden Antriebsaggregate angeordnet sind. Es ist aber schon mit der Anordnung mindestens eines Proportionalventiles in der Nähe eines zu steuernden Antriebsaggregates oft schon eine sehr deutliche Verbesserung des Ansprechverhaltens des Manipulators gegeben. Je mehr Proportionalventile in der Nähe der zu steuernden Antriebsaggregate angeordnet sind, desto besser ist letztendlich aber das Ansprechverhalten des Manipulators auf Steuerbefehle.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Besonders vorteilhaft ist, dass das mindestens eine Proportionalventil mit einem Schrittmotor ansteuerbar ist. Hierdurch lässt sich ein Manipulator realisieren, der ein hervorragendes Ansprechverhalten der Mastsegmente gewährleistet. Zudem sind mit einem Schrittmotor ansteuerbare Proportionalventile deutlich leichter und kleiner als ähnlich leistungsfähige konventionelle Ventile mit Proportionalmagneten, was eine deutliche Gewichtseinsparung und eine Reduzierung des erforderlichen Bauraums ermöglicht. Aufgrund der besonders geringen Größe und des geringen Gewichts des mindestens einen Proportionalventils eignet sich dieses besonders für einen dezentralen hydraulischen Steuerkreis.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das mindestens eine Proportionalventil ein Gehäuse aufweist, welches einen Ventilkolben, eine Rückstellfeder und den Schrittmotor enthält. Ein derartiges Proportionalventil ist einfach und störungsunanfällig aufgebaut, was insbesondere beim Einsatz in Manipulatoren von besonderem Vorteil ist. Insbesondere wenn das Proportionalventil direkt an dem zugeordneten, zu steuernden Antriebsaggregat angeordnet ist, wo das Proportionalventil für Reparaturen schlecht erreichbar sein kann.
  • Eine besonders vorteilhafte Ausführungsform der Erfindung sieht vor, dass zur Lasthaltefunktion verwendete Ventile als hydraulische entsperrbare Rückschlagventile ausgebildet sind. Dies bietet insbesondere für die Umsetzung einer aktiven Schwingungsdämpfung große dynamische Vorteile, da diese Ventile ein besonders gutes Ansprechverhalten bieten.
  • Weiter vorteilhaft ist eine mögliche Ausgestaltung, bei der die Stellung der Rückschlagventile unabhängig von der Stellung des mindestens einen direkt an einem zugeordneten, zu steuernden Antriebsaggregat angeordneten Proportionalventils durch die erste Steuereinheit und oder eine weitere Steuereinheit veränderbar ist. Hierdurch ist es möglich, das Ansprechverhalten des Großmanipulators, insbesondere bei der Realisierung der Lasthaltefunktion, deutlich zu verbessern. Es hat sich gezeigt dass eine elektronische Ansteuerung der Rückschlagventile einen definierten Öffnungszustand auch bei kleinen Verschwenkgeschwindigkeiten in den Knickgelenken sicherstellt.
  • Von besonderem Vorteil ist, wenn der Manipulator einen zu dem mindestens einen Proportionalventil parallelen hydraulischen Notkreis aufweist, wobei der Notkreis bevorzugt zumindest ein steuerbares Schaltventil, welches direkt an oder in unmittelbarer Nähe zu dem zu steuerndem Antriebsaggregat angeordnet ist und vorzugsweise über eine eigene Druckversorgungsleitung versorgt ist, sowie hydraulisch entsperrbare Rückschlagventile oder Senkbremsventile zum Erreichen einer Lasthaltefunktion enthält. Hierdurch lässt sich der Manipulator auch noch bei Ausfall des Proportionalventils steuern.
  • Besonders vorteilhaft ist eine Ausgestaltung, bei der die Steuereinheit zur aktiven Schwingungsdämpfung eingerichtet ist, wobei die Steuereinheit Ansteuersignale für die Antriebsaggregate zur Dämpfung von Schwingungen des Knickmastes erzeugt. Dies hat besondere Vorteile bei der Bedienung des Manipulators, da Schwingungen des Knickmastes durch eine direkte Ansteuerung des mindestens einen Proportionalventils durch die Steuereinheit gegenüber dem Stand der Technik besser gedämpft werden können.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Umsetzung der Bewegungsvorgaben in Ansteuersignale für das mindestens eine direkt an einem zugeordneten, zu steuernden Antriebsaggregat angeordnete Proportionalventil durch eine lokale Steuereinheit erfolgt. Hierdurch wird der elektrische Verkabelungsaufwand bzw. die Auslastung des verwendeten BUS-Systems wesentlich reduziert.
  • Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aufgrund der nachfolgenden Beschreibung sowie anhand der Zeichnungen. Ein Ausführungsbeispiel der Erfindung ist in den folgenden Zeichnungen rein schematisch dargestellt und wird nachfolgend näher beschrieben. Einander entsprechende Gegenstände sind in allen Figuren mit den gleichen Bezugszeichen versehen. Es zeigen:
  • Figur 1
    einen erfindungsgemäßen Manipulator und
    Figur 2
    einen Schaltplan eines Steuerkreises für ein hydraulisches Antriebsaggregat des Manipulators.
  • In Figur 1 schematisch dargestellt ist ein erfindungsgemäßer Manipulator 1, insbesondere Großmanipulator für Autobetonpumpen, mit einem ausfaltbaren Knickmast 2, der einen um eine Hochachse 4 drehbaren Drehschemel 5 und eine Mehrzahl von Mastsegmenten 6, 6a, 6b, 6c aufweist. Die Mastsegmente 6, 6a, 6b, 6c sind an Knickgelenken 7, 7a, 7b jeweils um Knickachsen gegenüber einem benachbarten Mastsegment 6, 6a, 6b, 6c oder dem Drehschemel 5 mittels je eines Antriebsaggregates 11 (Fig. 2) begrenzt verschwenkbar. Mit einem Steuerhebel 8 an einer Fernsteuereinrichtung 9, der in mehrere Stellrichtungen verstellbar ist, lassen sich Bewegungsvorgaben an eine zentrale Steuereinheit 10 übermitteln. Dies kann beispielsweise eine gewünschte Bewegung der Mastspitze 3 des Knickmastes 2 oder eines daran angebrachten Endschlauchs sein. Hierzu wird der Steuerhebel 8 in eine Stellrichtung verstellt und die zentrale Steuereinheit 10 empfängt den generierten Fahrbefehl. Die zentrale Steuereinheit 10 setzt den Fahrbefehl in Bewegungsvorgaben für die einzelnen Antriebsaggregate 11 (Fig. 2) um. Hierfür wird von der zentralen Steuereinheit 10 die messtechnisch erfasste Stellung des Manipulators 1, was beispielsweise durch Neigungssensoren an den Mastsegmenten 6, 6a, 6b, 6c oder Drehwinkelsensoren in den Knickgelenken 7, 7a, 7b umgesetzt sein kann, verarbeitet.
  • Die Figur 2 zeigt eine schematische Darstellung eines elektrohydraulischen Steuerkreises 17 zum Ansteuern eines hydraulisch betätigten Antriebsaggregates 11, mittels dessen ein Mastsegment 6, 6a, 6b, 6c (Fig. 1) des Manipulators 1 (Fig. 1) hinsichtlich seiner Orientierung verstellbar ist, mit einem elektrisch angesteuerten Proportionalventil 12, welches mit den hydraulischen Arbeitsleitungen 13, 14 des Antriebsaggregates 11 zu dessen Ansteuerung verbunden ist. Zur besseren Übersicht ist in Figur 2 lediglich der Steuerkreis 17 für ein Antriebsaggregat 11 gezeigt, wobei an mindestens einem Knickgelenk bzw. in der in Fig. 2 dargestellten Ausführungsform der Erfindung an jedem Knickgelenk, je ein Antriebsaggregat 11 mit eigenem Steuerkreis 17 vorgesehen ist.
  • Im Folgenden wird die Erfindung anhand dieser Ausführungsform beschrieben.
  • Die den einzelnen Antriebsaggregaten 11 zugeordneten Proportionalventile 12 sind auf der ersten Druckversorgung (P1) 24 und auf dem ersten Rücklauf (T1) 25 parallel zueinander angeordnet. Das Proportionalventil 12 ist mit einem Schrittmotor 15 ansteuerbar, wobei das Proportionalventil 12 ein Gehäuse aufweist, welches einen Ventilkolben, eine Rückstellfeder und den Schrittmotor 15 enthält. Die Ansteuerung des Ventilkolbens am Proportionalventil 12 erfolgt über eine Zahnstange mittels des Schrittmotors 15. An dem Schrittmotor 15 ist eine Überwachungseinheit zur Überwachung der von dem Schrittmotor 15 durchgeführten Stellschritte vorgesehen. Um nachvollziehen zu können, in welcher Stellung sich das Proportionalventil 12 befindet, ist zudem ein Speicher vorgesehen für die Speicherung der durchgeführten Stellschritte des Schrittmotors 15. Die Ansteuerung mittels Schrittmotor 15 ermöglicht eine präzise Einstellung des Proportionalventils 12 unabhängig von den auftretenden Strömungskräften, was eine besonders genaue Steuerung des Antriebsaggregates 11 ermöglicht und das Ansprechverhalten des Manipulators 1 (Fig. 1) nachhaltig verbessert.
  • In Figur 2 ist weiterhin das elektrisch angesteuerte Proportionalventil 12 erkennbar, mit welchem das Antriebsaggregat 11, insbesondere der Hydraulikzylinder, verfahren werden kann, indem das Proportionalventil 12 die dem Antriebsaggregat 11 zugeordneten Arbeitsleitungen 13, 14 mit einer Druckdifferenz beaufschlagt. Hierfür werden die Arbeitsleitungen 13, 14 wahlweise jeweils mit einer ersten Druckversorgung (P1) 24 oder einem ersten Rücklauf (T1) 25 durch das Proportionalventil 12 verbunden. Die Ansteuerung des Proportionalventils 12 erfolgt über einen zugeordneten Schrittmotor 15 durch eine lokale elektronische Steuereinrichtung ECU (electronic control unit) 10a. Diese überwacht und steuert den Zustand des lokalen elektrohydraulischen Steuerkreises 17 samt zugehörigem Antriebsaggregat 11, ermöglicht die Implementierung komplexer Algorithmen, bietet eine Schnittstelle zur Kommunikation nach außen über ein BUS-System (beispielsweise CAN) sowie die Möglichkeit, eine Vielzahl von Sensoren, wie z.B. Neigungssensoren an den Mastsegmenten, Drehwinkelsensoren in den Knickgelenken oder Drucksensoren zur Erfassung der Drücke in den Arbeitsleitungen mit dieser zu verbinden. Außerdem empfängt die Steuereinrichtung 10a die durch die zentrale Steuereinrichtung 10 (Fig. 1) übermittelte Bewegungsvorgabe, welche von der zentralen Steuereinrichtung 10 (Fig. 1) anhand des durch die Verstellung des Steuerhebels 8 (Fig. 1) generierten Fahrbefehls berechnet wird, für das zugehörige Antriebsaggregat und verarbeitet diesen in ein Ansteuersignal für das Proportionalventil 12, wobei dieses hierdurch geschaltet wird und das Antriebsaggregat 11 betätigt. Abhängig von der Stellung des Proportionalventils 12 wird ein der Druckversorgung (P1) 24 zugeordneter Versorgungsdruck auf eine Arbeitsleitung 13 oder 14 des zugeordneten Antriebsaggregates 11 geschaltet. Die Sperrventile 16, 16a erfüllen eine Lasthaltefunktion, wenn sich der Steuerkreis 17 in einem inaktiven Zustand oder sicheren Zustand befindet. Diese Sperrventile 16, 16a sind als hydraulisch entsperrbare Rückschlagventile 16, 16a ausgebildet, welche unabhängig von der Stellung des Proportionalventils 12 durch die lokale Steuereinrichtung 10a geöffnet und geschlossen werden können. Das Sperrventil 23 hat ebenfalls eine Sicherheitsfunktion, insbesondere verhindert es ein Aufdrücken der Sperrventile bzw. Rückschlagventile 16, 16a im Falle eines klemmenden Ventilkolbens außerhalb der Mittellage im Proportionalventil 12. Darüber hinaus werden mit den Sensoren 18, 18a, 18b der Versorgungsdruck der Zuleitung P1, durch Sensor 18, im aktiven Zustand des elektrohydraulischen Steuerkreises 17 und die Drücke in den Arbeitsleitungen 13, 14, durch Sensoren 18a, 18b, zu dem hydraulischen Antriebsaggregat 11 gemessen. Diese Messungen werden von der lokalen Steuerung 10a zur Ermittlung jener Sollstellung des Proportionalventils 12 herangezogen, welche quasistatisch zu einem gewünschten Volumenstrom bzw. der Umsetzung der von der zentralen Steuerung 10 übermittelten Bewegungsvorgabe für das hydraulischen Antriebsaggregat 11 führt. Der elektrohydraulische Steuerkreis 17 umfasst in der dargestellten Ausführung außerdem einen optionalen dem Proportionalventil 12 parallel geschalteten hydraulischen Notkreis für den Notbetrieb. Dieser Notkreis ermöglicht ein Verfahren des Antriebsaggregates 11 bei Ausfall der dem Proportionalventil 12 zugeordneten (vor- bzw. nachgeschalteten) Bauteile. Jedem Proportionalventil 12 zur Steuerung eines Antriebsaggregates 11 ist vorzugsweise ein eigener Notkreis zugeordnet. Der Notkreis umfasst ein Steuerventil 21 zur Steuerung der Verfahrrichtung des Antriebsaggregates 11 im Notbetrieb sowie zwei gegenseitig verkoppelte Ventile 20, 20a, welche als hydraulisch entsperrbare Rückschlagventile oder Senkbremsventile 20, 20a in klassischer Verschaltung ausgeführt sind. Mit den nachgeschalteten einstellbaren Drosseln 19, 19a kann die Verfahrgeschwindigkeit im Notbetrieb begrenzt werden. Das Antriebsaggregat 11, insbesondere der Hydraulikzylinder, kann so im Notbetrieb verfahren werden, indem das Steuerventil 11 für den Notbetrieb die dem Antriebsaggregat 11 zugeordneten Arbeitsleitungen 13, 14 mit einer Druckdifferenz beaufschlagt. Hierfür werden die Arbeitsleitungen 13, 14 wahlweise jeweils mit einer zweiten Druckversorgung (P2) 26 oder einem zweiten Rücklauf (T2) 27 von dem Steuerventil 21 verbunden. Im Notbetrieb erfolgt die Druckversorgung des Antriebsaggregates 11 vorzugsweise über die separate Druckversorgung (P2) 26 und den separaten Rücklauf (T2) 27, sodass bei einer Undichtigkeit der Druckversorgung (P1) 24 oder des Rücklaufs (T1) 25 weiterhin eine Steuerung des Antriebsaggregates 11 möglich ist. Hierdurch kann sichergestellt werden, dass bei Ausfall der regulären Maststeuerung samt Proportionalventil 12 der Mast 2 (Fig. 1) noch verfahren werden kann, um beispielsweise den Mast 2 (Fig. 1) einzufahren und gegebenenfalls den Restbeton aus der Betonpumpe und den Förderrohren herauszupumpen. Die jedem Proportionalventil 12 zugeordneten Steuerventile 21 sind auf der separaten Druckversorgung (P2) 26 und auf dem separaten Rücklauf (T2) 27 parallel zueinander angeordnet. Die lokale elektronische Steuereinrichtung 10a überwacht zudem den Zustand und das Verhalten des Steuerkreises 17 mittels der zur Verfügung stehenden Sensoren. Sobald die lokale elektronische Steuereinrichtung 10a einen Fehler erkennt, schaltet sie den Steuerkreis 17 automatisch in einen sicheren Zustand.
  • Alternativ könnten die Aufgaben der lokalen Steuereinheiten 10a direkt von der zentralen Steuereinheit 10 übernommen werden, sodass auf die lokalen Steuereinheiten 10a verzichtet werden kann. Dies hat jedoch den Nachteil, dass der elektrische Verkabelungsaufwand bzw. die Auslastung des verwendeten BUS-Systems wesentlich erhöht wird. Denkbar wäre es auch im Sinne eines Kompromisses, mehrere lokale Steuereinheiten zusammenzufassen, sodass diese die Steuerung von jeweils mehr als einem Antriebsaggregat übernehmen.
  • Weiter vorteilhaft ist eine Ausgestaltung, bei der die Rückschlagventile einen definierten Öffnungszustand schalten. Mittels dieses definierten Öffnungszustands lässt sich der Manipulator auch bei kleinen Verschwenkgeschwindigkeiten in den einzelnen Knickgelenken einfach und sicher durch den Benutzer am Steuerhebel bedienen.
  • Durch die Minimierung und Verkürzung der hydraulischen Arbeitsleitungen zwischen den Proportionalventilen 12 und dem hydraulischen Antriebsaggregat 11 und dem definierten Öffnungszustand der Ventile 16, 16a für die Lasthaltefunktion, welcher unabhängig von der Stellung des Proportionalventils 12 sowie der auftretenden Druckverhältnisse ist, wird für die einzelnen Antriebsaggregate 11 ein optimales Ansprechverhalten mit minimierter Verzögerungszeit zwischen der Verstellung des Steuerhebels 8 in eine Stellrichtung und der Ausführung einer Bewegung durch die Antriebsaggregate 11 erreicht. Insbesondere ist diese Verzögerungszeit für alle Antriebsaggregate 11 des Knickmasts 2 näherungsweise identisch, sodass bei der Einleitung einer Bewegung des Knickmastes 2 mit gleichzeitiger Betätigung mehrerer Antriebsaggregate 11 die Bewegung sehr präzise umgesetzt werden kann, ohne dass zu Beginn der Bewegung unerwünschte Verschwenkbewegungen des Knickmastes 2 in nicht beabsichtigte Richtungen erzeugt werden.
  • Bezuaszeichenliste
  • 1
    Manipulator
    2
    Knickmast
    3
    Mastspitze
    4
    Hochachse
    5
    Drehschemel
    6 6a ,6b, 6c
    Mastsegmente
    7 7a, 7b
    Knickgelenke
    8
    Steuerhebel
    9
    Fernsteuereinrichtung
    10
    Zentrale Steuereinheit
    10a -
    Lokale Steuereinheit(en)
    11
    Antriebsaggregat
    12
    Proportionalventil
    13
    Arbeitsleitung A
    14
    Arbeitsleitung B
    15
    Schrittmotor
    16
    16a Lasthalt-/Sperrventile
    17
    Steuerkreis
    18 18a, 18b
    Drucksensoren
    19 19a
    einstellbare Drosseln
    20 20a
    Senkbrems-(Rückschlag-)ventile
    21
    Steuerventil
    22
    Freigabeventil
    23
    Sperrventil
    24
    Druckversorgung (Normalbetrieb)
    25
    Rücklauf (Normalbetrieb)
    26
    Druckversorgung (Notbetrieb)
    27
    Rücklauf (Notbetrieb)

Claims (8)

  1. Manipulator (1), insbesondere Großmanipulator für Autobetonpumpen, mit einem ausfaltbaren Knickmast (2), der einen um eine Hochachse (4) drehbaren Drehschemel (5) und eine Mehrzahl von Mastsegmenten (6, 6a, 6b, 6c) aufweist, wobei die Mastsegmente (6, 6a, 6b, 6c) an Knickgelenken (7, 7a, 7b) jeweils um Knickachsen gegenüber einem benachbarten Mastsegment (6, 6a, 6b, 6c) oder dem Drehschemel (5) mittels je eines Antriebsaggregates (11) begrenzt verschwenkbar sind, und mit einer mindestens einen Steuerhebel (8) aufweisenden Fernsteuereinrichtung (9), wobei der Steuerhebel (8) in mehrere Stellrichtungen verstellbar ist, wobei ein Fahrbefehl durch eine Verstellung des Steuerhebels (8) in wenigstens eine Stellrichtung erzeugbar ist, der eine gewünschte Bewegung der Mastspitze (3) des Knickmastes oder eines daran angebrachten Endschlauchs angibt, und mit einer Steuereinrichtung (10) zur Ansteuerung der Antriebsaggregate (11), wobei die Steuereinheit (10) den Fahrbefehl in Bewegungsvorgaben für die Antriebsaggregate (11) umsetzt, und wobei die Antriebsaggregate (11) mittels jeweils eines elektrisch angesteuerten Proportionalventils (12) betätigbar sind, welches mit hydraulischen Arbeitsleitungen (13, 14) des jeweiligen Antriebsaggregates (11) zu dessen Ansteuerung verbunden ist,
    dadurch gekennzeichnet,
    dass alle Proportionalventile (12) direkt an oder in unmittelbarer Nähe zu den zu steuernden Antriebsaggregaten (11) angeordnet sind, wobei der Fahrbefehl eine gewünschte Bewegung der Mastspitze (3) des Knickmastes oder eines daran angebrachten Endschlauchs in Richtung kartesischer oder Polar-Koordinaten angibt.
  2. Manipulator nach Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine, direkt an oder in unmittelbarer Nähe zu dem zu steuernden Antriebsaggregat (11) angeordnete Proportionalventil (12) mit einem Schrittmotor (15) ansteuerbar ist.
  3. Manipulator nach Anspruch 2, dadurch gekennzeichnet, dass das mindestens eine direkt, an oder in unmittelbarer Nähe zu dem zu steuernden Antriebsaggregat (11) angeordnete Proportionalventil (12) ein Gehäuse aufweist, welches einen Ventilkolben, eine Rückstellfeder und den Schrittmotor (15) enthält.
  4. Manipulator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zur Lasthaltefunktion verwendete Ventile (16, 16a) als hydraulisch entsperrbare Rückschlagventile ausgebildet sind.
  5. Manipulator nach Anspruch 4, dadurch gekennzeichnet, dass die Stellung der Rückschlagventile (16, 16a) unabhängig von der Stellung des Proportionalventils (12) durch die erste Steuereinheit (10) und/oder eine weitere Steuereinheit veränderbar ist.
  6. Manipulator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das mindestens eine direkt an oder in unmittelbarer Nähe zu dem zu steuernden Antriebsaggregat (11) angeordnete Proportionalventil (12) einen dazu parallelen hydraulischen Notkreis aufweist, wobei der Notkreis bevorzugt zumindest ein steuerbares Schaltventil (21) aufweist, welches direkt an oder in unmittelbarer Nähe zu dem zu steuerndem Antriebsaggregat (11) angeordnet ist und vorzugsweise über eine eigene Druckversorgungsleitung (26) versorgt ist, sowie hydraulisch entsperrbare Rückschlagventile oder Senkbremsventile (20, 20a) zum Erreichen einer Lasthaltefunktion enthält.
  7. Manipulator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Steuereinheit (10) zur aktiven Schwingungsdämpfung eingerichtet ist, wobei die Steuereinheit (10) Ansteuersignale für die Antriebsaggregate (11) zur Dämpfung von Schwingungen des Knickmastes erzeugt.
  8. Manipulator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Umsetzung der Bewegungsvorgaben in Ansteuersignale für das mindestens eine direkt an oder in unmittelbarer Nähe zu dem zu steuernden Antriebsaggregat (11) angeordnete Proportionalventil (12) durch eine lokale Steuereinheit (10a) erfolgt.
EP21195714.7A 2016-04-11 2017-04-10 Grossmanipulator mit dezentraler hydraulik Withdrawn EP3957808A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016106595.1A DE102016106595A1 (de) 2016-04-11 2016-04-11 Großmanipulator mit dezentraler Hydraulik
PCT/EP2017/058535 WO2017178420A1 (de) 2016-04-11 2017-04-10 GROßMANIPULATOR MIT DEZENTRALER HYDRAULIK
EP17720372.6A EP3452672B1 (de) 2016-04-11 2017-04-10 Grossmanipulator mit dezentraler hydraulik

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP17720372.6A Division EP3452672B1 (de) 2016-04-11 2017-04-10 Grossmanipulator mit dezentraler hydraulik

Publications (1)

Publication Number Publication Date
EP3957808A1 true EP3957808A1 (de) 2022-02-23

Family

ID=58645005

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17720372.6A Active EP3452672B1 (de) 2016-04-11 2017-04-10 Grossmanipulator mit dezentraler hydraulik
EP21195714.7A Withdrawn EP3957808A1 (de) 2016-04-11 2017-04-10 Grossmanipulator mit dezentraler hydraulik

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17720372.6A Active EP3452672B1 (de) 2016-04-11 2017-04-10 Grossmanipulator mit dezentraler hydraulik

Country Status (5)

Country Link
US (1) US11105106B2 (de)
EP (2) EP3452672B1 (de)
CN (1) CN109312570A (de)
DE (1) DE102016106595A1 (de)
WO (1) WO2017178420A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018109789A1 (de) * 2018-04-24 2019-10-24 Putzmeister Engineering Gmbh Verfahren und System zur hydraulischen Steuerung eines Betonverteilermasts
US11009048B1 (en) 2020-09-09 2021-05-18 Robert Bosch Gmbh Boom lift system
IT202100019439A1 (it) * 2021-07-22 2023-01-22 Roberto Tomassini Attuatore idraulico controllato per l'impiego su veicoli, rimorchi, semi-rimorchi, carichi sospesi e macchinari industriali.
CN114412861A (zh) * 2022-01-14 2022-04-29 大连华锐重工集团股份有限公司 一种连续卸船机臂架俯仰液压系统及工作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4306127A1 (de) * 1993-02-27 1994-09-01 Putzmeister Maschf Großmanipulator, insbesondere für Autobetonpumpen
DE19520166A1 (de) * 1995-06-01 1995-11-23 Konrad Schauer Maststeuerung für nicht-schwingungsfreie Vielgelenkgeräte, insbesondere für vielgliedrige Betonpumpen-Verteilausleger
US6282893B1 (en) * 1999-08-19 2001-09-04 Delaware Capital Formation, Inc. Self-contained actuator
EP2347988A1 (de) * 2010-01-26 2011-07-27 Cifa S.P.A. Vorrichtung zur aktiven Kontrolle der Vibrationen eines Gelenkauslegers zum Pumpen von Beton.
CN201924601U (zh) * 2010-09-29 2011-08-10 北汽福田汽车股份有限公司 折叠式臂架结构及具有该折叠式臂架结构的混凝土泵车
WO2014165889A1 (de) * 2013-04-09 2014-10-16 Ttcontrol Gmbh Regelsystem und verfahren zum steuern der orientierung eines segments eines manipulators
DE102013014626A1 (de) * 2013-09-04 2015-03-19 Schwing Gmbh Bestimmung der Position eines verlagerbaren Messpunktes an einerMaschine
CN104863366A (zh) * 2014-12-04 2015-08-26 北汽福田汽车股份有限公司 一种混凝土泵送装置臂架控制系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19835015A1 (de) * 1998-08-03 2000-02-10 Linde Ag Hydrostatisches Antriebssystem
CN101232978A (zh) * 2005-07-29 2008-07-30 弗伦茨·埃伦莱特纳 并联运动学装置
CN102071809B (zh) * 2011-01-12 2012-07-25 中联重科股份有限公司 混凝土泵车以及混凝土泵车臂架的减振装置和方法
CN102360228B (zh) * 2011-09-28 2014-07-09 三一重工股份有限公司 一种臂架动作控制系统及混凝土泵车
CN102561700B (zh) * 2012-01-16 2014-05-21 三一重工股份有限公司 一种机械臂控制系统、方法及工程机械
ITMI20120362A1 (it) * 2012-03-07 2013-09-08 Cifa Spa Procedimento per il controllo delle vibrazioni di un braccio articolato e relativo apparato
AT514115B1 (de) * 2013-04-09 2015-05-15 Ttcontrol Gmbh Elektrohydraulischer Steuerkreis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4306127A1 (de) * 1993-02-27 1994-09-01 Putzmeister Maschf Großmanipulator, insbesondere für Autobetonpumpen
DE19520166A1 (de) * 1995-06-01 1995-11-23 Konrad Schauer Maststeuerung für nicht-schwingungsfreie Vielgelenkgeräte, insbesondere für vielgliedrige Betonpumpen-Verteilausleger
US6282893B1 (en) * 1999-08-19 2001-09-04 Delaware Capital Formation, Inc. Self-contained actuator
EP2347988A1 (de) * 2010-01-26 2011-07-27 Cifa S.P.A. Vorrichtung zur aktiven Kontrolle der Vibrationen eines Gelenkauslegers zum Pumpen von Beton.
CN201924601U (zh) * 2010-09-29 2011-08-10 北汽福田汽车股份有限公司 折叠式臂架结构及具有该折叠式臂架结构的混凝土泵车
WO2014165889A1 (de) * 2013-04-09 2014-10-16 Ttcontrol Gmbh Regelsystem und verfahren zum steuern der orientierung eines segments eines manipulators
DE102013014626A1 (de) * 2013-09-04 2015-03-19 Schwing Gmbh Bestimmung der Position eines verlagerbaren Messpunktes an einerMaschine
CN104863366A (zh) * 2014-12-04 2015-08-26 北汽福田汽车股份有限公司 一种混凝土泵送装置臂架控制系统

Also Published As

Publication number Publication date
EP3452672B1 (de) 2021-09-29
CN109312570A (zh) 2019-02-05
US11105106B2 (en) 2021-08-31
WO2017178420A1 (de) 2017-10-19
US20190161983A1 (en) 2019-05-30
DE102016106595A1 (de) 2017-10-12
EP3452672A1 (de) 2019-03-13

Similar Documents

Publication Publication Date Title
EP3452672B1 (de) Grossmanipulator mit dezentraler hydraulik
EP2984350B1 (de) Elektrohydraulischer steuerkreis
EP3443182B1 (de) Elektrohydraulischer steuerkreis für einen grossmanipulator
DE60103353T2 (de) Elektrisch-gesteuertes, hydraulisches antriebssystem
EP2184252B1 (de) Bremsvorrichtung
DE102015108473A1 (de) Großmanipulator mit schnell ein- und ausfaltbarem Knickmast
EP1743981A1 (de) Hydraulische Anordnung
EP3548752B2 (de) Grossmanipulator mit schnell ein- und ausfaltbarem knickmast
DE3347000A1 (de) Elektrohydraulische einrichtung zur steuerung eines doppeltwirkenden hydromotors
WO2017178347A1 (de) Elektrohydraulischer steuerkreis mit schrittmotor
DE10000110B4 (de) Hydrostatischer Fahrzeugantrieb mit Steuerungseinrichtung und Steuerungseinrichtung für hydrostatische Antriebe
EP2136086B1 (de) Hydraulischer Antrieb
EP3665342B1 (de) Grossmanipulator und hydraulische schaltungsanordnung für einen grossmanipulator
AT405749B (de) Anordnung zur hydraulischen betätigung eines heckdeckels
WO2008110620A1 (de) Elektrohydraulisches antriebssystem zur betätigung von wenigstens einem bewegbaren karosseriebauteil eines kraftfahrzeugs
DE10163066A1 (de) Verfahren zur aktiven Schwingungsdämpfung für eine mobile Arbeitsmaschine
DE69004990T2 (de) Verfahren und Vorrichtung zum Steuern einer Baumaschine.
EP2535624A1 (de) Druckbegrenzungsventil
DE202010008424U1 (de) Handhabungsgerät
EP3249241B1 (de) Verfahren zur feststellung der endlagenposition eines hydraulikzylinders einer arbeitshydraulik einer mobilen arbeitsmaschine, insbesondere eines flurförderzeugs
DE102005062235B3 (de) Lastabhängige Betätigungsanordnung
EP2927041B1 (de) Anordnung einer hydraulischen betätigungseinrichtung
DE102008024338B4 (de) Elektro-pneumatisches Antriebssystem sowie Verfahren zu seinem Betreiben
EP3231763A1 (de) Elektrohydraulicher steuerkreis für einen einen grossmanipulator
EP4335981A1 (de) Baumaschine mit einem hydrauliksystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3452672

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220823

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240524