RU2611071C2 - Способ динамического линейного управления и устройство для управления насосом с переменной скоростью - Google Patents
Способ динамического линейного управления и устройство для управления насосом с переменной скоростью Download PDFInfo
- Publication number
- RU2611071C2 RU2611071C2 RU2014121778A RU2014121778A RU2611071C2 RU 2611071 C2 RU2611071 C2 RU 2611071C2 RU 2014121778 A RU2014121778 A RU 2014121778A RU 2014121778 A RU2014121778 A RU 2014121778A RU 2611071 C2 RU2611071 C2 RU 2611071C2
- Authority
- RU
- Russia
- Prior art keywords
- control
- control point
- pump
- flow rate
- adaptive
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0066—Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Feedback Control In General (AREA)
- Flow Control (AREA)
Abstract
Устройство, такое как контроллер насоса, содержит сигнальный процессор, выполненный с возможностью по меньшей мере приема сигнализации, содержащей информацию о кривой линейного управления контрольной точки, по меньшей мере частично, на основе кривой адаптивного управления контрольной точки, связанной с жидкостью, нагнетаемой насосом в насосной системе, и определения контрольной точки управления, по меньшей мере частично, на основе принятой сигнализации. Сигнальный процессор сконфигурирован для предоставления управляющего сигнала, содержащего информацию для управления насосом на основе упомянутой определенной контрольной точки управления. Технический результат – снижение общего потребления энергии и эксплуатационных затрат в устройствах. 3 н. и 21 з.п. ф-лы, 4 ил.
Description
Ссылка на родственную заявку
По настоящей заявке испрашивается приоритет согласно предварительной заявке на патент США №61/576,737, поданной 16 декабря 2011 года и полностью включенной в настоящий документ путем ссылки.
Предпосылки создания изобретения
1. Область техники
Настоящее изобретение относится к технологии управления работой насоса и, в частности, к способу и устройству для управления скоростью насоса, например, для бытовых и коммерческих систем водяного отопления или охлаждения.
2. Уровень техники
На фиг. 1(a) показана известная вторичная жидкостная система нагревания и охлаждения с управлением насосом с переменной скоростью, а на фиг. 1(b) показана известная система с подкачивающим водяным насосом. В последнее время резко усилился интерес к проблемам экономии энергии и защиты окружающей среды в отношении таких насосных систем. Все больше внимания уделяется приложениям по управлению жидкостными насосами, включая средства управления насосами для бытовых и коммерческих насосных систем водяного отопления и охлаждения или систем циркуляции, систем с подкачивающим водяным насосом и т.д., например систем, показанных на фиг. 1(а) и 1(b), при этом их параметры могут быть динамическими и по природе неизвестными. Для снижения потребления энергии и эксплуатационных затрат были предложены некоторые известные подходы адаптивного управления.
Например, в заявке на патент США №12/982,286, поданной 30 декабря 2010 года (файл F-B&G-1001//911-19.001) заявителем настоящей заявки и полностью включенной в настоящий документ путем ссылки, раскрыта схема адаптивного управления жидкостными насосными системами отопления и охлаждения, а также системами с подкачивающим водяным насосом, которые соответствуют системам, схематически показанным на фиг. 1(а) и 1(b). На фиг. 1(с) показаны графики различных функций, построенные с использованием известных уравнений характеристик систем, включая, например, кривую для насоса, мгновенную кривую системы, кривую постоянного управления, кривую эквивалентной системы (расчетную), кривую адаптивного управления и кривую потерь распределения. Контрольная точка Р* давления в отношении необходимой скорости Q* потока может быть вычислена и/или определена из уравнения , где кривая адаптивного управления может быть получена из уравнения потока с использованием фильтра скользящего среднего. При таком адаптивном подходе кривая адаптивного управления для получения контрольной точки давления расположена гораздо ближе к кривой эквивалентной системы, представляющей минимальное давление, необходимое для сохранения требуемой скорости потока, в соответствии с фиг. 1(с). Вследствие этого с использованием этого адаптивного подхода можно сэкономить энергию насосной системы.
Сущность изобретения
Настоящее изобретение обеспечивает усовершенствование схемы адаптивного управления, раскрытой в вышеуказанной заявке на патент США №12/982,286.
Согласно некоторым вариантам выполнения настоящего изобретения, предлагается устройство, такое как контроллер насоса, имеющий сигнальный процессор, выполненный с возможностью по меньшей мере следующего:
приема сигнализации, содержащей информацию о кривой линейного управления контрольной точки, по меньшей мере частично основанной на кривой адаптивного управления контрольной точки, связанной с жидкостью, нагнетаемой насосом в насосной системе, и определения контрольной точки управления по меньшей мере частично на основе принятой сигнализации.
Варианты выполнения настоящего изобретения могут также включать один или более следующих признаков:
Сигнальный процессор может быть выполнен с возможностью предоставления управляющего сигнала, содержащего информацию для управления насосом, по меньшей мере частично на основе упомянутой определенной контрольной точки управления.
Кривую линейного управления контрольной точки получают, в том числе с помощью сигнального процессора, из кривой адаптивного управления контрольной точки в отношении потока и давления в системе.
Сигнальный процессор может быть выполнен с возможностью определения кривой линейного управления контрольной точки по меньшей мере частично на основе следующего уравнения:
где Р0 - контрольная точка постоянного давления,
Q* (t) - требуемая скорость потока,
Cmax - максимальная скорость потока в системе,
b0 - порог давления.
Сигнальный процессор может быть выполнен с возможностью определения скорости потока в системе как суммы скоростей потока каждой отдельной зоны по меньшей мере частично на основе следующего уравнения:
n - общее количество зон.
Сигнальный процессор может быть выполнен с возможностью определения скорости потока в системе, если используются параметры управления температурой в зоне, по меньшей мере частично на основе следующего уравнения:
Qi,max - максимальная скорость потока для получения максимальной температуры,
Ti,max - целевая температура для зоны i,
Toutdoor - наружная температура и
α - компенсирующий коэффициент.
Сигнальный процессор может быть выполнен с возможностью определения требуемой скорости Q*(t) потока по меньшей мере частично на основе следующего уравнения:
где r=b0/Р0,
Cν(t) - мгновенная кривая системы,
Р0 - контрольная точка постоянного давления.
Сигнальный процессор выполнен с возможностью определения контрольной точки давления на основе кривой адаптивного управления, непосредственно основанной, по меньшей мере частично, на следующем уравнении:
Сигнальный процессор может быть выполнен с возможностью определения контрольной точки управления, полученной из кривой адаптивного управления контрольной точки, по меньшей мере частично на основе требуемой скорости Q* потока.
Устройство может также содержать по меньшей мере одну память, содержащую компьютерный программный код, при этом указанные по меньшей мере одна память и компьютерный программный код посредством указанного по меньшей мере одного процессора обеспечивают выполнение устройством по меньшей мере следующего:
приема сигнализации и
определения контрольной точки управления по меньшей мере частично на основе принятой сигнализации.
Устройство может содержать устройство управления насосом или контроллер насоса, включая средства пропорционально-интегрально-дифференциального управления, имеющие сигнальный процессор, или может быть выполнен в виде указанных устройств.
Согласно некоторым вариантам выполнения настоящего изобретения, предлагается способ, включающий: прием сигнальным процессором сигнализации, содержащей информацию о кривой линейного управления контрольной точки, по меньшей мере частично основанной на кривой адаптивного управления контрольной точки, связанной с жидкостью, нагнетаемой насосом в насосной системе, и определение сигнальным процессором контрольной точки управления по меньшей мере частично на основе принятой сигнализации.
Настоящее изобретение также может быть выполнено в виде, например, компьютерного программного продукта, содержащего считываемый компьютером носитель со встроенным исполняемым компьютером кодом для реализации указанного способа, например, когда этот код исполняется в сигнальном процессоре, который является частью такого контроллера насоса. Например, компьютерный программный продукт может быть выполнен в виде компакт-диска, дискеты, модуля памяти, карты памяти, а также других типов или видов запоминающих устройств, которые могут хранить такой исполняемый на компьютере код на таком считываемым компьютером носителе, известном в настоящее время или разработанном в будущем.
Одно из преимуществ настоящего изобретения состоит в том, что оно может способствовать снижению общего потребления энергии и эксплуатационных затрат в устройствах, включая, например, вторичную жидкостную систему нагревания и охлаждения с управлением насосом с переменной скоростью работы, показанную на фиг. 1(а), и систему с подкачивающим насосом, показанную на фиг. 1(b).
Краткое описание чертежей
Чертежи выполнены не в масштабе.
Фиг. 1 включает фиг. 1а, 1b и 1с, при этом на фиг. 1а показана схема известной вторичной жидкостной системы нагревания и охлаждения с управлением насосом с переменной скоростью работы; на фиг. 1b показана схема известной системы с подкачивающим водяным насосом, и на фиг. 1с показан график потока (галлоны в минуту) в отношении напора у основания для реализации технологии адаптивного управления на основе кривой адаптивного управления, в которой сэкономленная мощность, связанная с жидкостью, составляет dP*Q* при скорости Q* потока и согласуется с известной.
На фиг. 2 показана схема устройства согласно некоторым вариантам выполнения настоящего изобретения.
На фиг. 3 показана зависимость давления в системе в отношении потока (галлоны в минуту) для реализации технологии адаптивного управления на основе кривой линейного управления контрольной точки, полученной из кривых адаптивного и постоянного управления согласно некоторым вариантам выполнения настоящего изобретения.
На фиг. 4 показана зависимость давления в системе в отношении потока (галлоны в минуту) для реализации технологии линейного адаптивного управления на основе определения требуемого потока Q* согласно некоторым вариантам выполнения настоящего изобретения.
Подробное описание изобретения
На фиг. 2 показано настоящее изобретение в виде устройства 10, такого как контроллер насоса, содержащий сигнальный процессор 12, выполненный с возможностью по меньшей мере приема сигнализации, содержащей информацию о кривой линейного управления контрольной точки, по меньшей мере частично основанной на кривой адаптивного управления контрольной точки, связанной с жидкостью, нагнетаемой насосом в насосной системе, и определения контрольной точки управления по меньшей мере частично на основе принятой сигнализации. Сигнальный процессор 12 может предоставлять управляющий сигнал, содержащий информацию для управления насосом, по меньшей мере частично на основе упомянутой определенной контрольной точки управления. Устройство 10 может содержать или представлять собой устройство управления насосом или контроллер насоса со средствами пропорционально-интегрально-дифференциального управления, имеющими сигнальный процессор 12.
На фиг. 3 показаны графики различных функций с использованием известных уравнений для кривых системы, включая, например, кривую для насоса, кривую постоянного управления, кривую динамического линейного управления, кривую эквивалентной системы, кривую адаптивного управления и кривую потерь распределения. В адаптивном подходе согласно фиг. 3 контрольная точка управления получена по меньшей мере частично на основе кривой линейного управления контрольной точки, полученной из кривой адаптивного управления и кривой постоянного управления.
Согласно некоторым вариантам выполнения настоящего изобретения, при работе кривая динамического линейного управления может быть получена из кривой адаптивного управления в отношении потока и давления в системе в соответствии с фиг. 3. При использовании этого адаптивного подхода контрольную точку Р* давления можно легко получить. Наиболее важно то, что это делает средство адаптивного управления насосом доступным для системной конфигурации без необходимости иметь в наличии сигналы скорости потока для всех зон.
Например, если следовать линейному адаптивному подходу, кривая управления контрольной точки в отношении требуемой скорости потока в любой момент f времени может быть записана в виде:
где Р0 - контрольная точка постоянного давления,
Qmax - максимальная скорость потока в системе,
b0 - порог давления и
- кривая адаптивного управления, соответствующая приведенной в указанной заявке на патент США №12/982286. может быть получено напрямую посредством фильтра скользящего среднего или детектора скользящего пикового значения, предпочтительно примененных к мгновенным характеристикам системы. Здесь адаптивная технология может использоваться для отслеживания любой варьируемой или неизвестной характеристики системы и установки контрольной точки управления, соответственно, когда скорость Q*(t) потока известна. В этом случае скорость потока в системе может быть выражена как сумма скоростей потоков каждой отдельной зоны приблизительно в виде
n - общее количество зон.
Если используются параметры управления температурой в зоне, уравнение (2) может быть переписано в виде:
Qi,max - максимальная скорость потока для получения максимальной температуры,
Ti,max - целевая температура для зоны i,
Toutdoor - наружная температура и
α - компенсирующий коэффициент,
может быть контрольной точкой температуры воды, вытекающей из нагревательной или охлаждающей спирали теплообменника, или контрольной точкой температуры термостата для сигналов циркуляционного насоса или управляющего клапана, соответственно.
Согласно некоторым вариантам выполнения настоящего изобретения, кривые управления и средства управления для жидкостных насосных систем, описанные в настоящем документе, могут включать использование кривой динамического линейного управления контрольной точки, такой как показанная на фиг. 3 и выраженная уравнением (1) в отношении потока и давления в системе, соответственно. Здесь скорость потока в системе в любое время t может быть выражена в виде суммы скоростей потока в зонах (уравнение (2)) или температур в зонах (уравнение (3)), которые необходимы и известны.
На фиг. 4 показаны графики различных функций, построенные с использованием известных уравнений для кривых системы, включая, например, кривую насоса, кривую постоянного управления, кривую линейного адаптивного управления, мгновенную кривую системы, кривую эквивалентной системы, кривую адаптивного управления и кривую потерь распределения. В адаптивном подходе, согласно фиг. 4, вычисляют или определяют требуемую скорость Q* потока.
Во многих жидкостных системах и приложениях сигналы скорости потока в зоне или сигналы температуры в зоне, входящие в уравнения (2) и (3), не всегда доступны, или их получение связано с большими затратами. Для таких случаев предусмотрена альтернативная версия средств линейного адаптивного управления, которая соответствует схеме, показанной на фиг. 4. Согласно некоторым вариантам выполнения настоящего изобретения, в этом адаптивном подходе требуемая скорость Q* потока в системе может быть вычислена и/или определена на основе пересечения мгновенной кривой системы и кривой линейного адаптивного управления, в то время как контрольная точка давления может затем быть получена из кривой адаптивного управления на основе требуемой скорости Q* потока, соответственно.
Если следовать этому подходу, требуемая скорость Q* потока может быть вычислена следующим образом:
а контрольная точка давления может быть получена из кривой адаптивного управления непосредственно с помощью выражения:
где r=b0/P0, Cν(t) - мгновенная кривая системы, - адаптивный максимальный поток, и - соответствующая максимальная кривая системы. В данном случае кривая адаптивного управления может быть получена с помощью фильтра скользящего среднего или детектора скользящего пикового значения по информативному уравнению потока. Предпочтительно, чтобы или были получены с использованием детектора скользящего пикового значения. Уравнение (5) совместно с уравнением (4) может использоваться для установки контрольной точки для управления давлением в любой жидкостной системе, в которой скорости потока в зонах регулируются, главным образом, управляющими клапанами, поскольку характеристики системы используются для получения требуемой скорости потока.
Для получения мгновенной кривой Cν(t) системы с использованием уравнения потока должны быть известны как мгновенное давление, так и скорость в системе. Во многих практических приложениях скорость потока в системе не всегда может быть доступной. Поэтому для вычисления скорости потока с линейным приближением альтернативно может быть использован один из рабочих параметров двигателя, таких как частота вращения, вращающий момент, оценки мощности или тока. Может использоваться также бессенсорный инвертор, при его наличии, который выдает скорость потока и давление в системе по частоте вращения двигателя и мощности на основе данных калибровки насоса и системы.
Для применения моделей контрольной точки для управления давлением, предлагаемых в настоящем изобретении, в системе управления должно иметься некоторое количество датчиков для контроля и сигнализации, и могут понадобиться технология передачи данных и проводные технологии. Среди них оптимальными и лучшими решениями являются технологии беспроводной передачи сигналов от датчика или технологии бессерсорного управления насосом.
В действительности, согласно некоторым вариантам выполнения настоящего изобретения, кривые управления и средства управления жидкостными насосными системами, рассмотренные здесь, могут включать использование кривых динамического линейного управления контрольной точки, показанных на фиг. 4, и их соответствующих выражений (4) и (5), соответственно. Здесь требуемая скорость потока в системе может быть вычислена и/или определена с использованием уравнений (4) и (5), если сигналы скорости потока в зоне или температуры в зоне недоступны. В случаях, когда скорость потока в системе недоступна, для вычисления скорости потока с линейным приближением альтернативно может быть использован один из рабочих параметров двигателя, таких как частота вращения, вращающий момент, оценки мощности или тока. Может использоваться также бессенсорный инвертор, при его наличии, который выдает скорость потока и давление в системе по частоте вращения двигателя и мощности на основе данных калибровки насоса и системы.
В общем, при использовании средств линейного адаптивного управления согласно настоящему изобретению энергию, затрачиваемую на работу насоса, можно значительно сэкономить. Предлагаемые способы просты, легко реализуемы и могут быть легко интегрированы в любую жидкостную систему с управлением насосом, содержащую системы управления нагреванием и охлаждением с замкнутым контуром, а также системы с подкачивающим водяным насосом с открытым контуром.
Устройство 10
Функциональность устройства 10 может быть реализована, например, с использованием аппаратного обеспечения, программного обеспечения, встроенного программного обеспечения или их комбинации. В типичной программной реализации устройство 10 содержит одну или более микропроцессорных архитектур, например по меньшей мере один сигнальный процессор или микропроцессор, аналогичный элементу 12. Специалист способен запрограммировать такое устройство на основе микроконтроллера (или микропроцессора) для выполнения функций, описанных выше, без необходимости проведения излишних экспериментов. Объем изобретения не ограничен каким-либо конкретным вариантом его выполнения с использованием как известной технологии, так и разработанной в будущем. Объем изобретения включает реализацию функциональности процессоров 12 в виде автономного процессора или процессорного модуля, отдельного процессора или процессорных модулей, а также их комбинации.
Устройство может также содержать другие схемы или компоненты 14 сигнального процессора, включающие, например, память с произвольным доступом (RAM) и/или постоянную память (ROM), аналогичные элементу 14, устройство ввода-вывода и управляющее устройство, а также шины данных и адресные шины, соединяющие перечисленные выше устройства, и/или по меньшей мере один процессор ввода и по меньшей мере один процессор вывода.
Возможные дополнительные приложения
Согласно настоящему изобретению, средства управления системами водяного нагревания или охлаждения, а также системами с подкачивающим насосом могут содержать кривые динамического линейного управления контрольной точки и соответствующие средства. При использовании предлагаемого нового подхода кривая управления становится значительно ближе к кривой системы, и можно значительно снизить затраты на энергию для управления насосом.
Согласно настоящему изобретению, жидкостные системы, рассмотренные здесь, могут содержать первичные насосные системы, вторичные насосные системы, системы циркуляции воды и системы с подкачивающим насосом. Рассмотренные здесь системы могут также содержать одну зону или множество зон.
Согласно настоящему изобретению, описанные выше системы могут содержать ручные или автоматические управляющие клапаны, ручные или автоматические циркуляционные насосы или их комбинации.
Согласно настоящему изобретению, входные процессорные сигналы для управления насосами могут включать давление в системе или дифференциальное давление, давление в зоне или дифференциальные давления, скорость потока в системе или скорости потока в зонах. Другие входные процессорные сигналы могут также включать мощность, вращающий момент, частоту вращения двигателя и т.д.
Согласно настоящему изобретению, технологии формирования и контроля управляющих сигналов, технологии передачи данных и проводные технологии могут включать все обычные средства измерения и передачи данных, которые используются в настоящее время. Предпочтительно, технологии бессенсорного управления насосом, а также беспроводные технологии передачи сигналов от датчиков смогут обеспечить оптимальные и благоприятные решения.
Согласно настоящему изобретению, насосы, рассмотренные здесь для жидкостных насосных систем, могут включать один насос, группу параллельно соединенных насосов, группу последовательно соединенных насосов или их комбинации.
Согласно настоящему изобретению, каскадное соединение/разъединение насосов, а также альтернативные средства могут включать все традиционные средства, которые используются в настоящее время.
Пример кривой адаптивного управления
В качестве примера, из вышеуказанной заявки на патент США №12/982286 специалисту очевидно, что кривая SAMAt адаптивного управления может быть получена из сигналов мгновенного давления и скорости потока с помощью адаптивного фильтра скользящего среднего по меньшей мере частично на основе уравнения потока в системе посредством самокалибровки следующим образом:
где функция AMAF - функция адаптивного фильтра скользящего среднего, а параметры Q и ΔΡ - мгновенная скорость потока в системе и дифференциальное давление, соответственно.
В вышеуказанной заявке на патент США №12/982286 контрольная точка управления давлением была получена из кривой адаптивного управления в отношении мгновенной скорости потока или скользящего среднего для скорости потока в соответствии с выражением:
где МА - функция фильтра скользящего среднего, а параметр b - малое постоянное смещение для давления. Отметим, что функция AMAF также может быть заменена на функцию фильтра скользящего среднего или любых других аналогичных адаптивных фильтров как известных сегодня, так и разработанных в будущем. Объем изобретения не ограничен типом или видом функции фильтра. Кривые адаптивного управления и технология управления насосом для бытовых и коммерческих систем водяного нагревания или охлаждения могут также иметь в начале кривой управления порог для согласования с минимальной скоростью насоса.
Для системы с произвольными характеристиками распределения, в которой дифференциальное давление P(x,t) является функцией скорости Q(x,t) потока от доли × скорости потока и времени t, кривая адаптивного управления и контрольная точка могут быть также записаны следующим образом:
Здесь функция AMAF представляет собой двумерный адаптивный фильтр скользящего среднего в отношении мгновенной доли x скорости потока в системе и времени t, соответственно.
Техника вывода одного уравнения из другого уравнения
Рассмотренная здесь техника вывода одного уравнения из другого уравнения, например, получение кривой линейного управления контрольной точки из кривых адаптивного и постоянного управления известна, и объем изобретения не ограничен каким-либо конкретным типом или способом такой техники как известной сегодня, так и разработанной в будущем.
Объем изобретения
Подразумевается, что, если явно не указано обратное, любые из признаков, характеристик, вариантов или модификаций, описанных в отношении конкретного варианта выполнения настоящего изобретения, могут также быть применены, использованы или включены в любой другой вариант выполнения настоящего изобретения, описанный в данном документе. Кроме того, чертежи выполнены не в масштабе.
Хотя настоящее изобретение описано на примере центробежного насоса, объем изобретения включает использование тех же признаков в отношении других типов или видов насосов, как известных сегодня, так и разработанных в будущем.
Хотя изобретение было описано и проиллюстрировано на примере вариантов его выполнения, могут быть выполнены описанные и различные другие добавления и изъятия в пределах сущности настоящего изобретения.
Claims (81)
1. Устройство для управления скоростью насоса, содержащее:
сигнальный процессор, выполненный с возможностью по меньшей мере следующего:
приема сигнализации, содержащей информацию о кривой линейного управления контрольной точки, полученной из кривых адаптивного и постоянного управления контрольной точки, связанных с жидкостью, нагнетаемой насосом в насосной системе, и
определения соответствующего сигнала, содержащего информацию для адаптивного управления работой насоса в насосной системе с использованием алгоритма адаптивного управления, который получает контрольную точку управления из кривой линейного управления контрольной точки, по меньшей мере частично, на основе принятой сигнализации.
2. Устройство по п. 1, в котором сигнальный процессор выполнен с возможностью предоставления соответствующей сигнализации в качестве управляющего сигнала, содержащего информацию для управления насосом, по меньшей мере частично, на основе упомянутой определенной контрольной точки управления.
3. Устройство по п. 1, в котором кривая линейного управления контрольной точки получена, в том числе сигнальным процессором, из кривой адаптивного управления контрольной точки в отношении потока и давления в системе.
4. Устройство по п. 1, в котором сигнальный процессор выполнен с возможностью определения контрольной точки P*(t) давления в отношении требуемой скорости Q*(t) потока с использованием кривой линейного управления контрольной точки, по меньшей мере частично, на основе следующего уравнения:
где P0 - контрольная точка постоянного давления,
Q*(t) - требуемая скорость потока,
Qmax - максимальная скорость потока в системе,
b0 - порог давления.
5. Устройство по п. 4, в котором сигнальный процессор выполнен с возможностью определения скорости потока в системе как суммы скоростей потока каждой отдельной зоны, по меньшей мере частично, на основе следующего уравнения:
n - общее количество зон.
6. Устройство по п. 4, в котором сигнальный процессор выполнен с возможностью определения скорости потока в системе, если используются параметры управления температурой в зоне, по меньшей мере частично, на основе следующего уравнения:
Qi,max - максимальная скорость потока для получения максимальной температуры,
Ti,max - целевая температура для зоны i,
Toutdoor - наружная температура и
α - компенсирующий коэффициент.
7. Устройство по п. 1, в котором сигнальный процессор выполнен с возможностью определения требуемой скорости Q*(t) потока, по меньшей мере частично, на основе следующего уравнения:
где r=b0/Р0,
Сν(t) - мгновенная кривая системы,
Р0 - контрольная точка постоянного давления.
8. Устройство по п. 7, в котором сигнальный процессор выполнен с возможностью определения контрольной точки давления на основе кривой адаптивного управления контрольной точки, непосредственно основанной, по меньшей мере частично, на следующем уравнении:
9. Устройство по п. 1, в котором сигнальный процессор выполнен с возможностью определения контрольной точки управления, полученной из кривой адаптивного управления контрольной точки, по меньшей мере частично, на основе требуемой скорости Q*(t) потока.
10. Устройство по п. 1, которое также содержит по меньшей мере одну память, содержащую компьютерный программный код, при этом указанные по меньшей мере одна память и компьютерный программный код посредством указанного по меньшей мере одного процессора обеспечивают выполнение устройством по меньшей мере следующего:
приема сигнализации и
определения контрольной точки управления, по меньшей мере частично, на основе принятой сигнализации.
11. Устройство по п. 1, которое содержит или представляет собой устройство управления насосом или контроллер насоса со средствами пропорционально-интегрально-дифференциального управления, имеющими упомянутый сигнальный процессор.
12. Способ управления скоростью насоса, включающий:
прием сигнальным процессором сигнализации, содержащей информацию о кривой линейного управления контрольной точки, полученной из кривых адаптивного и постоянного управления контрольной точки, связанных с жидкостью, нагнетаемой насосом в насосной системе, и
определение сигнальным процессором соответствующей сигнализации, содержащей информацию для адаптивного управления работой насоса в насосной системе с использованием алгоритма адаптивного управления, который получает контрольную точку управления из кривой линейного управления контрольной точки, по меньшей мере частично, на основе принятой сигнализации.
13. Способ по п. 12, включающий предоставление сигнальным процессором соответствующей сигнализации в качестве управляющего сигнала, содержащего информацию для управления насосом, по меньшей мере частично, на основе упомянутой определенной контрольной точки управления.
14. Способ по п. 12, включающий определение сигнальным процессором требуемой скорости Q* потока, по меньшей мере частично, на основе сигнализации, содержащей информацию о точке пересечения кривой линейного управления контрольной точки и кривой адаптивного управления контрольной точки, включая точку пересечения при максимальной адаптивной скорости потока.
15. Способ по п. 12, включающий определение сигнальным процессором кривой линейного управления контрольной точки, по меньшей мере частично, на основе следующего уравнения:
где Р0 - контрольная точка постоянного давления,
Q*(t) - требуемая скорость потока,
Qmax - максимальная скорость потока в системе,
b0 - порог давления.
16. Способ по п. 15, включающий определение сигнальным процессором скорости потока в системе как суммы скоростей потока каждой отдельной зоны, по меньшей мере частично, на основе следующего уравнения:
n - общее количество зон.
17. Способ по п. 15, включающий определение сигнальным процессором скорости потока в системе, если используются параметры управления температурой в зоне, по меньшей мере частично, на основе следующего уравнения:
Qi,max - максимальная скорость потока для получения максимальной температуры,
Ti,max - целевая температура для зоны i,
Toutdoor - наружная температура и
α - компенсирующий коэффициент.
18. Способ по п. 12, включающий определение сигнальным процессором требуемой скорости Q*(t) потока, по меньшей мере частично, на основе следующего уравнения:
где r=b0/Р0,
Cν(t) - мгновенная кривая системы,
Р0 - контрольная точка постоянного давления.
19. Способ по п. 18, в котором сигнальный процессор определяет контрольную точку давления по кривой адаптивного управления непосредственно, по меньшей мере частично, на основе следующего уравнения:
20. Способ по п. 12, включающий определение процессором контрольной точки управления, по меньшей мере частично, на основе требуемой скорости Q*(t) потока и кривой адаптивного управления контрольной точки.
21. Способ по п. 10, включающий конфигурирование сигнального процессора по меньшей мере с одной памятью, содержащей компьютерный программный код, и обеспечение выполнения сигнальным процессором и по меньшей мере одной памятью по меньшей мере следующего:
приема сигнализации и
определения контрольной точки управления, по меньшей мере частично, на основе принятой сигнализации.
22. Устройство для управления скоростью насоса, содержащее:
средство для приема сигнализации, содержащей информацию о кривой линейного управления контрольной точки, полученной из кривых адаптивного и постоянного управления контрольной точки, связанных с жидкостью, нагнетаемой насосом в насосной системе, и
средства для определения соответствующей сигнализации, содержащей информацию для адаптивного управления работой насоса в насосной системе с использованием алгоритма адаптивного управления, который получает контрольную точку управления из кривой линейного управления контрольной точки, по меньшей мере частично, на основе принятой сигнализации.
23. Устройство по п. 22, также содержащее средства для предоставления соответствующей сигнализации в качестве управляющего сигнала, содержащего информацию для управления насосом, по меньшей мере частично, на основе упомянутой определенной контрольной точки управления.
24. Устройство по п. 22, в котором указанное средство для определения определяет требуемую скорость Q* потока, по меньшей мере частично, на основе сигнализации, содержащей информацию о точке пересечения кривой линейного управления контрольной точки и кривой адаптивного управления контрольной точки, включая точку пересечения при максимальной адаптивной скорости потока.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161576737P | 2011-12-16 | 2011-12-16 | |
US61/576,737 | 2011-12-16 | ||
PCT/US2012/070138 WO2013090907A1 (en) | 2011-12-16 | 2012-12-17 | Dynamic linear control methods and apparatus for variable speed pump control |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014121778A RU2014121778A (ru) | 2016-02-10 |
RU2611071C2 true RU2611071C2 (ru) | 2017-02-21 |
Family
ID=48613272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014121778A RU2611071C2 (ru) | 2011-12-16 | 2012-12-17 | Способ динамического линейного управления и устройство для управления насосом с переменной скоростью |
Country Status (7)
Country | Link |
---|---|
US (1) | US10048701B2 (ru) |
EP (1) | EP2791750B1 (ru) |
CN (1) | CN104024965B (ru) |
CA (1) | CA2856447C (ru) |
IN (1) | IN2014CN04206A (ru) |
RU (1) | RU2611071C2 (ru) |
WO (1) | WO2013090907A1 (ru) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10119545B2 (en) | 2013-03-01 | 2018-11-06 | Fluid Handling Llc | 3-D sensorless conversion method and apparatus for pump differential pressure and flow |
US11022985B2 (en) | 2011-12-16 | 2021-06-01 | Fluid Handling Llc | Discrete valve flow rate converter |
US9938970B2 (en) * | 2011-12-16 | 2018-04-10 | Fluid Handling Llc | Best-fit affinity sensorless conversion means or technique for pump differential pressure and flow monitoring |
US9846416B2 (en) * | 2011-12-16 | 2017-12-19 | Fluid Handling Llc | System and flow adaptive sensorless pumping control apparatus for energy saving pumping applications |
RU2681390C2 (ru) | 2013-07-25 | 2019-03-06 | Флюид Хэндлинг ЭлЭлСи | Адаптивное бессенсорное управление насосом с устройством самокалибровки для жидкостной насосной системы |
RU2685367C2 (ru) * | 2013-11-27 | 2019-04-17 | Флюид Хэндлинг ЭлЭлСи | Устройство для трехмерного бессенсорного преобразования дифференциального давления и расхода насоса |
WO2015105832A1 (en) * | 2014-01-07 | 2015-07-16 | Fluid Handling Llc | Variable speed multi-pump application for providing energy saving by calculating and compensating for friction loss using speed reference |
EP3129756A4 (en) * | 2014-04-08 | 2017-11-22 | Fluid Handling LLC. | Best-fit affinity sensorless conversion means or technique for pump differential pressure and flow monitoring |
JP6636945B2 (ja) | 2014-05-01 | 2020-01-29 | グラコ ミネソタ インコーポレーテッド | 過渡状態のシステムにおける流量制御の補正方法 |
EP3137228B1 (en) | 2014-05-01 | 2019-10-16 | Graco Minnesota Inc. | Method for fluid pressure control in a closed system |
EP3234723B1 (en) * | 2014-12-15 | 2022-03-23 | Fluid Handling LLC. | A discrete valve flow rate converter |
RU2702827C2 (ru) | 2015-02-13 | 2019-10-11 | Флюид Хэндлинг ЭлЭлСи | Устройство и способ для управления насосом |
EP3303838B1 (en) | 2015-06-04 | 2021-12-22 | Fluid Handling LLC. | Apparatus with direct numeric affinity sensorless pump processor |
WO2017019492A1 (en) | 2015-07-24 | 2017-02-02 | Fluid Handling Llc | Advanced real time graphic sensorless energy saving pump control system |
CN105045303B (zh) * | 2015-07-28 | 2017-11-14 | 新疆大全新能源有限公司 | 一种多晶硅生产过程中反应原料流量的控制方法 |
CN109478073A (zh) | 2016-05-31 | 2019-03-15 | 流体处理有限责任公司 | 用于变速泵送应用的泵控制设计工具箱技术 |
CA3027041C (en) | 2016-06-07 | 2022-01-25 | Fluid Handling Llc | Direct numeric 3d sensorless converter for pump flow and pressure |
WO2017214701A1 (en) * | 2016-06-14 | 2017-12-21 | S. A. Armstrong Limited | Self-regulating open circuit pump unit |
US11339777B2 (en) * | 2016-09-12 | 2022-05-24 | Fluid Handling Llc | Automatic self-driving pumps |
US20180087496A1 (en) | 2016-09-12 | 2018-03-29 | Flow Control LLC | Automatic self-driving pumps |
US10933713B2 (en) * | 2016-12-27 | 2021-03-02 | Cnh Industrial America Llc | Airflow control system of a work vehicle |
DE102017203926A1 (de) * | 2017-03-09 | 2018-09-13 | KSB SE & Co. KGaA | Verfahren zum Betrieb einer Umwälzpumpe in Zwillingsbauweise |
US10895881B2 (en) | 2017-03-21 | 2021-01-19 | Fluid Handling Llc | Adaptive water level controls for water empty or fill applications |
US9897260B1 (en) | 2017-04-18 | 2018-02-20 | Air Products And Chemicals, Inc. | Control system in an industrial gas pipeline network to satisfy energy consumption constraints at production plants |
US10415760B2 (en) | 2017-04-18 | 2019-09-17 | Air Products And Chemicals, Inc. | Control system in an industrial gas pipeline network to satisfy energy consumption constraints at production plants |
US9897259B1 (en) | 2017-04-18 | 2018-02-20 | Air Products And Chemicals, Inc. | Control system in a gas pipeline network to satisfy pressure constraints |
US9890908B1 (en) * | 2017-04-18 | 2018-02-13 | Air Products And Chemicals, Inc. | Control system in a gas pipeline network to increase capacity factor |
US9915399B1 (en) | 2017-04-18 | 2018-03-13 | Air Products And Chemicals, Inc. | Control system in a gas pipeline network to satisfy demand constraints |
WO2020033682A1 (en) | 2018-08-08 | 2020-02-13 | Fluid Handling Llc | Variable speed pumping control system with active temperature and vibration monitoring and control means |
SG11202102259WA (en) | 2018-10-05 | 2021-04-29 | S A Armstrong Ltd | Feed forward flow control of heat transfer system |
DE102019212325A1 (de) * | 2019-08-17 | 2021-02-18 | Ziehl-Abegg Se | Verfahren zur quantitativen Bestimmung einer aktuellen betriebszustandsabhängigen Größe eines Ventilators, insbesondere einer Druckänderung oder Druckerhöhung, und Ventilator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5911238A (en) * | 1996-10-04 | 1999-06-15 | Emerson Electric Co. | Thermal mass flowmeter and mass flow controller, flowmetering system and method |
US6663349B1 (en) * | 2001-03-02 | 2003-12-16 | Reliance Electric Technologies, Llc | System and method for controlling pump cavitation and blockage |
US20100140934A1 (en) * | 2008-12-09 | 2010-06-10 | General Electric Plant | Method and system of controlling a hydroelectric plant |
US20110022236A1 (en) * | 2009-07-23 | 2011-01-27 | Robert Higgins | Demand flow pumping |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5696189A (en) | 1979-12-28 | 1981-08-04 | Ebara Corp | Pump equipment |
US4490094A (en) | 1982-06-15 | 1984-12-25 | Gibbs Sam G | Method for monitoring an oil well pumping unit |
WO1986002858A1 (en) | 1984-11-15 | 1986-05-22 | Hemascience Laboratories, Inc. | Adaptive filter concentrate flow control system and method |
JPS61149583A (ja) | 1984-12-21 | 1986-07-08 | Hitachi Ltd | 可変速のポンプ水車またはポンプの起動方法 |
US4897798A (en) | 1986-12-08 | 1990-01-30 | American Telephone And Telegraph Company | Adaptive environment control system |
US5069792A (en) | 1990-07-10 | 1991-12-03 | Baxter International Inc. | Adaptive filter flow control system and method |
KR100208142B1 (ko) * | 1990-09-26 | 1999-07-15 | 가나이 쓰도무 | 반도체 메모리 |
US5318409A (en) | 1993-03-23 | 1994-06-07 | Westinghouse Electric Corp. | Rod pump flow rate determination from motor power |
US5651264A (en) | 1993-06-29 | 1997-07-29 | Siemens Electric Limited | Flexible process controller |
JPH0777192A (ja) | 1993-09-10 | 1995-03-20 | Nikkiso Co Ltd | スラストバランス機構を備えた遠心ポンプの性能予測方法 |
DE19504232A1 (de) * | 1995-02-09 | 1996-08-22 | Grundfos As | Verfahren zur Leistungsbegrenzung von elektrisch angetriebenen Heizungsumwälzpumpen |
US5555749A (en) | 1995-04-28 | 1996-09-17 | Air Products And Chemicals, Inc. | Use of centrifugal compressors in adsorptive systems |
AUPN547895A0 (en) | 1995-09-15 | 1995-10-12 | Rescare Limited | Flow estimation and compenstion of flow-induced pressure swings cpap treatment |
US5817950A (en) | 1996-01-04 | 1998-10-06 | Rosemount Inc. | Flow measurement compensation technique for use with an averaging pitot tube type primary element |
US7032689B2 (en) | 1996-03-25 | 2006-04-25 | Halliburton Energy Services, Inc. | Method and system for predicting performance of a drilling system of a given formation |
JP3922760B2 (ja) | 1997-04-25 | 2007-05-30 | 株式会社荏原製作所 | 流体機械 |
US5991525A (en) | 1997-08-22 | 1999-11-23 | Voyan Technology | Method for real-time nonlinear system state estimation and control |
US6293901B1 (en) * | 1997-11-26 | 2001-09-25 | Vascor, Inc. | Magnetically suspended fluid pump and control system |
US6280394B1 (en) | 1998-03-18 | 2001-08-28 | Sean R. Maloney | Apparatus and methods for detecting and processing EMG signals |
US5997778A (en) | 1998-04-23 | 1999-12-07 | Van Dorn Demag Corporation | Auto-tuned, adaptive process controlled, injection molding machine |
US6389225B1 (en) | 1998-07-14 | 2002-05-14 | Delta Design, Inc. | Apparatus, method and system of liquid-based, wide range, fast response temperature control of electronic device |
DE19831997A1 (de) * | 1998-07-16 | 2000-01-20 | Ewald Hennel | Verfahren zur Regelung des Drucks eines Fluids |
US6455316B1 (en) * | 1998-08-13 | 2002-09-24 | Symyx Technologies, Inc. | Parallel reactor with internal sensing and method of using same |
US6864092B1 (en) * | 1998-08-13 | 2005-03-08 | Symyx Technologies, Inc. | Parallel reactor with internal sensing and method of using same |
US6142228A (en) | 1998-09-09 | 2000-11-07 | Baker Hughes Incorporated | Downhole motor speed measurement method |
US6145228A (en) | 1998-11-09 | 2000-11-14 | Lachance; James L. | Apparatus for simulating falling snowflakes |
US6324490B1 (en) | 1999-01-25 | 2001-11-27 | J&L Fiber Services, Inc. | Monitoring system and method for a fiber processing apparatus |
US6114670A (en) | 1999-07-01 | 2000-09-05 | Voyan Technology | Nonlinear feedforward control for ramp following and overshoot minimization |
EP1085636A3 (en) | 1999-09-13 | 2002-12-18 | Hitachi, Ltd. | Energy saving service offering method and apparatus therefor |
US6241485B1 (en) | 1999-12-29 | 2001-06-05 | John W. Warwick | Wastewater flow control system |
AU2001274989A1 (en) * | 2000-05-27 | 2001-12-11 | Georgia Tech Research Corporation | Adaptive control system having direct output feedback and related apparatuses and methods |
TW516359B (en) | 2000-11-06 | 2003-01-01 | Delta Electronics Inc | Measuring method for flow characteristics curve of cooling system |
US7143016B1 (en) * | 2001-03-02 | 2006-11-28 | Rockwell Automation Technologies, Inc. | System and method for dynamic multi-objective optimization of pumping system operation and diagnostics |
US6850849B1 (en) | 2001-06-20 | 2005-02-01 | Curtis Roys | Fluid flow monitor and control system |
EP1286458A1 (de) | 2001-08-22 | 2003-02-26 | Pumpenfabrik Ernst Vogel Gesellschaft m.b.H. | Verfahren und Vorrichtung zur Regelung von Kreiselarbeitsmaschinen |
ES2227112T3 (es) | 2001-08-22 | 2005-04-01 | Pumpenfabrik Ernst Vogel Gesellschaft M.B.H. | Procedimiento para determinar una caracteristica de una bomba. |
US6536271B1 (en) * | 2001-09-13 | 2003-03-25 | Flowserve Management Company | Pump with integral flow monitoring |
JP3917835B2 (ja) | 2001-09-28 | 2007-05-23 | 横河電機株式会社 | 加圧送水ポンプシステム |
US7552033B1 (en) | 2001-12-20 | 2009-06-23 | The Texas A&M University System | System and method for diagnostically evaluating energy consumption systems and components of a facility |
DE10163987A1 (de) * | 2001-12-24 | 2003-07-10 | Grundfos As | Verfahren zum Steuern einer drehzahlregelbaren Heizungsumwälzpumpe |
US7396327B2 (en) | 2002-01-07 | 2008-07-08 | Micromed Technology, Inc. | Blood pump system and method of operation |
US6725167B2 (en) | 2002-01-16 | 2004-04-20 | Fisher Controls International Llc | Flow measurement module and method |
JP4004296B2 (ja) | 2002-01-28 | 2007-11-07 | テルモ株式会社 | 遠心式液体ポンプ装置 |
US20050125104A1 (en) | 2003-12-05 | 2005-06-09 | Wilson Thomas L. | Electrical power distribution control systems and processes |
EP1514175A4 (en) | 2002-05-20 | 2007-06-20 | Central Sprinkler Company | SYSTEM AND METHOD FOR EVALUATING A FLUID FLOW IN A TUBE SYSTEM |
US6739840B2 (en) | 2002-05-22 | 2004-05-25 | Applied Materials Inc | Speed control of variable speed pump |
JP2004112113A (ja) | 2002-09-13 | 2004-04-08 | Matsushita Electric Ind Co Ltd | リアルタイム通信の適応制御方法、受信報告パケットの連続消失に対する対策方法、受信報告パケットの送出間隔の動的決定装置、リアルタイム通信の適応制御装置、データ受信装置およびデータ配信装置 |
US7668694B2 (en) | 2002-11-26 | 2010-02-23 | Unico, Inc. | Determination and control of wellbore fluid level, output flow, and desired pump operating speed, using a control system for a centrifugal pump disposed within the wellbore |
US20040062658A1 (en) | 2002-09-27 | 2004-04-01 | Beck Thomas L. | Control system for progressing cavity pumps |
US6890156B2 (en) * | 2002-11-01 | 2005-05-10 | Polyphase Engineered Controls | Reciprocating pump control system |
PL213870B1 (pl) | 2002-12-09 | 2013-05-31 | Hudson Technologies | Sposób optymalizacji funkcjonowania systemu chlodniczego oraz system chlodniczy |
US7036559B2 (en) * | 2003-07-08 | 2006-05-02 | Daniel Stanimirovic | Fully articulated and comprehensive air and fluid distribution, metering, and control method and apparatus for primary movers, heat exchangers, and terminal flow devices |
US7163380B2 (en) | 2003-07-29 | 2007-01-16 | Tokyo Electron Limited | Control of fluid flow in the processing of an object with a fluid |
US8540493B2 (en) | 2003-12-08 | 2013-09-24 | Sta-Rite Industries, Llc | Pump control system and method |
US7455099B2 (en) | 2003-12-19 | 2008-11-25 | General Electric Company | Heat exchanger performance monitoring and analysis method and system |
FI116253B (fi) | 2003-12-22 | 2005-10-14 | Abb Oy | Sähkökäytön energiakulutus |
DE102004009616A1 (de) | 2004-02-27 | 2005-09-22 | Siemens Ag | Verfahren und Vorrichtung zur Steuerung des Volumenstroms in einem Kraftstoff-Einspritzsystem einer Brennkraftmaschine |
US7630580B1 (en) | 2004-05-04 | 2009-12-08 | AgentSheets, Inc. | Diffusion-based interactive extrusion of 2D images into 3D models |
US7591777B2 (en) | 2004-05-25 | 2009-09-22 | Heartware Inc. | Sensorless flow estimation for implanted ventricle assist device |
CA2571022C (en) | 2004-07-02 | 2014-06-10 | University Of Alberta | Detection and quantification of stiction |
US7845913B2 (en) | 2004-08-26 | 2010-12-07 | Pentair Water Pool And Spa, Inc. | Flow control |
US7600985B2 (en) | 2004-10-28 | 2009-10-13 | Ingersoll-Rand Company | Pump assembly, suppression apparatus for use with a pump, and method of controlling a pump assembly |
US7130721B2 (en) | 2004-10-29 | 2006-10-31 | Caterpillar Inc | Electrohydraulic control system |
AU2005301097B2 (en) | 2004-11-04 | 2012-03-15 | ResMed Pty Ltd | Using motor speed in a PAP device to estimate flow |
US7267086B2 (en) * | 2005-02-23 | 2007-09-11 | Emp Advanced Development, Llc | Thermal management system and method for a heat producing system |
DE102005023430A1 (de) | 2005-03-15 | 2006-09-21 | Fresenius Medical Care Deutschland Gmbh | Verfahren und Vorrichtung zur Bestimmung der effektiven Förderrate oder Einstellung der Drehzahl einer peristaltischen Pumpe |
US7336168B2 (en) | 2005-06-06 | 2008-02-26 | Lawrence Kates | System and method for variable threshold sensor |
US20070028632A1 (en) | 2005-08-03 | 2007-02-08 | Mingsheng Liu | Chiller control system and method |
JP2009505079A (ja) | 2005-08-12 | 2009-02-05 | セレリティ・インコーポレイテッド | 気泡検出を用いた流れの測定および制御 |
EP1954915A4 (en) | 2005-11-18 | 2015-08-12 | Exxonmobile Upstream Res Company | METHOD FOR DRILLING AND PRODUCING HYDROCARBONS FROM SUBSURFACE FORMATIONS |
US7777435B2 (en) | 2006-02-02 | 2010-08-17 | Aguilar Ray A | Adjustable frequency pump control system |
US7945411B2 (en) | 2006-03-08 | 2011-05-17 | Itt Manufacturing Enterprises, Inc | Method for determining pump flow without the use of traditional sensors |
DE102006027002A1 (de) * | 2006-06-08 | 2007-12-13 | Oase Gmbh | Pumpemanordnung mit Drehzahlsteuerung |
CN101512978B (zh) * | 2006-07-04 | 2013-02-13 | 夏普株式会社 | 通信装置、设备、通信装置控制方法 |
US8202061B2 (en) | 2006-09-26 | 2012-06-19 | Magna Powertrain Inc. | Control system and method for pump output pressure control |
WO2008079829A2 (en) * | 2006-12-22 | 2008-07-03 | Duncan Scot M | Optimized control system for cooling systems |
DE102007022348A1 (de) | 2007-05-12 | 2008-11-13 | Ksb Aktiengesellschaft | Einrichtung und Verfahren zur Störungsüberwachung |
US8774972B2 (en) * | 2007-05-14 | 2014-07-08 | Flowserve Management Company | Intelligent pump system |
US20090094173A1 (en) | 2007-10-05 | 2009-04-09 | Adaptive Logic Control, Llc | Intelligent Power Unit, and Applications Thereof |
US8121971B2 (en) | 2007-10-30 | 2012-02-21 | Bp Corporation North America Inc. | Intelligent drilling advisor |
DE502007003785D1 (de) | 2007-11-16 | 2010-06-24 | Linde Ag | Verfahren zum Ansteuern einer Pumpenanordnung und Pumpenanordnung |
US20090129935A1 (en) | 2007-11-21 | 2009-05-21 | Kunkler Kevin J | Pump suction pressure limiting speed control and related pump driver and sprinkler system |
EP2229610B1 (en) * | 2007-12-14 | 2019-03-06 | ITT Manufacturing Enterprises LLC | Synchronous torque balance in multiple pump systems |
US8024161B2 (en) | 2008-08-19 | 2011-09-20 | Honeywell International Inc. | Method and system for model-based multivariable balancing for distributed hydronic networks |
JP2012501621A (ja) | 2008-08-29 | 2012-01-19 | ジョンソン,アーネ,エフ | 省エネルギーを評価する方法及び装置 |
US7734441B2 (en) | 2008-09-30 | 2010-06-08 | Mohsen Taravat | Method and device for measuring and controlling the amount of flow/volume of liquid pumped/transferred by an electro-pump |
US8425200B2 (en) | 2009-04-21 | 2013-04-23 | Xylem IP Holdings LLC. | Pump controller |
US8774978B2 (en) | 2009-07-23 | 2014-07-08 | Siemens Industry, Inc. | Device and method for optimization of chilled water plant system operation |
US8045173B2 (en) | 2009-08-04 | 2011-10-25 | General Electric Company | Adaptive linear filter for real time noise reduction in surface plasmon resonance systems |
US9181953B2 (en) * | 2009-10-01 | 2015-11-10 | Specific Energy | Controlling pumps for improved energy efficiency |
US8690820B2 (en) * | 2009-10-06 | 2014-04-08 | Illinois Institute Of Technology | Automatic insulin pumps using recursive multivariable models and adaptive control algorithms |
US8801407B2 (en) | 2010-02-24 | 2014-08-12 | Harris Waste Management Group, Inc. | Hybrid electro-hydraulic power device |
US8346403B2 (en) * | 2010-06-04 | 2013-01-01 | Cooper Technologies Company, Inc. | In-wall occupancy sensor with mode selection features |
US8700221B2 (en) | 2010-12-30 | 2014-04-15 | Fluid Handling Llc | Method and apparatus for pump control using varying equivalent system characteristic curve, AKA an adaptive control curve |
US8833384B2 (en) * | 2012-08-06 | 2014-09-16 | Schneider Electric Buildings, Llc | Advanced valve actuation system with integral freeze protection |
-
2012
- 2012-12-17 CA CA2856447A patent/CA2856447C/en active Active
- 2012-12-17 CN CN201280061743.9A patent/CN104024965B/zh active Active
- 2012-12-17 IN IN4206CHN2014 patent/IN2014CN04206A/en unknown
- 2012-12-17 RU RU2014121778A patent/RU2611071C2/ru active
- 2012-12-17 EP EP12857590.9A patent/EP2791750B1/en active Active
- 2012-12-17 WO PCT/US2012/070138 patent/WO2013090907A1/en unknown
- 2012-12-17 US US13/717,086 patent/US10048701B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5911238A (en) * | 1996-10-04 | 1999-06-15 | Emerson Electric Co. | Thermal mass flowmeter and mass flow controller, flowmetering system and method |
US6663349B1 (en) * | 2001-03-02 | 2003-12-16 | Reliance Electric Technologies, Llc | System and method for controlling pump cavitation and blockage |
US20100140934A1 (en) * | 2008-12-09 | 2010-06-10 | General Electric Plant | Method and system of controlling a hydroelectric plant |
US20110022236A1 (en) * | 2009-07-23 | 2011-01-27 | Robert Higgins | Demand flow pumping |
Also Published As
Publication number | Publication date |
---|---|
EP2791750B1 (en) | 2020-05-06 |
EP2791750A4 (en) | 2015-10-21 |
RU2014121778A (ru) | 2016-02-10 |
US20140005841A1 (en) | 2014-01-02 |
EP2791750A1 (en) | 2014-10-22 |
WO2013090907A1 (en) | 2013-06-20 |
CN104024965B (zh) | 2018-02-13 |
US10048701B2 (en) | 2018-08-14 |
CA2856447A1 (en) | 2013-06-20 |
CN104024965A (zh) | 2014-09-03 |
IN2014CN04206A (ru) | 2015-07-17 |
CA2856447C (en) | 2019-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2611071C2 (ru) | Способ динамического линейного управления и устройство для управления насосом с переменной скоростью | |
RU2546342C2 (ru) | Способ и устройство для управления насосом с использованием переменной характеристики эквивалентной системы, известной как кривая адаптивного управления | |
RU2681390C2 (ru) | Адаптивное бессенсорное управление насосом с устройством самокалибровки для жидкостной насосной системы | |
US10317894B2 (en) | No flow detection means for sensorless pumping control applications | |
US10119545B2 (en) | 3-D sensorless conversion method and apparatus for pump differential pressure and flow | |
US9846416B2 (en) | System and flow adaptive sensorless pumping control apparatus for energy saving pumping applications | |
WO2014149388A1 (en) | Discrete sensorless converter for pump differential pressure and flow monitoring | |
RU2604469C1 (ru) | Комбинированный запорный клапан и обратный клапан с единым измерением расхода, давления и/или температуры | |
RU2724390C2 (ru) | Прямой численный аффинный бессенсорный преобразователь для насосов | |
RU2678784C2 (ru) | Система и устройство адаптивного бездатчикового управления расходом насоса для энергосберегающих насосных применений | |
RU2674293C2 (ru) | Устройство с множеством насосов изменяемой скорости для обеспечения экономии энергии посредством расчета и компенсации потерь на трение, используя показатель скорости | |
RU2750106C2 (ru) | Прямой численный трехмерный бессенсорный преобразователь для подачи и давления насоса |