EP3924114B1 - Procédé et dispositif de déformation axiale d'un tube - Google Patents

Procédé et dispositif de déformation axiale d'un tube Download PDF

Info

Publication number
EP3924114B1
EP3924114B1 EP20704838.0A EP20704838A EP3924114B1 EP 3924114 B1 EP3924114 B1 EP 3924114B1 EP 20704838 A EP20704838 A EP 20704838A EP 3924114 B1 EP3924114 B1 EP 3924114B1
Authority
EP
European Patent Office
Prior art keywords
mandrel
die
tube
annular gap
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20704838.0A
Other languages
German (de)
English (en)
Other versions
EP3924114A1 (fr
Inventor
Uwe Steinmetz
Bernd Henrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walter Henrich GmbH
Original Assignee
Walter Henrich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walter Henrich GmbH filed Critical Walter Henrich GmbH
Publication of EP3924114A1 publication Critical patent/EP3924114A1/fr
Application granted granted Critical
Publication of EP3924114B1 publication Critical patent/EP3924114B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/16Making tubes with varying diameter in longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/18Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes from stock of limited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels

Definitions

  • the invention relates to a method according to the preamble of patent claim 1 and a device according to the preamble of patent claim 10 for axially forming a pipe with the aid of a mandrel guided in the pipe and an annular die guided on the outside of the pipe.
  • Axial forming of pipes has been established in the metal industry for decades. Indentations, widening and special contours such as serrations, squares, etc. are among the standard applications. Axial forming means resource efficiency, uninterrupted fiber flow, work hardening of the pipe material and good surface quality of the formed areas.
  • the main area of application for axial forming of pipes is the production of components for the automotive industry and general mechanical engineering. With the help of axial forming, lightweight components in particular can be easily manufactured; this is why axial forming is also used in current topics such as electromobility or the reduction of CO2 emissions.
  • the forming is carried out with the help of a mandrel guided in the pipe and an annular die guided on the outside of the pipe, the inner diameter of which is usually smaller than the original outer diameter of the pipe.
  • the Energy for the forming work is provided by both hydraulic and electromechanical systems.
  • a sub-case of general tube forming is the so-called axial stretching or ironing of the tube; see for example the textbook " Manufacturing technology by Fritz Schulze, Springer Vieweg Verlag, 10th edition, page 445, chapter 5.4.3 .
  • the annular gap between the die and the mandrel is typically set to a distance that is smaller than the original wall thickness of the pipe to be formed.
  • the die and mandrel tool pair is then guided in the axial direction along the pipe to be formed, thereby reducing the wall thickness of the pipe accordingly.
  • the publication US 6 779 375 31 discloses a method for producing undercuts on the inside of a pipe by changing the relative position of a die and a mandrel to each other while they are moved along the pipe.
  • Patent claims 1 and 10 have been delimited from this US document.
  • An example of a tube forming process can also be found disclosed, for example, in the international patent application WO 2006/053590 A1 .
  • a method is described there for producing hollow shafts with end sections of greater wall thickness and with at least one intermediate section of reduced wall thickness from a tube with an originally constant wall thickness. The production takes place, by first inserting a mandrel with a diameter graduated over its length into the pipe to be formed and then moving a ring die from the side with the tapered diameter of the mandrel lengthwise over the pipe with the inner mandrel.
  • the outer diameter of the original pipe is reduced and at the same time the displaced material of the pipe is pressed into the annular gap between the ring die and the stepped mandrel. Due to the gradation of the mandrel, stepped undercuts are created inside the pipe.
  • the inner contour of the pipe created in this way corresponds complementarily to the profile of the stepped mandrel. In this way, undercuts are created inside the pipe above the stepped areas of the mandrel, which typically have a greater wall thickness than the original pipe. If the annular gap between the die and the section of the mandrel with the largest outer diameter is smaller than the original wall thickness of the mandrel, the pipe is stretched in this area, whereby the original wall thickness is reduced to a smaller wall thickness.
  • Pipes with undercuts on their inside and outside are also known from a company called "Schmittergroup"; see the following link on the Internet: https://www.schmittergroup.de/de/commun/details/rohre-mit-variabler-wanddicke.html .
  • the invention is based on the object of developing a known method and a known device for forming a pipe in such a way that the formation of undercuts both inside and outside the pipe with a wall thickness that can be variably adjusted within limits becomes possible.
  • the first and any subsequent adjustment steps allow the die and the mandrel to be moved relative to each other and thus the variable adjustment of the annular gap between the die and the mandrel to any desired size - preferably limited to the original outer diameter.
  • Due to the presence of conical transition sections in both the annular die and the mandrel undercuts in the forming area of the pipe, particularly within the original pipe wall thickness, are possible due to the variable adjustment of the annular gap.
  • the undercuts are possible on the inside and/or outside of the pipe.
  • the formation of undercuts inside the pipe and on the outside of the pipe can be achieved in one operation. can be implemented on one and the same pipe at different longitudinal sections.
  • a thick-thin pipe with a constant inner bore can also be implemented, in which only local undercuts are formed on the outside.
  • thick-thin pipes can also be designed with a constant outer diameter, but with undercuts inside the pipe and, if required, with different wall thicknesses.
  • the said undercuts are formed by moving a tool pairing of die and mandrel, which is preset with regard to the annular gap, over a section of the free pipe section.
  • the die and mandrel are moved in the pulling direction to form the undercuts, i.e. when the tool pairing moves towards a forming device in which the die and mandrel are movably mounted and controlled.
  • the pulling direction also means in particular a direction in which the pipe to be formed is subjected to a pulling load. In contrast to moving the die and mandrel in a pushing direction which is opposite to the pulling direction, in the pulling direction there is no risk of the pipe being deformed in an undesirable way when the tool pairing is moved, in particular being compressed or bent.
  • the claimed method advantageously enables the production of very different geometries on the pipes with regard to diameter tolerances and material thicknesses through program-controlled forming processes, without the geometries of the tools, i.e. the die and the mandrel, having to change during the forming process.
  • the method according to the invention enables the use of simple (pre-)pipes that do not have to be pre-formed in separate process steps, and thus better value creation potential in component production.
  • the use of forward and backward movements of the die-mandrel tool pair for forming of the pipe means resource efficiency.
  • the method according to the invention enables a targeted reduction in the wall thickness of the pipes in limited local pipe sections in accordance with a previously made design.
  • the local reduction in the wall thickness of a pipe can be desired, for example, to introduce a predetermined breaking point.
  • a further advantage is the possibility of using inexpensive pre-pipes in accordance with the German Industrial Standard DIN EN 10305-3 instead of the previously required pipes of a more expensive quality in accordance with the DIN EN 10305-2 standard.
  • free pipe section means: non-clamped pipe section.
  • thrust or “thrust direction” mean a direction away from a forming device from which the die and mandrel are moved and towards a clamping device.
  • the thrust direction means a direction in which the tube to be formed is subjected to compression.
  • tension direction means a direction opposite to the shear direction.
  • the pipe to be formed is always subjected to tensile stress. There is no risk of the pipe being compressed or bent. However, when forming in the tension direction, there is a risk of the pipe being formed breaking or cracking if the tensile stress becomes too great.
  • synchronous in this description means the movement of the die and mandrel at the same speed in the same axial direction. Synchronous movement always takes place with a fixed annular gap. A change in the size of the annular gap always requires a relative movement of Die and mandrel move at different speeds, which excludes a synchronous movement of die and mandrel.
  • left-hand stop and “right-hand stop” refer to the representation in the figures. Accordingly, “left-hand stop” means the stop that limits the travel path of the mandrel in the pushing direction S. Analogously, “right-hand stop” means the stop that limits the travel path of the mandrel in the pulling direction Z.
  • negative annular gap refers to the annular gap which is formed by the conical transition sections of the die which taper towards the free end of the tube or the mandrel rod or the forming device in the figures. and mandrel.
  • the conical transition flanks of the die and the mandrel can be designed to be convergent, parallel or diverging relative to one another.
  • the conical transition sections can overlap or face each other at least to a certain extent in the vertical direction.
  • the mandrel is then offset to the left in relation to the die.
  • the negative annular gap - seen in the pulling direction - is on the back of the die. Machining the pipe with a negative annular gap leads to the formation of an undercut on the outside of the pipe.
  • minimum annular gap means an annular gap with a minimum vertical distance between the die and the mandrel. It is formed in particular between the narrowest point of the annular die and an opposite, usually cylindrical (transition) section of the mandrel.
  • the die-mandrel tool pairing is selected before the start of the pipe forming process so that the minimum annular gap corresponds to a later desired minimum wall thickness of the pipe to be formed.
  • the minimum wall thickness is usually selected to be less than or equal to the original wall thickness of the pipe. It can be achieved later by axially stretching the pipe.
  • positive annular gap means an annular gap which is spanned by the conical transition sections of the die and mandrel which widen in the figures towards the free end of the pipe or the mandrel rod or the forming device.
  • the conical transition flanks of the die and the mandrel can be designed to be convergent, parallel or diverging relative to one another.
  • the conical transition sections can be at least partially opposite one another in the vertical direction.
  • the mandrel is then offset to the right in relation to the center of the die.
  • the positive annular gap - seen in the pulling direction - on the front side of the die Machining the tube with a positive annular gap leads to the formation of an undercut on the inside of the tube.
  • the sequence of steps, adjustment step and subsequent forming step is repeated as often as desired, with the annular gap then being readjusted in each subsequent adjustment step.
  • This repeatability of the steps enables multiple undercuts to be formed inside and outside the pipe, distributed along the length of the free pipe section to be machined.
  • the annular gap between mandrel and die can be set negatively or positively to form an undercut inside or on the outside of the tube.
  • the relative movement of the die and mandrel can take place in different ways during the adjustment steps.
  • the first adjustment step in which the direction of movement of the die and mandrel is reversed, it makes sense to stop the die briefly and then only move the mandrel relative to the die in order to set the desired annular gap.
  • the die and the mandrel typically move synchronously with each other while maintaining a previously made setting of the annular gap.
  • the synchronous movement of the die and the mandrel takes place until a desired length section of the pipe to be formed, in which the respective undercuts or stretching is to take place, has been traveled. It is particularly advantageous if the method according to the invention is used to alternately carry out the formation of undercuts and the stretching of the pipe in the longitudinal direction of the pipe on the pipe section to be formed.
  • the control device required to carry out the method according to the invention for individually controlling the die and the mandrel is designed as an electronic control in particular for individually adjusting the annular gap for realizing the undercuts and the ironing.
  • the control device can also be designed in the form of a mechanical forced coupling to ensure the minimum annular gap, as is required in particular for axial stretching of the pipe.
  • the design of a mechanical forced coupling is particularly simple and robust compared to an electronic control.
  • the mandrel is profiled - particularly in the longitudinal direction. With the help of a profiled design of the mandrel, e.g. if the mandrel has a gear-shaped cross-section, longitudinal grooves can be drawn or formed on the inside of the wall of the pipe with this mandrel.
  • Figure 1 shows the device according to the invention. It comprises a clamping device 140 for clamping a pipe 200 to be formed in such a way that a free section 210, ie a non-clamped section of the pipe 200 remains for forming.
  • a forming device 150 can be seen in which an annular die 120 and a mandrel 110 arranged coaxially thereto are slidably mounted.
  • the die 120 comprises two conical transition sections on the inside, of which a first transition section 120-1 tapers towards the free end of the pipe 200 and a second transition section 120-II widens towards the free end of the pipe 200.
  • the mandrel 110 has on its outside a first conical transition section 110-I, which tapers towards the free end of the tube 200 and the forming device 150, and a transition section 110-II, which widens towards the free end of the tube 200 and the forming device 150. In between, a cylindrical transition section 110-III with a constant maximum outside diameter is formed.
  • the pairing of annular die 120 and mandrel 110 is selected so that the minimum distance between the die at its narrowest point and the cylindrical section 110-III of the mandrel 110 with maximum outer diameter is less than or equal to the original wall thickness of the tube 200.
  • the die 120 and the mandrel 110 it is not absolutely necessary for the die 120 and the mandrel 110 to each have two conical transition sections.
  • To create undercuts 220, 240 on the outside of the pipe 200 only the conical transition sections on the die 120 and the mandrel 110 are required, which taper towards the free pipe end 215.
  • To create undercuts 220, 240 only inside the pipe 200 only the transition sections on the die 120 and the mandrel 110 are required, which widen towards the free pipe end 215 and towards the forming device 150. If only stretching of the pipe 200 is desired, only the presence of the cylindrical section 110-III on the 110 mandrel with maximum outside diameter without conical transition sections is required.
  • the die 120 and the mandrel 110 with the necessary transition sections and minimum annular gap must be selected.
  • the forming device 150 is assigned a control device 152 for moving the die 120 and the mandrel 110 independently of one another along the free section 110 of the tube 200 in a pushing direction S and a pulling direction Z.
  • the die 120 moves in the pushing direction, the tube 200 is subjected to pressure and there is a risk of the tube 200 bending and being compressed.
  • the tool pairing die 120 and mandrel 110 is moved in the pulling direction, there is a risk of the tube 200 tearing, particularly if the annular gap is set too narrow.
  • Figure 1 shows the starting position of mandrel 110 and die 120 for carrying out the method according to the invention.
  • the mandrel 110 and the die 120 are arranged at the free end of the tube 200 and are aligned coaxially therewith.
  • the mandrel 110 has already been inserted a little way into the free end of the clamped pipe 200.
  • Figure 2 shows the beginning of a desired reduction in the outside diameter of the pipe 200 by pushing the annular die 120 in the pushing direction S towards the clamping device 140. Because the smallest clear inside diameter D M of the die 120 is smaller than the outside diameter D R of the pipe 200, the desired reduction in the outside diameter occurs when the die 120 is moved in the pushing direction.
  • the wall of the pipe 200 slides along the transition section 120-I of the die 120.
  • the mandrel 110 runs ahead of the die 120 in the pushing direction S; it is not involved in the forming process itself in that its surface does not contribute to the forming, i.e. specifically to the reduction of the outside diameter. In this forming process, it serves at most to guide and support the pipe 200 against bending.
  • the annular gap between the die 120 and the mandrel 110 is not important when reducing the outer diameter by moving the die 120 in the pushing direction; its size is irrelevant, in particular the mandrel 110 can advance so far in front of the die 120 that a conical transition section of the mandrel 110 facing the die 120 has no influence on the wall of the tube 200 when it is reduced by moving the die 120.
  • the reduction of the outer diameter D R of the pipe 200 takes place over a substantial part of the free section 210, here specifically until the die 120 strikes the clamping device 140.
  • the end of the reduced pipe section defined thereby is merely an example; In fact, the reduction of the tube 200 can also end before reaching the clamping device 140.
  • the die 120 and the mandrel 110 are moved to their minimum ring distance d min in a first adjustment step.
  • the direction of movement of the mandrel 110 is reversed from the pushing direction S to the opposite pulling direction Z and the mandrel 110 is moved towards the die 120.
  • the mandrel 110 is moved relative to the die 120 in such a way that the cylindrical section 110-III of the mandrel is opposite the position of the ring die with the smallest ring diameter.
  • This adjustment of the minimum annular gap by changing the position of the die 120 and the mandrel 110 relative to each other can be done electronically or, as shown in the Figures 16 to 18 shown, with the aid of a mechanical forced coupling of die 120 and mandrel 110 within the forming device 150.
  • a carriage 153 is provided for axially moving the die 120 in the pushing and pulling direction.
  • a mandrel rod 113 is arranged coaxially to the carriage 153 for axially moving the mandrel 110 in the pushing and pulling direction.
  • the carriage 153 with the die 120 and the mandrel rod 113 with the mandrel 110 are moved independently of one another in the axial direction - electronically controlled.
  • the die 120 is mounted in or on the carriage 153 with an axial play x in the axial direction. Its movement is limited by two stops 150-I and 150-II in the axial direction.
  • Figure 16 shown starting position at the beginning of a movement in the thrust direction to reduce the outside diameter, the die 120 strikes the right-hand stop 150-I within a travel carriage 153. From this starting situation, the travel carriage 153 is moved together with the die 120 and synchronously with the mandrel 110 in the thrust direction S towards the clamping device 140.
  • Figure 17 shows the stop of the travel carriage 153 on the clamping device 140. During the said movement in the direction of thrust S, the die 120 always hits the right-hand stop 150-I.
  • the travel carriage 153 of the forming device 150 is mechanically coupled to the mandrel 110 or to the mandrel rod 113. This means that the mandrel 110 and the mandrel rod 113 follow a movement of the carriage 153 in the axial direction.
  • the minimum ring distance d min can be less than or equal to the original wall thickness of the pipe 200. In any case, it is Figure 4 smaller than the wall thickness of the pipe 200 increased by the reduction of the outer diameter.
  • Figure 4 shows the beginning of a subsequent first forming step in which the direction of movement of the die 120 is also reversed from the pushing direction S to the pulling direction Z. As part of this first forming step, the die 120 and the mandrel 110 are then moved in the pulling direction Z while maintaining the preset minimum ring distance d min . The said axial stretching of the pipe takes place in order to reduce the increased wall thickness to the size of the ring gap d min .
  • the die 120 and the mandrel 110 preferably move synchronously.
  • the synchronous movement is not absolutely necessary during the axial stretching; The only requirement would be that when the die 120 and the mandrel 110 are moved relative to each other, the area of the smallest inner diameter of the die 120 moves in the area of the cylindrical section of the mandrel 110, so that the minimum annular gap d min remains constant during the axial ironing.
  • Figure 5 shows the end of the axial stretching over the first section T1 of the free pipe section.
  • a second adjustment step is carried out, in which the annular gap between the die 120 and the mandrel is readjusted.
  • the annular gap is set negatively here, ie the adjustment is made in such a way that the annular gap is 110-I of the mandrel 110 and 120-I of the die 120 are clamped, which taper or run towards the free end 215 of the pipe 200. Viewed in the vertical direction, these transition sections are located opposite each other in some areas.
  • the newly adjusted annular gap is located on the back of the die 120, viewed in the pulling direction Z.
  • the change in the position of the die 120 and mandrel 110 relative to each other takes place in the area of a pipe section T E2 following the first partial section T1.
  • the tool pairing die 120 and mandrel 110 is then moved further in the pulling direction Z with this new negative annular gap setting and an undercut 220 is created in the second forming section T2 on the outside of the previously reduced-thickness tube.
  • Figure 7 shows the end of the second forming section T2.
  • the die 120 and the mandrel 110 are set to the minimum ring distance d min , i.e. moved relative to each other. This is done via a further adjustment section T E3 ; see Fig.7 .
  • the ring gap setting is then changed again; this time to a positive ring gap.
  • the ring gap is spanned by the conical transition sections 120-II and 110-II of the die 120 and the mandrel 120, which lead to the free pipe end 215.
  • these conical transition sections with expansion towards the pipe end are generally at least partially opposite each other in the vertical direction.
  • the positive annular gap is formed on the front side of the die 120 in the pulling direction.
  • the positive annular gap setting is achieved by the die 120 temporarily reversing its direction of movement in the pushing direction at the end of the third section T3 and in this way changing its relative position to the stationary mandrel 110 in such a way that the said positive annular gap is established.
  • this type of change in the setting of the annular gap is only an example; of course the relative position at the end of T3 could also be achieved by further moving the mandrel 110 in the pulling direction relative to the stationary die 120, for example, albeit with the expenditure of force.
  • a movement of both the die 120 and the mandrel 110 relative to one another would also be conceivable.
  • a movement of the die 120 and the mandrel 110 while maintaining the now set positive annular gap leads to the formation of an undercut 240 on the inside of the tube 200, as shown in Figure 11 shown.
  • the formation of the undercut 220, 240 extends over a section T4 of any desired length.
  • the annular gap can be changed again, for example to the minimum ring distance d min .
  • a fifth section T5 is then obtained, again with an axially stretched tube; see the Figures 12 and 13 .
  • Figure 14 shows the finished tube 200 after all previously described individual steps have been carried out.
  • the sections over which a deformation of the pipe 200 takes place can in principle be of any length; they are only limited by the length of the free section 210 of the tube 200.
  • an axial ironing, the formation of an undercut 220, 240 on the outside or the formation of an undercut 220, 240 on the inside of the tube 200 can also take place continuously over the entire free section 210.
  • the wall thickness of the tube 200 in the area of an undercut 220, 240 depends on the actually set positive or negative ring distance, i.e. the actual distance between the conical transition sections. Due to the electronic adjustment of the die 120 and the mandrel 110 relative to each other, this distance and thus the wall thickness in the area of an undercut 220, 240 can be set very precisely to any desired dimension.
  • Figure 15 shows, as an example, the formed tube 200 when using a profiled mandrel 110, specifically when using a mandrel 110 with a gear-shaped cross-section.
  • an internal toothing 260 of the tube 200 can be realized over a large length in the case of very thin-walled tubes 200.
  • the production of external toothing is also possible when using appropriate profiled ring dies. The forces required, especially tensile forces, to create such toothing are significantly lower than using dies 120 and mandrels 110 without corresponding toothing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Metal Extraction Processes (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Claims (11)

  1. Procédé, destiné au façonnage axial d'un tube (200), à l'aide d'un mandrin (110) guidé dans le tube (200) et d'une matrice (120) de forme annulaire guidée sur la face extérieure du tube (200), dont le diamètre intérieur est inférieur au diamètre extérieur initial du tube (200) ; la matrice (120) de forme annulaire comportant sur sa face intérieure au moins une section de transition (120-I, 120-II) conique, s'étendant dans la direction axiale, le mandrin (110) comportant sur sa face extérieure au moins une section de transition (110-I, 110-II) conique, s'étendant dans la direction axiale et la matrice et le mandrin définissant dans leur juxtaposition une fente annulaire (130), destinée à y faire passer et à façonner la paroi du tube (200) ;
    le procédé comportant les étapes suivantes, consistant à :
    - enserrer le tube (200) avec une épaisseur de paroi initiale dans un dispositif de serrage (140), de sorte qu'il reste au moins une section (210) libre du tube (200) pour le façonnage du tube (200) ;
    a) insérer le mandrin (110) dans le tube (200) ;
    b) réduire le diamètre extérieur du tube (200) par déplacement en poussée de la matrice (120) de forme annulaire dans une direction de poussée (S) vers le dispositif de serrage (140) sur la section (210) libre du tube (200), le mandrin (110) précédant la matrice (120) dans la direction de poussée ; et
    à l'atteinte d'une position extrême (E) étant réalisées les étapes suivantes, consistant à :
    c) inverser la direction de déplacement de la matrice (120) et du mandrin (110) à partir de la direction de poussée (S), dans une direction de traction (Z) opposée ;
    d') première étape de réglage : déplacer la matrice (120) et le mandrin (110) l'un par rapport à l'autre à un premier réglage prédéfini de la fente annulaire ; et
    e') première étape de façonnage : déplacer la matrice (120) et le mandrin (110) dans la direction de traction (Z) sur une première section partielle (T1) de la section de tube (210) libre, en maintenant le premier réglage prédéfini de la fente annulaire pour le façonnage du tube (200) ;
    caractérisé
    en ce qu'après la première étape de façonnage, la séquence des étapes consistant dans l'étape de réglage suivie de l'étape de façonnage est réitérée au moins une fois encore, à chaque étape de réglage supplémentaire, la matrice (120) et le mandrin (110) étant réglés à un nouveau réglage de la fente annulaire, qui se différencie du réglage respectivement précédent de la fente annulaire ; et
    en ce que lors d'au moins l'une des étapes de réglage, la matrice (120) et le mandrin (110) sont déplacés l'un par rapport à l'autre à un réglage négatif de fente annulaire, avec lequel les sections de transition (110-I, 120-I) coniques de la matrice (120) et du mandrin (110), qui se rétrécissent vers l'extrémité (215) libre du tube (200) définissent la fente annulaire, sur la face arrière de la matrice, vue dans la direction de traction (Z) de la matrice et du mandrin.
  2. Procédé selon la revendication 1,
    caractérisé
    en ce qu'à côté de l'au moins une section de transition (110-I, 110-II) conique, le mandrin (110) comporte sur sa face extérieure également une section (110-III) cylindrique ; et
    en ce que lors d'au moins l'une des étapes de réglage, la matrice (120) et le mandrin (110) sont réglés l'un par rapport à l'autre à un écart annulaire vertical minimal entre l'endroit le plus étroit de la matrice de forme annulaire et la section (110-III) cylindrique opposée du mandrin (110).
  3. Procédé selon la revendication 2,
    caractérisé
    en ce que lors de l'étape de façonnage suivante a lieu un étirage axial du tube (200) dans la direction de traction (Z) à une épaisseur de paroi laquelle correspond à l'écart annulaire vertical minimal.
  4. Procédé selon la revendication 1,
    caractérisé
    en ce que lors de l'au moins un des étapes de réglage, la matrice (120) et le mandrin (110) sont déplacés l'un par rapport à l'autre à un réglage positif de la fente annulaire, avec lequel, vues dans la direction de traction (Z) de la matrice et du mandrin, les sections de transition (110-II, 120-II) coniques de la matrice (120) et du mandrin (110), qui s'élargissent en direction de l'extrémité libre du tube (200) définissent la fente annulaire sur la face avant de la matrice.
  5. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé
    en ce que lors de l'au moins une des étapes de réglage, la matrice (120) est arrêtée et le mandrin (110) est déplacé par rapport à la matrice (120).
  6. Procédé selon l'une quelconque des revendications 1 à 4,
    caractérisé
    en ce que lors de l'au moins une des étapes de réglage, le déplacement l'un par rapport à l'autre de la matrice (120) et du mandrin (110) a lieu :
    - par déplacement du mandrin (110), alors que la matrice (120) continue à avancer dans la direction de traction (Z).
  7. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé
    en ce qu'au moins lors de l'une des étapes de façonnage, la matrice (120) et le mandrin (110) sont déplacés de manière synchrone.
  8. Procédé selon l'une quelconque des revendications 1 à 7,
    caractérisé
    en ce que lors de l'une des étapes de réglage, la fente annulaire minimale selon la revendication 2 est réglée ;
    en ce que lors de l'étape de façonnage suivante a lieu un étirage du tube (200) selon la revendication 3 ; et en ce que lors de l'étape de réglage supplémentaire suivante a lieu un réglage négatif de la fente annulaire, de sorte que dans l'étape de façonnage supplémentaire suivante, une contre-dépouille (220) soit conçue sur la face extérieure du tube (200) ; ou
    en ce que lors de l'étape de réglage supplémentaire suivante a lieu un réglage positif de la fente annulaire, de sorte que lors de l'étape de façonnage supplémentaire suivante, une contre-dépouille (240) soit conçue sur la face intérieure du tube (200).
  9. Procédé selon la revendication 8,
    caractérisé
    en ce qu'après la conception de la contre-dépouille (220, 240), a lieu à nouveau une étape de réglage, pour régler la fente annulaire minimale ; et
    lors d'une étape de façonnage supplémentaire suivante a lieu un étirage du tube (200).
  10. Dispositif, destiné au façonnage axial d'un tube (200), comportant :
    un dispositif de serrage (140), destiné à enserrer le tube (200), de sorte à laisser une section (320) libre ;
    un dispositif de façonnage (150) orienté de manière axiale par rapport au dispositif de serrage (140), pourvu d'une matrice (120) de forme annulaire, déplaçable en direction axiale et d'un mandrin (110) guidé de manière coaxiale à l'intérieur de la matrice (120) de forme annulaire, la matrice (120) et le mandrin comportant chacun une section de transition (110-I, 110-II, 120-I, 120-II) conique, s'étendant dans la direction axiale, la matrice (120) et le mandrin (110) définissant dans leur juxtaposition une fente annulaire, destinée à y faire passer et à façonner la paroi du tube (200) ; et
    un dispositif de commande (152) associé au dispositif de façonnage (150), destiné à déplacer la matrice (120) et le mandrin (110) indépendamment l'un de l'autre le long de la section libre du tube (200) pour le façonnage du tube (200) dans une direction de poussée (S) et une direction de traction (Z) ;
    caractérisé
    en ce que le dispositif de commande (152) est conçu par ailleurs pour réaliser le procédé selon l'une quelconque des revendications précédentes ; et en ce que la commande (152) est conçue pour le réglage de la matrice (120) et du mandrin (110) l'un par rapport à l'autre à l'écart annulaire minimal, sous la forme d'un couplage mécanique forcé entre la matrice (120) et le mandrin (110), le dispositif de façonnage (150) comportant :
    un chariot de déplacement (153) pour la matrice (120) et une tige de mandrin (113), avec le mandrin (110) fixé solidement sur la tige de mandrin (113),
    le chariot de déplacement (153) et la tige de mandrin (113) étant mécaniquement accouplés l'un à l'autre pour le déplacement synchrone ;
    la matrice (120) étant logée en étant déplaçable en direction axiale dans le chariot de déplacement (153) avec un jeu x ;
    le jeu x représentant le trajet de déplacement du mandrin (110) accouplé avec le chariot de déplacement (153) entre une butée (150-I) du côté gauche, qui délimite le trajet de déplacement du mandrin dans la direction de poussée (S) et une butée (150-II) du côté droit, qui délimite le trajet de déplacement du mandrin dans la direction de traction (Z) par rapport à la matrice (120) ; et
    dans la position en butée sur le côté droit, le mandrin (110) étant placé par sa section (110-III) cylindrique au vis-à-vis de l'endroit le plus étroit de la matrice (120), de sorte que la fente annulaire minimale (dmin) soit conçue entre le mandrin (110) et la matrice (120).
  11. Dispositif selon la revendication 10,
    caractérisé
    en ce que le mandrin (110) est conçu en étant profilé dans la direction longitudinale, avec une section transversale en forme de roue dentée.
EP20704838.0A 2019-02-15 2020-02-10 Procédé et dispositif de déformation axiale d'un tube Active EP3924114B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019103926.6A DE102019103926A1 (de) 2019-02-15 2019-02-15 Verfahren und Vorrichtung zum axialen Umformen eines Rohres
PCT/EP2020/053307 WO2020165082A1 (fr) 2019-02-15 2020-02-10 Procédé et dispositif de déformation axiale d'un tube

Publications (2)

Publication Number Publication Date
EP3924114A1 EP3924114A1 (fr) 2021-12-22
EP3924114B1 true EP3924114B1 (fr) 2024-05-15

Family

ID=69570667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20704838.0A Active EP3924114B1 (fr) 2019-02-15 2020-02-10 Procédé et dispositif de déformation axiale d'un tube

Country Status (7)

Country Link
US (1) US20220134401A1 (fr)
EP (1) EP3924114B1 (fr)
CN (1) CN113396023B (fr)
CA (1) CA3130018A1 (fr)
DE (1) DE102019103926A1 (fr)
MX (1) MX2021009582A (fr)
WO (1) WO2020165082A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020132822B4 (de) 2020-12-09 2023-03-23 Benteler Steel/Tube Gmbh Verfahren zur Herstellung eines inneren Anschlags in einem Rohrbauteil
EP4155001B1 (fr) 2021-09-24 2023-09-06 FELSS Systems GmbH Dispositifs et procédé de formage d'une pièce creuse tubulaire
CN117718347B (zh) * 2023-12-20 2024-06-14 四川万圣通精密机械制造有限公司 一种冷拔机

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190515351A (en) * 1905-07-26 1905-11-16 Hubert Dollman Improvements in the Manufacture of Cold Drawn Steel and other Metal Tubes and in Machinery or Apparatus to be employed in the said Manufacture.
FR713680A (fr) * 1931-02-18 1931-10-31 Demag Ag Appareil pour fabriquer des tubes par le procédé d'étirage
US2535339A (en) * 1949-03-07 1950-12-26 Bundy Tubing Co Device for sizing the ends of tubing
US2998125A (en) * 1957-05-22 1961-08-29 Gen Motors Corp Tube sizing machine
DE3016135C2 (de) * 1980-04-24 1983-04-14 Mannesmann AG, 4000 Düsseldorf Zieheinrichtung
DE3021481C2 (de) * 1980-06-05 1983-04-21 Mannesmann AG, 4000 Düsseldorf Verfahren und Vorrichtung zur Herstellung von Rohren
US5119662A (en) * 1984-04-16 1992-06-09 Sanwa Kokan Co., Ltd. Methods for cold drawing seamless metal tubes each having an upset portion on each end
DE3506220A1 (de) * 1985-02-22 1986-08-28 Laeis GmbH, 5500 Trier Verfahren zum herstellen von rohren mit dickwandigen enden durch kaltumformen eines rohrfoermigen rohlings
CN1003429B (zh) * 1985-06-21 1989-03-01 北京有色金属研究总院 一种长金属管局部扩径装置
DE50100414D1 (de) * 2000-01-28 2003-08-28 Schmittersysco Gmbh Verfahren und umformwerkzeug zur zylinderrohrherstellung mittels fliesspressen
US6779375B1 (en) * 2003-03-26 2004-08-24 Randall L. Alexoff Method and apparatus for producing tubes and hollow shafts
DE102004056147B3 (de) * 2004-11-20 2006-08-03 Gkn Driveline International Gmbh Reduzieren von Rohren über einem abgesetzten Dorn zur Herstellung von Hohlwellen mit Hinterschnitt in einer Operation
JPWO2006088138A1 (ja) * 2005-02-17 2008-07-03 住友金属工業株式会社 金属管及びその製造方法
CN101121182A (zh) * 2007-08-29 2008-02-13 高新张铜股份有限公司 空心金属管材的拉伸芯头
CA2644464C (fr) * 2008-10-17 2010-04-20 Arcelormittal Tubular Products Canada Inc. Essieu a torsion a epaisseur de paroi progressive
CA2757954A1 (fr) * 2009-04-08 2010-10-14 C & D Zodiac, Inc. Tubulure de siege de vehicule ayant une epaisseur de paroi variable
CN102357546A (zh) * 2011-07-03 2012-02-22 胡顺珍 浮动芯棒拔管
DE102013226929A1 (de) * 2013-12-20 2015-06-25 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung einer Hohlwelle durch Radialumformen sowie hiermit hergestellte Hohlwelle
DE102014017426A1 (de) * 2014-11-25 2016-05-25 Wieland-Werke Ag Verfahren zur Herstellung einer innenstruktuierten Gleitlagerbuchse
EP3427852A4 (fr) * 2016-03-11 2020-02-19 Nippon Steel Corporation Procédé de fabrication de tuyau en acier de différentes épaisseurs et tuyau en acier de différentes épaisseurs

Also Published As

Publication number Publication date
EP3924114A1 (fr) 2021-12-22
US20220134401A1 (en) 2022-05-05
CN113396023A (zh) 2021-09-14
CA3130018A1 (fr) 2020-08-20
MX2021009582A (es) 2021-09-23
CN113396023B (zh) 2024-04-26
WO2020165082A1 (fr) 2020-08-20
DE102019103926A1 (de) 2020-08-20

Similar Documents

Publication Publication Date Title
EP3924114B1 (fr) Procédé et dispositif de déformation axiale d'un tube
AT390399B (de) Verfahren und vorrichtung zur bildung einer muffe am ende eines kunststoffrohres
DE1804673B2 (de) Verfahren zur Herstellung einer Kraftfahrzeug-Hohlachse
EP2591866A1 (fr) Procédé de fabrication d'une pièce creuse à rotation symétrique et pièce creuse fabriquée ensuite
EP1252946A2 (fr) Procédé pour la production des pièces à symétrie de rotation
DE102007041149B3 (de) Verfahren und Vorrichtung zum Querwalzen abgestufter Hohlwellen oder zylindrischer Hohlteile aus einem Rohr
DE102005003933A1 (de) Dorn und Verfahren zum Strangpressen von Gegenständen
DE3019592C2 (de) Vorrichtung zum Bearbeiten von Stahlrohren
WO2008003305A1 (fr) Procédé de production d'une pièce à symétrie de rotation et pièce ainsi obtenue
DE102008037549B3 (de) Verfahren und Vorrichtung zur Herstellung eines rohrförmigen Werkstücks
EP3737514B1 (fr) Procédé et dispositif servant à fabriquer des soupapes creuses refroidies à l'intérieur
EP4046725A1 (fr) Procédé de fabrication d'un rétrécissement étagé de la section transversale dans une pièce tubulaire monobloc métallique, pièce tubulaire monobloc métallique ainsi fabriquée et dispositif de mise en uvre du procédé
EP3199261B1 (fr) Dispositif de fabrication d'armatures
DE3412486C2 (de) Verfahren zur Herstellung von Durchlaufkokillen für Stranggußmaschinen
EP1446245B1 (fr) Procede et dispositif pour modifier la forme de tubes
DE102013105629A1 (de) Ziehmaschine zum Umformen eines länglich ausgedehnten Werkstücks
EP2205370B1 (fr) Procede et dispositif de fabrication d'un corps creux et corps creux
EP2780126B1 (fr) Procédé et dispositif de fabrication de profils dotés d'une déformation variable selon la position et orientée en longueur
DE102006031503B4 (de) Verfahren und Vorrichtung zum Biegen von Hohlprofilen mit minimalem Biegeradius
EP4112200A1 (fr) Dispositif et procédé de réduction de la section d'un corps creux tubulaire par formage du corps creux
EP1336439A1 (fr) Procédé et dispositif pour la production de pièces par hydroformage
DE10151659A1 (de) Verfahren zum Fügen von zumindest zwei Bauteilen und Vorrichtung hierfür
DE102010002426B4 (de) Verfahren und Vorrichtung zum Fließpressen von Werkstücken
DE102004044755B3 (de) Biegevorrichtung für Z-förmig zu biegende Rohre und Verfahren zum Z-förmigen Biegen von Rohren
DE10211087A1 (de) Verfahren und Vorrichtung zum Herstellen von Werkstücken nach dem Innenhochdruck-Umformverfahren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020008002

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN