EP3953527B1 - Stopfpickel - Google Patents

Stopfpickel Download PDF

Info

Publication number
EP3953527B1
EP3953527B1 EP20710504.0A EP20710504A EP3953527B1 EP 3953527 B1 EP3953527 B1 EP 3953527B1 EP 20710504 A EP20710504 A EP 20710504A EP 3953527 B1 EP3953527 B1 EP 3953527B1
Authority
EP
European Patent Office
Prior art keywords
tamping
tine
pick
sensor
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20710504.0A
Other languages
English (en)
French (fr)
Other versions
EP3953527A1 (de
EP3953527C0 (de
Inventor
Martin BÜRGER
Gerald Zauner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP3953527A1 publication Critical patent/EP3953527A1/de
Application granted granted Critical
Publication of EP3953527B1 publication Critical patent/EP3953527B1/de
Publication of EP3953527C0 publication Critical patent/EP3953527C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/12Tamping devices

Definitions

  • the invention relates to a tamping pick for a tamping machine for tamping a track, with a pick shaft which has a holding section for fastening in a pick holder at its upper end and which merges into a pick plate at its lower end.
  • the WO 2011/003427 A1 a tamping pick for a tamping machine for tamping a track.
  • the tamping machine includes tamping tools with tine receptacles for clamping a respective tamping tine.
  • JP-A-351149605 discloses a generic tamping pick with the features of the preamble of claim 1.
  • the invention is based on the object of specifying a tamping tool of the type mentioned at the outset, with which an improved tamping process can be carried out is feasible.
  • a sensitive element of a sensor is arranged in a recess in the shaft of the tine and the tamping tine includes a coupling element for transmitting a sensor signal.
  • the tamping tine itself fulfills a sensor function for detecting a measured variable occurring in the tamping tine.
  • the arrangement of the sensitive element is optimal because the recess in the shaft of the pick is adapted to the properties of the sensor.
  • the desired measured values can be recorded with a high level of accuracy, with the integration of the sensitive element in the shaft of the pick preventing interference from being influenced.
  • the arrangement protects the sensitive element from damage.
  • the tamping tine includes electronics of the sensor.
  • the sensor or the sensitive element can be calibrated, calibration data being able to be stored in the electronics.
  • the electronics include a memory chip whose connection is routed to the outside via a cable.
  • a further improvement provides that the sensitive element is designed to record several measured variables occurring in the tamping tine. For example, the temperature of the tamping tine is recorded in addition to mechanical stress. In this way, the sensor is suitable for monitoring operating conditions during a tamping process in order to derive maintenance requirements from them.
  • the coupling element is an element of a detachable plug connection.
  • the plug connection is released and the tamping tool goes through replaced with a new tamping tool.
  • the new tamping tool uses the same plug-in connection to restore the plug-in connection.
  • the tamping tool includes an electronic component for identifying the tamping tool. Conveniently, this is a so-called trusted platform module, which prevents manipulation of the identification.
  • the sensitive element is an expansion element glued into the recess. In this way, forces and accelerations acting on the tamping tine can be easily detected.
  • the sensitive element is an optical waveguide with a fiber Bragg grating.
  • a fiber Bragg grating can be used to measure elongations, compressions and bends at predetermined points in the optical waveguide. Forces, accelerations and temperature changes can be derived from this.
  • the optical waveguide protrudes from the recess in the shaft of the pick and that the protruding section of the optical waveguide is encased in a flexible protective sleeve. In this way, the optical waveguide with the protective sheathing is guided to a point where evaluation electronics are arranged.
  • the recess is designed as a longitudinal bore in a core area of the pick shaft.
  • the sensitive sensor element is then optimally protected against damage without adversely affecting the strength of the ax shaft.
  • a mechanical protection against buckling is optionally arranged at an exit point.
  • opposite tamping tools can be subjected to vibration and are mounted on a height-adjustable tool carrier so that they can be placed next to one another, with the respective tamping tool comprising a pick receptacle in which a tamping pick described above is fastened and with an evaluation device being coupled to the sensor of the respective tamping pick .
  • Measured variables occurring in the tamping picks during a tamping process can thus be recorded in order to optimize the tamping process.
  • the evaluation device is connected to the respective sensor by means of a plug-in connection and if the respective plug-in connection is arranged in particular on the tool carrier. This simplifies the replacement of a tamping tine without impairing the measurement value acquisition.
  • a method for operating the described tamping machine with the described tamping picks provides that during a tamping operation a measured variable occurring in the respective tamping pick is detected by the assigned sensor and registered by the evaluation device. This means that the measured values recorded during a tamping process can be used to optimize subsequent tamping processes. In addition, the tamping quality and the loads that occur can be documented.
  • a calibration process is carried out for each sensor before a stuffing process, in order to determine calibration values. This recurring renewal of the calibration values ensures that each sensor works with the greatest possible accuracy at all times.
  • a further improvement of the method provides that, before a tamping process, a readout process is started for each tamping tool and that the tamping process is blocked if the electronic component for identifying the respective tamping tool is missing or incorrect. This prevents the tamping machine from being operated with the wrong tamping tool. Using the wrong tamping tools can result in poor tamping quality or excessive wear. In addition, incorrect tamping tools cannot be used for the measurement value acquisition according to the invention.
  • Corresponding status data can also be transmitted to a cloud in order to log every change process.
  • the tamping machine 1 shown can be moved with rail chassis 2 on a track 3 to be tamped and comprises a tamping unit 4, a lifting/aligning unit 5, a measuring system 6 and a machine control 7.
  • the track 3 is a ballasted track, in which a sleeper 8 and rails 9 formed track grid is stored in a ballast bed 10.
  • the track panel is lifted into a desired position by means of the lifting/straightening unit 5 and, if necessary, shifted to the side.
  • a comparison of the current position of the track panel with the target position is carried out using the measuring system 6.
  • the target position is fixed by the tamping unit 2 penetrating with vibrating tamping picks 11 between the sleepers 8 into the ballast bed 10 and compacting the ballast under the sleepers 8 with a lateral movement.
  • the lifting/straightening unit 5 and the tamping unit 4 are controlled by the machine control 7 using the measuring system 6.
  • Each tamping pick 11 is fixed in a pick receptacle 12 of a tamping tool 13 .
  • a tine shaft 14 of the respective tamping tine 11 has a holding section 15 at its upper end, which is inserted in the tine receptacle 12 .
  • the holding section 15 is cylindrical and forms a fit with a cylindrical inner surface of the tool holder 12 .
  • the holding section 15 is clamped in the tool holder 12 by means of screw connections.
  • the pick shaft 14 merges into a pick plate 16 .
  • Opposite tamping tools 13 are mounted in the form of tongs on a common tool carrier 17 .
  • the tool carrier 17 is guided in a unit frame 18 so that it can be adjusted in height.
  • Upper ends of the tamping tools 13 are connected to a vibration generator 20 via respective auxiliary drives 19 .
  • the auxiliary drives 19 are mounted on a rotating eccentric shaft.
  • the generation of vibrations is integrated in the respective auxiliary drive 19 . In this case, cyclic vibration strokes are superimposed on an auxiliary stroke in a hydraulic cylinder.
  • At least one measured variable occurring in a tamping pick 11 is recorded.
  • a sensitive element 22 of a sensor 23 is arranged in a recess 21 of the pick shaft 14 .
  • the measured variable is supplied to an evaluation device 25 via a coupling element 24 connected to the sensitive element 22 .
  • the evaluation device 25 is connected to the respective sensor 23 by means of a plug connection 26 .
  • the evaluation device 25 is set up in the machine controller 7, for example.
  • the sensitive element 22 is advantageously an optical waveguide with a fiber Bragg grating.
  • the section with the fiber Bragg grating is glued into the recess 21 of the shaft 14 of the pick. In this way, expansions, compressions or bends in the pick shaft 14 are transmitted to the optical waveguide.
  • the optical waveguide is guided out of the pick shaft 14 at a recess opening 27 .
  • Mechanical protection is advantageously arranged here in order to avoid damage to the optical waveguide.
  • In the example according to 2 forms the protruding section of the optical waveguide with the connection to sensor electronics 28, the coupling element 24. This section is covered with a flexible protective sleeve (eg armored hose).
  • the elongations, compressions and bends of the pick shaft 14 detected by the fiber optic sensor 23 are subsequently evaluated. For example, forces, accelerations and temperature changes are calculated therefrom in the evaluation device 25 . Also Further measurement variables can be derived from the measurement signals by means of the sensor electronics 28 . The basis for this is a preceding calibration process.
  • the sensor 23 is calibrated, for example, by the manufacturer before delivery.
  • the calibration data are stored in the sensor 23 or in a separate storage element.
  • a memory chip 29 is glued into the tamping pick 11, the connection of which is routed to the outside via a cable.
  • the memory chip data is read out by means of a reading device, which can be stationary or mobile. The data are transmitted to the machine control 7 via a radio interface.
  • an automatic calibration program is run before each use of the machine. Calibration values are determined for each tamping tine. The updated values are stored in memory chip 29.
  • the tamping tine 11 expediently comprises a further electronic component 30 which enables the tamping tine 11 to be identified electronically.
  • a so-called trusted platform module is implemented, which ensures that the tamping tool 11 is identified in a way that is secure against forgery.
  • the memory chip 29 and the electronic component 30 are favorably integrated in the sensor electronics 28 .
  • the machine control 7 is set up in such a way that a readout process is started after the machine 1 has been started up and before a first tamping process is carried out. If the respective electronic component 30 is missing or no identification of the respective tamping tool 11 is possible, the tamping process is blocked. This prevents a tamping process from being carried out with the wrong tamping tools.
  • the readout process can also be used to log a tamping tine exchange.
  • the recess 21 is shown as a longitudinal bore in a core area of the pick shaft 14 . This does not weaken the pickaxe shank 14 because the area moment of inertia of the shank cross section is only slightly affected.
  • the longitudinal bore extends approximately to the pick plate 16. Thus, counteracting forces of the pick plate 16 acting Ballast bed 10 with a fiber Bragg grating at the end of a glued-in optical waveguide can be detected directly.
  • the recess 21 is designed as a groove along the pick shaft 14, the groove being sealed after the sensitive element 22 has been introduced.
  • a depression for the sensor electronics 28 is provided in the area of the recess opening 27 .
  • the memory chip 29 and the electronic component 30 as well as plug contacts 31 are also housed in a glued-in electronics housing ( 4 ).
  • the tamping tine 11 includes the entire sensor 23.
  • the plug contacts 31 are connected to the contacts of the tool holder 12 ( figure 5 ).
  • This plug-in connection 26 is arranged in a protected manner in the tine receptacle 12 and connects the sensor 23 to the evaluation device 25 attached to the tamping tool 13.
  • a connection to the machine controller 7 is established via a cable or via a radio interface.
  • the direct detection of mechanical forces, vibrations and, if necessary, the temperature in the tamping picks 11 enables ongoing status monitoring. First of all, this relates to the condition of the processed ballast bed 10. From this, adapted control parameters can be derived in order to adapt the tamping process to the respective ballast bed condition. This takes place automatically in the machine control 7 based on all sensor data and leads to an optimized control of the unit drives.
  • the sensors 23 are used to record the individual tamping processes. It makes sense if ranges are specified for individual measured variables in order to identify unwanted deviations at an early stage. In this way, operating errors and progressive signs of wear can be detected (condition monitoring). An evaluation of the log data enables predictive maintenance of the wear parts, in particular the tamping pick 11 (predictive maintenance).

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Description

    Gebiet der Technik
  • Die Erfindung betrifft einen Stopfpickel für eine Stopfmaschine zum Unterstopfen eines Gleises, mit einem Pickelschaft, der an seinem oberen Ende einen Halteabschnitt zum Befestigen in einer Pickelaufnahme aufweist und der an seinem unteren Ende in eine Pickelplatte übergeht.
  • Stand der Technik
  • Beispielsweise offenbart die WO 2011/003427 A1 einen Stopfpickel für eine Stopfmaschine zum Unterstopfen eines Gleises. Dabei umfasst die Stopfmaschine Stopfwerkzeuge mit Pickelaufnahmen zum Festklemmen eines jeweiligen Stopfpickels.
  • Aus der WO 2018/219570 A1 ist ein Verfahren zum Verdichten eines Gleisschotterbettes mittels einer Stopfmaschine bekannt. Dabei sind an Pickelaufnahmen eines Stopfaggregats Kraftmesssensoren angeordnet, um während eines Schwingungszyklus einen Verlauf einer auf das Stopfwerkzeug wirkenden Kraft über einem vom Stopfwerkzeug zurückgelegten Weg zu erfassen. Alternativ dazu können an einer Außenfläche des jeweiligen Stopfpickels Dehnmessstreifen geklebt sein. Nachteilig sind hierbei die unzureichende Haltbarkeit und die komplizierte und kostenintensive Applizierung. JP-A-351149605 offenbart einen gattungsgemäßen Stopfpickel mit den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, einen Stopfpickel der eingangs genannten Art anzugeben, mit dem ein verbesserter Stopfvorgang durchführbar ist.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch die Merkmale des unabhängigen Anspruchs 1. Abhängige Ansprüche geben vorteilhafte Ausgestaltungen der Erfindung an.
  • Dabei ist in einer Ausnehmung des Pickelschaftes ein sensitives Element eines Sensors angeordnet und der Stopfpickel umfasst ein Koppelelement zur Übertragung eines Sensorsignals. Auf diese Weise erfüllt der Stopfpickel selbst eine Sensorfunktion zum Erfassen einer im Stopfpickel auftretenden Messgröße. Dabei ist eine optimale Anordnung des sensitiven Elements gegeben, weil die Ausnehmung des Pickelschafts an die Eigenschaften des Sensors angepasst ist. Die gewünschten Messgrößen sind mit hoher Genauigkeit erfassbar, wobei die Integration des sensitiven Elements in den Pickelschaft eine Beeinflussung durch Störgrößen verhindert. Zudem schützt die Anordnung das sensitive Element vor Beschädigungen.
  • In einer vorteilhaften Weiterbildung umfasst der Stopfpickel eine Elektronik des Sensors. Damit ist beispielsweise vor einer Auslieferung des Stopfpickels ein Kalibrieren des Sensors oder des sensitiven Elements durchführbar, wobei Kalibierdaten in der Elektronik speicherbar sind. Vorteilhafterweise umfasst die Elektronik einen Speicherchip, dessen Anschluss über ein Kabel nach außen geführt ist.
  • Eine weitere Verbesserung sieht vor, dass das sensitive Element zur Erfassung von mehreren im Stopfpickel auftretenden Messgrößen ausgebildet ist. Beispielweise wird zusätzlich zu einer mechanischen Beanspruchung die Temperatur des Stopfpickels erfasst. Auf diese Weise eignet sich der Sensor zur Überwachung von Einsatzbedingungen während eines Stopfvorgangs, um daraus Wartungserfordernisse abzuleiten.
  • Für einen einfachen Austausch eines Stopfpickels ist es von Vorteil, wenn das Koppelelement ein Element einer lösbaren Steckverbindung ist. Bei einem Stopfpickelwechsel wird die Steckverbindung gelöst und der Stopfpickel durch einen neuen Stopfpickel ersetzt. Der neue Stopfpickel weist den gleichen Steckanschluss auf, um die Steckverbindung wiederherzustellen.
  • Zur Sicherstellung der Kompatibilität umfasst der Stopfpickels sinnvollerweise ein elektronisches Bauteil zur Kennzeichnung des Stopfpickels. Dabei handelt es günstigerweise um ein sogenanntes Trustet Platform Modul, das eine Manipulation der Kennzeichnung verhindert.
  • In einer vorteilhaften Ausprägung des Stopfpickels ist das sensitive Element ein in die Ausnehmung eingeklebtes Dehnungselement. Auf diese Weise sind auf den Stopfpickel wirkende Kräfte und Beschleunigungen einfach erfassbar.
  • Eine weitere Verbesserung sieht vor, dass das sensitive Element ein Lichtwellenleiter mit einem Faser-Bragg-Gitter ist. Mittels eines solchen Faser-Bragg-Gitters können an vorgegebenen Stellen des Lichtwellenleiters Dehnungen, Stauchungen und Biegungen gemessen werden. Daraus sind Kräfte, Beschleunigungen und Temperaturänderungen ableitbar.
  • Dabei ist es günstig, wenn der Lichtwellenleiter aus der Ausnehmung des Pickelschafts herausragt und dass der herausragende Abschnitt des Lichtwellenleiters mit einer flexiblen Schutzhülle ummantelt ist. Auf diese Weise ist der Lichtwellenleiter mit der schützenden Ummantelung bis an eine Stelle geführt, an der eine Auswerteelektronik angeordnet ist.
  • Erfindungsgemäß ist die Ausnehmung als Längsbohrung in einem Kernbereich des Pickelschaftes ausgebildet. Dann ist das sensitive Sensorelement optimal vor Beschädigungen geschützt, ohne die Festigkeit des Pickelschafts ungünstig zu beeinflussen. An einer Austrittsstelle ist gegebenenfalls ein mechanischer Schutz gegen Knicken angeordnet.
  • Bei der Stopfmaschine zum Unterstopfen eines Gleises sind gegenüberliegende Stopfwerkzeuge mit Vibration beaufschlagbar und zueinander beistellbar an einem höhenverstellbaren Werkzeugträger gelagert, wobei das jeweilige Stopfwerkzeug eine Pickelaufnahme umfasst, in der ein oben beschriebener Stopfpickels befestigt ist und wobei eine Auswerteeinrichtung mit dem Sensor des jeweiligen Stopfpickels gekoppelt ist. Damit sind während eines Stopfvorgangs in den Stopfpickeln auftretende Messgrößen erfassbar, um damit den Stopfvorgang zu optimieren.
  • Dabei ist es von Vorteil, wenn die Auswerteeinrichtung mittels einer Steckverbindung mit dem jeweiligen Sensor verbunden ist und wenn die jeweilige Steckverbindung insbesondere am Werkzeugträger angeordnet ist. Das vereinfacht den Austausch eines Stopfpickels, ohne die Messgrößenerfassung zu beeinträchtigen.
  • Ein Verfahren zum Betreiben der beschriebenen Stopfmaschine mit den beschriebenen Stopfpickeln sieht vor, dass während eines Stopfvorgangs eine im jeweiligen Stopfpickel auftretende Messgröße mittels des zugeordneten Sensors erfasst und mittels der Auswerteeinrichtung registriert wird. Damit sind die während eines Stopfvorgangs erfassten Messgrößen für die Optimierung nachfolgender Stopfvorgänge nutzbar. Zudem sind die Stopfqualität und die auftretenden Belastungen dokumentierbar.
  • In einem verbesserten Verfahren wird vor einem Stopfvorgang für jeden Sensor ein Kalibiervorgang durchgeführt, um Kalibrierwerte zu ermitteln. Mit dieser wiederkehrenden Erneuerung der Kalibierwerte ist sichergestellt, dass jeder Sensor zu jeder Zeit mit der größtmöglichen Genauigkeit arbeitet.
  • Eine weitere Verbesserung des Verfahrens sieht vor, dass vor einem Stopfvorgang für jeden Stopfpickel ein Ausleseprozess gestartet wird und dass bei fehlendem oder falschem elektronischen Bauteil zur Kennzeichnung des jeweiligen Stopfpickels der Stopfvorgang blockiert wird. Damit wird verhindert, dass die Stopfmaschine mit falschen Stopfpickel betrieben wird. Die Verwendung falscher Stopfpickel kann Qualitätseinbußen beim Stopfen oder starken Verscheiß nach sich ziehen. Zudem können falsche Stopfpickel nicht zur erfindungsgemäßen Messwerterfassung genutzt werden.
  • Um jederzeit den aktuellen Status der Stopfmaschine abfragen zu können ist es günstig, wenn ein Wechsel eines Stopfpickels mittels der Auswerteeinrichtung registriert wird. Entsprechende Statusdaten können auch in eine Cloud übertragen werden, um jeden Wechselvorgang zu protokollieren.
  • Kurze Beschreibung der Zeichnungen
  • Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1
    Stopfmaschine
    Fig. 2
    Stopfaggregat
    Fig. 3
    Stopfpickel mit Längsbohrung
    Fig. 4
    Stopfpickel mit sensitivem Element und Koppelelement
    Fig. 5
    Stopfpickel in einer Pickelaufnahme
    Beschreibung der Ausführungsformen
  • Die in Fig. 1 dargestellte Stopfmaschine 1 ist mit Schienenfahrwerken 2 auf einem zu unterstopfenden Gleis 3 verfahrbar und umfasst ein Stopfaggregat 4, ein Hebe-/Richtaggregat 5, ein Messsystem 6 und eine Maschinensteuerung 7. Das Gleis 3 ist ein Schottergleis, bei dem ein aus Schwellen 8 und Schienen 9 gebildeter Gleisrost in einem Schotterbett 10 gelagert ist. Während eines Stopfvorgangs wird mittels des Hebe-/Richtaggregats 5 der Gleisrost in eine Sollposition gehoben und gegebenenfalls seitlich verschoben. Ein Abgleich der aktuellen Position des Gleisrosts mit der Sollposition erfolgt mittels des Messsystems 6.
  • Die Sollposition wird fixiert, indem das Stopfaggregat 2 mit vibrierenden Stopfpickeln 11 zwischen den Schwellen 8 in das Schotterbett 10 eindringt und mit einer Beistellbewegung Schotter unter den Schwellen 8 verdichtet. Die Ansteuerung des Hebe-/Richtaggregats 5 und des Stopfaggregats 4 erfolgt mittels der Maschinensteuerung 7 unter Nutzung des Messsystems 6.
  • Jeder Stopfpickel 11 ist in einer Pickelaufnahme 12 eines Stopfwerkzeugs 13 befestigt. Dazu weist ein Pickelschaft 14 des jeweiligen Stopfpickels 11 an seinem oberen Ende einen Halteabschnitt 15 auf, der in der Pickelaufnahme 12 steckt. Beispielsweise ist der Halteabschnitt 15 zylindrisch ausgeführt und bildet mit einer zylindrischen Innenfläche der Pickelaufnahme 12 eine Passung. Mittels Verschraubungen ist der Halteabschnitt 15 in der Pickelaufnahme 12 festgeklemmt. An seinem unteren Ende geht der Pickelschaft 14 in eine Pickelplatte 16 über.
  • Gegenüberliegende Stopfwerkzeuge 13 sind zangenförmig an einem gemeinsamen Werkzeugträger 17 gelagert. Der Werkzeugträger 17 ist höhenverstellbar in einem Aggregatrahmen 18 geführt. Obere Enden der Stopfwerkzeuge 13 sind über jeweilige Beistellantriebe 19 mit einem Vibrationserzeuger 20 verbunden. Beispielsweise sind die Beistellantriebe 19 an einer rotierenden Exzenterwelle gelagert. In einer alternativen Ausführung ist die Vibrationserzeugung im jeweiligen Beistellantrieb 19 integriert. Dabei sind in einem Hydraulikzylinder einem Beistellhub zyklische Vibrationshübe überlagert.
  • Um die Qualität eines Stopfvorgangs zu überwachen und gegebenenfalls zu beeinflussen wird zumindest eine in einem Stopfpickel 11 auftretende Messgröße erfasst. Dazu ist in einer Ausnehmung 21 des Pickelschaftes 14 ein sensitives Element 22 eines Sensors 23 angeordnet. Über ein mit dem sensitiven Element 22 verbundenes Koppelelement 24 ist die Messgröße einer Auswerteeinrichtung 25 zugeführt. In der in Fig. 2 dargestellten Variante ist die Auswerteeinrichtung 25 mittels einer Steckverbindung 26 mit dem jeweiligen Sensor 23 verbunden. Die Auswerteeinrichtung 25 ist beispielsweise in der Maschinensteuerung 7 eingerichtet.
  • Vorteilhafterweise ist das sensitive Element 22 ein Lichtwellenleiter mit einem Faser-Bragg-Gitter. Dabei ist der Abschnitt mit dem Faser-Bragg-Gitter in die Ausnehmung 21 des Pickelschaftes 14 eingeklebt. Auf diese Weise werden Dehnungen, Stauchungen oder Biegungen im Pickelschaft 14 auf den Lichtwellenleiter übertragen. An einer Ausnehmungsöffnung 27 ist der Lichtwellenleiter aus dem Pickelschaft 14 herausgeführt. Günstigerweise ist hier ein mechanischer Schutz angeordnet, um eine Beschädigung des Lichtwellenleiters zu vermeiden. Im Bespiel gemäß Fig. 2 bildet der herausragende Abschnitt des Lichtwellenleiters mit dem Anschluss an eine Sensorelektronik 28 das Koppelelement 24. Dieser Abschnitt ist mit einer flexiblen Schutzhülle ummantelt (z.B. Panzerschlauch).
  • Die mittels des Faseroptik-Sensors 23 erfassten Dehnungen, Stauchungen und Biegungen des Pickelschafts 14 werden in weiterer Folge ausgewertet. Beispielsweise werden in der Auswerteeinrichtung 25 daraus Kräfte, Beschleunigungen und Temperaturänderungen rechnerisch ermittelt. Auch mittels der Sensorelektronik 28 sind aus den Messsignalen weitere Messgrößen ableitbar. Basis dafür ist ein vorangehender Kalibrierprozess.
  • Die Kalibrierung des Sensors 23 erfolgt beispielsweise beim Hersteller vor der Auslieferung. Dabei werden die Kalibrierdaten im Sensor 23 oder in einem eigenen Speicherelement abgespeichert. Günstigerweise ist im Stopfpickel 11 ein Speicherchip 29 eingeklebt, dessen Anschluss über ein Kabel nach außen geführt ist. Bei einem alternativen Drahtlossensor 23 erfolgt ein Auslesen der Speicherchipdaten mittels eines Lesegeräts, das stationär oder mobil ausgeführt sein kann. Die Daten werden über eine Funkschnittstelle an die Maschinensteuerung 7 übermittelt.
  • Alternativ oder ergänzend zur initialen Kalibrierung wird vor jedem Maschineneinsatz ein automatisches Kalibrierprogramm ausgeführt. Dabei werden für jeden Stopfpickel Kalibrierwerte ermittelt. Eine Abspeicherung der aktualisierten Werte erfolgt im Speicherchip 29.
  • Der Stopfpickel 11 umfasst sinnvollerweise ein weiteres elektronisches Bauteil 30, das eine elektronische Kennzeichnung des Stopfpickels 11 ermöglicht. Zum Beispiel ist ein sogenanntes Trustet Platform Modul implementiert, welches eine fälschungssichere Identifikation des Stopfpickels 11 sicherstellt. Günstigerweise sind der Speicherchip 29 und das elektronische Bauteil 30 in der Sensorelektronik 28 integriertet.
  • Die Maschinensteuerung 7 ist dabei so eingerichtet, dass nach Inbetriebnahme der Maschine 1 und vor Ausführung eines ersten Stopfvorgangs ein Ausleseprozess gestartet wird. Falls das jeweilige elektronische Bauteil 30 fehlt oder keine Identifizierung des jeweiligen Stopfpickels 11 möglich ist, wird der Stopfvorgang blockiert. Damit wird verhindert, dass ein Stopfvorgang mit falschen Stopfpickeln durchgeführt wird. Der Ausleseprozess ist auch zur Protokollierung eines Stopfpickeltausches nutzbar.
  • In Fig. 3 ist die erfindungsgemäße Ausnehmung 21 als Längsbohrung in einem Kernbereich des Pickelschaftes 14 dargestellt. Dadurch wird der Pickelschaft 14 nicht geschwächt, weil das Flächenträgheitsmoment des Schaftquerschnitts nur geringfügig beeinflusst wird. Die Längsbohrung reicht annähernd bis zur Pickelplatte 16. Somit sind auf die Pickelplatte 16 wirkende Gegenkräfte des Schotterbettes 10 mit einem Faser-Bragg-Gitter am Ende eines eingeklebten Lichtwellenleiters unmittelbar erfassbar. In einer einfacheren Variante ist die Ausnehmung 21 als Nut entlang des Pickelschaftes 14 ausgeführt, wobei die Nut nach Einbringung des sensitiven Elements 22 versiegelt wird.
  • Im Bereich der Ausnehmungsöffnung 27 ist eine Einsenkung für die Sensorelektronik 28 vorgesehen. Dabei sind in einem eingeklebten Elektronikgehäuse auch der Speicherchip 29 und das elektronische Bauteil 30 sowie Steckkontakte 31 untergebracht (Fig. 4). In dieser Ausführungsvariante umfasst der Stopfpickel 11 den gesamten Sensor 23.
  • Im eingebauten Zustand des Stopfpickels 11 sind die Steckkontakte 31 mit Kontakten der Pickelaufnahme 12 verbunden (Fig. 5). Diese Steckverbindung 26 ist in der Pickelaufnahme 12 geschützt angeordnet und verbindet den Sensor 23 mit der am Stopfwerkzeug 13 befestigten Auswerteeinrichtung 25. Eine Verbindung mit der Maschinensteuerung 7 erfolgt über ein Kabel oder über eine Funkschnittstelle.
  • Die direkte Erfassung von mechanischen Kräften, von Vibrationen und gegebenenfalls der Temperatur in den Stopfpickeln 11 ermöglicht eine laufende Zustandsüberwachung. Das betrifft zunächst den Zustand des bearbeiteten Schotterbettes 10. Daraus lassen sich angepasste Steuerungsparameter ableiten, um den Stopfprozess an den jeweiligen Schotterbettzustand anzupassen. Das geschieht automatisiert in der Maschinensteuerung 7 auf Basis aller Sensordaten und führt zu einer optimierten Ansteuerung der Aggregatantriebe.
  • Neben der Zustandserfassung des Schotterbettes 10 dienen die Sensoren 23 zur Protokollierung der einzelnen Stopfvorgänge. Dabei ist es sinnvoll, wenn für einzelne Messgrößen Bereiche vorgegeben werden, um unerwünschte Abweichungen frühzeitig zu erkennen. Auf diese Weise sind Fehlbedienungen und fortschreitende Abnützungserscheinungen feststellbar (Condition Monitoring). Eine Auswertung der Protokolldaten ermöglicht eine vorausschauende Wartung der Verschleißteile, insbesondere der Stopfpickel 11 (Predictive Maintenance).

Claims (4)

  1. Stopfpickel (11) für eine Stopfmaschine (1) zum Unterstopfen eines Gleises (3), mit einem Pickelschaft (14), der an seinem oberen Ende einen Halteabschnitt (15) zum Befestigen in einer Pickelaufnahme (12) aufweist und der an seinem unteren Ende in eine Pickelplatte (16) übergeht, dass in einer Ausnehmung (21) des Pickelschaftes (14) ein sensitives Element (22) eines Sensors (23) angeordnet ist und dass der Stopfpickel (11) ein Koppelelement (24) zur Übertragung eines Sensorsignals umfasst, dadurch gekennzeichnet, dass die Ausnehmung (21) als Längsbohrung in einem Kernbereich des Pickelschaftes (14) ausgebildet ist.
  2. Stopfpickel (11) nach Anspruch 1, dadurch gekennzeichnet, dass das sensitive Element (22) ein in die Ausnehmung (21) eingeklebtes Dehnungselement ist.
  3. Stopfpickel (11) nach Anspruch 1, dadurch gekennzeichnet, dass das sensitive Element (22) ein Lichtwellenleiter mit einem Faser-Bragg-Gitter ist.
  4. Stopfpickel (11) nach Anspruch 3, dadurch gekennzeichnet, dass der Lichtwellenleiter aus der Ausnehmung (21) des Pickelschafts (14) herausragt und dass der herausragende Abschnitt des Lichtwellenleiters mit einer flexiblen Schutzhülle ummantelt ist.
EP20710504.0A 2019-04-11 2020-03-11 Stopfpickel Active EP3953527B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA130/2019A AT522406A1 (de) 2019-04-11 2019-04-11 Stopfpickel und Verfahren zum Stopfen eines Gleises
PCT/EP2020/056414 WO2020207686A1 (de) 2019-04-11 2020-03-11 Stopfpickel und verfahren zum stopfen eines gleises

Publications (3)

Publication Number Publication Date
EP3953527A1 EP3953527A1 (de) 2022-02-16
EP3953527B1 true EP3953527B1 (de) 2023-07-19
EP3953527C0 EP3953527C0 (de) 2023-07-19

Family

ID=69784458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20710504.0A Active EP3953527B1 (de) 2019-04-11 2020-03-11 Stopfpickel

Country Status (6)

Country Link
US (1) US20220145548A1 (de)
EP (1) EP3953527B1 (de)
JP (1) JP7485694B2 (de)
CN (1) CN113646482A (de)
AT (1) AT522406A1 (de)
WO (1) WO2020207686A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703703B (zh) * 2022-04-28 2023-01-31 武汉理工大学 一种捣固耙、捣固镐、捣固车以及捣固车的捣固方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842321B2 (ja) * 1975-06-14 1983-09-19 芝浦メカトロニクス株式会社 ドウシヨウシメカタメソウチ
SU1194940A1 (ru) * 1984-07-25 1985-11-30 Ts K B Tyazhelykh Putevykh Mas Путевая машина
JP2002146702A (ja) * 2000-11-08 2002-05-22 Nagoya Railroad Co Ltd 道床のつき固め方法及び道床のつき固め装置
JP3942864B2 (ja) 2001-10-31 2007-07-11 財団法人鉄道総合技術研究所 軌道狂い計測方法及びその計測装置
US7268699B2 (en) * 2004-03-06 2007-09-11 Fibera, Inc. Highway-rail grade crossing hazard mitigation
AT502019B1 (de) * 2005-12-14 2007-01-15 Frauscher Gmbh Vorrichtung zur anbringung von sensoren bzw. schaltmitteln in gleisanlagen
EP2452016B1 (de) 2009-07-04 2013-04-10 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Stopfpickel für eine stopfmaschine zum unterstopfen eines gleises
CN102031734B (zh) * 2010-12-15 2012-05-23 山东申普交通科技有限公司 小型液压自动捣固机的智能控制方法
CN103174433A (zh) * 2013-04-02 2013-06-26 天津大学 带有复合传感器的盾构机刀具
SE540535C2 (en) * 2014-11-14 2018-09-25 Solliq Ab Device and method for automatic dispensing of a maintenance agent on railway vehicles
AT516248B1 (de) * 2014-12-12 2016-04-15 System 7 Railsupport Gmbh Verfahren zur Kalibrierung einer Vorrichtung zum Vermessen von Gleisen
EA201791824A1 (ru) 2015-02-13 2017-12-29 Эско Корпорейшн Мониторинг грунтозацепных компонентов оборудования для земляных работ
AT518025A1 (de) * 2015-12-10 2017-06-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stopfaggregat und Verfahren zum Unterstopfen eines Gleises
AT518195B1 (de) * 2016-01-26 2017-11-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren zur Verdichtung der Schotterbettung eines Gleises sowie Stopfaggregat
FR3059683B1 (fr) * 2016-12-02 2019-01-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme de guidage a rail de chemin de fer
US10900197B2 (en) 2017-03-29 2021-01-26 Komatsu Ltd. Work machine management apparatus
AT520056B1 (de) * 2017-05-29 2020-12-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Vorrichtung zum Verdichten eines Gleisschotterbetts

Also Published As

Publication number Publication date
CN113646482A (zh) 2021-11-12
EP3953527A1 (de) 2022-02-16
JP2022526026A (ja) 2022-05-20
US20220145548A1 (en) 2022-05-12
EP3953527C0 (de) 2023-07-19
AT522406A1 (de) 2020-10-15
WO2020207686A1 (de) 2020-10-15
JP7485694B2 (ja) 2024-05-16

Similar Documents

Publication Publication Date Title
EP2265920B1 (de) Vorrichtung und verfahren zum erkennen von schäden an einer arbeitsmaschine
EP0211212B1 (de) Verfahren und Vorrichtung zur Ermittlung und Auswertung von Maschinenzustandsdaten
EP3701126B1 (de) Tunnelbohrmaschine und verfahren zum vortreiben eines tunnels
EP1472413A1 (de) Strassenfräsmaschine mit optimiertem arbeitsbetreib
EP3953527B1 (de) Stopfpickel
DE102005053264A1 (de) Mobile Arbeitsmaschine mit einem Fahrerplatz
EP3853414B1 (de) Stopfaggregat und verfahren zum unterstopfen von schwellen eines gleises
EP2817596A2 (de) Sensoranordnung, vorrichtung und verfahren zur ermittlung von schwingungen eines messobjekts sowie messobjekt mit zumindest einer derartigen sensoranordnung
EP2113608A2 (de) Schabervorrichtung und Rakelvorrichtung
WO2016134893A1 (de) Verfahren zum bestimmen der messbedingungen eines rauheitssensors, verfahren zum vermessen der rauheit einer werkstückoberfläche, computerprogrammprodukt sowie messgerät eingerichtet zur durchführung der verfahren
WO2018019408A1 (de) Handgeführte bodenverdichtungsmaschine
DE102006053483B4 (de) Verfahren zur Überwachung einer Klopfregelung und Vorrichtung zur Klopfregelung einer Brennkraftmaschine
WO1997006026A1 (de) Stromabnehmer
DE19514050C2 (de) Verfahren und Vorrichtung zum Erfassen von Belastungen von Hub- und Zugeinrichtungen
EP0471180B1 (de) Verfahren und Vorrichtung zur Erkennung von Bearbeitungsfehlern, insbesondere von Schleifmaschinen
EP3473997A1 (de) Verfahren und vorrichtung zur dynamischen belastungsprüfung
DE102020108406A1 (de) Taktiler oder/und optischer Abstandssensor, System mit einem solchen Abstandssensor und Verfahren zur Kalibrierung eines solchen Abstandssensors oder eines solchen Systems
DE102021100466A1 (de) Sensorelement und Sensorvorrichtung zum Erfassen eines axialen Längenausgleichs in einem Längenausgleichsfutter beim Bearbeiten eines Werkstücks mit einem Werkzeug
DE3445544C2 (de)
RU2773840C1 (ru) Трамбовка и способ подбивки рельсового пути
EP3887222A1 (de) Messanordnung zum überwachen einer gleisstrecke
EP3760979B1 (de) Positionsmesseinrichtung und verfahren zum betreiben einer positionsmesseinrichtung
EP2103410A1 (de) Kunststoff-Spritzgießmaschine mit Spritzkraftmesseinrichtung
DE19723804A1 (de) Vorrichtung zur Ermittlung des Druckes im Arbeitsraum von Hubkolbenmaschinen
DE8418953U1 (de) Vorrichtung zum richten von werkstuecken

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004254

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230721

U01 Request for unitary effect filed

Effective date: 20230719

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020004254

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240215

Year of fee payment: 5

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20240402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 5