EP3927977A1 - Verfahren zur quantitativen bestimmung einer aktuellen betriebszustandsabhängigen grösse eines ventilators, insbesondere einer druckänderung oder druckerhöhung, und ventilator - Google Patents
Verfahren zur quantitativen bestimmung einer aktuellen betriebszustandsabhängigen grösse eines ventilators, insbesondere einer druckänderung oder druckerhöhung, und ventilatorInfo
- Publication number
- EP3927977A1 EP3927977A1 EP20749803.1A EP20749803A EP3927977A1 EP 3927977 A1 EP3927977 A1 EP 3927977A1 EP 20749803 A EP20749803 A EP 20749803A EP 3927977 A1 EP3927977 A1 EP 3927977A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fan
- operating state
- speed
- current
- dependent variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/001—Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/004—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/83—Testing, e.g. methods, components or tools therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/301—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/301—Pressure
- F05D2270/3015—Pressure differential pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/304—Spool rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/306—Mass flow
- F05D2270/3061—Mass flow of the working fluid
Definitions
- the invention relates to a method for the quantitative determination of current operating state-dependent variables of a fan during operation, such as the pressure change, in particular the pressure increase, and a fan in which a quantitative determination of at least one current operating state-dependent variable such as the pressure change, in particular the pressure increase, takes place during operation.
- the fan can be controlled or regulated as a function of one or more of these variables.
- a higher-level system in which the fan is installed and operated can also be controlled or regulated depending on one or more of these variables.
- these variables can be recorded or integrated in their chronological sequence and used in a variety of ways.
- Knowledge of a current pressure increase is desirable. Knowledge of the current pressure increase can be used to advantage.
- the user can use it to monitor or check the current status of an air conditioning system, for example the icing status of a heat exchanger, the degree of clogging of a filter, critical flap status or current wind loads.
- the pressure reserve of a fan that is susceptible to breakage can be monitored. It can be determined whether a fan is being operated in a permissible operating range, for example also to determine whether a so-called drum rotor is working at too low pressures. From the prior art known from practice, it is already known to determine the pressure increase using differential pressure sensors. This is laborious and usually cannot be done directly on the fan. Complex pipelines or electrical lines are usually necessary.
- Another disadvantage of determining the pressure difference using pressure sensors is the dependence of the measured differential pressure on the position of the pressure sensors and the associated problem of where and how such pressure sensors can be accommodated or attached.
- the determination of current sound emissions from a fan can be used, for example, to regulate a fan in such a way that a certain prescribed limit value for the sound emission is not exceeded.
- the determination of a current drive torque of a fan can be used to regulate a fan in such a way that a certain limit drive torque is not exceeded, for example in order not to overload the drive motor.
- the determination of the current efficiency of a fan can be used to control a system with one fan or with several fans so that the highest possible efficiency is achieved.
- a method for determining an operating state of the fan of an extractor hood is known from this publication. It is defined as a function of the speed and power consumption of the electric motor. The measurement of the air volume flow via the motor torque is not possible with backward curved fans.
- the present invention is based on the object of specifying a method for the quantitative determination of current operating state-dependent variables of a fan during operation, for example the pressure change or pressure increase, according to which the current operating-state-dependent variable, for example the pressure change or pressure increase, of the fan without the use of complex sensors such as Pressure sensors with sufficiently good accuracy is possible, without restriction to certain fans.
- the invention is based on the basic idea / knowledge that the fan "infallibly" measures the pressure change or pressure increase occurring in it, since it has to provide the necessary power to overcome the pressure increase, for example.
- the user or a higher-level system can read out the current operating state-dependent variable determined, such as the pressure change or the pressure increase, and use it to control the fan or to control a complete ventilation system. It is also conceivable to use the current operating state-dependent variable or its course over time to define a point in time for maintenance, cleaning or To use de-icing of the ventilation system or one or more components of such a ventilation system.
- the fan can determine and output the counterpressure acting on it in the event of a pressure increase without the aid of pressure sensors.
- This back pressure is determined at the fan, i.e. at the "source", where the pressure increase is always created or generated.
- measurement errors related to the sensor system and susceptibility of the measuring devices are eliminated. This applies in particular with regard to the dependencies of the measurement results on the selected position of the respective pressure sensors and the current flow situation at the pressure sensors or around the pressure sensors. This involves, for example, separations and eddies that can occur in certain operating states.
- the failure probabilities of the pressure sensors and the wiring or data transmission between the pressure sensors and electronics are eliminated.
- the teaching of the invention is based on a determination of the air volume flow or air mass flow of the fan by a method with high accuracy, advantageously based on an analysis of a flow velocity field. Then the current operating state-dependent variable of the fan, for example the fan pressure increase, taking into account the current speed, possibly measured or estimated information about the current density and a characteristic curve stored on the fan is determined.
- a fan with the possibility of such a constant volume flow control or constant mass flow control is usually based on a sensor for the direct or indirect determination of the volume or mass flow.
- the current operating state-dependent variable, for example the pressure change, in particular the pressure increase, of a fan is determined without complex sensors such as pressure sensors, sound sensors or torque sensors, and close to the fan, with an upstream determination of the current air volume flow as high as possible Accuracy is required. Only one sensor for direct or indirect determination of the air volume flow or the air mass flow can be required.
- the current operating state-dependent variable such as the pressure increase, noise emission, drive torque, drive power, efficiency, vibration or axial thrust
- the current operating state-dependent variable is determined via the speed.
- the influence of the current air density, the current ambient temperature or the current air humidity can be taken into account.
- the determination of the volume flow is carried out beforehand with a high degree of accuracy using a method known from practice.
- To determine the current operating state-dependent variable, for example the pressure increase or pressure change it is necessary that at least one calibration characteristic is stored on the fan for each operating state-dependent variable that is of interest.
- a calibration characteristic essentially represents a functional relationship between the volume flow or mass flow and an appropriate operating state-dependent variable for a certain speed or a certain speed curve and a certain density (e.g.
- the fan can control itself with the calculated current operating status dependent variable. For example, speed control as a function of a currently determined pressure increase is possible. It is also conceivable that the pressure increase or another current operating status-dependent variable can be read out by a user or a higher-level system, so that the user or the higher-level system can control or otherwise influence the fan speed or the ventilation system based on this information.
- the current operating state-dependent variable or its course over time can also be stored and / or transmitted to the user or the fan manufacturer in order to be able to carry out further optimizations. This can be helpful in the basic selection of the fan or in the design optimization or technical optimization of the fan.
- a static pressure increase (total-to-static) or a total pressure increase (total-to-total), or some other definition of the pressure increase as required, can generally be understood as a pressure increase / pressure change Dr. All that is required is to determine the calibration curve that can be used to determine the desired pressure increase and to save it on the fan.
- the method can be used to determine a current operating state-dependent variable, as long as the speed dependency of the target variable is known at least approximately. For example, a determination of the pressure increase (roughly proportional to h L 2), the drive torque (roughly proportional to h L 2), the noise emission (roughly proportional to h L [4..6]), the axial thrust (roughly proportional to h L 2) are conceivable. or of vibration quantities (the dependence on n would have to be determined specifically for the fan in this case). Derived operating state-dependent characteristic values can also be determined, for example the drive power using the speed and the drive torque, or the efficiency using the air volume flow, a pressure increase and the drive power. Corresponding calibration characteristics must be determined and stored on the fan.
- Fig. 1 is a diagram in which for a fan at a certain
- Fig. 2 is a diagram in which for a fan at a certain
- Fig. 3 in a perspective view and in section on a plane through the axis of rotation of the impeller seen an embodiment form of a fan, the determination of a current operating state-dependent variable with the help of a precisely determined by means of an impeller anemometer delivery volume flow V is carried out.
- a Pressure increase Dr denotes a functional relationship between a volume flow V or a mass flow rh and a pressure increase Dr, which is often specified at a constant speed, but can also be specified with a defined variable speed curve. If the delivery volume flow V or delivery mass flow rh is known, the pressure increase Dr can be determined from the characteristic curve, provided that the current speed corresponds to the speed on which the characteristic curve is based. It can be seen that the pressure increase Dr depends quantitatively on the delivery volume flow V, so in this sense it is a variable that is dependent on the operating state.
- characteristic curves for other variables that are dependent on the operating state can be determined and saved for certain speeds or speed curves. These other parameters, which are dependent on the operating state, can then also be determined with the aid of the corresponding characteristic curve with a known delivery volume flow or delivery mass flow.
- Fig. 1 two characteristic curves are shown at a constant speed n and a line for a constant volume flow V.
- Dr it is usually sufficient to determine only one characteristic curve for a specific speed. The other can, as is done in this example, be obtained by conversion. In doing so, one uses the similarity laws for a fixed fan geometry, according to which V ⁇ n and Dr ⁇ n 2 apply. If a characteristic curve for a speed n is stored, the pressure increase Dr can be determined as follows if the volume flow V and the speed n are known:
- an increase in pressure or another variable that depends on the operating state of the fan can be influenced by the installation environment of the fan.
- a correction factor or a correction function can advantageously be taken into account as a function of the installation situation when determining the pressure increase or another variable that is dependent on the operating state.
- the calibration characteristic can be determined in the installation situation or in a configuration that models the installation situation and stored on the fan and used to determine the variable that is dependent on the operating state.
- the current delivery volume flow V or the current mass flow rh must be determined with the highest possible accuracy. Particularly in areas in which the characteristic curves in a representation according to FIG.
- a pressure increase Dr is shown as a function of the speed n.
- Such a representation can be derived solely from a known calibration characteristic, similar to that described in FIG. 1, and a known speed dependency of the target variable, here Dr. It is easy to see that for a known volume flow V and a known speed n, conclusions can be drawn unambiguously about the pressure increase Dr. Here too, the pressure increase must be corrected with the density, analogously to FIG. 1.
- the method for determining the pressure increase Dr works accordingly if the mass flow rh is used instead of the volume flow V, except that the effect of the medium density is then already contained in the mass flow rh. Then instead of determining the volume flow rate V in the method, the mass flow rate rh is determined using a known method. A density correction of the pressure increase Dr is no longer necessary.
- a calibration characteristic can be stored on the fan, which describes a functional relationship between the mass flow rh and the volume flow V, for example at a constant speed.
- the methods for determining the mass flow are essentially similar to the methods for determining the volume flow. For example, the mass flow rh can be determined with a vane anemometer, but in addition to the anemometer speed, the current medium density must also be determined or estimated and incorporated into the mass flow calculation.
- volume flow measuring wheel 2 shows, in a perspective view and in section on a plane through the axis of rotation of the impeller 3, an embodiment of a fan 1, the determination of the current operating state-dependent variable with the aid of a conveyed medium volume flow V precisely determined by means of a volume flow measuring wheel 2.
- the volume flow measuring wheel 2 is constructed in particular from a hub 7 and vanes 6 attached to it.
- the illustration clearly shows the volume flow measuring wheel 2 and its mounting on an inflow-side structure, here an inflow grille 26.
- An axis 13 for mounting the volume flow measuring wheel 2 is attached to the central area 30 of the inflow grille 26 via a receiving area 31.
- the volume flow measuring wheel 2 is mounted on the axle 13 by means of bearings; two bearings, not shown, are provided in the exemplary embodiment.
- the bearings are used on the volume flow measuring wheel 2 in receptacles 20 provided for this purpose within the hub 7.
- the volume flow measuring wheel 2 can thereby rotate freely with respect to the inflow grille 26 and independently of the rotor 11 of the motor 4, which drives the impeller 3 of the fan 1.
- the impeller 3 of the fan 1 is attached to the rotor 11 of the motor 4 with a fastening device 15, which is designed as a sheet metal blank that is cast into the impeller 3 and pressed onto the rotor 11.
- the measurement and evaluation of the speed n A ne of the volume flow measuring wheel 2 enables an exact determination of the conveying medium volume flow V with or without inclusion of the impeller speed n.
- the current operating state-dependent variable for example a pressure increase Dr, as described with reference to FIGS. 1 and 2, is determined in the exemplary embodiment.
- the motor 4 also advantageously has an interface for transferring at least one current operating state-dependent variable to a higher-level system.
- a time profile of one or more operating state-dependent variables can also advantageously be stored in a suitable time resolution on the motor 4 and read out if necessary.
- FIG. 3 For the sake of completeness, it should also be mentioned that not all components of the fan 1 are shown in FIG. 3.
- the fan 1 can comprise numerous other components, not shown. List of reference symbols
- Axle for mounting the volumetric flow measuring wheel.
- Fastening device for the impeller on the motor. Mount in the volumetric flow measuring wheel for bearings.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019212325.2A DE102019212325A1 (de) | 2019-08-17 | 2019-08-17 | Verfahren zur quantitativen Bestimmung einer aktuellen betriebszustandsabhängigen Größe eines Ventilators, insbesondere einer Druckänderung oder Druckerhöhung, und Ventilator |
PCT/DE2020/200054 WO2021032255A1 (de) | 2019-08-17 | 2020-07-02 | Verfahren zur quantitativen bestimmung einer aktuellen betriebszustandsabhängigen grösse eines ventilators, insbesondere einer druckänderung oder druckerhöhung, und ventilator |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3927977A1 true EP3927977A1 (de) | 2021-12-29 |
Family
ID=71894579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20749803.1A Pending EP3927977A1 (de) | 2019-08-17 | 2020-07-02 | Verfahren zur quantitativen bestimmung einer aktuellen betriebszustandsabhängigen grösse eines ventilators, insbesondere einer druckänderung oder druckerhöhung, und ventilator |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220307508A1 (de) |
EP (1) | EP3927977A1 (de) |
JP (1) | JP2022544314A (de) |
CN (1) | CN114222865B (de) |
DE (1) | DE102019212325A1 (de) |
WO (1) | WO2021032255A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021209753A1 (de) | 2021-09-03 | 2023-03-09 | Ziehl-Abegg Se | Verfahren zur quantitativen Bestimmung aktueller betriebszustandsabhängiger Größen, insbesondere des aktuellen Fördervolumenstroms, eines Ventilators und Ventilator zur Anwendung des Verfahrens |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5559407A (en) * | 1994-05-02 | 1996-09-24 | Carrier Corporation | Airflow control for variable speed blowers |
SG67558A1 (en) * | 1997-09-05 | 1999-09-21 | Mitsui Chemicals Inc | Method of controlling gas flow rate in gas phase polymerization apparatus and gas phase polymerization apparatus |
DE19801041C1 (de) * | 1998-01-14 | 1999-08-05 | Atlas Copco Energas | Verfahren zum Betrieb eines Radialverdichters mit verstellbaren Vorleit- und Nachleitapparaten bei Änderungen des Arbeitspunktes im Verdichterkennfeld |
EP1039139B1 (de) * | 1999-03-23 | 2004-05-26 | ebm-papst Mulfingen GmbH & Co.KG | Gebläse mit vorgegebener Kennlinie |
SE519223C2 (sv) * | 2000-09-18 | 2003-02-04 | Hoernell Internat Ab | Förfarande och anordning för konstanthållning av flödet från en fläkt |
DE10302773B3 (de) * | 2003-01-17 | 2004-03-11 | Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH | Lauf- und Leiträder für Strömungsmaschinen, insbesondere für Verdichter und Ventilatoren |
CN101545495B (zh) * | 2008-03-26 | 2011-10-05 | 上海宝信软件股份有限公司 | 鼓风机的防喘振控制装置及方法 |
DE102009054771A1 (de) * | 2009-12-16 | 2011-06-22 | Piller Industrieventilatoren GmbH, 37186 | Turboverdichter |
US9638432B2 (en) * | 2010-08-31 | 2017-05-02 | Broan-Nutone Llc | Ventilation unit calibration apparatus, system and method |
EP2505848B1 (de) * | 2011-03-31 | 2013-10-02 | ABB Oy | Strömungsabrisserkennung bei Ventilatoren mit Frequenzwandler |
CA2856447C (en) * | 2011-12-16 | 2019-06-04 | Fluid Handling Llc | Dynamic linear control methods and apparatus for variable speed pump control |
EP2620202B1 (de) * | 2012-01-30 | 2014-10-29 | ABB Oy | Verfahren und Vorrichtung zum Überwachen des Luftfilterzustands |
FR2990007B1 (fr) * | 2012-04-26 | 2014-04-18 | Schneider Toshiba Inverter | Procede et systeme d'identification et de commande d'une pompe centrifuge |
DE102013204137A1 (de) * | 2013-03-11 | 2014-09-11 | BSH Bosch und Siemens Hausgeräte GmbH | Verfahren zum Ermitteln eines Betriebszustands einer Dunstabzugshaubenanordnung |
EP2799789B1 (de) * | 2013-04-30 | 2017-07-19 | Gidelmar, S.A. | Verfahren und System zur automatischen Anpassung des Betriebs eines Lüfters und Computerprogramm zur Implementierung des Verfahrens |
DE102016002429B4 (de) * | 2016-03-01 | 2022-09-08 | Audi Ag | Verfahren zur Bestimmung des Luftmassenstroms eines Luftstromes zur Klimatisierung und Fahrzeug damit |
DE102016115617A1 (de) * | 2016-08-23 | 2018-03-01 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Verfahren zur Volumenstromregelung eines Ventilators |
DE202017104349U1 (de) * | 2017-07-20 | 2017-10-16 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Vorrichtung zum Regeln von wenigstens zwei Ventilatoren |
CN109611271A (zh) * | 2018-12-20 | 2019-04-12 | 汕头大学 | 一种变速变桨距风力发电机转矩控制方法 |
-
2019
- 2019-08-17 DE DE102019212325.2A patent/DE102019212325A1/de active Pending
-
2020
- 2020-07-02 WO PCT/DE2020/200054 patent/WO2021032255A1/de unknown
- 2020-07-02 CN CN202080058030.1A patent/CN114222865B/zh active Active
- 2020-07-02 EP EP20749803.1A patent/EP3927977A1/de active Pending
- 2020-07-02 JP JP2022509197A patent/JP2022544314A/ja active Pending
- 2020-07-02 US US17/635,814 patent/US20220307508A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20220307508A1 (en) | 2022-09-29 |
WO2021032255A1 (de) | 2021-02-25 |
CN114222865B (zh) | 2024-06-04 |
JP2022544314A (ja) | 2022-10-17 |
CN114222865A (zh) | 2022-03-22 |
DE102019212325A1 (de) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2407946B1 (de) | Erkennen von Verstopfungen und Unterbrüchen bei einem Ansaug-rauchmelder (ASD) | |
EP3287641B1 (de) | Verfahren zur volumenstromregelung eines ventilators | |
EP3622181B1 (de) | Radialventilator mit differenzdruckmessung | |
EP3504441B1 (de) | Ventilator mit integrierter volumenstromregelung | |
DE102010031754B4 (de) | Atemschutzgerät mit Kompensation des Umgebungsdruckes | |
WO2021032255A1 (de) | Verfahren zur quantitativen bestimmung einer aktuellen betriebszustandsabhängigen grösse eines ventilators, insbesondere einer druckänderung oder druckerhöhung, und ventilator | |
DE19726547A1 (de) | Verfahren zur Bestimmung des Betriebspunktes eines Ventilators und Ventilator | |
DE102018129220A1 (de) | Verfahren zur Überwachung einer drehzahlgeregelten Elektromotorpumpe eines Hydraulikkreislaufs in einem Luftfahrzeug sowie Hydrauliksystem zur Verfahrensausführung | |
EP2765359A2 (de) | Verfahren zum Überwachen eines Luftstroms in einem Luftströmungskanal | |
DE102008009604A1 (de) | Gehäusestrukturierung zum Stabilisieren der Strömung in einer Strömungsarbeitsmaschine | |
WO2022008241A1 (de) | Verfahren und ventilatorsystem zur ermittlung eines aktuellen arbeitspunktes einer ventilatoreinheit | |
DE102017210123A1 (de) | Luftleitsystem sowie Messsystem und Verfahren zum Ermitteln von wenigstens einem Parameter eines aus einem Luftausströmer austretenden Luftstroms | |
DE102014016503A1 (de) | Verfahren zur Bestimmung des Druckabfalles an einem Luftfilter einer Fahrzeugklimaanlage | |
DE202019100227U1 (de) | Volumenstrombestimmung | |
WO2019057446A1 (de) | Erkennung einer verdichterinstabilität mittels der axialen position der verdichterwelle und einer temperatur | |
EP4204692A1 (de) | VERFAHREN ZUR QUANTITATIVEN BESTIMMUNG AKTUELLER BETRIEBSZUSTANDSABHÄNGIGER GRÖßEN, INSBESONDERE DES AKTUELLEN FÖRDERVOLUMENSTROMS, EINES VENTILATORS UND VENTILATOR ZUR ANWENDUNG DES VERFAHRENS | |
DE102022209258B3 (de) | Verfahren und System zur Kalibrierungsanpassung eines drehzahlbasierten Anemometers, insbesondere eines Flügelradanemometers, im Betrieb | |
WO2020244927A1 (de) | Verfahren zu einem betrieb zumindest einer fluidfördervorrichtung | |
EP3887683B1 (de) | Volumenstrombestimmung | |
WO2020127007A1 (de) | Steuerungsvorrichtung und verfahren zur regelung eines volumenstroms eines fluids in einem antriebsstrang eines kraftfahrzeugs | |
DE102020213419A1 (de) | Ventilator zum Bestimmen eines durch den Ventilator bewegten Medienstroms und entsprechendes Verfahren | |
DE102013217992A1 (de) | Raumlüftungsvorrichtung und Luftstromregelung für eine Raumlüftungsvorrichtung | |
EP3833877A1 (de) | Ventilator | |
DE102019219914A1 (de) | Strömungsmaschine und Verfahren zum Erfassen des Abströmwinkels bei Strömungsmaschinen | |
DE202009016903U1 (de) | Fremdkühlungsvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210923 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230912 |