EP3927977A1 - Procédé de détermination quantitative d'une grandeur réelle dépendante de l'état de fonctionnement d'un ventilateur, en particulier d'un changement de pression ou d'une augmentation de pression, et ventilateur - Google Patents

Procédé de détermination quantitative d'une grandeur réelle dépendante de l'état de fonctionnement d'un ventilateur, en particulier d'un changement de pression ou d'une augmentation de pression, et ventilateur

Info

Publication number
EP3927977A1
EP3927977A1 EP20749803.1A EP20749803A EP3927977A1 EP 3927977 A1 EP3927977 A1 EP 3927977A1 EP 20749803 A EP20749803 A EP 20749803A EP 3927977 A1 EP3927977 A1 EP 3927977A1
Authority
EP
European Patent Office
Prior art keywords
fan
operating state
speed
current
dependent variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20749803.1A
Other languages
German (de)
English (en)
Inventor
Frieder Loercher
Walter Angelis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ziehl Abegg SE
Original Assignee
Ziehl Abegg SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ziehl Abegg SE filed Critical Ziehl Abegg SE
Publication of EP3927977A1 publication Critical patent/EP3927977A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3015Pressure differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow
    • F05D2270/3061Mass flow of the working fluid

Definitions

  • the invention relates to a method for the quantitative determination of current operating state-dependent variables of a fan during operation, such as the pressure change, in particular the pressure increase, and a fan in which a quantitative determination of at least one current operating state-dependent variable such as the pressure change, in particular the pressure increase, takes place during operation.
  • the fan can be controlled or regulated as a function of one or more of these variables.
  • a higher-level system in which the fan is installed and operated can also be controlled or regulated depending on one or more of these variables.
  • these variables can be recorded or integrated in their chronological sequence and used in a variety of ways.
  • Knowledge of a current pressure increase is desirable. Knowledge of the current pressure increase can be used to advantage.
  • the user can use it to monitor or check the current status of an air conditioning system, for example the icing status of a heat exchanger, the degree of clogging of a filter, critical flap status or current wind loads.
  • the pressure reserve of a fan that is susceptible to breakage can be monitored. It can be determined whether a fan is being operated in a permissible operating range, for example also to determine whether a so-called drum rotor is working at too low pressures. From the prior art known from practice, it is already known to determine the pressure increase using differential pressure sensors. This is laborious and usually cannot be done directly on the fan. Complex pipelines or electrical lines are usually necessary.
  • Another disadvantage of determining the pressure difference using pressure sensors is the dependence of the measured differential pressure on the position of the pressure sensors and the associated problem of where and how such pressure sensors can be accommodated or attached.
  • the determination of current sound emissions from a fan can be used, for example, to regulate a fan in such a way that a certain prescribed limit value for the sound emission is not exceeded.
  • the determination of a current drive torque of a fan can be used to regulate a fan in such a way that a certain limit drive torque is not exceeded, for example in order not to overload the drive motor.
  • the determination of the current efficiency of a fan can be used to control a system with one fan or with several fans so that the highest possible efficiency is achieved.
  • a method for determining an operating state of the fan of an extractor hood is known from this publication. It is defined as a function of the speed and power consumption of the electric motor. The measurement of the air volume flow via the motor torque is not possible with backward curved fans.
  • the present invention is based on the object of specifying a method for the quantitative determination of current operating state-dependent variables of a fan during operation, for example the pressure change or pressure increase, according to which the current operating-state-dependent variable, for example the pressure change or pressure increase, of the fan without the use of complex sensors such as Pressure sensors with sufficiently good accuracy is possible, without restriction to certain fans.
  • the invention is based on the basic idea / knowledge that the fan "infallibly" measures the pressure change or pressure increase occurring in it, since it has to provide the necessary power to overcome the pressure increase, for example.
  • the user or a higher-level system can read out the current operating state-dependent variable determined, such as the pressure change or the pressure increase, and use it to control the fan or to control a complete ventilation system. It is also conceivable to use the current operating state-dependent variable or its course over time to define a point in time for maintenance, cleaning or To use de-icing of the ventilation system or one or more components of such a ventilation system.
  • the fan can determine and output the counterpressure acting on it in the event of a pressure increase without the aid of pressure sensors.
  • This back pressure is determined at the fan, i.e. at the "source", where the pressure increase is always created or generated.
  • measurement errors related to the sensor system and susceptibility of the measuring devices are eliminated. This applies in particular with regard to the dependencies of the measurement results on the selected position of the respective pressure sensors and the current flow situation at the pressure sensors or around the pressure sensors. This involves, for example, separations and eddies that can occur in certain operating states.
  • the failure probabilities of the pressure sensors and the wiring or data transmission between the pressure sensors and electronics are eliminated.
  • the teaching of the invention is based on a determination of the air volume flow or air mass flow of the fan by a method with high accuracy, advantageously based on an analysis of a flow velocity field. Then the current operating state-dependent variable of the fan, for example the fan pressure increase, taking into account the current speed, possibly measured or estimated information about the current density and a characteristic curve stored on the fan is determined.
  • a fan with the possibility of such a constant volume flow control or constant mass flow control is usually based on a sensor for the direct or indirect determination of the volume or mass flow.
  • the current operating state-dependent variable, for example the pressure change, in particular the pressure increase, of a fan is determined without complex sensors such as pressure sensors, sound sensors or torque sensors, and close to the fan, with an upstream determination of the current air volume flow as high as possible Accuracy is required. Only one sensor for direct or indirect determination of the air volume flow or the air mass flow can be required.
  • the current operating state-dependent variable such as the pressure increase, noise emission, drive torque, drive power, efficiency, vibration or axial thrust
  • the current operating state-dependent variable is determined via the speed.
  • the influence of the current air density, the current ambient temperature or the current air humidity can be taken into account.
  • the determination of the volume flow is carried out beforehand with a high degree of accuracy using a method known from practice.
  • To determine the current operating state-dependent variable, for example the pressure increase or pressure change it is necessary that at least one calibration characteristic is stored on the fan for each operating state-dependent variable that is of interest.
  • a calibration characteristic essentially represents a functional relationship between the volume flow or mass flow and an appropriate operating state-dependent variable for a certain speed or a certain speed curve and a certain density (e.g.
  • the fan can control itself with the calculated current operating status dependent variable. For example, speed control as a function of a currently determined pressure increase is possible. It is also conceivable that the pressure increase or another current operating status-dependent variable can be read out by a user or a higher-level system, so that the user or the higher-level system can control or otherwise influence the fan speed or the ventilation system based on this information.
  • the current operating state-dependent variable or its course over time can also be stored and / or transmitted to the user or the fan manufacturer in order to be able to carry out further optimizations. This can be helpful in the basic selection of the fan or in the design optimization or technical optimization of the fan.
  • a static pressure increase (total-to-static) or a total pressure increase (total-to-total), or some other definition of the pressure increase as required, can generally be understood as a pressure increase / pressure change Dr. All that is required is to determine the calibration curve that can be used to determine the desired pressure increase and to save it on the fan.
  • the method can be used to determine a current operating state-dependent variable, as long as the speed dependency of the target variable is known at least approximately. For example, a determination of the pressure increase (roughly proportional to h L 2), the drive torque (roughly proportional to h L 2), the noise emission (roughly proportional to h L [4..6]), the axial thrust (roughly proportional to h L 2) are conceivable. or of vibration quantities (the dependence on n would have to be determined specifically for the fan in this case). Derived operating state-dependent characteristic values can also be determined, for example the drive power using the speed and the drive torque, or the efficiency using the air volume flow, a pressure increase and the drive power. Corresponding calibration characteristics must be determined and stored on the fan.
  • Fig. 1 is a diagram in which for a fan at a certain
  • Fig. 2 is a diagram in which for a fan at a certain
  • Fig. 3 in a perspective view and in section on a plane through the axis of rotation of the impeller seen an embodiment form of a fan, the determination of a current operating state-dependent variable with the help of a precisely determined by means of an impeller anemometer delivery volume flow V is carried out.
  • a Pressure increase Dr denotes a functional relationship between a volume flow V or a mass flow rh and a pressure increase Dr, which is often specified at a constant speed, but can also be specified with a defined variable speed curve. If the delivery volume flow V or delivery mass flow rh is known, the pressure increase Dr can be determined from the characteristic curve, provided that the current speed corresponds to the speed on which the characteristic curve is based. It can be seen that the pressure increase Dr depends quantitatively on the delivery volume flow V, so in this sense it is a variable that is dependent on the operating state.
  • characteristic curves for other variables that are dependent on the operating state can be determined and saved for certain speeds or speed curves. These other parameters, which are dependent on the operating state, can then also be determined with the aid of the corresponding characteristic curve with a known delivery volume flow or delivery mass flow.
  • Fig. 1 two characteristic curves are shown at a constant speed n and a line for a constant volume flow V.
  • Dr it is usually sufficient to determine only one characteristic curve for a specific speed. The other can, as is done in this example, be obtained by conversion. In doing so, one uses the similarity laws for a fixed fan geometry, according to which V ⁇ n and Dr ⁇ n 2 apply. If a characteristic curve for a speed n is stored, the pressure increase Dr can be determined as follows if the volume flow V and the speed n are known:
  • an increase in pressure or another variable that depends on the operating state of the fan can be influenced by the installation environment of the fan.
  • a correction factor or a correction function can advantageously be taken into account as a function of the installation situation when determining the pressure increase or another variable that is dependent on the operating state.
  • the calibration characteristic can be determined in the installation situation or in a configuration that models the installation situation and stored on the fan and used to determine the variable that is dependent on the operating state.
  • the current delivery volume flow V or the current mass flow rh must be determined with the highest possible accuracy. Particularly in areas in which the characteristic curves in a representation according to FIG.
  • a pressure increase Dr is shown as a function of the speed n.
  • Such a representation can be derived solely from a known calibration characteristic, similar to that described in FIG. 1, and a known speed dependency of the target variable, here Dr. It is easy to see that for a known volume flow V and a known speed n, conclusions can be drawn unambiguously about the pressure increase Dr. Here too, the pressure increase must be corrected with the density, analogously to FIG. 1.
  • the method for determining the pressure increase Dr works accordingly if the mass flow rh is used instead of the volume flow V, except that the effect of the medium density is then already contained in the mass flow rh. Then instead of determining the volume flow rate V in the method, the mass flow rate rh is determined using a known method. A density correction of the pressure increase Dr is no longer necessary.
  • a calibration characteristic can be stored on the fan, which describes a functional relationship between the mass flow rh and the volume flow V, for example at a constant speed.
  • the methods for determining the mass flow are essentially similar to the methods for determining the volume flow. For example, the mass flow rh can be determined with a vane anemometer, but in addition to the anemometer speed, the current medium density must also be determined or estimated and incorporated into the mass flow calculation.
  • volume flow measuring wheel 2 shows, in a perspective view and in section on a plane through the axis of rotation of the impeller 3, an embodiment of a fan 1, the determination of the current operating state-dependent variable with the aid of a conveyed medium volume flow V precisely determined by means of a volume flow measuring wheel 2.
  • the volume flow measuring wheel 2 is constructed in particular from a hub 7 and vanes 6 attached to it.
  • the illustration clearly shows the volume flow measuring wheel 2 and its mounting on an inflow-side structure, here an inflow grille 26.
  • An axis 13 for mounting the volume flow measuring wheel 2 is attached to the central area 30 of the inflow grille 26 via a receiving area 31.
  • the volume flow measuring wheel 2 is mounted on the axle 13 by means of bearings; two bearings, not shown, are provided in the exemplary embodiment.
  • the bearings are used on the volume flow measuring wheel 2 in receptacles 20 provided for this purpose within the hub 7.
  • the volume flow measuring wheel 2 can thereby rotate freely with respect to the inflow grille 26 and independently of the rotor 11 of the motor 4, which drives the impeller 3 of the fan 1.
  • the impeller 3 of the fan 1 is attached to the rotor 11 of the motor 4 with a fastening device 15, which is designed as a sheet metal blank that is cast into the impeller 3 and pressed onto the rotor 11.
  • the measurement and evaluation of the speed n A ne of the volume flow measuring wheel 2 enables an exact determination of the conveying medium volume flow V with or without inclusion of the impeller speed n.
  • the current operating state-dependent variable for example a pressure increase Dr, as described with reference to FIGS. 1 and 2, is determined in the exemplary embodiment.
  • the motor 4 also advantageously has an interface for transferring at least one current operating state-dependent variable to a higher-level system.
  • a time profile of one or more operating state-dependent variables can also advantageously be stored in a suitable time resolution on the motor 4 and read out if necessary.
  • FIG. 3 For the sake of completeness, it should also be mentioned that not all components of the fan 1 are shown in FIG. 3.
  • the fan 1 can comprise numerous other components, not shown. List of reference symbols
  • Axle for mounting the volumetric flow measuring wheel.
  • Fastening device for the impeller on the motor. Mount in the volumetric flow measuring wheel for bearings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

L'invention concerne un procédé de détermination quantitative d'une grandeur réelle dépendante de l'état de fonctionnement, par exemple de l'augmentation de pression d'un ventilateur, une grandeur réelle dépendante de l'état de fonctionnement étant déterminée par l'intermédiaire de la vitesse de rotation à l'aide de flux de volume ou de masse connu du ventilateur.
EP20749803.1A 2019-08-17 2020-07-02 Procédé de détermination quantitative d'une grandeur réelle dépendante de l'état de fonctionnement d'un ventilateur, en particulier d'un changement de pression ou d'une augmentation de pression, et ventilateur Pending EP3927977A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019212325.2A DE102019212325A1 (de) 2019-08-17 2019-08-17 Verfahren zur quantitativen Bestimmung einer aktuellen betriebszustandsabhängigen Größe eines Ventilators, insbesondere einer Druckänderung oder Druckerhöhung, und Ventilator
PCT/DE2020/200054 WO2021032255A1 (fr) 2019-08-17 2020-07-02 Procédé de détermination quantitative d'une grandeur réelle dépendante de l'état de fonctionnement d'un ventilateur, en particulier d'un changement de pression ou d'une augmentation de pression, et ventilateur

Publications (1)

Publication Number Publication Date
EP3927977A1 true EP3927977A1 (fr) 2021-12-29

Family

ID=71894579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20749803.1A Pending EP3927977A1 (fr) 2019-08-17 2020-07-02 Procédé de détermination quantitative d'une grandeur réelle dépendante de l'état de fonctionnement d'un ventilateur, en particulier d'un changement de pression ou d'une augmentation de pression, et ventilateur

Country Status (6)

Country Link
US (1) US20220307508A1 (fr)
EP (1) EP3927977A1 (fr)
JP (1) JP2022544314A (fr)
CN (1) CN114222865B (fr)
DE (1) DE102019212325A1 (fr)
WO (1) WO2021032255A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021209753A1 (de) 2021-09-03 2023-03-09 Ziehl-Abegg Se Verfahren zur quantitativen Bestimmung aktueller betriebszustandsabhängiger Größen, insbesondere des aktuellen Fördervolumenstroms, eines Ventilators und Ventilator zur Anwendung des Verfahrens

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559407A (en) * 1994-05-02 1996-09-24 Carrier Corporation Airflow control for variable speed blowers
SG67558A1 (en) * 1997-09-05 1999-09-21 Mitsui Chemicals Inc Method of controlling gas flow rate in gas phase polymerization apparatus and gas phase polymerization apparatus
DE19801041C1 (de) * 1998-01-14 1999-08-05 Atlas Copco Energas Verfahren zum Betrieb eines Radialverdichters mit verstellbaren Vorleit- und Nachleitapparaten bei Änderungen des Arbeitspunktes im Verdichterkennfeld
EP1039139B1 (fr) * 1999-03-23 2004-05-26 ebm-papst Mulfingen GmbH & Co.KG Soufflante avec une courbe caractéristique
SE519223C2 (sv) * 2000-09-18 2003-02-04 Hoernell Internat Ab Förfarande och anordning för konstanthållning av flödet från en fläkt
DE10302773B3 (de) * 2003-01-17 2004-03-11 Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH Lauf- und Leiträder für Strömungsmaschinen, insbesondere für Verdichter und Ventilatoren
CN101545495B (zh) * 2008-03-26 2011-10-05 上海宝信软件股份有限公司 鼓风机的防喘振控制装置及方法
DE102009054771A1 (de) * 2009-12-16 2011-06-22 Piller Industrieventilatoren GmbH, 37186 Turboverdichter
US9638432B2 (en) * 2010-08-31 2017-05-02 Broan-Nutone Llc Ventilation unit calibration apparatus, system and method
EP2505848B1 (fr) * 2011-03-31 2013-10-02 ABB Oy Détection de décollement dans des ventilateurs au moyen d'un convertisseur de fréquence
CA2856447C (fr) * 2011-12-16 2019-06-04 Fluid Handling Llc Procedes et appareil de commande lineaire dynamique pour la commande d'une pompe a vitesse variable
EP2620202B1 (fr) * 2012-01-30 2014-10-29 ABB Oy Procédé et appareil de surveillance de condition de filtre à air
FR2990007B1 (fr) * 2012-04-26 2014-04-18 Schneider Toshiba Inverter Procede et systeme d'identification et de commande d'une pompe centrifuge
DE102013204137A1 (de) * 2013-03-11 2014-09-11 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Ermitteln eines Betriebszustands einer Dunstabzugshaubenanordnung
EP2799789B1 (fr) * 2013-04-30 2017-07-19 Gidelmar, S.A. Procédé et système permettant de régler automatiquement le fonctionnement d'un ventilateur et programme informatique mettant en 'uvre ledit procédé
DE102016002429B4 (de) * 2016-03-01 2022-09-08 Audi Ag Verfahren zur Bestimmung des Luftmassenstroms eines Luftstromes zur Klimatisierung und Fahrzeug damit
DE102016115617A1 (de) * 2016-08-23 2018-03-01 Ebm-Papst Mulfingen Gmbh & Co. Kg Verfahren zur Volumenstromregelung eines Ventilators
DE202017104349U1 (de) * 2017-07-20 2017-10-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Vorrichtung zum Regeln von wenigstens zwei Ventilatoren
CN109611271A (zh) * 2018-12-20 2019-04-12 汕头大学 一种变速变桨距风力发电机转矩控制方法

Also Published As

Publication number Publication date
CN114222865B (zh) 2024-06-04
US20220307508A1 (en) 2022-09-29
CN114222865A (zh) 2022-03-22
WO2021032255A1 (fr) 2021-02-25
DE102019212325A1 (de) 2021-02-18
JP2022544314A (ja) 2022-10-17

Similar Documents

Publication Publication Date Title
EP2407946B1 (fr) Détection d'encrassements et de ruptures dans un détecteur de fumées par aspiration (ASD)
EP3287641B1 (fr) Procédé de régulation de débit d'un ventilateur
EP3622181B1 (fr) Ventilateur radial doté d'une mesure de pression différentielle
EP3504441B1 (fr) Ventilateur à régulation intégrée du débit volumique
DE102010031754B4 (de) Atemschutzgerät mit Kompensation des Umgebungsdruckes
EP3927977A1 (fr) Procédé de détermination quantitative d'une grandeur réelle dépendante de l'état de fonctionnement d'un ventilateur, en particulier d'un changement de pression ou d'une augmentation de pression, et ventilateur
DE19726547A1 (de) Verfahren zur Bestimmung des Betriebspunktes eines Ventilators und Ventilator
DE102018129220A1 (de) Verfahren zur Überwachung einer drehzahlgeregelten Elektromotorpumpe eines Hydraulikkreislaufs in einem Luftfahrzeug sowie Hydrauliksystem zur Verfahrensausführung
EP2765359A2 (fr) Procédé de surveillance d'un flux d'air dans une gaine d'aération
DE102008009604A1 (de) Gehäusestrukturierung zum Stabilisieren der Strömung in einer Strömungsarbeitsmaschine
WO2022008241A1 (fr) Procédé et système de ventilateur pour vérifier un point de fonctionnement actuel d'une unité de ventilateur
DE102017210123A1 (de) Luftleitsystem sowie Messsystem und Verfahren zum Ermitteln von wenigstens einem Parameter eines aus einem Luftausströmer austretenden Luftstroms
DE102014016503A1 (de) Verfahren zur Bestimmung des Druckabfalles an einem Luftfilter einer Fahrzeugklimaanlage
DE202019100227U1 (de) Volumenstrombestimmung
WO2019057446A1 (fr) Reconnaissance d'une instabilité de compresseur au moyen de la position axiale de l'arbre du compresseur et d'une température
EP4204692A1 (fr) Procédé de détermination quantitative de variables dépendant de l'état de fonctionnement actuel, plus particulièrement du débit volumétrique transporté par le courant, d'un ventilateur, et ventilateur pour application du procédé
DE102022209258B3 (de) Verfahren und System zur Kalibrierungsanpassung eines drehzahlbasierten Anemometers, insbesondere eines Flügelradanemometers, im Betrieb
EP3707386B1 (fr) Stabilité des paramètres
WO2020244927A1 (fr) Procédé de fonctionnement d'au moins un dispositif de transport de fluide
WO2020127007A1 (fr) Dispositif de commande et procédé de régulation d'un flux volumique d'un fluide dans une chaîne cinématique d'un véhicule à moteur
EP1847715A1 (fr) Procédé de fonctionnement d' un turbocompresseur et turbocompresseur
DE102020213419A1 (de) Ventilator zum Bestimmen eines durch den Ventilator bewegten Medienstroms und entsprechendes Verfahren
DE102013217992A1 (de) Raumlüftungsvorrichtung und Luftstromregelung für eine Raumlüftungsvorrichtung
EP3833877A1 (fr) Ventilateur
DE102019219914A1 (de) Strömungsmaschine und Verfahren zum Erfassen des Abströmwinkels bei Strömungsmaschinen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230912