EP3924114B1 - Method and apparatus for axially shaping a tube - Google Patents

Method and apparatus for axially shaping a tube Download PDF

Info

Publication number
EP3924114B1
EP3924114B1 EP20704838.0A EP20704838A EP3924114B1 EP 3924114 B1 EP3924114 B1 EP 3924114B1 EP 20704838 A EP20704838 A EP 20704838A EP 3924114 B1 EP3924114 B1 EP 3924114B1
Authority
EP
European Patent Office
Prior art keywords
mandrel
die
tube
annular gap
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20704838.0A
Other languages
German (de)
French (fr)
Other versions
EP3924114C0 (en
EP3924114A1 (en
Inventor
Uwe Steinmetz
Bernd Henrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walter Henrich GmbH
Original Assignee
Walter Henrich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walter Henrich GmbH filed Critical Walter Henrich GmbH
Publication of EP3924114A1 publication Critical patent/EP3924114A1/en
Application granted granted Critical
Publication of EP3924114C0 publication Critical patent/EP3924114C0/en
Publication of EP3924114B1 publication Critical patent/EP3924114B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/16Making tubes with varying diameter in longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/18Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes from stock of limited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels

Definitions

  • the invention relates to a method according to the preamble of patent claim 1 and a device according to the preamble of patent claim 10 for axially forming a pipe with the aid of a mandrel guided in the pipe and an annular die guided on the outside of the pipe.
  • Axial forming of pipes has been established in the metal industry for decades. Indentations, widening and special contours such as serrations, squares, etc. are among the standard applications. Axial forming means resource efficiency, uninterrupted fiber flow, work hardening of the pipe material and good surface quality of the formed areas.
  • the main area of application for axial forming of pipes is the production of components for the automotive industry and general mechanical engineering. With the help of axial forming, lightweight components in particular can be easily manufactured; this is why axial forming is also used in current topics such as electromobility or the reduction of CO2 emissions.
  • the forming is carried out with the help of a mandrel guided in the pipe and an annular die guided on the outside of the pipe, the inner diameter of which is usually smaller than the original outer diameter of the pipe.
  • the Energy for the forming work is provided by both hydraulic and electromechanical systems.
  • a sub-case of general tube forming is the so-called axial stretching or ironing of the tube; see for example the textbook " Manufacturing technology by Fritz Schulze, Springer Vieweg Verlag, 10th edition, page 445, chapter 5.4.3 .
  • the annular gap between the die and the mandrel is typically set to a distance that is smaller than the original wall thickness of the pipe to be formed.
  • the die and mandrel tool pair is then guided in the axial direction along the pipe to be formed, thereby reducing the wall thickness of the pipe accordingly.
  • the publication US 6 779 375 31 discloses a method for producing undercuts on the inside of a pipe by changing the relative position of a die and a mandrel to each other while they are moved along the pipe.
  • Patent claims 1 and 10 have been delimited from this US document.
  • An example of a tube forming process can also be found disclosed, for example, in the international patent application WO 2006/053590 A1 .
  • a method is described there for producing hollow shafts with end sections of greater wall thickness and with at least one intermediate section of reduced wall thickness from a tube with an originally constant wall thickness. The production takes place, by first inserting a mandrel with a diameter graduated over its length into the pipe to be formed and then moving a ring die from the side with the tapered diameter of the mandrel lengthwise over the pipe with the inner mandrel.
  • the outer diameter of the original pipe is reduced and at the same time the displaced material of the pipe is pressed into the annular gap between the ring die and the stepped mandrel. Due to the gradation of the mandrel, stepped undercuts are created inside the pipe.
  • the inner contour of the pipe created in this way corresponds complementarily to the profile of the stepped mandrel. In this way, undercuts are created inside the pipe above the stepped areas of the mandrel, which typically have a greater wall thickness than the original pipe. If the annular gap between the die and the section of the mandrel with the largest outer diameter is smaller than the original wall thickness of the mandrel, the pipe is stretched in this area, whereby the original wall thickness is reduced to a smaller wall thickness.
  • Pipes with undercuts on their inside and outside are also known from a company called "Schmittergroup"; see the following link on the Internet: https://www.schmittergroup.de/de/commun/details/rohre-mit-variabler-wanddicke.html .
  • the invention is based on the object of developing a known method and a known device for forming a pipe in such a way that the formation of undercuts both inside and outside the pipe with a wall thickness that can be variably adjusted within limits becomes possible.
  • the first and any subsequent adjustment steps allow the die and the mandrel to be moved relative to each other and thus the variable adjustment of the annular gap between the die and the mandrel to any desired size - preferably limited to the original outer diameter.
  • Due to the presence of conical transition sections in both the annular die and the mandrel undercuts in the forming area of the pipe, particularly within the original pipe wall thickness, are possible due to the variable adjustment of the annular gap.
  • the undercuts are possible on the inside and/or outside of the pipe.
  • the formation of undercuts inside the pipe and on the outside of the pipe can be achieved in one operation. can be implemented on one and the same pipe at different longitudinal sections.
  • a thick-thin pipe with a constant inner bore can also be implemented, in which only local undercuts are formed on the outside.
  • thick-thin pipes can also be designed with a constant outer diameter, but with undercuts inside the pipe and, if required, with different wall thicknesses.
  • the said undercuts are formed by moving a tool pairing of die and mandrel, which is preset with regard to the annular gap, over a section of the free pipe section.
  • the die and mandrel are moved in the pulling direction to form the undercuts, i.e. when the tool pairing moves towards a forming device in which the die and mandrel are movably mounted and controlled.
  • the pulling direction also means in particular a direction in which the pipe to be formed is subjected to a pulling load. In contrast to moving the die and mandrel in a pushing direction which is opposite to the pulling direction, in the pulling direction there is no risk of the pipe being deformed in an undesirable way when the tool pairing is moved, in particular being compressed or bent.
  • the claimed method advantageously enables the production of very different geometries on the pipes with regard to diameter tolerances and material thicknesses through program-controlled forming processes, without the geometries of the tools, i.e. the die and the mandrel, having to change during the forming process.
  • the method according to the invention enables the use of simple (pre-)pipes that do not have to be pre-formed in separate process steps, and thus better value creation potential in component production.
  • the use of forward and backward movements of the die-mandrel tool pair for forming of the pipe means resource efficiency.
  • the method according to the invention enables a targeted reduction in the wall thickness of the pipes in limited local pipe sections in accordance with a previously made design.
  • the local reduction in the wall thickness of a pipe can be desired, for example, to introduce a predetermined breaking point.
  • a further advantage is the possibility of using inexpensive pre-pipes in accordance with the German Industrial Standard DIN EN 10305-3 instead of the previously required pipes of a more expensive quality in accordance with the DIN EN 10305-2 standard.
  • free pipe section means: non-clamped pipe section.
  • thrust or “thrust direction” mean a direction away from a forming device from which the die and mandrel are moved and towards a clamping device.
  • the thrust direction means a direction in which the tube to be formed is subjected to compression.
  • tension direction means a direction opposite to the shear direction.
  • the pipe to be formed is always subjected to tensile stress. There is no risk of the pipe being compressed or bent. However, when forming in the tension direction, there is a risk of the pipe being formed breaking or cracking if the tensile stress becomes too great.
  • synchronous in this description means the movement of the die and mandrel at the same speed in the same axial direction. Synchronous movement always takes place with a fixed annular gap. A change in the size of the annular gap always requires a relative movement of Die and mandrel move at different speeds, which excludes a synchronous movement of die and mandrel.
  • left-hand stop and “right-hand stop” refer to the representation in the figures. Accordingly, “left-hand stop” means the stop that limits the travel path of the mandrel in the pushing direction S. Analogously, “right-hand stop” means the stop that limits the travel path of the mandrel in the pulling direction Z.
  • negative annular gap refers to the annular gap which is formed by the conical transition sections of the die which taper towards the free end of the tube or the mandrel rod or the forming device in the figures. and mandrel.
  • the conical transition flanks of the die and the mandrel can be designed to be convergent, parallel or diverging relative to one another.
  • the conical transition sections can overlap or face each other at least to a certain extent in the vertical direction.
  • the mandrel is then offset to the left in relation to the die.
  • the negative annular gap - seen in the pulling direction - is on the back of the die. Machining the pipe with a negative annular gap leads to the formation of an undercut on the outside of the pipe.
  • minimum annular gap means an annular gap with a minimum vertical distance between the die and the mandrel. It is formed in particular between the narrowest point of the annular die and an opposite, usually cylindrical (transition) section of the mandrel.
  • the die-mandrel tool pairing is selected before the start of the pipe forming process so that the minimum annular gap corresponds to a later desired minimum wall thickness of the pipe to be formed.
  • the minimum wall thickness is usually selected to be less than or equal to the original wall thickness of the pipe. It can be achieved later by axially stretching the pipe.
  • positive annular gap means an annular gap which is spanned by the conical transition sections of the die and mandrel which widen in the figures towards the free end of the pipe or the mandrel rod or the forming device.
  • the conical transition flanks of the die and the mandrel can be designed to be convergent, parallel or diverging relative to one another.
  • the conical transition sections can be at least partially opposite one another in the vertical direction.
  • the mandrel is then offset to the right in relation to the center of the die.
  • the positive annular gap - seen in the pulling direction - on the front side of the die Machining the tube with a positive annular gap leads to the formation of an undercut on the inside of the tube.
  • the sequence of steps, adjustment step and subsequent forming step is repeated as often as desired, with the annular gap then being readjusted in each subsequent adjustment step.
  • This repeatability of the steps enables multiple undercuts to be formed inside and outside the pipe, distributed along the length of the free pipe section to be machined.
  • the annular gap between mandrel and die can be set negatively or positively to form an undercut inside or on the outside of the tube.
  • the relative movement of the die and mandrel can take place in different ways during the adjustment steps.
  • the first adjustment step in which the direction of movement of the die and mandrel is reversed, it makes sense to stop the die briefly and then only move the mandrel relative to the die in order to set the desired annular gap.
  • the die and the mandrel typically move synchronously with each other while maintaining a previously made setting of the annular gap.
  • the synchronous movement of the die and the mandrel takes place until a desired length section of the pipe to be formed, in which the respective undercuts or stretching is to take place, has been traveled. It is particularly advantageous if the method according to the invention is used to alternately carry out the formation of undercuts and the stretching of the pipe in the longitudinal direction of the pipe on the pipe section to be formed.
  • the control device required to carry out the method according to the invention for individually controlling the die and the mandrel is designed as an electronic control in particular for individually adjusting the annular gap for realizing the undercuts and the ironing.
  • the control device can also be designed in the form of a mechanical forced coupling to ensure the minimum annular gap, as is required in particular for axial stretching of the pipe.
  • the design of a mechanical forced coupling is particularly simple and robust compared to an electronic control.
  • the mandrel is profiled - particularly in the longitudinal direction. With the help of a profiled design of the mandrel, e.g. if the mandrel has a gear-shaped cross-section, longitudinal grooves can be drawn or formed on the inside of the wall of the pipe with this mandrel.
  • Figure 1 shows the device according to the invention. It comprises a clamping device 140 for clamping a pipe 200 to be formed in such a way that a free section 210, ie a non-clamped section of the pipe 200 remains for forming.
  • a forming device 150 can be seen in which an annular die 120 and a mandrel 110 arranged coaxially thereto are slidably mounted.
  • the die 120 comprises two conical transition sections on the inside, of which a first transition section 120-1 tapers towards the free end of the pipe 200 and a second transition section 120-II widens towards the free end of the pipe 200.
  • the mandrel 110 has on its outside a first conical transition section 110-I, which tapers towards the free end of the tube 200 and the forming device 150, and a transition section 110-II, which widens towards the free end of the tube 200 and the forming device 150. In between, a cylindrical transition section 110-III with a constant maximum outside diameter is formed.
  • the pairing of annular die 120 and mandrel 110 is selected so that the minimum distance between the die at its narrowest point and the cylindrical section 110-III of the mandrel 110 with maximum outer diameter is less than or equal to the original wall thickness of the tube 200.
  • the die 120 and the mandrel 110 it is not absolutely necessary for the die 120 and the mandrel 110 to each have two conical transition sections.
  • To create undercuts 220, 240 on the outside of the pipe 200 only the conical transition sections on the die 120 and the mandrel 110 are required, which taper towards the free pipe end 215.
  • To create undercuts 220, 240 only inside the pipe 200 only the transition sections on the die 120 and the mandrel 110 are required, which widen towards the free pipe end 215 and towards the forming device 150. If only stretching of the pipe 200 is desired, only the presence of the cylindrical section 110-III on the 110 mandrel with maximum outside diameter without conical transition sections is required.
  • the die 120 and the mandrel 110 with the necessary transition sections and minimum annular gap must be selected.
  • the forming device 150 is assigned a control device 152 for moving the die 120 and the mandrel 110 independently of one another along the free section 110 of the tube 200 in a pushing direction S and a pulling direction Z.
  • the die 120 moves in the pushing direction, the tube 200 is subjected to pressure and there is a risk of the tube 200 bending and being compressed.
  • the tool pairing die 120 and mandrel 110 is moved in the pulling direction, there is a risk of the tube 200 tearing, particularly if the annular gap is set too narrow.
  • Figure 1 shows the starting position of mandrel 110 and die 120 for carrying out the method according to the invention.
  • the mandrel 110 and the die 120 are arranged at the free end of the tube 200 and are aligned coaxially therewith.
  • the mandrel 110 has already been inserted a little way into the free end of the clamped pipe 200.
  • Figure 2 shows the beginning of a desired reduction in the outside diameter of the pipe 200 by pushing the annular die 120 in the pushing direction S towards the clamping device 140. Because the smallest clear inside diameter D M of the die 120 is smaller than the outside diameter D R of the pipe 200, the desired reduction in the outside diameter occurs when the die 120 is moved in the pushing direction.
  • the wall of the pipe 200 slides along the transition section 120-I of the die 120.
  • the mandrel 110 runs ahead of the die 120 in the pushing direction S; it is not involved in the forming process itself in that its surface does not contribute to the forming, i.e. specifically to the reduction of the outside diameter. In this forming process, it serves at most to guide and support the pipe 200 against bending.
  • the annular gap between the die 120 and the mandrel 110 is not important when reducing the outer diameter by moving the die 120 in the pushing direction; its size is irrelevant, in particular the mandrel 110 can advance so far in front of the die 120 that a conical transition section of the mandrel 110 facing the die 120 has no influence on the wall of the tube 200 when it is reduced by moving the die 120.
  • the reduction of the outer diameter D R of the pipe 200 takes place over a substantial part of the free section 210, here specifically until the die 120 strikes the clamping device 140.
  • the end of the reduced pipe section defined thereby is merely an example; In fact, the reduction of the tube 200 can also end before reaching the clamping device 140.
  • the die 120 and the mandrel 110 are moved to their minimum ring distance d min in a first adjustment step.
  • the direction of movement of the mandrel 110 is reversed from the pushing direction S to the opposite pulling direction Z and the mandrel 110 is moved towards the die 120.
  • the mandrel 110 is moved relative to the die 120 in such a way that the cylindrical section 110-III of the mandrel is opposite the position of the ring die with the smallest ring diameter.
  • This adjustment of the minimum annular gap by changing the position of the die 120 and the mandrel 110 relative to each other can be done electronically or, as shown in the Figures 16 to 18 shown, with the aid of a mechanical forced coupling of die 120 and mandrel 110 within the forming device 150.
  • a carriage 153 is provided for axially moving the die 120 in the pushing and pulling direction.
  • a mandrel rod 113 is arranged coaxially to the carriage 153 for axially moving the mandrel 110 in the pushing and pulling direction.
  • the carriage 153 with the die 120 and the mandrel rod 113 with the mandrel 110 are moved independently of one another in the axial direction - electronically controlled.
  • the die 120 is mounted in or on the carriage 153 with an axial play x in the axial direction. Its movement is limited by two stops 150-I and 150-II in the axial direction.
  • Figure 16 shown starting position at the beginning of a movement in the thrust direction to reduce the outside diameter, the die 120 strikes the right-hand stop 150-I within a travel carriage 153. From this starting situation, the travel carriage 153 is moved together with the die 120 and synchronously with the mandrel 110 in the thrust direction S towards the clamping device 140.
  • Figure 17 shows the stop of the travel carriage 153 on the clamping device 140. During the said movement in the direction of thrust S, the die 120 always hits the right-hand stop 150-I.
  • the travel carriage 153 of the forming device 150 is mechanically coupled to the mandrel 110 or to the mandrel rod 113. This means that the mandrel 110 and the mandrel rod 113 follow a movement of the carriage 153 in the axial direction.
  • the minimum ring distance d min can be less than or equal to the original wall thickness of the pipe 200. In any case, it is Figure 4 smaller than the wall thickness of the pipe 200 increased by the reduction of the outer diameter.
  • Figure 4 shows the beginning of a subsequent first forming step in which the direction of movement of the die 120 is also reversed from the pushing direction S to the pulling direction Z. As part of this first forming step, the die 120 and the mandrel 110 are then moved in the pulling direction Z while maintaining the preset minimum ring distance d min . The said axial stretching of the pipe takes place in order to reduce the increased wall thickness to the size of the ring gap d min .
  • the die 120 and the mandrel 110 preferably move synchronously.
  • the synchronous movement is not absolutely necessary during the axial stretching; The only requirement would be that when the die 120 and the mandrel 110 are moved relative to each other, the area of the smallest inner diameter of the die 120 moves in the area of the cylindrical section of the mandrel 110, so that the minimum annular gap d min remains constant during the axial ironing.
  • Figure 5 shows the end of the axial stretching over the first section T1 of the free pipe section.
  • a second adjustment step is carried out, in which the annular gap between the die 120 and the mandrel is readjusted.
  • the annular gap is set negatively here, ie the adjustment is made in such a way that the annular gap is 110-I of the mandrel 110 and 120-I of the die 120 are clamped, which taper or run towards the free end 215 of the pipe 200. Viewed in the vertical direction, these transition sections are located opposite each other in some areas.
  • the newly adjusted annular gap is located on the back of the die 120, viewed in the pulling direction Z.
  • the change in the position of the die 120 and mandrel 110 relative to each other takes place in the area of a pipe section T E2 following the first partial section T1.
  • the tool pairing die 120 and mandrel 110 is then moved further in the pulling direction Z with this new negative annular gap setting and an undercut 220 is created in the second forming section T2 on the outside of the previously reduced-thickness tube.
  • Figure 7 shows the end of the second forming section T2.
  • the die 120 and the mandrel 110 are set to the minimum ring distance d min , i.e. moved relative to each other. This is done via a further adjustment section T E3 ; see Fig.7 .
  • the ring gap setting is then changed again; this time to a positive ring gap.
  • the ring gap is spanned by the conical transition sections 120-II and 110-II of the die 120 and the mandrel 120, which lead to the free pipe end 215.
  • these conical transition sections with expansion towards the pipe end are generally at least partially opposite each other in the vertical direction.
  • the positive annular gap is formed on the front side of the die 120 in the pulling direction.
  • the positive annular gap setting is achieved by the die 120 temporarily reversing its direction of movement in the pushing direction at the end of the third section T3 and in this way changing its relative position to the stationary mandrel 110 in such a way that the said positive annular gap is established.
  • this type of change in the setting of the annular gap is only an example; of course the relative position at the end of T3 could also be achieved by further moving the mandrel 110 in the pulling direction relative to the stationary die 120, for example, albeit with the expenditure of force.
  • a movement of both the die 120 and the mandrel 110 relative to one another would also be conceivable.
  • a movement of the die 120 and the mandrel 110 while maintaining the now set positive annular gap leads to the formation of an undercut 240 on the inside of the tube 200, as shown in Figure 11 shown.
  • the formation of the undercut 220, 240 extends over a section T4 of any desired length.
  • the annular gap can be changed again, for example to the minimum ring distance d min .
  • a fifth section T5 is then obtained, again with an axially stretched tube; see the Figures 12 and 13 .
  • Figure 14 shows the finished tube 200 after all previously described individual steps have been carried out.
  • the sections over which a deformation of the pipe 200 takes place can in principle be of any length; they are only limited by the length of the free section 210 of the tube 200.
  • an axial ironing, the formation of an undercut 220, 240 on the outside or the formation of an undercut 220, 240 on the inside of the tube 200 can also take place continuously over the entire free section 210.
  • the wall thickness of the tube 200 in the area of an undercut 220, 240 depends on the actually set positive or negative ring distance, i.e. the actual distance between the conical transition sections. Due to the electronic adjustment of the die 120 and the mandrel 110 relative to each other, this distance and thus the wall thickness in the area of an undercut 220, 240 can be set very precisely to any desired dimension.
  • Figure 15 shows, as an example, the formed tube 200 when using a profiled mandrel 110, specifically when using a mandrel 110 with a gear-shaped cross-section.
  • an internal toothing 260 of the tube 200 can be realized over a large length in the case of very thin-walled tubes 200.
  • the production of external toothing is also possible when using appropriate profiled ring dies. The forces required, especially tensile forces, to create such toothing are significantly lower than using dies 120 and mandrels 110 without corresponding toothing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Metal Extraction Processes (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1 und eine Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 10 zum axialen Umformen eines Rohres mit Hilfe eines in dem Rohr geführten Dornes und einer an der Außenseite des Rohres geführten ringförmigen Matrize.The invention relates to a method according to the preamble of patent claim 1 and a device according to the preamble of patent claim 10 for axially forming a pipe with the aid of a mandrel guided in the pipe and an annular die guided on the outside of the pipe.

Stand der TechnikState of the art

Axialumformungen von Rohren sind seit Jahrzehnten in der Metallindustrie etabliert. Einzüge, Aufweitungen und Sonderkonturen, wie Verzahnungen, Vierkante usw. gehören zu den Standardanwendungen. Axialumformung bedeutet Ressourceneffizienz, einen ununterbrochenen Faserverlauf, eine Kaltverfestigung des Rohrmaterials und eine gute Oberflächenqualität der umgeformten Bereiche. Haupteinsatzgebiet für die Axialumformung von Rohren ist die Produktion von Bauteilen für die Automobilindustrie und den allgemeinen Maschinenbau. Mit Hilfe von Axialumformungen lassen sich insbesondere auch Leichtbauteile einfach herstellen; deshalb kommt die Axialumformung auch bei aktuellen Themen wie der Elektromobilität oder der Reduzierung von CO2-Ausstoß zum Tragen. Das Umformen erfolgt mit Hilfe eines in dem Rohr geführten Dornes und einer an der Außenseite des Rohres geführten ringförmigen Matrize, deren Innendurchmesser in der Regel kleiner ist als der ursprüngliche Außendurchmesser des Rohres. Die Energie für die Umformarbeit wird sowohl durch hydraulische als auch durch elektromechanische Systeme bereitgestellt.Axial forming of pipes has been established in the metal industry for decades. Indentations, widening and special contours such as serrations, squares, etc. are among the standard applications. Axial forming means resource efficiency, uninterrupted fiber flow, work hardening of the pipe material and good surface quality of the formed areas. The main area of application for axial forming of pipes is the production of components for the automotive industry and general mechanical engineering. With the help of axial forming, lightweight components in particular can be easily manufactured; this is why axial forming is also used in current topics such as electromobility or the reduction of CO2 emissions. The forming is carried out with the help of a mandrel guided in the pipe and an annular die guided on the outside of the pipe, the inner diameter of which is usually smaller than the original outer diameter of the pipe. The Energy for the forming work is provided by both hydraulic and electromechanical systems.

Ein Unterfall der allgemeinen Rohrumformung ist das sogenannte axiale Abstrecken bzw. Abstreckziehen des Rohres; siehe dazu beispielweise das Fachbuch " Fertigungstechnik von Fritz Schulze, Springer Vieweg Verlag, 10. Auflage, Seite 445, Kapitel 5.4.3 . Beim axialen Abstrecken wird der Ringspalt zwischen der Matrize und dem Dorn typischerweise auf einen Abstand eingestellt, welcher kleiner als die ursprüngliche Wandstärke des umzuformenden Rohres ist. Die Werkzeugpaarung Matrize und Dorn wird dann in axialer Richtung entlang des umzuformenden Rohres geführt und dabei wird die Wandstärke des Rohres entsprechend verringert.A sub-case of general tube forming is the so-called axial stretching or ironing of the tube; see for example the textbook " Manufacturing technology by Fritz Schulze, Springer Vieweg Verlag, 10th edition, page 445, chapter 5.4.3 . During axial ironing, the annular gap between the die and the mandrel is typically set to a distance that is smaller than the original wall thickness of the pipe to be formed. The die and mandrel tool pair is then guided in the axial direction along the pipe to be formed, thereby reducing the wall thickness of the pipe accordingly.

Die Druckschrift US 6 779 375 31 offenbart ein Verfahren zum Herstellen von Hinterschneidungen an der Innenseite eines Rohres durch Verändern der Relativposition einer Matrize und eines Dorns zueinander, während diese entlang des Rohres verfahren werden.The publication US 6 779 375 31 discloses a method for producing undercuts on the inside of a pipe by changing the relative position of a die and a mandrel to each other while they are moved along the pipe.

Die Druckschriften DE 30 16 135 A1 , DE 30 21 481 A1 , DE 35 06 220 A1 und US 6 779 375 B1 offenbaren jeweils zumindest teilweise die Verfahrensschritte gemäß dem Oberbegriff des Patentanspruchs 1.The printed publications EN 30 16 135 A1 , DE 30 21 481 A1 , EN 35 06 220 A1 and US 6 779 375 B1 each disclose at least partially the method steps according to the preamble of patent claim 1.

Die Druckschrift US 2 535 339 A bildet den nächstliegenden Stand der Technik.The publication US 2 535 339 A represents the closest state of the art.

Die Patentansprüche 1 und 10 wurden gegenüber dieser US-Schrift abgegrenzt. Ein Beispiel für eine Rohrumformung findet sich auch offenbart z. B. in der internationalen Patentanmeldung WO 2006/053590 A1 . Beschrieben wird dort ein Verfahren zum Herstellen von Hohlwellen mit Endabschnitten von größerer Wandstärke und mit zumindest einem Zwischenabschnitt von reduzierter Wandstärke aus einem Rohr mit ursprünglich konstanter Wandstärke. Die Herstellung erfolgt, indem zunächst ein Dorn mit über seiner Länge abgestuften Durchmesser in das umzuformende Rohr eingebracht wird und nachfolgend eine Ringmatrize von der Seite mit dem verjüngten Durchmesser des Dorns her in Längsrichtung über das Rohr mit dem innenliegenden Dorn verfahren wird. Dabei wird zunächst der Außendurchmesser des ursprünglichen Rohres reduziert und gleichzeitig wird das verdrängte Material des Rohres in den Ringspalt zwischen der Ringmatrize und dem gestuften Dorn gedrückt. Aufgrund der Abstufung des Dorns entstehen dabei gestufte Hinterschneidungen im Inneren des Rohres. Die auf diese Weise entstehende Innenkontur des Rohres entspricht komplementär dem Profil des gestuften Dorns. Über den abgestuften Bereichen des Dorns entstehen auf diese Weise Hinterschneidungen im Inneren des Rohres, welche typischerweise eine größere Wandstärke aufweisen als das ursprüngliche Rohr. Wenn der Ringspalt zwischen der Matrize und dem Abschnitt des Dorns mit dem größten Außendurchmesser kleiner ist als die ursprüngliche Wandstärke des Dorns, so erfolgt in diesem Bereich ein Abstrecken des Rohres, bei dem die ursprüngliche Wandstärke auf eine geringere Wandstärke reduziert wird.Patent claims 1 and 10 have been delimited from this US document. An example of a tube forming process can also be found disclosed, for example, in the international patent application WO 2006/053590 A1 . A method is described there for producing hollow shafts with end sections of greater wall thickness and with at least one intermediate section of reduced wall thickness from a tube with an originally constant wall thickness. The production takes place, by first inserting a mandrel with a diameter graduated over its length into the pipe to be formed and then moving a ring die from the side with the tapered diameter of the mandrel lengthwise over the pipe with the inner mandrel. Firstly, the outer diameter of the original pipe is reduced and at the same time the displaced material of the pipe is pressed into the annular gap between the ring die and the stepped mandrel. Due to the gradation of the mandrel, stepped undercuts are created inside the pipe. The inner contour of the pipe created in this way corresponds complementarily to the profile of the stepped mandrel. In this way, undercuts are created inside the pipe above the stepped areas of the mandrel, which typically have a greater wall thickness than the original pipe. If the annular gap between the die and the section of the mandrel with the largest outer diameter is smaller than the original wall thickness of the mandrel, the pipe is stretched in this area, whereby the original wall thickness is reduced to a smaller wall thickness.

Nachteilig bei der aus der WO 2006 / 053590 A1 bekannten Vorgehensweise ist, dass die Ausbildung von Hinterschneidungen im Inneren des Rohres nur mit einzelnen diskreten Wandstärken möglich ist, soweit dies durch die Abstufungen in dem Außendurchmesser des Dorns vorgegeben wird. Außerdem ist die Ausbildung einer Mehrzahl von Hinterschneidungen an der Außenseite in Längsrichtung des Rohres nicht möglich.Disadvantageous in the WO 2006 / 053590 A1 known procedure is that the formation of undercuts inside the pipe is only possible with individual discrete wall thicknesses, as far as this is determined by the gradations in the outer diameter of the mandrel. In addition, the formation of a plurality of undercuts on the outside in the longitudinal direction of the pipe is not possible.

Rohre mit Hinterschneidungen an ihrer Inn- und Außenseite sind auch bekannt von einem Unternehmen "Schmittergroup"; siehe folgenden Link im Internet: https://www.schmittergroup.de/de/produkte/details/rohre-mit-variabler-wanddicke.html .Pipes with undercuts on their inside and outside are also known from a company called "Schmittergroup"; see the following link on the Internet: https://www.schmittergroup.de/de/produkte/details/rohre-mit-variabler-wanddicke.html .

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein bekanntes Verfahren und eine bekannte Vorrichtung zum Umformen eines Rohres dahingehend weiterzubilden, dass eine Ausbildung von Hinterschneidungen sowohl im Inneren wie auch an der Außenseite des Rohres mit in Grenzen variabel einstellbarer Wandstärke möglich wird.Based on this prior art, the invention is based on the object of developing a known method and a known device for forming a pipe in such a way that the formation of undercuts both inside and outside the pipe with a wall thickness that can be variably adjusted within limits becomes possible.

Diese Aufgabe wird durch das in Patentanspruch 1 beanspruchte Verfahren gelöst. Bei Erreichen einer Endposition der Matrize mit vorauseilendem Dorn werden folgende Schritte ausgeführt:
Umkehren der Bewegungsrichtung der Matrize und des Dorns aus der Schubrichtung in eine entgegengesetzte Zugrichtung; erster Einstellschritt: Verfahren der Matrize und des Dorns relativ zueinander auf eine erste vorbestimmte Ringspalteinstellung; und erster Umformschritt: Verfahren der Matrize und des Dorns in der Zugrichtung über einen ersten Teilabschnitt des freien Rohrabschnitts unter Beibehaltung der ersten vorbestimmten Ringspalteinstellung zum Umformen des Rohres.
This object is achieved by the method claimed in claim 1. When the die with the leading mandrel reaches an end position, the following steps are carried out:
Reversing the direction of movement of the die and the mandrel from the pushing direction to an opposite pulling direction; first setting step: moving the die and the mandrel relative to each other to a first predetermined annular gap setting; and first forming step: moving the die and the mandrel in the pulling direction over a first section of the free pipe section while maintaining the first predetermined annular gap setting for forming the pipe.

Der erste sowie später eventuell folgende weitere Einstellschritte ermöglichen jeweils ein Verfahren der Matrize und des Dorns relativ zueinander und damit die variable Einstellung des Ringspaltes zwischen der Matrize und dem Dorn auf ein beliebiges - vorzugsweise maximal auf den ursprünglichen Außendurchmesser begrenztes - Maß. Durch das Vorhandensein von konischen Übergangsabschnitten sowohl bei der ringförmigen Matrize wie auch bei dem Dorn sind aufgrund der variablen Einstellung des Ringspaltes Hinterschneidungen im Umformbereich des Rohres, insbesondere innerhalb der ursprünglichen Rohrwandstärke möglich. Je nachdem, ob sich die konischen Übergangsabschnitte auf das freie Ende des Rohres hin verjüngen oder aufweiten, sind die Hinterschneidungen im Innen- und / oder Außenbereich des Rohres möglich. Die Ausbildung von Hinterschneidungen im Inneren des Rohres und an der Außenseite des Rohres können in einem Arbeitsgang bei ein und demselben Rohr an jeweils unterschiedlichen Längsabschnitten realisiert werden. Als Unterfall davon kann auch ein Dick-Dünnrohr mit konstanter Innenbohrung realisiert werden, bei welchem lediglich lokale Hinterschneidungen an der Außenseite ausgebildet werden. Alternativ können auch Dick-Dünnrohre bei konstantem Außendurchmesser, aber mit Hinterschneidungen im Inneren des Rohres mit auf Wunsch auch unterschiedlicher Wandstärke ausgebildet werden.The first and any subsequent adjustment steps allow the die and the mandrel to be moved relative to each other and thus the variable adjustment of the annular gap between the die and the mandrel to any desired size - preferably limited to the original outer diameter. Due to the presence of conical transition sections in both the annular die and the mandrel, undercuts in the forming area of the pipe, particularly within the original pipe wall thickness, are possible due to the variable adjustment of the annular gap. Depending on whether the conical transition sections taper or widen towards the free end of the pipe, the undercuts are possible on the inside and/or outside of the pipe. The formation of undercuts inside the pipe and on the outside of the pipe can be achieved in one operation. can be implemented on one and the same pipe at different longitudinal sections. As a sub-case of this, a thick-thin pipe with a constant inner bore can also be implemented, in which only local undercuts are formed on the outside. Alternatively, thick-thin pipes can also be designed with a constant outer diameter, but with undercuts inside the pipe and, if required, with different wall thicknesses.

Das Ausbilden der besagten Hinterschneidungen erfolgt durch Verfahren einer im Hinblick auf den Ringspalt voreingestellten Werkzeugpaarung von Matrize und Dorn über einen Teilabschnitt des freien Rohrabschnittes. Das Verfahren von Matrize und Dorn erfolgt zur Ausbildung der Hinterschneidungen erfindungsgemäß in Zugrichtung, d. h. bei einer Bewegung der Werkzeugpaarung auf eine Umformeinrichtung hin, in welcher die Matrize und der Dorn verschiebbar gelagert sind und angesteuert werden. Zugrichtung bedeutet insbesondere auch eine Richtung, in welcher das umzuformende Rohr auf Zug belastet wird. Im Unterschied zum Verfahren von Matrize und Dorn in einer Schubrichtung, welche der Zugrichtung entgegengesetzt ist, besteht bei der Zugrichtung nicht die Gefahr, dass sich das Rohr beim Verfahren der Werkzeugpaarung in unerwünschter Weise verformt, insbesondere gestaucht wird oder verbiegt.The said undercuts are formed by moving a tool pairing of die and mandrel, which is preset with regard to the annular gap, over a section of the free pipe section. According to the invention, the die and mandrel are moved in the pulling direction to form the undercuts, i.e. when the tool pairing moves towards a forming device in which the die and mandrel are movably mounted and controlled. The pulling direction also means in particular a direction in which the pipe to be formed is subjected to a pulling load. In contrast to moving the die and mandrel in a pushing direction which is opposite to the pulling direction, in the pulling direction there is no risk of the pipe being deformed in an undesirable way when the tool pairing is moved, in particular being compressed or bent.

Vorteilhafterweise ermöglicht das beanspruchte Verfahren die Erzeugung von ganz verschiedenen Geometrien an den Rohren im Hinblick auf Durchmessertoleranzen und Werkstärken durch programmtechnisch gesteuerte Umformabläufe, ohne dass sich dabei die Geometrien der Werkzeuge, sprich der Matrize und des Dorns, während des Umformvorganges ändern müssten. Das erfindungsgemäße Verfahren ermöglicht den Einsatz von einfachen (Vor-)Rohren, die nicht bereits in separaten Verfahrensschritten vorumgeformt werden mussten, und damit bessere Wertschöpfungspotenziale in der Komponentenfertigung. Die Nutzung von Vor- und Rückwärtsbewegungen der Werkzeugpaarung Matrize - Dorn für das Umformen des Rohres bedeutet eine Ressourceneffizienz. Das erfindungsgemäße Verfahren ermöglicht eine gezielte Reduzierung der Wandstärke der Rohre in begrenzten lokalen Rohrabschnitten entsprechend einer zuvor getätigten Konstruktionsauslegung. Das lokale Reduzieren der Wandstärke eines Rohres kann z. B. zum Einbringen einer Sollbruchstelle gewünscht sein. Ein weiterer Vorteil ist die Möglichkeit zur Verwendung von preiswerten Vorrohren gemäß der Deutschen Industrie Norm DIN EN 10305-3 anstelle bisher benötigter Rohre einer teureren Qualität nach Norm DIN EN 10305-2.The claimed method advantageously enables the production of very different geometries on the pipes with regard to diameter tolerances and material thicknesses through program-controlled forming processes, without the geometries of the tools, i.e. the die and the mandrel, having to change during the forming process. The method according to the invention enables the use of simple (pre-)pipes that do not have to be pre-formed in separate process steps, and thus better value creation potential in component production. The use of forward and backward movements of the die-mandrel tool pair for forming of the pipe means resource efficiency. The method according to the invention enables a targeted reduction in the wall thickness of the pipes in limited local pipe sections in accordance with a previously made design. The local reduction in the wall thickness of a pipe can be desired, for example, to introduce a predetermined breaking point. A further advantage is the possibility of using inexpensive pre-pipes in accordance with the German Industrial Standard DIN EN 10305-3 instead of the previously required pipes of a more expensive quality in accordance with the DIN EN 10305-2 standard.

Definitionen:Definitions:

Der Begriff "freier Rohrabschnitt" meint: nicht eingespannter Rohrabschnitt.The term "free pipe section" means: non-clamped pipe section.

Die Begriffe "Schub" oder "Schubrichtung" meinen eine Richtung weg von einer Umformeinrichtung, von welcher aus die Matrize und der Dorn bewegt werden und hin auf eine Einspanneinrichtung. Insbesondere meint die Schubrichtung eine Richtung, in welcher das umzuformende Rohr auf Druck belastet wird.The terms "thrust" or "thrust direction" mean a direction away from a forming device from which the die and mandrel are moved and towards a clamping device. In particular, the thrust direction means a direction in which the tube to be formed is subjected to compression.

Der Begriff "Zugrichtung" meint eine Richtung entgegengesetzt zu der Schubrichtung. Bei der Zugrichtung wird das umzuformende Rohr stets auf Zug belastet. Es besteht dabei nicht die Gefahr eines Stauchens oder eines Verbiegens des Rohres. Allerdings besteht bei einer Umformung in Zugrichtung die Gefahr eines Bruches oder Risses des umzuformenden Rohres, wenn die Zugbelastung zu groß wird.The term "tension direction" means a direction opposite to the shear direction. In the tension direction, the pipe to be formed is always subjected to tensile stress. There is no risk of the pipe being compressed or bent. However, when forming in the tension direction, there is a risk of the pipe being formed breaking or cracking if the tensile stress becomes too great.

Der Begriff "synchron" meint in der vorliegenden Beschreibung das Verfahren von Matrize und Dorn mit gleicher Geschwindigkeit in gleicher axialer Richtung. Synchrones Verfahren erfolgt immer mit einem fest eingestellten Ringspalt. Eine Änderung der Größe des Ringspaltes erfordert stets eine Relativbewegung von Matrize und Dorn mit unterschiedlichen Geschwindigkeiten, was ein synchrones Verfahren von Matrize und Dorn ausschließt.The term "synchronous" in this description means the movement of the die and mandrel at the same speed in the same axial direction. Synchronous movement always takes place with a fixed annular gap. A change in the size of the annular gap always requires a relative movement of Die and mandrel move at different speeds, which excludes a synchronous movement of die and mandrel.

Der Begriff "vertikal" bezieht sich auf die y-Richtung des Koordinatensystems, wie in Figur 1 gezeigt.The term "vertical" refers to the y-direction of the coordinate system, as in Figure 1 shown.

Die Begriffe "linksseitiger Anschlag" und "rechtsseitiger Anschlag" beziehen sich auf die Darstellung in den Figuren. Demnach meint "linksseitiger Anschlag" denjenigen Anschlag, der den Verfahrweg des Dorns in Schubrichtung S begrenzt. Analog meint "rechtsseitiger Anschlag" denjenigen Anschlag, der den Verfahrweg des Dorns in Zugrichtung Z begrenzt.The terms "left-hand stop" and "right-hand stop" refer to the representation in the figures. Accordingly, "left-hand stop" means the stop that limits the travel path of the mandrel in the pushing direction S. Analogously, "right-hand stop" means the stop that limits the travel path of the mandrel in the pulling direction Z.

Der Begriff "negativer Ringspalt" meint denjenigen Ringspalt, welcher durch die sich in den Figuren zum freien Ende des Rohres bzw. zur Dornstange bzw. zur Umformeinrichtung hin verjüngenden konischen Übergangsabschnitte von Matrize und Dorn aufgespannt wird. Davon unabhängig können die konischen Übergangsflanken der Matrize und des Dorns relativ zueinander konvergierend, parallel oder divergierend ausgebildet sein. Die konischen Übergangsabschnitte können sich dabei in vertikaler Richtung zumindest ein Stück weit überlappen bzw. gegenüberstehen. In den Figuren ist der Dorn dann in Bezug auf die Matrize nach links versetzt. Anders ausgedrückt befindet sich der negative Ringspalt - in Zugrichtung gesehen - auf der Rückseite der Matrize. Eine Bearbeitung des Rohres mit negativem Ringspalt führt zur Ausbildung einer Hinterschneidung an der Außenseite des Rohres.The term "negative annular gap" refers to the annular gap which is formed by the conical transition sections of the die which taper towards the free end of the tube or the mandrel rod or the forming device in the figures. and mandrel. Irrespective of this, the conical transition flanks of the die and the mandrel can be designed to be convergent, parallel or diverging relative to one another. The conical transition sections can overlap or face each other at least to a certain extent in the vertical direction. In the figures, the mandrel is then offset to the left in relation to the die. In other words, the negative annular gap - seen in the pulling direction - is on the back of the die. Machining the pipe with a negative annular gap leads to the formation of an undercut on the outside of the pipe.

Der Begriff "minimaler Ringspalt" meint einen Ringspalt mit einem minimalen Vertikalabstand zwischen Matrize und Dorn. Er bildet sich insbesondere aus zwischen der engsten Stelle der ringförmigen Matrize und einem gegenüberliegenden i.d.R. zylindrischen (Übergangs-)Abschnitt des Dorns. In der Regel wird die Werkzeugpaarung Matrize - Dorn bereits vor Beginn der Rohrumformung so ausgewählt, dass das minimale Ringspaltmaß einer später gewünschten minimalen Wandstärke des umzuformenden Rohres entspricht. Die minimale Wandstärke wird in der Regel kleiner oder gleich der ursprünglichen Wandstärke des Rohres gewählt. Sie kann später durch axiales Abstrecken des Rohres realisiert werden.The term "minimal annular gap" means an annular gap with a minimum vertical distance between the die and the mandrel. It is formed in particular between the narrowest point of the annular die and an opposite, usually cylindrical (transition) section of the mandrel. As a rule, the die-mandrel tool pairing is selected before the start of the pipe forming process so that the minimum annular gap corresponds to a later desired minimum wall thickness of the pipe to be formed. The minimum wall thickness is usually selected to be less than or equal to the original wall thickness of the pipe. It can be achieved later by axially stretching the pipe.

Der Begriff "positiver Ringspalt" meint einen Ringspalt, welcher durch die sich in den Figuren zum freien Ende des Rohres bzw. zur Dornstange bzw. zur Umformeinrichtung hin aufweitenden konischen Übergangsabschnitte von Matrize und Dorn aufgespannt wird. Davon unabhängig können die konischen Übergangsflanken der Matrize und des Dorns relativ zueinander konvergierend, parallel oder divergierend ausgebildet sein. Die konischen Übergangsabschnitte können sich dabei in vertikaler Richtung zumindest ein Stück weit gegenüberstehen. In den Figuren ist der Dorn dann in Bezug auf die Mitte der Matrize nach rechts versetzt. Anders ausgedrückt befindet sich der positive Ringspalt - in Zugrichtung gesehen - auf der Vorderseite der Matrize. Eine Bearbeitung des Rohres mit positivem Ringspalt führt zur Ausbildung einer Hinterschneidung an der Innenseite des Rohres.The term "positive annular gap" means an annular gap which is spanned by the conical transition sections of the die and mandrel which widen in the figures towards the free end of the pipe or the mandrel rod or the forming device. Irrespective of this, the conical transition flanks of the die and the mandrel can be designed to be convergent, parallel or diverging relative to one another. The conical transition sections can be at least partially opposite one another in the vertical direction. In the figures, the mandrel is then offset to the right in relation to the center of the die. In other words, the positive annular gap - seen in the pulling direction - on the front side of the die. Machining the tube with a positive annular gap leads to the formation of an undercut on the inside of the tube.

Gemäß der Erfindung wird nach dem ersten Umformschritt die Schrittabfolge, Einstellschritt und nachfolgender Umformschritt, beliebig oft wiederholt, wobei dann bei jedem weiteren Einstellschritt der Ringspalt neu eingestellt wird.According to the invention, after the first forming step, the sequence of steps, adjustment step and subsequent forming step, is repeated as often as desired, with the annular gap then being readjusted in each subsequent adjustment step.

Diese Wiederholbarkeit der Schritte ermöglicht eine Mehrfachausbildung von Hinterschneidungen im Innern und an der Außenseite des Rohres über die Längsrichtung des freien zu bearbeitenden Rohrabschnittes verteilt.This repeatability of the steps enables multiple undercuts to be formed inside and outside the pipe, distributed along the length of the free pipe section to be machined.

Das Vorsehen eines zylindrischen Abschnitts in Längsrichtung des Dorns ermöglicht die Einstellung des minimalen Ringspaltes zwischen der Matrize und dem Dorn, wenn der besagte zylindrische Abschnitt mit dem maximalen Außendurchmesser des Dorns der engsten Stelle der Ringmatrize gegenübersteht. Wenn die Matrize und der Dorn in dieser Relativstellung zueinander in Längsrichtung des Rohres verfahren werden, erfolgt ein axiales Abstrecken des Rohres, wenn der eingestellte minimale Ringabstand zwischen Matrize und Dorn kleiner als die in Zugrichtung vorgelagerte Wandstärke des Rohres ist.The provision of a cylindrical section in the longitudinal direction of the mandrel enables the setting of the minimum annular gap between the die and the mandrel when the said cylindrical section with the maximum external diameter of the mandrel is opposite the narrowest point of the annular die. When the die and the mandrel are moved in this relative position in the longitudinal direction of the pipe, the pipe is stretched axially if the set minimum annular distance between the die and the mandrel is smaller than the wall thickness of the pipe in the direction of tension.

Alternativ kann der Ringspalt zwischen Dorn und Matrize negativ oder positiv eingestellt werden zur Ausbildung einer Hinterschneidung im Inneren oder an der Außenseite des Rohres.Alternatively, the annular gap between mandrel and die can be set negatively or positively to form an undercut inside or on the outside of the tube.

Je nach aktueller Situation und zuvor erfolgter Umformung des Rohres kann die Relativbewegung von Matrize und Dorn im Rahmen der Einstellschritte auf unterschiedliche Weise erfolgen. So ist es konkret bei dem ersten beanspruchten Einstellschritt, bei dem eine Umkehr der Bewegungsrichtung von Matrize und Dorn stattfindet, sinnvoll, dass die Matrize kurzzeitig angehalten wird und dann nur der Dorn relativ zu der Matrize bewegt wird, um den gewünschten Ringspalt einzustellen. In anderer Situation kann es sinnvoll sein, dass die Matrize in Zugrichtung kontinuierlich weiterverfahren wird und eine Änderung der Einstellung des Ringspaltes durch ein Verfahren des Dorns relativ zu der fahrenden Matrize erfolgt. In wiederum anderen Situationen kann es sinnvoll sein, dass die Matrize temporär ein Stück weit entgegen der Zugrichtung, d. h. in Schubrichtung verfahren wird bei gleichzeitig stillstehendem Dorn, um den Ringspalt in gewünschter Weise anzustellen.Depending on the current situation and the previous forming of the pipe, the relative movement of the die and mandrel can take place in different ways during the adjustment steps. For example, in the first adjustment step, in which the direction of movement of the die and mandrel is reversed, it makes sense to stop the die briefly and then only move the mandrel relative to the die in order to set the desired annular gap. In other situations, it may be useful for the die to be continuously moved in the pulling direction and for the setting of the annular gap to be changed by moving the mandrel relative to the moving die. In other situations, it may be useful for the die to be temporarily moved a little way against the pulling direction, ie in the pushing direction, while the mandrel is stationary, in order to adjust the annular gap in the desired way.

Sowohl zur Ausbildung der Hinterschneidungen im Innen- und Außenbereich des Rohres sowie auch zum Durchführen des erwähnten axialen Abstreckens des Rohres verfahren die Matrize und der Dorn typischerweise synchron zueinander unter Beibehaltung einer zuvor vorgenommenen Einstellung des Ringspaltes. Das synchrone Verfahren von Matrize und Dorn erfolgt jeweils solange, bis ein gewünschter Längenabschnitt des umzuformenden Rohres, in welchem die jeweiligen Hinterschneidungen oder das Abstrecken erfolgen sollen, abgefahren wurde. Besonders vorteilhaft ist es, wenn das erfindungsgemäße Verfahren verwendet wird, um an dem umzuformenden Rohrabschnitt die Ausbildung von Hinterschneidungen und das Abstrecken des Rohres in Längsrichtung des Rohres abwechselnd auszuführen.Both to form the undercuts on the inside and outside of the pipe and to carry out the axial stretching of the pipe mentioned above, the die and the mandrel typically move synchronously with each other while maintaining a previously made setting of the annular gap. The synchronous movement of the die and the mandrel takes place until a desired length section of the pipe to be formed, in which the respective undercuts or stretching is to take place, has been traveled. It is particularly advantageous if the method according to the invention is used to alternately carry out the formation of undercuts and the stretching of the pipe in the longitudinal direction of the pipe on the pipe section to be formed.

Die o. g. Aufgabe der Erfindung wird weiterhin gelöst durch eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens gemäß Patentanspruch 10.The above-mentioned object of the invention is further achieved by a device for carrying out the inventive method according to patent claim 10.

Die Vorteile dieser Vorrichtung entsprechen den oben mit Bezug auf das beanspruchte Verfahren genannten Vorteilen.The advantages of this device correspond to the advantages mentioned above with reference to the claimed method.

Die zur Durchführung des erfindungsgemäßen Verfahrens notwendige Steuereinrichtung zum individuellen Ansteuern der Matrize und des Dorns ist insbesondere zur individuellen Einstellung des Ringspaltes zur Realisierung der Hinterschneidungen und des Abstreckens als elektronische Ansteuerung ausgebildet. Zur Einstellung des minimalen Ringspaltes, wie er insbesondere zum axialen Abstrecken des Rohres benötigt wird, kann die Steuereinrichtung jedoch auch in Form einer mechanischen Zwangskopplung ausgebildet sein. Gegenüber einer elektronischen Steuerung ist die Ausbildung einer mechanischen Zwangskopplung besonders einfach und robust. Schließlich ist es vorteilhaft, wenn der Dorn - insbesondere in Längsrichtung - profiliert ausgebildet ist. Mit Hilfe einer profilierten Ausbildung des Dorns, z. B. wenn der Dorn einen zahnradförmigen Querschnitt aufweist, können mit diesem Dorn Längsrillen an der Innenseite der Wandung des Rohres eingezogen bzw. ausgebildet werden.The control device required to carry out the method according to the invention for individually controlling the die and the mandrel is designed as an electronic control in particular for individually adjusting the annular gap for realizing the undercuts and the ironing. For adjusting However, the control device can also be designed in the form of a mechanical forced coupling to ensure the minimum annular gap, as is required in particular for axial stretching of the pipe. The design of a mechanical forced coupling is particularly simple and robust compared to an electronic control. Finally, it is advantageous if the mandrel is profiled - particularly in the longitudinal direction. With the help of a profiled design of the mandrel, e.g. if the mandrel has a gear-shaped cross-section, longitudinal grooves can be drawn or formed on the inside of the wall of the pipe with this mandrel.

Der Beschreibung sind 18 Figuren beigefügt, wobei

Figur 1
die erfindungsgemäße Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens in einer Ausgangsstellung;
Figur 2
den Dorn und die Matrize in einer Anfangsposition zum Reduzieren des Außendurchmessers des Rohres;
Figur 3
die Matrize und den Dorn in einer Endstellung nach Reduzierung des Außendurchmessers des Rohres;
Figur 4
den Beginn eines ersten Abstreckens des Rohres beginnend ab einer Endposition;
Figur 5
das Ende des Abstreckens des Rohres über einem ersten Teilabschnitt des freien Endes des Rohres;
Figur 6
die Einstellung eines negativen Ringspaltes zu Beginn der Ausbildung einer Hinterschneidung an der Außenseite des Rohres;
Figur 7
die Beendigung der Ausbildung der Hinterschneidung an der Außenseite und den Beginn eines zweiten Abstreckvorganges;
Figur 8
das Ende des zweiten Abstreckvorganges;
Figur 9
die Änderung der Ringspalteinstellung am Ende des zweiten Abstreckens;
Figur 10
die Einstellung des Ringspaltes mit positiver Steigerung zum Einleiten der Ausbildung einer Hinterschneidung im Inneren des Rohres;
Figur 11
das Ende der Ausbildung der Hinterschneidung im Inneren des Rohres,
Figur 12
eine erneute Änderung der Einstellung des Ringspaltes zur Einleitung eines dritten axialen Abstreckvorganges;
Figur 13
das Ende der gesamten Rohrumforrmung mit von dem Rohr abgezogener Matrize und weitgehend herausgezogenem Dorn;
Figur 14
das umgeformte Rohr nach Durchführung der zuvor beschriebenen Umformschritte;
Figur 15
die Ausbildung von Längsrillen an der Innenseite des Rohres durch Verwendung eines Dorns mit zahnradförmigem Querschnitt;
Figur 16
die erfindungsgemäße Umformeinrichtung mit der Ausbildung einer Zwangskopplung bzw. Zwangsführung für die Matrize zu Beginn einer Reduzierung des Außendurchmessers;
Figur 17
die in eine Endposition in Schubrichtung verfahrene Umformeinrichtung mit linksseitigem Anschlag an einer Einspanneinrichtung; und
Figur 18
die Umformeinrichtung nach einer Umkehr ihrer Bewegungsrichtung in Zugrichtung mit nunmehr linksseitigem Anschlag der Matrize zeigt.
The description includes 18 figures, of which
Figure 1
the device according to the invention for carrying out the method according to the invention in a starting position;
Figure 2
the mandrel and die in an initial position for reducing the outside diameter of the pipe;
Figure 3
the die and the mandrel in a final position after reducing the outside diameter of the pipe;
Figure 4
the beginning of a first stretching of the pipe starting from an end position;
Figure 5
the end of the stretching of the tube over a first portion of the free end of the tube;
Figure 6
the setting of a negative annular gap at the beginning of the formation of an undercut on the outside of the pipe;
Figure 7
the completion of the formation of the undercut on the outside and the beginning of a second ironing process;
Figure 8
the end of the second ironing process;
Figure 9
the change of the annular gap setting at the end of the second ironing;
Figure 10
the setting of the annular gap with positive increase to initiate the formation of an undercut inside the pipe;
Figure 11
the end of the formation of the undercut inside the pipe,
Figure 12
a further change in the setting of the annular gap to initiate a third axial ironing process;
Figure 13
the end of the entire pipe forming process with the die removed from the pipe and the mandrel largely pulled out;
Figure 14
the formed tube after the previously described forming steps have been carried out;
Figure 15
the formation of longitudinal grooves on the inside of the pipe by using a mandrel with a gear-shaped cross-section;
Figure 16
the forming device according to the invention with the formation of a forced coupling or forced guidance for the die at the beginning of a reduction of the outer diameter;
Figure 17
the forming device moved to an end position in the direction of thrust with a left-hand stop on a clamping device; and
Figure 18
the forming device after a reversal of its direction of movement in the pulling direction with the die now stopped on the left side.

Die Erfindung wird nachfolgend unter Bezugnahme auf die genannten Figuren in Form von Ausführungsbeispielen detailliert beschrieben. In allen Figuren sind gleiche technische Elemente mit gleichen Bezugszeichen bezeichnet.The invention is described in detail below with reference to the figures mentioned in the form of exemplary embodiments. In all figures, the same technical elements are designated by the same reference numerals.

Figur 1 zeigt die erfindungsgemäße Vorrichtung. Sie umfasst eine Einspanneinrichtung 140 zum Einspannen eines umzuformenden Rohres 200 so, dass ein freier Abschnitt 210, d. h. ein nicht ein gespannter Abschnitt des Rohres 200 zum Umformen verbleibt. An dem freien Ende des Rohres 200 ist eine Umformeinrichtung 150 zu erkennen, in welcher eine ringförmige Matrize 120 sowie ein koaxial dazu angeordneter Dorn 110 verschiebbar gelagert sind. Die Matrize 120 umfasst in dem hier gezeigten Ausführungsbeispiel zwei konische Übergangsabschnitte an der Innenseite, von denen sich ein erster Übergangsabschnitt 120-1 zum freien Ende des Rohres 200 hin verjüngt und ein zweiter Übergangsabschnitt 120-II sich zum freien Ende des Rohres 200 hin aufweitet. Der Dorn 110 weist an seiner Außenseite einen ersten konischen Übergangsabschnitt 110-I auf, welcher sich zum freien Ende des Rohres 200 und zur Umformeinrichtung 150 hin verjüngt, und einen Übergangsabschnitt 110-II auf, welcher sich zum freien Ende des Rohres 200 und zur Umformeinrichtung 150 hin aufweitet. Dazwischen ist ein zylinderförmiger Übergangsabschnitt 110-III mit konstantem maximalem Außendurchmesser ausgebildet. Die Paarung ringförmige Matrize 120 und Dorn 110 ist so ausgewählt, dass der minimale Abstand zwischen der Matrize an ihrer engsten Stelle und dem zylinderförmigen Abschnitt 110-III des Dorns 110 mit maximalem Außendurchmesser kleiner ist oder gleich der ursprünglichen Wandstärke des Rohres 200 ist. Figure 1 shows the device according to the invention. It comprises a clamping device 140 for clamping a pipe 200 to be formed in such a way that a free section 210, ie a non-clamped section of the pipe 200 remains for forming. At the free end of the pipe 200, a forming device 150 can be seen in which an annular die 120 and a mandrel 110 arranged coaxially thereto are slidably mounted. In the embodiment shown here, the die 120 comprises two conical transition sections on the inside, of which a first transition section 120-1 tapers towards the free end of the pipe 200 and a second transition section 120-II widens towards the free end of the pipe 200. The mandrel 110 has on its outside a first conical transition section 110-I, which tapers towards the free end of the tube 200 and the forming device 150, and a transition section 110-II, which widens towards the free end of the tube 200 and the forming device 150. In between, a cylindrical transition section 110-III with a constant maximum outside diameter is formed. The pairing of annular die 120 and mandrel 110 is selected so that the minimum distance between the die at its narrowest point and the cylindrical section 110-III of the mandrel 110 with maximum outer diameter is less than or equal to the original wall thickness of the tube 200.

Zur Durchführung des erfindungsgemäßen Verfahrens ist es nicht zwingend erforderlich, dass die Matrize 120 und der Dorn 110 jeweils zwei konische Übergangsabschnitte aufweisen. Zur Realisierung von Hinterschneidungen 220, 240 an der Außenseite des Rohres 200 sind lediglich die konischen Übergangsabschnitte an der Matrize 120 und dem Dorn 110 erforderlich, welche sich zum freien Rohrende 215 hin verjüngen. Zur Ausbildung von Hinterschneidungen 220, 240 nur im Inneren des Rohres 200 sind lediglich die Übergangsabschnitte an der Matrize 120 und dem Dorn 110 erforderlich, welche sich zum freien Rohrende 215 und zur Umformeinrichtung 150 hin aufweiten. Wenn nur ein Abstrecken des Rohres 200 gewünscht wird, ist lediglich das Vorhandensein des zylinderförmigen Abschnittes 110-III bei dem 110 Dorn mit maximalem Außendurchmesser ohne konische Übergangsabschnitte erforderlich. Je nach gewünschter Umformung des Rohres 200 sind jeweils die Matrize 120 und der Dorn 110 mit den entsprechend notwendigen Übergangsabschnitten und minimalem Ringspalt auszuwählen.To carry out the method according to the invention, it is not absolutely necessary for the die 120 and the mandrel 110 to each have two conical transition sections. To create undercuts 220, 240 on the outside of the pipe 200, only the conical transition sections on the die 120 and the mandrel 110 are required, which taper towards the free pipe end 215. To create undercuts 220, 240 only inside the pipe 200, only the transition sections on the die 120 and the mandrel 110 are required, which widen towards the free pipe end 215 and towards the forming device 150. If only stretching of the pipe 200 is desired, only the presence of the cylindrical section 110-III on the 110 mandrel with maximum outside diameter without conical transition sections is required. Depending on the desired deformation of the tube 200, the die 120 and the mandrel 110 with the necessary transition sections and minimum annular gap must be selected.

Der Umformeinrichtung 150 ist eine Steuereinrichtung 152 zugeordnet zum Verfahren der Matrize 120 und des Dorns 110 unabhängig voneinander entlang des freien Abschnittes 110 des Rohres 200 in einer Schubrichtung S und einer Zugrichtung Z. Bei Bewegung der Matrize 120 in Schubrichtung wird das Rohr 200 auf Druck belastet und es besteht die Gefahr des Verbiegens und des Stauchens des Rohres 200. Bei Verfahren der Werkzeugpaarung Matrize 120 und Dorn 110 in Zugrichtung besteht insbesondere bei zu eng eingestelltem Ringspalt die Gefahr eines Reißens des Rohres 200.The forming device 150 is assigned a control device 152 for moving the die 120 and the mandrel 110 independently of one another along the free section 110 of the tube 200 in a pushing direction S and a pulling direction Z. When the die 120 moves in the pushing direction, the tube 200 is subjected to pressure and there is a risk of the tube 200 bending and being compressed. When the tool pairing die 120 and mandrel 110 is moved in the pulling direction, there is a risk of the tube 200 tearing, particularly if the annular gap is set too narrow.

Figur 1 zeigt die Ausgangsstellung von Dorn 110 und Matrize 120 zur Durchführung des erfindungsgemäßen Verfahrens. Der Dorn 110 und die Matrize 120 sind an dem freien Ende des Rohres 200 angeordnet und koaxial zu diesem ausgerichtet. Der Dorn 110 ist bereits ein Stück weit in das freie Ende des eingespannten Rohres 200 eingefahren. Figure 1 shows the starting position of mandrel 110 and die 120 for carrying out the method according to the invention. The mandrel 110 and the die 120 are arranged at the free end of the tube 200 and are aligned coaxially therewith. The mandrel 110 has already been inserted a little way into the free end of the clamped pipe 200.

Figur 2 zeigt den Beginn einer gewünschten Reduzierung des Außendurchmessers des Rohres 200 durch Schubverfahren der ringförmigen Matrize 120 in Schubrichtung S auf die Einspanneinrichtung 140 hin. Weil der kleinste lichte Innendurchmesser DM der Matrize 120 kleiner ist als der Außendurchmesser DR des Rohres 200 kommt es beim Verfahren der Matrize 120 in Schubrichtung zu der gewünschten Reduzierung des Außendurchmessers. Dabei gleitet die Wandung des Rohres 200 an dem Übergangsabschnitt 120-I der Matrize 120 entlang. Der Dorn 110 eilt dabei der Matrize 120 in Schubrichtung S voraus; er ist an dem Umformvorgang selber nicht beteiligt insofern, als dass seine Oberfläche nicht zur Umformung, d. h. konkret zur Reduzierung des Außendurchmessers beiträgt. Er dient bei diesem Umformvorgang allenfalls zur Führung und Abstützung des Rohres 200 gegen ein Verbiegen. Figure 2 shows the beginning of a desired reduction in the outside diameter of the pipe 200 by pushing the annular die 120 in the pushing direction S towards the clamping device 140. Because the smallest clear inside diameter D M of the die 120 is smaller than the outside diameter D R of the pipe 200, the desired reduction in the outside diameter occurs when the die 120 is moved in the pushing direction. The wall of the pipe 200 slides along the transition section 120-I of the die 120. The mandrel 110 runs ahead of the die 120 in the pushing direction S; it is not involved in the forming process itself in that its surface does not contribute to the forming, i.e. specifically to the reduction of the outside diameter. In this forming process, it serves at most to guide and support the pipe 200 against bending.

Im Unterschied zu dem nachfolgenden Umformschritt, bei dem die Matrize 120 und der Dorn 110 in Zugrichtung bewegt werden, kommt es bei der Reduzierung des Außendurchmessers durch die Bewegung der Matrize 120 in Schubrichtung nicht auf den Ringspalt zwischen der Matrize 120 und dem Dorn 110 an; seine Größe ist unbeachtlich, insbesondere kann der Dorn 110 so weit vor der Matrize 120 voreilen, dass ein der Matrize 120 zugewandter konischer Übergangsabschnitt des Dorns 110 keinen Einfluss auf die Wandung des Rohres 200 nimmt, wenn diese durch das Verfahren der Matrize 120 reduziert wird.In contrast to the subsequent forming step, in which the die 120 and the mandrel 110 are moved in the pulling direction, the annular gap between the die 120 and the mandrel 110 is not important when reducing the outer diameter by moving the die 120 in the pushing direction; its size is irrelevant, in particular the mandrel 110 can advance so far in front of the die 120 that a conical transition section of the mandrel 110 facing the die 120 has no influence on the wall of the tube 200 when it is reduced by moving the die 120.

Gemäß Figur 3 erfolgt das Reduzieren des Außendurchmessers DR des Rohres 200 über einem wesentlichen Teil des freien Abschnittes 210, hier konkret, bis die Matrize 120 an die Einspanneinrichtung 140 anschlägt. Selbstverständlich ist das dadurch definierte Ende des reduzierten Rohrabschnittes lediglich beispielhaft; tatsächlich kann die Reduktion des Rohres 200 auch bereits vor Erreichen der Einspanneinrichtung 140 enden.According to Figure 3 the reduction of the outer diameter D R of the pipe 200 takes place over a substantial part of the free section 210, here specifically until the die 120 strikes the clamping device 140. Of course, the end of the reduced pipe section defined thereby is merely an example; In fact, the reduction of the tube 200 can also end before reaching the clamping device 140.

In Figur 3 ist gut zu erkennen, dass das bei dem Reduzieren des Außendurchmessers verdrängte Material zu einer Vergrößerung der Wandstärke des Rohres 200 im Bereich des reduzierten Außendurchmessers führt.In Figure 3 It can be clearly seen that the material displaced when the outer diameter is reduced leads to an increase in the wall thickness of the tube 200 in the area of the reduced outer diameter.

Um diese Vergrößerung der Wandstärke zumindest in einem ersten Teilabschnitt T1 des freien Endes des Rohres 200 wieder rückgängig zu machen, werden gemäß Figur 4 die Matrize 120 und der Dorn 110 in einem ersten Einstellschritt auf ihren minimalen Ringabstand dmin hin verfahren. Zu diesem Zweck wird die Bewegungsrichtung des Dorns 110 aus der Schubrichtung S in die entgegengesetzte Zugrichtung Z umgekehrt und der Dorn 110 auf die Matrize 120 hin verfahren. Zur Einstellung des minimalen Ringspaltes dmin wird, wie gesagt, der Dorn 110 derart relativ zu der Matrize 120 bewegt, dass der zylindrische Abschnitt 110-III des Dorns der Stelle der Ringmatrize mit dem kleinsten Ringdurchmesser gegenübersteht.In order to reverse this increase in wall thickness at least in a first section T1 of the free end of the tube 200, Figure 4 the die 120 and the mandrel 110 are moved to their minimum ring distance d min in a first adjustment step. For this purpose, the direction of movement of the mandrel 110 is reversed from the pushing direction S to the opposite pulling direction Z and the mandrel 110 is moved towards the die 120. To set the minimum ring gap d min , as mentioned, the mandrel 110 is moved relative to the die 120 in such a way that the cylindrical section 110-III of the mandrel is opposite the position of the ring die with the smallest ring diameter.

Diese Einstellung des minimalen Ringspaltes durch Veränderung der Position der Matrize 120 und des Dorns 110 relativ zueinander kann zum einen elektronisch oder zum anderen, wie in den Figuren 16 bis 18 gezeigt, mit Hilfe einer mechanischen Zwangskopplung von Matrize 120 und Dorn 110 innerhalb der Umformeinrichtung 150 erfolgen. Innerhalb der Umformeinrichtung 150 ist ein Verfahrschlitten 153 vorgesehen zum axialen Verfahren der Matrize 120 in Schub- und Zugrichtung. Koaxial zu dem Verfahrschlitten 153 ist eine Dornstange 113 angeordnet zum axialen Verfahren des Dorns 110 in Schub- und Zugrichtung. Bei der elektronischen Ansteuerung werden der Verfahrschlitten 153 mit der Matrize 120 und die Dornstange 113 mit dem Dorn 110 - elektronisch gesteuert - unabhängig voneinander in axialer Richtung verfahren.This adjustment of the minimum annular gap by changing the position of the die 120 and the mandrel 110 relative to each other can be done electronically or, as shown in the Figures 16 to 18 shown, with the aid of a mechanical forced coupling of die 120 and mandrel 110 within the forming device 150. Within the forming device 150, a carriage 153 is provided for axially moving the die 120 in the pushing and pulling direction. A mandrel rod 113 is arranged coaxially to the carriage 153 for axially moving the mandrel 110 in the pushing and pulling direction. With electronic control, the carriage 153 with the die 120 and the mandrel rod 113 with the mandrel 110 are moved independently of one another in the axial direction - electronically controlled.

Im Falle der Zwangskopplung ist die Matrize 120 in bzw. an dem Verfahrschlitten 153 mit einem axialen Spiel x in axialer Richtung verschiebbar gelagert. Ihre Bewegung ist durch zwei Anschläge 150-I und 150-II in axialer Richtung begrenzt. Bei der in Figur 16 gezeigten Ausgangsposition zu Beginn einer Bewegung in Schubrichtung zum Reduzieren des Außendurchmessers schlägt die Matrize 120 an dem rechtsseitigen Anschlag 150-I innerhalb eines Verfahrschlittens 153 an. Aus dieser Ausgangssituation heraus wird der Verfahrschlitten 153 zusammenmit der Matrize 120 und synchron mit dem Dorn 110 in Schubrichtung S auf die Einspanneinrichtung 140 hin bewegt. Figur 17 zeigt den Anschlag des Verfahrschlittens 153 an der Einspanneinrichtung 140. Während der besagten Bewegung in Schubrichtung S schlägt die Matrize 120 stets an dem rechtsseitigen Anschlag 150-I an. Bei der Ausgestaltung der Umformeinrichtung mit der besagten Zwangskopplung ist der Verfahrschlitten 153 der Umformeinrichtung 150 mit dem Dorn 110 bzw. mit der Dornstange 113 mechanisch gekoppelt. Dies bedeutet, eine Bewegung des Schlittens 153 in axialer Richtung macht der Dorn 110 mit der Dornstange 113 gleichermaßen mit.In the case of forced coupling, the die 120 is mounted in or on the carriage 153 with an axial play x in the axial direction. Its movement is limited by two stops 150-I and 150-II in the axial direction. Figure 16 shown starting position at the beginning of a movement in the thrust direction to reduce the outside diameter, the die 120 strikes the right-hand stop 150-I within a travel carriage 153. From this starting situation, the travel carriage 153 is moved together with the die 120 and synchronously with the mandrel 110 in the thrust direction S towards the clamping device 140. Figure 17 shows the stop of the travel carriage 153 on the clamping device 140. During the said movement in the direction of thrust S, the die 120 always hits the right-hand stop 150-I. In the design of the forming device with the said forced coupling, the travel carriage 153 of the forming device 150 is mechanically coupled to the mandrel 110 or to the mandrel rod 113. This means that the mandrel 110 and the mandrel rod 113 follow a movement of the carriage 153 in the axial direction.

Bei Erreichen der in Figur 17 gezeigten Anschlagsposition des Schlittens 153 an der Einspanneinrichtung 140 verbleibt die Matrize 120, wie gesagt, an ihrer rechtsseitigen Anschlagsposition 150-I. Gleichzeitig ist der Dorn 110 aufgrund der Zwangskopplung mit dem Verfahrschlitten 153 - wie auch während der gesamten vorherigen Schubbewegung - gegenüber der Matrize 120 nach links versetzt bzw. voreilend. Um in dieser Situation eine Veränderung der Einstellung des Ringspaltes auf den minimalen Ringspalt dmin zu erreichen, wird die Bewegungsrichtung des Schlittens 153 - und damit gekoppelt auch die Bewegungsrichtung des Dorns 110 - aus der Schubrichtung S in die Zugrichtung Z umgekehrt und der Verfahrschlitten 153 verfährt zusammen mit dem Dorn 110 zunächst ein Stück weit entsprechend des axialen Spiels x in axialer Richtung. Solange bleibt die Position der Matrize 120 unverändert, aber der Dorn 110 wird in Zugrichtung auf die Matrize 120 zu bewegt. Dadurch ändert sich der Ringspalt zwischen Matrize 120 und Dorn 110. Das Spiel x ist erfindungsgemäß so bemessen, dass sich gemäß Figur 18 genau der zylindrische Abschnitt 110-III des Dorns 110 unter den kleinsten lichten Durchmesser der Matrize 120 bewegt. Auf diese Weise wird gemäß Figur 18 der minimale Ringspalt dmin für den nachfolgenden Umformschritt des axialen Abstreckens voreingestellt.When the Figure 17 shown stop position of the slide 153 on the clamping device 140, the die 120 remains, as mentioned, at its right-hand stop position 150-I. At the same time, due to the forced coupling with the travel slide 153 - as during the entire previous pushing movement - the mandrel 110 is offset to the left or leads the die 120. In order to change the setting of the annular gap to the minimum annular gap d min in this situation, the direction of movement of the slide 153 - and thus also the direction of movement of the mandrel 110 - is reversed from the pushing direction S to the pulling direction Z and the travel slide 153 initially moves together with the mandrel 110 a short distance in the axial direction according to the axial play x. Until then, the position of the die 120 remains unchanged, but the mandrel 110 is moved in the pulling direction towards the die 120. This changes the annular gap between die 120 and Dorn 110. The clearance x is dimensioned according to the invention so that Figure 18 exactly the cylindrical section 110-III of the mandrel 110 is moved below the smallest clear diameter of the die 120. In this way, according to Figure 18 the minimum annular gap d min is preset for the subsequent forming step of axial ironing.

Der minimale Ringabstand dmin kann kleiner gleich der ursprünglichen Wanddicke des Rohres 200 sein. Jedenfalls ist er gemäß Figur 4 kleiner als die durch die Reduzierung des Außendurchmessers vergrößerte Wandstärke des Rohres 200. Figur 4 zeigt insofern den Beginn eines nachfolgenden ersten Umformschrittes, bei welchem auch die Bewegungsrichtung der Matrize 120 aus der Schubrichtung S in die Zugrichtung Z umgekehrt wird. Im Rahmen dieses ersten Umformschrittes werden sodann die Matrize 120 und der Dorn 110 unter Beibehaltung des voreingestellten minimalen Ringabstandes dmin in Zugrichtung Z verfahren. Dabei erfolgt das besagte axiale Abstrecken des Rohres, zwecks Reduzierung der vergrößerten Wandstärke auf die Größe des Ringspaltes dmin. Vorzugsweise verfahren die Matrize 120 und der Dorn 110 dabei synchron. Das synchrone Verfahren ist jedoch während des axialen Abstreckens nicht zwingend erforderlich; Voraussetzung wäre lediglich, dass sich bei einem Verfahren der Matrize 120 und des Dorns 110 relativ zueinander der Bereich des kleinsten Innendurchmessers der Matrize 120 im Bereich des zylindrischen Abschnittes des Dorns 110 bewegt, so dass der minimale Ringspalt dmin während des axialen Abstreckens konstant erhalten bleibt.The minimum ring distance d min can be less than or equal to the original wall thickness of the pipe 200. In any case, it is Figure 4 smaller than the wall thickness of the pipe 200 increased by the reduction of the outer diameter. Figure 4 shows the beginning of a subsequent first forming step in which the direction of movement of the die 120 is also reversed from the pushing direction S to the pulling direction Z. As part of this first forming step, the die 120 and the mandrel 110 are then moved in the pulling direction Z while maintaining the preset minimum ring distance d min . The said axial stretching of the pipe takes place in order to reduce the increased wall thickness to the size of the ring gap d min . The die 120 and the mandrel 110 preferably move synchronously. However, the synchronous movement is not absolutely necessary during the axial stretching; The only requirement would be that when the die 120 and the mandrel 110 are moved relative to each other, the area of the smallest inner diameter of the die 120 moves in the area of the cylindrical section of the mandrel 110, so that the minimum annular gap d min remains constant during the axial ironing.

Figur 5 zeigt das Ende des axialen Abstreckens über dem ersten Teilabschnitt T1 des freien Rohrabschnittes. Figure 5 shows the end of the axial stretching over the first section T1 of the free pipe section.

An dieser Stelle erfolgt gemäß Fig. 6 nach dem ersten Umformschritt ein zweiter Einstellschritt, bei welchem der Ringspalt zwischen der Matrize 120 und dem Dorn neu eingestellt wird. Konkret wird der Ringspalt hier negativ eingestellt, d. h. die Einstellung erfolgt so, dass der Ringspalt von den konischen Übergangsabschnitten 110-I des Dorns 110 und 120-I der Matrize 120 aufgespannt wird, welche sich auf das freie Ende 215 des Rohres 200 hin verjüngen bzw. darauf hin zulaufen. In vertikaler Richtung gesehen stehen sich diese Übergangsabschnitte bereichsweise gegenüber. Der so neu eingestellte Ringspalt befindet sich in Zugrichtung Z gesehen an der Rückseite der Matrize 120. Die Veränderung der Stellung von Matrize 120 und Dorn 110 relativ zueinander erfolgt im Bereich eines Rohrabschnittes TE2 im Anschluss an den ersten Teilabschnitt T1.At this point, according to Fig.6 After the first forming step, a second adjustment step is carried out, in which the annular gap between the die 120 and the mandrel is readjusted. In concrete terms, the annular gap is set negatively here, ie the adjustment is made in such a way that the annular gap is 110-I of the mandrel 110 and 120-I of the die 120 are clamped, which taper or run towards the free end 215 of the pipe 200. Viewed in the vertical direction, these transition sections are located opposite each other in some areas. The newly adjusted annular gap is located on the back of the die 120, viewed in the pulling direction Z. The change in the position of the die 120 and mandrel 110 relative to each other takes place in the area of a pipe section T E2 following the first partial section T1.

Die Werkzeugpaarung Matrize 120 und Dorn 110 wird dann mit dieser neuen negativen Ringspalteinstellung in Zugrichtung Z weiter verfahren und es entsteht in dem zweiten Umformabschnitt T2 eine Hinterschneidung 220 an der Außenseite des zuvor dickenreduzierten Rohres.The tool pairing die 120 and mandrel 110 is then moved further in the pulling direction Z with this new negative annular gap setting and an undercut 220 is created in the second forming section T2 on the outside of the previously reduced-thickness tube.

Figur 7 zeigt das Ende des zweiten Umformabschnitts T2. Figure 7 shows the end of the second forming section T2.

Am Ende der gewünschten Länge T2 werden die Matrize 120 und der Dorn 110 hier beispielhaft wieder auf den minimalen Ringabstand dmin eingestellt, d. h. relativ zueinander verfahren. Dies erfolgt über einem weiteren Einstellabschnitt TE3; siehe Fig. 7.At the end of the desired length T2, the die 120 and the mandrel 110 are set to the minimum ring distance d min , i.e. moved relative to each other. This is done via a further adjustment section T E3 ; see Fig.7 .

Gemäß Figur 8 erfolgt sodann ein Verfahren von Matrize 120 und Dorn 110 unter Beibehaltung des minimalen Ringspaltes dmin über einem weiteren Teilabschnitt T3 des freien Rohrabschnittes 210. In diesem dritten Teilabschnitt T3 erfolgt so ein erneutes axiales Abstrecken des Rohres 200 zur Reduzierung der Wandstärke auf den minimalen Ringspalt dmin.According to Figure 8 The die 120 and mandrel 110 are then moved over a further section T3 of the free pipe section 210 while maintaining the minimum annular gap d min . In this third section T3, the pipe 200 is stretched axially again to reduce the wall thickness to the minimum annular gap d min .

Gemäß den Figuren 9 und 10 erfolgt sodann eine erneute Veränderung der Ringspalteinstellung; diesmal auf einen positiven Ringspalt. Bei diesem positiven Ringspalt wird der Ringspalt durch die konischen Übergangsabschnitte 120-II und 110-II der Matrize 120 und des Dorns 120 aufgespannt, welche zum freien Rohrende 215 hin aufgeweitet sind. Bei dieser positiven Ringspalteinstellung stehen sich diese konischen Übergangsabschnitte mit Aufweitung zum Rohrende hin in vertikaler Richtung gesehen in der Regel zumindest abschnittsweise gegenüber. Der positive Ringspalt ist in Zugrichtung gesehen an der Vorderseite der Matrize 120 ausgebildet. Gemäß Figur 9 wird die positive Ringspalteinstellung dadurch realisiert, dass die Matrize 120 am Ende des dritten Teilabschnittes T3 zeitweise ihre Bewegungsrichtung in Schubrichtung umkehrt und auf diese Weise ihre Relativposition zu dem stillstehenden Dorn 110 derart verändert, dass sich der besagte positive Ringspalt einstellt. Diese Art der Veränderung der Einstellung des Ringspaltes ist jedoch nur beispielhaft; selbstverständlich könnte die Relativposition am Ende von T3 auch durch ein weiteres Verfahren des Dorns 110 in Zugrichtung relativ zu der beispielsweise stillstehenden Matrize 120 erfolgen, wenngleich auch unter Kraftaufwand. Natürlich wäre auch eine Bewegung von sowohl der Matrize 120 wie auch des Dorns 110 relativ zueinander denkbar.According to the Figures 9 and 10 The ring gap setting is then changed again; this time to a positive ring gap. With this positive ring gap, the ring gap is spanned by the conical transition sections 120-II and 110-II of the die 120 and the mandrel 120, which lead to the free pipe end 215. With this positive annular gap setting, these conical transition sections with expansion towards the pipe end are generally at least partially opposite each other in the vertical direction. The positive annular gap is formed on the front side of the die 120 in the pulling direction. According to Figure 9 the positive annular gap setting is achieved by the die 120 temporarily reversing its direction of movement in the pushing direction at the end of the third section T3 and in this way changing its relative position to the stationary mandrel 110 in such a way that the said positive annular gap is established. However, this type of change in the setting of the annular gap is only an example; of course the relative position at the end of T3 could also be achieved by further moving the mandrel 110 in the pulling direction relative to the stationary die 120, for example, albeit with the expenditure of force. Of course, a movement of both the die 120 and the mandrel 110 relative to one another would also be conceivable.

Ein Verfahren der Matrize 120 und des Dorns 110 unter Beibehaltung des nunmehr eingestellten positiven Ringspaltes führt zu der Ausbildung einer Hinterschneidung 240 an der Innenseite des Rohres 200, wie in Figur 11 gezeigt. Die Ausbildung der Hinterschneidung 220, 240 erstreckt sich über einen Teilabschnitt T4 beliebig gewünschter Länge. Am Ende des vierten Teilbereiches T4 kann wiederum eine Änderung des Ringspaltes erfolgen, beispielsweise wiederum auf den minimalen Ringabstand dmin. Es ergibt sich dann nach einem weiteren Einstellabschnitt TE5 ein fünfter Teilabschnitt T5 wieder mit axial abgestrecktem Rohr; siehe die Figuren 12 und 13.A movement of the die 120 and the mandrel 110 while maintaining the now set positive annular gap leads to the formation of an undercut 240 on the inside of the tube 200, as shown in Figure 11 shown. The formation of the undercut 220, 240 extends over a section T4 of any desired length. At the end of the fourth section T4, the annular gap can be changed again, for example to the minimum ring distance d min . After a further adjustment section TE5, a fifth section T5 is then obtained, again with an axially stretched tube; see the Figures 12 and 13 .

Figur 14 zeigt das endbearbeitete Rohr 200 nach Durchführung aller zuvor beschriebenen Einzelschritte. Figure 14 shows the finished tube 200 after all previously described individual steps have been carried out.

Wichtig ist zu erwähnen, dass die hier erläuterte Schrittabfolge und das in Figur 14 gezeigte Endergebnis bezüglich der durchgeführten Bearbeitungsschritte lediglich beispielhaft ist. So sind nach der einmalig durchgeführten Reduzierung des Außendurchmessers des Rohres 200 beliebige Abfolgen von axialem Abstrecken, Ausbildungen von Hinterschneidungen 220, 240 an der Außenseite des Rohres 200 und der Ausbildung von Hinterschneidungen an der Innenseite des Rohres 200 möglich. Insbesondere ist die hier vorgeschlagene Abfolge von Abschnitten mit axialem Abstrecken und der Ausbildung von Hinterschneidungen 220, 240 nicht zwingend notwendig. Vielmehr können auch ausgebildete Hinterschneidungen 220, 240 an der Außenseite unmittelbar gefolgt werden von ausgebildeten Hinterschneidungen 220, 240 an der Innenseite des Rohres 200 in Zugrichtung; und umgekehrt. Die Teilabschnitte, über welchen jeweils eine Umformung des Rohres 200 stattfindet, können grundsätzlich beliebig lang sein; sie sind lediglich begrenzt durch die Länge des freien Abschnittes 210 des Rohres 200. So kann auch eine axiale Abstreckung, eine die Ausbildung einer Hinterschneidung 220, 240 an der Außenseite oder die Ausbildung einer Hinterschneidung 220, 240 an der Innenseite des Rohres 200 durchgängig über den ganzen freien Abschnitt 210 erfolgen.It is important to note that the sequence of steps explained here and the Figure 14 The final result shown in relation to the processing steps carried out only is exemplary. Thus, after the one-time reduction of the outside diameter of the pipe 200, any sequence of axial stretching, formation of undercuts 220, 240 on the outside of the pipe 200 and the formation of undercuts on the inside of the pipe 200 are possible. In particular, the sequence of sections with axial stretching and the formation of undercuts 220, 240 proposed here is not absolutely necessary. Rather, formed undercuts 220, 240 on the outside can also be immediately followed by formed undercuts 220, 240 on the inside of the pipe 200 in the pulling direction; and vice versa. The sections over which a deformation of the pipe 200 takes place can in principle be of any length; they are only limited by the length of the free section 210 of the tube 200. Thus, an axial ironing, the formation of an undercut 220, 240 on the outside or the formation of an undercut 220, 240 on the inside of the tube 200 can also take place continuously over the entire free section 210.

Die Wandstärke des Rohres 200 im Bereich einer Hinterschneidung 220, 240 hängt ab von dem tatsächlich eingestellten positiven oder negativen Ringabstand, d. h. dem tatsächlichen Abstand zwischen den konischen Übergangsabschnitten. Aufgrund der elektronischen Einstellung der Matrize 120 und des Dorns 110 relativ zueinander, lässt sich dieser Abstand und damit die Wandstärke im Bereich einer Hinterschneidung 220, 240 sehr genau auf ein beliebiges gewünschtes Maß einstellen.The wall thickness of the tube 200 in the area of an undercut 220, 240 depends on the actually set positive or negative ring distance, i.e. the actual distance between the conical transition sections. Due to the electronic adjustment of the die 120 and the mandrel 110 relative to each other, this distance and thus the wall thickness in the area of an undercut 220, 240 can be set very precisely to any desired dimension.

Figur 15 zeigt beispielhaft das umgeformte Rohr 200 bei Verwendung eines profilierten Dorns 110, konkret bei Verwendung eines Dorns 110 mit zahnradförmigem Querschnitt. Auf diese Weise lässt sich dann z. B. eine Innenverzahnung 260 des Rohres 200 über eine große Länge bei sehr dünnwandigen Rohren 200 realisieren. Auch die Herstellung von Außenverzahnungen ist bei Verwendung von entsprechend profilierten Ringmatrizen möglich. Die erforderlichen Kräfte, insbesondere Zugkräfte zur Realisierung derartiger Verzahnungen sind deutlich geringer als eine Verwendung von Matrizen 120 und Dornen 110 ohne eine entsprechende Verzahnung Figure 15 shows, as an example, the formed tube 200 when using a profiled mandrel 110, specifically when using a mandrel 110 with a gear-shaped cross-section. In this way, for example, an internal toothing 260 of the tube 200 can be realized over a large length in the case of very thin-walled tubes 200. The production of external toothing is also possible when using appropriate profiled ring dies. The forces required, especially tensile forces, to create such toothing are significantly lower than using dies 120 and mandrels 110 without corresponding toothing

BezugszeichenlisteList of reference symbols

110110
Dornmandrel
110-I110-I
sich axial erstreckender konischer Übergangsabschnitt des Dorns, welcher zum freien Rohrende hin verjüngt ist;axially extending conical transition section of the mandrel, which tapers towards the free tube end;
110-II110-II
sich axial erstreckender konischer Übergangsabschnitt des Dorns, welcher zum freien Rohrende hin aufgeweitet ist;axially extending conical transition section of the mandrel, which is widened towards the free tube end;
113113
DornstangeMandrel bar
120120
Matrizedie
120-I120-I
sich axial erstreckender konischer Übergangsabschnitt der Matrize, welcher zum freien Rohrende hin verjüngt istaxially extending conical transition section of the die, which is tapered towards the free pipe end
120-II120-II
sich axial erstreckender konischer Übergangsabschnitt der Matrize, welcher zum freien Rohrende hin aufgeweitet istaxially extending conical transition section of the die, which is widened towards the free pipe end
130130
RingspaltAnnular gap
140140
EinspanneinrichtungClamping device
150150
UmformeinrichtungForming device
150-I150-I
rechtsseitiger Anschlag für Matrizeright-hand stop for die
150-II150-II
linksseitiger Anschlag für Matrizeleft-hand stop for die
152152
SteuereinrichtungControl device
153153
VerfahrschlittenTraversing carriage
200200
RohrPipe
210210
freier Abschnitt des Rohresfree section of the pipe
215215
freies Ende des Rohresfree end of the pipe
220220
Hinterschneidungen an der Außenseite des RohresUndercuts on the outside of the pipe
240240
Hinterschneidungen an der Innenseite des RohresUndercuts on the inside of the pipe
260260
Innenverzahnung des RohresInternal toothing of the pipe
SS
SchubrichtungThrust direction
ZZ
ZugrichtungPull direction
EE
EndpositionEnd position
T1, T2, T3T1, T2, T3
Teilabschnitte des freien Rohrabschnittes mit UmformungenSections of the free pipe section with deformations
TE1, TE2, TE3TE1, TE2, TE3
Übergangsabschnitte des freien Rohrabschnittes zur Änderung der RingspalteinstellungTransition sections of the free pipe section for changing the annular gap setting
DRDR
ursprünglicher Außendurchmesser des Rohresoriginal outside diameter of the pipe
DMDM
minimaler lichter Innendurchmesser der ringförmigen MatrizeMinimum inner diameter of the annular die
dmindmin
minimaler Ringspaltminimal annular gap

Claims (11)

  1. A method for axially shaping a tube (200) with the aid of a mandrel (110), which is guided in the tube (200), and an annular die (120), which is guided on the outside of the tube (200) and the inside diameter of which is smaller than the original outside diameter of the tube (200);
    wherein the annular die (120) has on its inner side at least one conical, axially extending transitional section (120-I, 120-II), wherein the mandrel (110) has on its outer side at least one conical, axially extending transitional section (110-I, 110-II), and wherein the die and the mandrel form in their opposed position an annular gap (130) for passing through and shaping the wall of the tube (200);
    wherein the method comprises the following steps:
    - clamping the tube (200) with an original wall thickness in a clamping device (140) such that at least one free section (210) of the tube (200) remains in order to shape the tube (200);
    a) inserting the mandrel (110) into the tube (200) ;
    b) reducing the outside diameter of the tube (200) by moving the annular die (120) toward the clamping device (140) in a pushing direction (S) over the free section (210) of the tube (200), wherein the mandrel (110) leads the die (120) in the pushing direction; and
    wherein the following steps are carried out when an end position (E) is reached:
    c) reversing the direction of movement of the die (120) and the mandrel (110) from the pushing direction (S) into an opposite pulling direction (Z);
    d') first setting step: moving the die (120) and the mandrel (110) relative to one another to a first predetermined annular gap setting; and
    e') first shaping step: moving the die (120) and the mandrel (110) in the pulling direction (Z) over a first portion (T1) of the free tube section (210) while maintaining the first predetermined annular gap setting in order to shape the tube (200);
    characterized in
    that the step sequence setting step and subsequent shaping step is repeated at least one more time, wherein the die (120) and the mandrel (110) are set to a new annular gap setting, which differs from the respectively preceding annular gap setting, in each additional setting step; and in
    that the die (120) and the mandrel (110) are in at least one of the setting steps moved relative to one another to a negative annular gap setting, in which the conical transitional sections (110-I, 120-I)of the die (120) and the mandrel (110), which are tapered toward the free end (215) of the tube (200), form the annular gap on the rear side of the die viewed in the pulling direction (Z) of the die and the mandrel.
  2. The method according to claim 1,
    characterized in
    that the mandrel (110) also has a cylindrical section (110-III) on its outer side in addition to the at least one conical transitional section (110-I, 110-II); and in
    that the die (120) and the mandrel (110) are in at least one of the setting steps set relative to one another to a minimal vertical annular clearance between the narrowest point of the annular die and the opposite cylindrical section (110-III) of the mandrel (110) .
  3. The method according to claim 2,
    characterized in
    that axial wall ironing of the tube (200) to a wall thickness corresponding to the minimal vertical annular clearance takes place in the pulling direction (Z) in the subsequent shaping step.
  4. The method according to claim 1,
    characterized in
    that the die (120) and the mandrel (110) are in at least one of the setting steps moved relative to one another to a positive annular gap setting, in which the conical transitional sections (110-II, 120-II)of the die (120) and the mandrel (110), which widen toward the free end of the tube (200), form the annular gap on the front side of the die viewed in the pulling direction (Z) of the die and the mandrel.
  5. The method according to one of the preceding claims,
    characterized in
    that the die (120) is stopped and the mandrel (110) is moved relative to the die (120) in at least one of the setting steps.
  6. The method according to one of claims 1 to 4,
    characterized in
    that the relative movement between the die (120) and the mandrel (110) in at least one of the setting steps takes place:
    - by moving the mandrel (110) while the die (120) continuously moves along in the pulling direction (Z) .
  7. The method according to one of the preceding claims,
    characterized in
    that the die (120) and the mandrel (110) are moved synchronously in at least one of the shaping steps.
  8. The method according to one of claims 1 to 7,
    characterized in
    that the minimal annular gap according to claim 2 is set in one of the setting steps; in
    that wall ironing of the tube (200) according to claim 3 takes place in the subsequent shaping step; and in that a negative annular gap setting takes place in the subsequent additional setting step such that an undercut (220) is formed on the outer side of the tube (200) in the subsequent additional shaping step; or in that a positive annular gap setting takes place in the subsequent additional setting step such that an undercut (240) is formed on the inner side of the tube (200) in the subsequent additional shaping step.
  9. The method according to claim 8,
    characterized in
    that a setting step once again takes place after the formation of the undercut (220, 240) in order to set the minimal annular gap; and in
    that wall ironing of the tube (200) takes place in a subsequent additional shaping step.
  10. An apparatus for axially shaping a tube (200), comprising:
    a clamping device (140) for clamping the tube (200) such that a free section (320) remains;
    a shaping device (150) that is aligned axially to the clamping device (140) and has an axially movable annular die (120) and a mandrel (110) that is coaxially guided within the annular die (120), wherein the die (120) and the mandrel respectively have a conical, axially extending transitional section (110-I, 110-II, 120-I, 120-II), and wherein the die (120) and the mandrel (110) form in their opposed position an annular gap for passing through and shaping the wall of the tube (200); and
    a control device (152) that is assigned to the shaping device (150) and serves for moving the die (120) and the mandrel (110) independently of one another along the free section of the tube (200) in order to shape the tube (200) in a pushing direction (S) and a pulling direction (Z);
    characterized in
    that the control device (152) furthermore is designed for carrying out the method according to one of the preceding claims; and in
    that the control (152) is realized in the form of a mechanical positive coupling between the die (120) and the mandrel (110) for setting the die (120) and the mandrel (110) to a minimal annular clearance to one another, wherein the shaping device (150) comprises:
    a carriage (153) for the die (120) and a mandrel bar (113) with the mandrel (110) rigidly fastened on the mandrel bar (113),
    wherein the carriage (153) is mechanically coupled to the mandrel bar (113) in order to move synchronously;
    wherein the die (120) is mounted in the carriage (153) in an axially movable manner with a free play x;
    wherein the free play x represents the travel of the mandrel (110) coupled to the carriage (153) between a left stop (150-I), which limits the travel of the mandrel in the pushing direction (S), and a right stop (150-II), which limits the travel of the mandrel in the pulling direction (Z), relative to the die (120); and
    wherein the cylindrical section (110-III) of the mandrel (110) lies opposite of the narrowest point of the die (120) in the right stop position such that the minimal annular gap (dmin) is formed between the mandrel (110) and the die (120).
  11. The apparatus according to claim 10,
    characterized in
    that the mandrel (110) is profiled with a gearwheel-shaped cross section in the longitudinal direction.
EP20704838.0A 2019-02-15 2020-02-10 Method and apparatus for axially shaping a tube Active EP3924114B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019103926.6A DE102019103926A1 (en) 2019-02-15 2019-02-15 Method and device for the axial forming of a pipe
PCT/EP2020/053307 WO2020165082A1 (en) 2019-02-15 2020-02-10 Method and apparatus for axially shaping a tube

Publications (3)

Publication Number Publication Date
EP3924114A1 EP3924114A1 (en) 2021-12-22
EP3924114C0 EP3924114C0 (en) 2024-05-15
EP3924114B1 true EP3924114B1 (en) 2024-05-15

Family

ID=69570667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20704838.0A Active EP3924114B1 (en) 2019-02-15 2020-02-10 Method and apparatus for axially shaping a tube

Country Status (7)

Country Link
US (1) US12070783B2 (en)
EP (1) EP3924114B1 (en)
CN (1) CN113396023B (en)
CA (1) CA3130018A1 (en)
DE (1) DE102019103926A1 (en)
MX (1) MX2021009582A (en)
WO (1) WO2020165082A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858684A1 (en) * 2020-01-28 2021-08-04 Outokumpu Oyj Expanded tube for a motor vehicle crash box and manufacturing method for it
DE102020132822B4 (en) 2020-12-09 2023-03-23 Benteler Steel/Tube Gmbh Process for manufacturing an internal stop in a tubular component
EP4155001B1 (en) 2021-09-24 2023-09-06 FELSS Systems GmbH Method and devices for reforming a tubular hollow body
CN117718347B (en) * 2023-12-20 2024-06-14 四川万圣通精密机械制造有限公司 Cold drawing machine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190515351A (en) * 1905-07-26 1905-11-16 Hubert Dollman Improvements in the Manufacture of Cold Drawn Steel and other Metal Tubes and in Machinery or Apparatus to be employed in the said Manufacture.
FR713680A (en) * 1931-02-18 1931-10-31 Demag Ag Apparatus for making tubes by the drawing process
US2535339A (en) * 1949-03-07 1950-12-26 Bundy Tubing Co Device for sizing the ends of tubing
US2998125A (en) * 1957-05-22 1961-08-29 Gen Motors Corp Tube sizing machine
DE3016135C2 (en) * 1980-04-24 1983-04-14 Mannesmann AG, 4000 Düsseldorf Pulling device
DE3021481C2 (en) * 1980-06-05 1983-04-21 Mannesmann AG, 4000 Düsseldorf Method and device for the production of pipes
US5119662A (en) * 1984-04-16 1992-06-09 Sanwa Kokan Co., Ltd. Methods for cold drawing seamless metal tubes each having an upset portion on each end
DE3506220A1 (en) * 1985-02-22 1986-08-28 Laeis GmbH, 5500 Trier METHOD FOR PRODUCING PIPES WITH THICK-WALLED ENDS BY COLD FORMING A TUBULAR BLANK
CN1003429B (en) * 1985-06-21 1989-03-01 北京有色金属研究总院 Local expander for long metal pipe
ATE245499T1 (en) * 2000-01-28 2003-08-15 Schmittersysco Gmbh METHOD AND FORMING TOOL FOR PRODUCING CYLINDER TUBE USING EXPRESS PRESSING
US6779375B1 (en) * 2003-03-26 2004-08-24 Randall L. Alexoff Method and apparatus for producing tubes and hollow shafts
DE102004056147B3 (en) 2004-11-20 2006-08-03 Gkn Driveline International Gmbh Reduction of tubes over a stepped mandrel for producing hollow shafts with undercut in one operation
WO2006088138A1 (en) * 2005-02-17 2006-08-24 Sumitomo Metal Industries, Ltd. Metal pipe and method for manufacturing same
CN101121182A (en) 2007-08-29 2008-02-13 高新张铜股份有限公司 Stretching core head for hollow metal pipe
CA2644464C (en) * 2008-10-17 2010-04-20 Arcelormittal Tubular Products Canada Inc. Twist-axle of variable wall thickness
US8506015B2 (en) 2009-04-08 2013-08-13 C&D Zodiac, Inc. Vehicle seat tubing having variable wall thickness
CN102357546A (en) 2011-07-03 2012-02-22 胡顺珍 Floating core rod pipe-drawing device
DE102013226929A1 (en) 2013-12-20 2015-06-25 Volkswagen Aktiengesellschaft Method and device for producing a hollow shaft by radial forming and hollow shaft produced therewith
DE102014017426A1 (en) 2014-11-25 2016-05-25 Wieland-Werke Ag Method for producing an internally structured plain bearing bush
CN108712935B (en) * 2016-03-11 2020-12-15 日本制铁株式会社 Method for manufacturing differential thickness steel pipe

Also Published As

Publication number Publication date
EP3924114C0 (en) 2024-05-15
DE102019103926A1 (en) 2020-08-20
US20220134401A1 (en) 2022-05-05
US12070783B2 (en) 2024-08-27
WO2020165082A1 (en) 2020-08-20
MX2021009582A (en) 2021-09-23
CN113396023B (en) 2024-04-26
CN113396023A (en) 2021-09-14
CA3130018A1 (en) 2020-08-20
EP3924114A1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
EP3924114B1 (en) Method and apparatus for axially shaping a tube
AT390399B (en) METHOD AND DEVICE FOR FORMING A SLEEVE AT THE END OF A PLASTIC PIPE
DE1804673B2 (en) Method for producing a hollow motor vehicle axle
EP2591866A1 (en) Method for manufacturing a rotationally symmetrical hollow part and hollow part produced according to the method
EP1252946A2 (en) Method for producing rotationally symmetric parts
DE102007041149B3 (en) Method and device for cross rolling stepped hollow shafts or cylindrical hollow parts from a tube
DE102005003933A1 (en) A mandrel for use in extrusion, especially for the production of extruded bars and profiles, comprises at least two parts which can be moved in an axial direction to one another
WO2008003305A1 (en) Method for the production of a rotationally symmetrical part, and part produced according to said method
DE102008037549B3 (en) Thin-walled tubular workpiece e.g. reservoir tube, producing method for shock absorber of vehicle, involves removing punching tool from workpiece that is transformed, and pulling out support mandrel from transformed workpiece
EP3737514B1 (en) Process and device for manufacturing hollow, internally cooled valves
EP4046725A1 (en) Method for producing a stepped cross-sectional taper on a one-piece, tubular workpiece made of metal, a one-piece tubular workpiece produced using the method and device for carrying out the method
DE3412486C2 (en) Process for the production of continuous molds for continuous casting machines
EP1446245B1 (en) Method and device for reshaping tubes
EP4112200B1 (en) Method for reducing the cross section of a tubular hollow body by forming the hollow body
DE102013105629A1 (en) Drawing machine for forming an elongated workpiece
EP2205370B1 (en) Process and apparatus for producing a hollow body, and hollow body
EP2780126B1 (en) Device and method for manufacturing profiles with shape that is variable according to the position and is oriented in the length direction
EP3199261A2 (en) Device for producing reinforcements
DE102006031503B4 (en) Method and device for bending hollow sections with minimal bending radius
EP1336439A1 (en) Method and apparatus for producing workpieces through hydroforming
DE10151659A1 (en) Joining process for at least two components involves first plastic deformation step and second punching step forming undercut
DE102010002426B4 (en) Method and device for extruding workpieces
DE102004044755B3 (en) Bending device to form Z-section bends in thin-walled tubes has each inner mandrel divided into two axially offset halves
DE10211087A1 (en) Method and device for producing workpieces using the hydroforming process
DE60315987T2 (en) Method for producing a hollow rack

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020008002

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240614

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240625

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_37137/2024

Effective date: 20240620

U1N Appointed representative for the unitary patent procedure changed [after the registration of the unitary effect]

Representative=s name: KLUEPPEL, WALTER; DE