EP3936248B1 - Laminage en fonction de la réponse de fréquence - Google Patents

Laminage en fonction de la réponse de fréquence Download PDF

Info

Publication number
EP3936248B1
EP3936248B1 EP20184420.6A EP20184420A EP3936248B1 EP 3936248 B1 EP3936248 B1 EP 3936248B1 EP 20184420 A EP20184420 A EP 20184420A EP 3936248 B1 EP3936248 B1 EP 3936248B1
Authority
EP
European Patent Office
Prior art keywords
metal strip
control device
thickness
rolling stand
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20184420.6A
Other languages
German (de)
English (en)
Other versions
EP3936248C0 (fr
EP3936248A1 (fr
Inventor
Matthias Dreßler
Daniel Kotzian
Martin Schönherr
Srdan Sekulic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20184420.6A priority Critical patent/EP3936248B1/fr
Application filed by Primetals Technologies Germany GmbH filed Critical Primetals Technologies Germany GmbH
Priority to KR1020237000238A priority patent/KR20230035563A/ko
Priority to JP2023501311A priority patent/JP2023533739A/ja
Priority to US18/012,280 priority patent/US20230256489A1/en
Priority to PCT/EP2021/064020 priority patent/WO2022008133A1/fr
Priority to CN202180048596.0A priority patent/CN115867396A/zh
Publication of EP3936248A1 publication Critical patent/EP3936248A1/fr
Application granted granted Critical
Publication of EP3936248C0 publication Critical patent/EP3936248C0/fr
Publication of EP3936248B1 publication Critical patent/EP3936248B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/165Control of thickness, width, diameter or other transverse dimensions responsive mainly to the measured thickness of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0064Uncoiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/20Track of product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/10Motor power; motor current
    • B21B2275/12Roll torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control
    • B21B37/54Tension control; Compression control by drive motor control including coiler drive control, e.g. reversing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control

Definitions

  • the present invention is further based on a control program that includes machine code that can be processed by a control device for a rolling mill, the processing of the machine code by the control device causing the control device to operate the rolling mill according to such an operating method.
  • the present invention is further based on a control device for a rolling mill, the control device being programmed with such a control program, so that the control device operates the rolling mill according to such an operating method.
  • the slab is first hot-rolled to create a hot strip.
  • the thickness of the hot strip is usually in the range of a few millimeters, sometimes slightly more or less depending on the manufacturing process, for example between 1.0 mm and 20 mm in a normal hot rolling system and between 0.6 mm and 6 mm in a so-called ESP system .
  • the hot strip is further processed without further reduction in thickness.
  • the strip thickness is further reduced after hot rolling in a cold rolling mill.
  • the aim of cold rolling is to produce a cold-rolled metal strip whose final thickness matches a target thickness as closely as possible and with as little deviation as possible.
  • the finished hot strip - i.e. after hot rolling but before rolling in the cold rolling mill - has thickness deviations.
  • the thickness deviations often have both periodic components and stochastic components. If these deviations are not compensated for, the metal strip will exhibit such deviations even after cold rolling. Although the absolute extent of the deviations is smaller than with hot strip, the relative deviation remains. So if - for example - the metal strip before cold rolling has a thickness of 3.0 mm and thickness deviations in the range of 30 ⁇ m and furthermore the metal strip after cold rolling has a thickness of 1.0 mm, then the metal strip shows without compensation for the thickness deviations During cold rolling, thickness deviations in the range of 10 ⁇ m occur.
  • the procedure of the EP 0 435 595 A2 is based on the idea that the control by the feed device itself and the receiving device itself is very slow and the additional rollers can increase the dynamics of the control.
  • a procedure is also described in which on the inlet side of the rolling stand, the thickness and speed of the metal strip are recorded and used in determining the position of the rolling stand.
  • the thickness of the still unrolled metal strip is recorded on the inlet side of the rolling stand and averaged over certain units of length. The average value is used to control the position of the rolling stand.
  • the object of the present invention is to create options by means of which excellent compensation for thickness deviations of the metal strip on the inlet side can be achieved.
  • an operating method of the type mentioned at the beginning is designed in that the control device determines the respective control value based on the final thickness deviation of the respective section of the metal strip and the final thickness deviations of a plurality of sections of the metal strip preceding and/or following the respective section of the metal strip, taking into account a description of the inverse frequency behavior of the roll stand and/or the feed device and/or the measuring device.
  • the extent to which a particular thickness deviation is corrected depends not only on the thickness deviation itself, but also on the spectrum of thickness deviations.
  • higher-frequency thickness deviations are generally only compensated to a lesser extent and with a greater phase delay than thickness deviations with a lower frequency.
  • the frequency behavior of the controlled device must be adjusted - usually these are the setting of the rolling stand for the size of the roll gap and the feed device for the inlet speed and/or the size of the inlet-side train - be taken into account.
  • the measured value acquisition also has a frequency behavior, which can also be taken into account in this case. The consideration is based on a description of the inverse frequency behavior of the roll stand and/or the feed device and/or the measuring device.
  • the description of the inverse frequency behavior of the roll stand and/or the feed device and/or the measuring device of the control device is specified as a frequency response and that the control device determines the respective control value by transforming the course of the final thickness deviations into the frequency range, a subsequent one Multiplication of the transformed course of the final thickness deviation with the frequency response and a subsequent back-transformation into the time domain is determined.
  • This approach leads to particularly high-quality results.
  • the detection of the frequency response and, based on this, the determination or parameterization of the inverse model or the determination of the gains for the individual frequency ranges or the determination of the convolution kernel can be done automatically.
  • defined small disturbances can be impressed on the roll gap setpoint of the rolling stand during ongoing operation of the rolling mill. These disturbances are reflected on the outlet side of the roll stand in corresponding fluctuations in the outlet-side thickness of the metal strip. If there is a measuring device downstream of the roll stand, by means of which this outlet-side thickness is recorded, the frequency response can be determined in an automated manner through a combined evaluation of the impressed disturbances on the one hand and the fluctuations in the outlet-side thickness on the other hand. This is known in principle to experts.
  • the control device preferably uses both final thickness deviations from sections of the metal strip preceding the respective section of the metal strip and final thickness deviations from sections of the metal strip following the respective section of the metal strip. This makes the determination of the respective control value particularly reliable. This is particularly true if the number of sections of the metal strip preceding the respective section of the metal strip, whose final thickness deviations are used by the control device to determine the respective control value, is essentially equal to the number of sections of the metal strip following the respective section of the metal strip Final thickness deviations are used by the control device to determine the respective control value.
  • the control device adopts the preliminary thickness deviations 1:1 as the final thickness deviations.
  • the control device determines the final thickness deviations from the preliminary thickness deviations using zero-phase filtering. This procedure leads to a more stable and robust operation of the rolling stand and/or the feed device. This is particularly true if the zero phase filtering is used to carry out low-pass filtering of the preliminary thickness deviations.
  • control program with the features of claim 9.
  • the execution of the computer program causes the control device operates the rolling mill according to an operating method according to the invention.
  • control device with the features of claim 10.
  • the control device is programmed with a control program according to the invention, so that the control device operates the rolling mill according to an operating method according to the invention.
  • the control device operates the rolling mill according to an operating method according to the invention.
  • a rolling mill for rolling a metal strip 1 has a rolling stand 2.
  • the metal strip 1 is rolled in the rolling stand 2.
  • the rolling stand 2 can in particular be a cold rolling stand, in which the metal strip 1 is consequently cold rolled. From the rolling stand 2 are in FIG 1 only the work rolls shown.
  • the roll stand 2 additionally comprises at least two support rolls (quarto stand), in some cases even more rolls.
  • the roll stand 2 can be designed as a six-roll stand (two work rolls, two intermediate rolls, two support rolls) or as a 12-roll roll stand or as a 20-roll roll stand.
  • the metal strip 1 can be made of steel, aluminum or another metal, for example copper or brass.
  • the rolling mill also has a feed device 3.
  • the feed device 3 is arranged upstream of the roll stand 2.
  • the metal strip 1 is fed from the feed device 3 to the roll stand 2 at an inlet speed v.
  • the feed device 3 is according to FIG 1 trained as a reel. But it could also be designed differently, for example as a driver or as another roll stand that is different from the roll stand 2.
  • the feed device 3 can also be designed as a so-called S-roll, i.e. several rollers over which the metal strip 1 is guided in an S-shape.
  • the speed at which the metal strip 1 enters the roll stand 2 and the speed at which the metal strip 1 is output from the feed device 3 would have to be differentiated from one another.
  • the speed at which the metal strip 1 enters the roll stand 2 is determined by the peripheral speed of the work rolls of the roll stand 2 and the lag in the roll stand 2.
  • the speed at which the metal strip 1 is output from the feed device 3 is, for example, in the case of a reel Speed at which the reel rotates the coil and determines the current, time-changing diameter of the coil. There may be slight differences between these two speeds for a short time. If such short-term differences exist, the tension that exists in the metal strip 1 between the feed device 3 and the roll stand 2 changes. However, only the inlet speed v is discussed below. Unless explicitly mentioned, what is meant below in case of doubt is the speed at which the metal strip 1 is output from the feed device 3.
  • a measuring device 4 is arranged between the feed device 3 and the roll stand 2. Using the measuring device 4, a thickness value d for the thickness of the metal strip 1 is repeatedly recorded iteratively. Furthermore, a further measuring device 5 can also be present, by means of which a measured value for the inlet speed v is repeatedly recorded.
  • the thickness value d recorded in each case and, if necessary, the value recorded in each case for the inlet speed v are fed to a control device 6, which is also part of the rolling mill.
  • the control device 6 repeatedly determines a control value A2, A3 for the roll stand 2 and/or the feed device 3. As a rule, the control device 6 determines both control values A2, A3.
  • the control value A2 for the roll stand 2 generally acts at least on the position of the roll stand 2, i.e. the setting of the roll gap.
  • the control value A2 can act on the main drive of the rolling stand 2, i.e. change the rolling torque or the rolling speed.
  • the control value A2 often affects both the position of the rolling stand 2 and its main drive.
  • the control value A2 for the roll stand 2 can be viewed as a vector variable which each has a component for the adjustment of the roll stand 2 and for the main drive of the roll stand 2.
  • the control value A3 is supplied to a speed or torque control for the feed device 3 and acts on the inlet speed v and / or on the tension that prevails in the metal strip 1 on the inlet side of the roll stand 2. If necessary, other devices located upstream of the feed device 3 must also be controlled as part of the control of the feed device 3. The consideration of such additional devices makes the calculation of the control value A3 more complex, but does not change the principle of the present invention.
  • the control device 6 is programmed with a control program 7.
  • the control program 7 includes machine code 8, which can be processed by the control device 6.
  • the programming of the control device 6 with the control program 7 or the processing of the machine code 8 by the control device 6 causes the control device 6 to operate the rolling mill according to an operating method which is explained in more detail below. This is done first FIG 2 and then on the FIGS. 3 and 4 Referenced.
  • the control device 6 receives the respectively detected thickness value d and, if necessary, also the respectively detected value for the inlet speed v.
  • the control device 6 determines the deviation ⁇ d of the detected thickness value d from a target thickness d*, hereinafter referred to as thickness deviation ⁇ d.
  • the thickness deviation ⁇ d determined in step S2 is only a preliminary thickness deviation ⁇ d.
  • the control device 6 determines a respective final thickness deviation 5d 'on the basis of the preliminary thickness deviation ⁇ d.
  • step S3 is trivial in nature. In this case, the control device 6 adopts the preliminary thickness deviations 5d 1:1 as the final thickness deviations ⁇ d'.
  • the control device 6 can carry out zero-phase filtering in step S3 to determine the final thickness deviations ⁇ d'.
  • a filtered curve of values here the time curve of the final thickness deviations 5d'
  • an original curve of values here the time curve of the preliminary thickness deviations ⁇ d
  • the zero-phase filtering is a low-pass filtering, so that high-frequency fluctuations are filtered out.
  • the low-pass filtering significantly improves the stability of the inverse modeling of the roll stand 2, the feed device 3 and/or the measuring device 4.
  • step S3 is therefore carried out for another section 9, the preliminary thickness deviation ⁇ d of which has already been recorded.
  • Zero phase filtering is well known to those skilled in the art.
  • IIR infinite impulse response
  • FIR finite impulse response
  • step S4 the control device 6 determines the control values A2, A3 using the final thickness deviations 5d'.
  • step S5 the control device 6 outputs the control values A2, A3 to the roll stand 2 and/or the feed device 3. The control device 6 then goes back to step S1.
  • FIG 3 shows the metal strip 1 from above.
  • the metal strip 1 is virtually divided into sections 9. Some of the sections 9 are in FIG 3 In addition to the reference number 9, a small letter (for example a, b, etc.) is added in order to be able to refer to them individually.
  • the thickness value d of a specific section 9 - for example section 9a - is recorded and fed to the control device 6.
  • the recorded thickness value d, the associated preliminary thickness deviation 5d and the associated final thickness deviation 5d' are therefore related to this section 9a.
  • section 9 - for example section 9b - is rolled in the roll stand 2.
  • the geometric distance of the sections 9a and 9b on the metal strip 1 corresponds to the geometric distance a of the measuring device 4 from the roll stand 2.
  • a certain period of time T' is required to convey the section 9a from the measuring device 4 to the rolling stand 2.
  • the time period T' is generally considerably longer than the cycle time T.
  • the respective thickness value d was already recorded before the section 9b was rolled.
  • the metal strip 1 has sections 9 that have already been rolled in the rolling stand 2, for example section 9d.
  • step S4 determines the control values A2, A3 for, for example, the section 9c and further in step S5 to output the control values A2, A3 determined in step S4 to the roll stand 2 and / or the feed device 3. If necessary, control values A2, A3 can also be output to the roll stand 2 and/or the feed device 3, which have already been previously determined for a section 9 between section 9c and section 9b.
  • path tracking is well known to those skilled in the art. This makes it possible to output the control values A2, A3 to the roll stand 2 and/or the feed device 3 at the correct time.
  • timely means that control values A2, A3 output to the roll stand 2 and/or the feed device 3 act on the metal strip 1 at a time at which the respective section 9 of the metal strip 1 is being rolled in the roll stand 2.
  • the time period T′ and, if necessary, also reaction times (dead times) of the roll stand 2 and/or the feed device 3 can be taken into account.
  • the reaction times are times that the roll stand 2 and/or the feed device 3 need to react to a newly supplied control value A2, A3.
  • dead times that occur in the communication between different devices or in automation can also be taken into account.
  • the determination of the control values A2, A3 must of course be completed before output.
  • the respective thickness value d Due to the fact that the respective thickness value d has already been recorded for the sections 9 between the section 9a and the section 9c and therefore the respective preliminary thickness deviation 5d is also known and furthermore at least for those adjacent to the section 9c in the direction of the section 9a Sections 9 and the final thickness deviations 5d' are known, it is possible, for example, for the determination of the control values A2, A3 for the section 9c, not only to take into account the final thickness deviation 5d' of the section 9c, but also any of the other final thickness deviations 5d ', provided they've just already been determined.
  • the control device 6 can take into account the final thickness deviations 5d' from several adjacent sections 9 towards the section 9a.
  • the control device 6 can, in addition to the thickness deviation 5d 'of the section 9c, take into account the final thickness deviations 5d' from several adjacent sections 9 towards the section 9b and, if necessary, also beyond the section 9b.
  • the control device 6 further takes into account a description of the inverse frequency behavior of the roll stand 2 and/or the feed device 3 and/or the measuring device 4.
  • the control device 6 is therefore given a description which describes the corresponding frequency behavior as such directly characterized.
  • the frequency behavior can be determined based on the description mentioned. Options for specifying the description of the frequency behavior are explained in more detail below.
  • the control device 6 therefore not only determines the respective control value A2, A3 in a way by which the corresponding inverse frequency behavior is taken into account. Rather, the control device 6 explicitly knows the corresponding inverse frequency behavior as such.
  • the control device 6 is therefore aware of parameters that define the inverse frequency behavior. This will be explained in more detail below in connection with the roll stand 2. Analogous versions apply to the feed device 3 and possibly also the measuring device 4.
  • the roll stand 2 can be modeled in various ways. In the simplest case, the roll stand 2 is modeled as a PT1 link. Alternatively, higher-order modeling is possible. The modeling describes the rolling stand 2 as such, possibly including its control. However, the transport time, i.e. the time period T', is not part of the modeling.
  • G ⁇ 1 s 1
  • G s c n ⁇ s n + c n ⁇ 1 ⁇ s n ⁇ 1 + ... + c 1 ⁇ s + c 0 b m ⁇ s m + b m ⁇ 1 ⁇ s m ⁇ 1 + ... + b 1 ⁇ s + b 0
  • the inverse transfer function G -1 (s) is modeled exactly, the modeled behavior of the roll stand 2 becomes often unstable. In some cases, even the behavior of the real rolling stand 2 can become unstable. For example, the inverse of a PT1 term results in a PD term. A PD element amplifies high frequencies extremely. The theoretically determinable output signal of a PD element cannot be implemented in reality. The reason for this is the control limitations of the actuators, here the roll stand 2. To ensure stability and feasibility, the denominator polynomial of the inverse transfer function G -1 (s) is expanded by a proportion that is proportional to the highest power of s in the numerator of the inverse transfer function G - 1 (s) is.
  • the control device 6 as shown in FIG 5 to specify a corresponding inverse model 10 of the rolling stand 2.
  • the inverse model 10 describes the inverse frequency behavior of the roll stand 2, possibly including the inverse frequency behavior of the measuring device 4. Constant dead times and the like can be set as required within the inverse model 10 or outside the inverse model 10 within the scope of the lead time T2 ' be taken into account.
  • the final thickness deviation 5d' of a section 9 of the metal strip 1 is supplied to the inverse model 10 - clocked with the cycle time T.
  • the control device 6 determines the respective control value A2 for the roll stand 2 by means of the inverse model 10, additionally taking into account an internal state Z2 of the inverse model 10, and outputs the control value A2 to the roll stand 2. Furthermore, the control device 6 tracks the internal state Z2 using the respective final thickness deviation 5d 'and the previous internal state Z2 of the inverse model 10. Taking into account the internal state Z2 and tracking the internal state Z2 are necessary, since otherwise the inverse model 10 of the rolling stand 2 has no knowledge of the previous course of the final thickness deviation ⁇ d' could store and therefore could not model frequency behavior, but only purely proportional behavior.
  • the inverse model 10 is preceded by a transport model 11.
  • the transport model 11 is supplied with the respective final thickness deviation ⁇ d' and the inlet speed v - clocked with the cycle time T.
  • the transport model 11 models the path tracking of the respective section 9, to which the respective final thickness deviation ⁇ d 'is assigned.
  • the transport model 11 is supplied with a reserve time T2 '.
  • the transport model 11 outputs the respective final thickness deviation ⁇ d' with a time delay compared to the time at which the respective final thickness deviation ⁇ d' was supplied to the transport model 11.
  • the time delay is selected such that the control value A2 output for a specific section 9 takes effect at the time at which the corresponding section 9 of the metal strip 1 is rolled in the rolling stand 2.
  • the respective final thickness deviation ⁇ d' from the transport model 11 is not fed directly to the inverse model 10 of the roll stand 2, but is first multiplied in a multiplier 12 with a static amplification factor V2.
  • the respective final thickness deviation ⁇ d ' is converted into an additional setpoint, for example for the roll gap of the roll stand 2 or the main drive of the roll stand 2.
  • the modeling of the inverse frequency behavior of the feed device 3 can also be carried out in a completely analogous manner, if necessary including the inverse frequency behavior of the measuring device 4.
  • T3 ' is a lead time for the feed device
  • V3 is a gain factor.
  • the multiplier 15 the respective final thickness deviation 5d' is converted into an additional setpoint for the entry speed v of the metal strip 1. If the feed device 3 does not regulate the inlet speed v, but rather the tension prevailing in the metal strip 1 on the inlet side of the roll stand 2, the moment of inertia of the feed device 3 may also have to be taken into account.
  • control value A2 is a vector variable, which each has a component for the adjustment of the roll stand 2 and for the main drive of the roll stand 2, the modeling explained above for the roll stand 2 must be carried out separately for each component of the vector variable. If necessary, several inverse partial models are available for the roll stand 2. But this doesn't change the principle.
  • the corresponding control of the roll stand 2 takes place using the control values A2, so that there are only the smallest possible fluctuations in the thickness of the metal strip 2 on the outlet side of the roll stand 2.
  • the corresponding control of the feed device 3 takes place using the control values A3, so that the inlet speed v and/or the inlet-side tension in the metal strip 1 is kept as constant as possible.
  • the tension has an influence on the stitch reduction in the roll stand 2. So that changes in the tension in the metal strip 1 do not have an undesirable influence on the stitch withdrawal, the inlet speed v must be synchronous with the changes in the position of the roll stand 2 and the changes in the peripheral speed of the Work rolls of the roll stand 2 can be adjusted.
  • the final thickness deviations 5d are determined by means of zero-phase filtering of the preliminary thickness deviations 5d.
  • a respective zero-phase filter 16, 17 can therefore be arranged upstream or downstream of the transport models 11, 14. It is also possible to integrate the zero-phase filtering into the respective transport model 11, 14.
  • the transport models 11, 14 are essentially designed in the same way.
  • the structure of the control device 6 of FIG 5 can therefore according to the structure of FIG 6 be modified.
  • one of the transport models 11, 14 is omitted.
  • the lead time T3' will usually be greater than the lead time T2'.
  • the transport model 14 is omitted and the delay element 18 is still arranged in the path for the control value A2.
  • An alternative embodiment of the present invention is that the description of the inverse frequency response of the roll stand 2 - possibly as a combined description of the inverse frequency response of the measuring device 4 - is specified as the frequency response FG.
  • the correction variable "change in position of the roll stand 2" and/or “change in the torque of the work rolls” or “change in the speed of the work rolls” must therefore be dynamically adjusted in amplitude and phase position in order to produce an optimal correction signal to generate.
  • the roll stand 2 In order to compensate for a final thickness deviation ⁇ d' occurring at a higher frequency on the inlet side of the roll stand 2, the roll stand 2 must therefore be controlled more strongly.
  • the amplitude and phase position of the reaction of the roll stand 2 to the respective control value A2 can be combined into a complex factor for the respective frequency.
  • the inverse of the respective complex factor corresponds to a - complex - amplification factor V for the respective frequency, with which a thickness deviation of the respective frequency must be scaled so that it is completely compensated for on the output side of the roll stand 2.
  • the entirety of these amplification factors V i.e. the amplification factors V for different frequencies or frequency ranges FB, form the frequency response FG, which is specified to the control device 6.
  • a respective control value A2 can be determined according to the illustration in FIG 8 be proceeded. The approach of FIG 8 may have to be carried out separately for each component of the respective control value A2.
  • the control device 8 is according to FIG 8
  • the respective final thickness deviation ⁇ d' is specified for the respective section 9 and a plurality of further sections 9.
  • the final thickness deviations 5d' form a progression over time.
  • the control device 6 transforms the time course in a transformation block 19 into the frequency range.
  • FT Fourier transformation
  • STFT short time Fourier transformation
  • the Fourier transform can be continuous or discrete as required. It can also be analog or digital as required.
  • other transformations can also be considered, for example a discrete cosine transformation.
  • the control device 6 determines the frequency components FA of the named curve using the transformation block 19.
  • a subsequent determination block 20 - separately for the individual frequency ranges FB - the respective frequency component FA is multiplied by the amplification factor V for the respective frequency range FB.
  • the transformed curve is therefore multiplied by the frequency response FG. Due to the multiplication in the complex frequency range, both amplitudes are scaled and phases are shifted. This multiplication creates a corrected spectrum of the final thickness deviations 5d' in the frequency space, which optimally compensates for the frequency-dependent transmission behavior of the roll stand 2.
  • control device 6 transforms the output signal of the determination block 20 - that is, the frequency curve scaled by frequency - back into the time domain.
  • the transformation of the transformation block 21 is inverse to the transformation of the transformation block 19. From the output signals of the transformation block 21, the control device 6 finally selects the one that was determined for the respective section 9.
  • the number of final thickness deviations 5d' that occur as part of the procedure according to FIG 8 used can be determined as needed. It is particularly advisable to choose the number so that it is equal to a power of two. Because then the Fourier transform can be implemented as a fast Fourier transform.
  • the convolution kernel FK can be, for example, by an isolated transformation of the frequency response FG FIGS. 7 and 8 can be determined in the time range.
  • a respective control value A2 can be determined according to the illustration in FIG 10 proceed as follows:
  • the control device 8 is - as in FIG 8 also - the respective final thickness deviation ⁇ d 'is specified for the respective section 9 and a plurality of further sections 9.
  • the final thickness deviations 5d' form - as in FIG 8 also - a time course.
  • the control device 6 carries out a convolution of this curve with the convolution kernel FK. From the output signals of the determination block 22, the control device 6 selects the one that was determined for the respective section 9 as the control value A2.
  • control device 6 As are the structures of the control device 6 according to FIGS. 5 and 6 - Designed as software blocks in the control device 6. They are therefore formed based on programming with the control program 7 and the processing of the machine code 8.
  • the further sections 9, whose final thickness deviation 5d' is taken into account in the determination of the respective control value A2, A3, to be exclusively sections 9 that precede the respective section 9 of the metal strip 1. It is the same in the designs of FIG 8 and 10 It is possible that the further sections 9 are exclusively sections 9 that correspond to the respective section 9 of the metal strip 1 follow. As a rule, it leads in the case of the configurations of the FIG 8 and 10 However, a better result is achieved if a mixed approach is taken, i.e. if some of the further sections 9 precede the respective section 9 of the metal strip 1 and a further part of the further sections 9 follow the respective section 9 of the metal strip 1. For example, those sections 9 can always be used which - based on the section 9 whose thickness d is recorded in the respective cycle - in the in FIG 3 with 23 designated area.
  • FIG 3 At the same time also shows another advantageous embodiment. Because if the control values A2, A3 are determined for section 9c, as shown in FIG 3 the number of sections 9 of the metal strip 1 preceding the respective section 9 of the metal strip 1, the final thickness deviations 5d 'of which the control device 6 uses to determine the respective control value A2, is essentially equal to the number of sections 9 of the metal strip 1 following the respective section 9 of the metal strip 1 Metal strip 1, the final thickness deviations 5d 'of which the control device 6 uses to determine the respective control value A2, A3. However, a slight deviation (for example up to two sections 9 more or less) is usually not a problem. It also often makes sense to use a total of 2 n sections. In this case, the number of sections 9 that precede the respective section 9 of the metal strip 1 is preferably exactly 1 larger or 1 smaller than the number of sections 9 of the metal strip 1 that follow the respective section 9 of the metal strip 1.
  • the present invention has many advantages. In particular, an almost complete correction of thickness deviations ⁇ d on the inlet side is achieved in a simple manner. This is particularly true if both the control value A2 and the control value A3 are in the manner according to the invention be determined. It is also easily possible to retrofit existing rolling mills according to the invention. Because the hardware as such, ie the rolling stand 2, the feed device 3, the measuring devices 4, 5 and the control device 6 do not have to be changed. Only the control program 7 for the control device 6 needs to be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Claims (11)

  1. Procédé opératoire pour laminoir,
    - dans lequel une bande métallique (1) est alimentée à une cage de laminoir (2) du laminoir par un dispositif d'alimentation (3) disposé en amont de la cage de laminoir (2), à une vitesse d'entrée (v),
    - dans lequel la bande métallique (1) est laminée dans la cage de laminoir (2),
    - dans lequel, grâce à une unité de mesure (4) disposée entre le dispositif d'alimentation (3) et la cage de laminoir (2), une valeur d'épaisseur (d) chacune relative à l'épaisseur de la bande métallique (1) est déterminée pour des sections successives (9) de la bande métallique (1),
    - les valeurs d'épaisseur (d) déterminées étant fournies à une unité de commande (6) du laminoir,
    - dans lequel l'unité de commande (6) détermine, sur la base du décalage de la valeur d'épaisseur (d) correspondante par rapport à une épaisseur cible (d*) un décalage d'épaisseur (5d) provisoire correspondant pour la section correspondante (9) de la bande métallique (1),
    - dans lequel l'unité de commande (6) détermine, sur la base des décalages d'épaisseur provisoires (5d), des décalages d'épaisseur définitifs (5d'),
    - dans lequel l'unité de commande (6) détermine pour les sections (9) de la bande métallique (1) une valeur de commande (A2, A3) chacune pour la cage de laminoir (2) et/ou le dispositif d'alimentation (3) et fournit la valeur de commande correspondante (A2, A3) à la cage de laminoir (2) et/ou au dispositif d'alimentation (3) à l'instant correct,
    caractérisé en ce que
    l'unité de commande (6) détermine la valeur de commande correspondante (A2, A3) à l'aide du décalage d'épaisseur définitif (δd') de la section correspondante (9) de la bande métallique (1) ainsi que des décalages d'épaisseur définitifs (5d') d'une pluralité des sections (9) de la bande métallique (1) situées en amont et/ou en aval de la section correspondante (9) de la bande métallique (1), en prenant en compte une description du comportement en fréquence inverse de la cage de laminoir (2) et/ou du dispositif d'alimentation (3) et/ou de l'unité de mesure (4) .
  2. Procédé opératoire selon la revendication 1, caractérisé
    - en ce que la description du comportement en fréquence inverse de la cage de laminoir (2) et/ou du dispositif d'alimentation (3) et/ou de l'unité de mesure (4) de l'unité de commande (6) est prédéfinie par un modèle inverse (10, 13),
    - en ce qu'on fournit au modèle inverse (10, 13) le décalage d'épaisseur définitif (5d') chacun d'une section de la bande métallique (1) et
    - en ce que l'unité de commande (6), en exploitant le décalage d'épaisseur définitif (5d') respectif moyennant le modèle inverse (10, 13), trace d'une part un état interne (Z2, Z3) du modèle inverse (10, 13) et détermine d'autre part la valeur de commande (A2, A3) correspondante.
  3. Procédé opératoire selon la revendication 1, caractérisé en ce que la description du comportement en fréquence inverse de la cage de laminoir (2) et/ou du dispositif d'alimentation (3) et/ou de l'unité de mesure (4) de l'unité de commande (6) est prédéfinie sous forme de réponse en fréquence (FG) et en ce que l'unité de commande (6) détermine la valeur de commande respective (A2, A3) par une transformation de l'évolution des décalages d'épaisseur définitifs (δd') dans la gamme des fréquences, une multiplication subséquente de l'évolution transformée du décalage d'épaisseur définitif (5d') par la réponse en fréquence (FG) et une transformation inverse suivante dans la période de temps.
  4. Procédé opératoire selon la revendication 1, caractérisé en ce que la description du comportement en fréquence inverse de la cage de laminoir (2) et/ou du dispositif d'alimentation (3) et/ou de l'unité de mesure (4) de l'unité de commande (6) est prédéfinie sous forme de noyau de convolution (FK) et en ce que l'unité de commande (6) détermine la valeur de commande respective (A2, A3) par une convolution de l'évolution des décalages d'épaisseur définitifs (δd') par le noyau de convolution (FK).
  5. Procédé opératoire selon la revendication 3 ou 4, caractérisé en ce que l'unité de commande (6), pour déterminer la valeur de commande respective (A2, A3), exploite aussi bien des décalages d'épaisseur définitifs (5d') de sections (9) de la bande métallique (1) disposées en amont de la section respective (9) de la bande métallique (1) que des décalages d'épaisseur définitifs (5d') de sections (9) de la bande métallique (1) disposées en aval de la section respective (9) de la bande métallique (1).
  6. Procédé opératoire selon la revendication 5, caractérisé en ce que le nombre des sections (9) de la bande métallique (1) se trouvant en amont de la section respective (9) de la bande métallique (1) dont les décalages d'épaisseur définitifs (5d') sont exploités par l'unité de commande (6) pour déterminer la valeur de commande respective (A2, A3) est sensiblement égal au nombre des sections (9) de la bande métallique (1) se trouvant en aval de la section respective (9) de la bande métallique (1) dont les décalages d'épaisseur définitifs (δd') sont exploités par l'unité de commande (6) pour déterminer la valeur de commande respective (A2, A3).
  7. Procédé opératoire selon l'une des revendications précédentes, caractérisé en ce que l'unité de commande (6) adopte les décalages d'épaisseur provisoires (5d) tels quels comme décalages d'épaisseur définitifs (5d') ou en ce que l'unité de commande (6) détermine les décalages d'épaisseur définitifs (δd') à partir des décalages d'épaisseur provisoires (5d) au moyen d'un filtrage de phase zéro.
  8. Procédé opératoire selon la revendication 7, caractérisé en ce que grâce au filtrage de phase zéro, un filtre passe-bas des décalages d'épaisseur provisoires (5d) est réalisé.
  9. Programme de commande comportant un code machine (8) exécutable depuis une unité de commande (6) d'un laminoir, le laminoir comprenant au moins une cage de laminoir (2), un dispositif d'alimentation (3) disposé en amont de la cage de laminoir (2), un dispositif de mesure (4) agencé entre le dispositif d'alimentation (3) et la cage de laminoir (2) ainsi qu'une unité de commande (6), dans lequel la bande métallique (1) est amenée à la cage de laminoir (2) depuis le dispositif d'alimentation (3) à une vitesse d'entrée (v), dans lequel la bande métallique (1) est laminée dans la cage de laminoir (2), une valeur d'épaisseur (d) chacune étant saisie par le dispositif de mesure (4) pour l'épaisseur de la bande métallique (1) pour des sections (9) successives de la bande métallique (1), les valeurs d'épaisseur (d) saisies étant approvisionnées à l'unité de commande (6), le traitement du code machine (8) par l'unité de commande (6) résultant en une opération du laminoir conformément à un procédé opératoire selon l'une des revendications précédentes.
  10. Unité de commande d'un laminoir dans laquelle l'unité de commande est programmée grâce à un programme de commande (7) selon la revendication 9, de sorte que l'unité de commande opère le laminoir conformément à un procédé opératoire selon l'une des revendications 1 à 8.
  11. Laminoir pour laminer une bande métallique (1),
    - dans lequel le laminoir comprend au moins une cage de laminoir (2), un dispositif d'alimentation (3) disposé en amont de la cage de laminoir (2), un dispositif de mesure (4) agencé entre le dispositif d'alimentation (3) et la cage de laminoir (2) ainsi qu'une unité de commande (6),
    - dans lequel la bande métallique (1) est amenée à la cage de laminoir (2) depuis le dispositif d'alimentation (3) à une vitesse d'entrée (v),
    - dans lequel la bande métallique (1) est laminée dans la cage de laminoir (2),
    - dans lequel l'unité de mesure (4) saisit une valeur d'épaisseur (d) chacune relative à l'épaisseur de la bande métallique (1) pour des sections successives (9) de la bande métallique (1),
    - dans lequel les valeurs d'épaisseur (d) saisies sont fournies à l'unité de commande (6),
    - dans lequel l'unité de commande (6) opère le laminoir conformément à un procédé opératoire selon l'une quelconque des revendications 1 à 8.
EP20184420.6A 2020-07-07 2020-07-07 Laminage en fonction de la réponse de fréquence Active EP3936248B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20184420.6A EP3936248B1 (fr) 2020-07-07 2020-07-07 Laminage en fonction de la réponse de fréquence
JP2023501311A JP2023533739A (ja) 2020-07-07 2021-05-26 周波数挙動を考慮に入れた圧延
US18/012,280 US20230256489A1 (en) 2020-07-07 2021-05-26 Rolling taking frequency behavior into account
PCT/EP2021/064020 WO2022008133A1 (fr) 2020-07-07 2021-05-26 Laminage prenant en compte le comportement en fréquence
KR1020237000238A KR20230035563A (ko) 2020-07-07 2021-05-26 주파수 거동을 고려한 롤링
CN202180048596.0A CN115867396A (zh) 2020-07-07 2021-05-26 在考虑到频率特性的情况下的轧制

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20184420.6A EP3936248B1 (fr) 2020-07-07 2020-07-07 Laminage en fonction de la réponse de fréquence

Publications (3)

Publication Number Publication Date
EP3936248A1 EP3936248A1 (fr) 2022-01-12
EP3936248C0 EP3936248C0 (fr) 2023-10-25
EP3936248B1 true EP3936248B1 (fr) 2023-10-25

Family

ID=71523028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20184420.6A Active EP3936248B1 (fr) 2020-07-07 2020-07-07 Laminage en fonction de la réponse de fréquence

Country Status (6)

Country Link
US (1) US20230256489A1 (fr)
EP (1) EP3936248B1 (fr)
JP (1) JP2023533739A (fr)
KR (1) KR20230035563A (fr)
CN (1) CN115867396A (fr)
WO (1) WO2022008133A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868414A (ja) 1981-10-20 1983-04-23 Sumitomo Metal Ind Ltd 入側厚み計を用いた板厚制御方法
CN1040073C (zh) 1989-12-25 1998-10-07 石川岛播磨重工业株式会社 轧机的板厚控制系统
DE10327663A1 (de) * 2003-06-20 2005-01-05 Abb Patent Gmbh System und Verfahren zur optimierenden Regelung der Dickenqualität in einem Walzprozess
JP6380650B2 (ja) * 2015-03-26 2018-08-29 東芝三菱電機産業システム株式会社 圧延材の板厚制御装置
US20180161839A1 (en) 2016-12-09 2018-06-14 Honeywell International Inc. Metal thickness control model based inferential sensor

Also Published As

Publication number Publication date
EP3936248C0 (fr) 2023-10-25
EP3936248A1 (fr) 2022-01-12
WO2022008133A1 (fr) 2022-01-13
US20230256489A1 (en) 2023-08-17
CN115867396A (zh) 2023-03-28
KR20230035563A (ko) 2023-03-14
JP2023533739A (ja) 2023-08-04

Similar Documents

Publication Publication Date Title
EP2252416B1 (fr) Procédé de régulation pour un train de laminoir à froid avec régulation intégrale du débit massique
EP2691188B1 (fr) Procédé permettant de faire fonctionner un train de laminoir
EP2162245B1 (fr) Laminage d'un feuillard dans un laminoir en utilisant la dernière cage du laminoir comme réducteur de traction
EP2527053A1 (fr) Procédé de commande pour une voie de laminage
DE60016999T2 (de) Verfahren und Vorrichtung zum Regeln der Bandform beim Bandwalzen
WO2012025438A1 (fr) Procédé pour faire fonctionner un laminoir pour laminer des produits plats à laminer avec pronostic de l'usure des cylindres
DE102007003243A1 (de) Regelanordnung für ein Walzgerüst und hiermit korrespondierende Gegenstände
EP3194087B1 (fr) Réglage de largeur d'une ligne de fabrication
EP2200763B1 (fr) Adaptation d'un régulateur dans un laminoir sur la base de la dispersion d'une grandeur réelle d'un produit laminé
EP3936248B1 (fr) Laminage en fonction de la réponse de fréquence
EP3691806B1 (fr) Dispositif de réglage de planéité doté d'un dispositif d'optimisation
EP3208673B1 (fr) Étalonnage en ligne d'une emprise de laminage d'une cage de laminoir
WO1996028770A1 (fr) Procede et dispositif de commande d'un processus
EP3974073B1 (fr) Laminage en fonction de la réponse de fréquence
EP4103339B1 (fr) Détermination de la sensibilité d'une grandeur cible d'une matière à laminer pour un paramètre de fonctionnement d'un train de laminage à chaud
EP3823771B1 (fr) Procédé permettant de déterminer des grandeurs de réglage pour des éléments actifs de réglage du profil et de la planéité d'une cage de laminoir et des valeurs de profil et de planéité moyenne d'une bande métallique laminée à chaud
DE102020214370A1 (de) Einrichtung zur steuerung einer anlage und verfahren zur steuerung einer anlage
AT408035B (de) Verfahren zur aktiven kompensation periodischer störungen
EP2475471B1 (fr) Procédé et dispositif de compensation de pertrubations de tension de traction d'une bande d'un mécanisme d'entraînement d'une enrouleuse guidée en accélération
EP3231522B1 (fr) Controle robuste de tension de bande
EP3632583A1 (fr) Réglage découplé du contour et planéité d'une bande métallique
EP3854494B1 (fr) Répartition dépendante de la fréquence des grandeurs de réglage permettant de changer la section transversale de produit laminé dans un laminoir
EP3715000B1 (fr) Procédé permettant d'éviter les ondulations lors du laminage des bandes métalliques
WO2023213658A1 (fr) Détermination du décalage latéral d'une bande métallique sur la base du contour d'une face d'extrémité d'une bobine
EP3009205B1 (fr) Prise en compte d'une vitesse de référence pour la détermination d'une vitesse de guidage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20201215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220712

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230628

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005742

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20231025

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025