EP3921583B1 - Transportbehälter - Google Patents
Transportbehälter Download PDFInfo
- Publication number
- EP3921583B1 EP3921583B1 EP20704595.6A EP20704595A EP3921583B1 EP 3921583 B1 EP3921583 B1 EP 3921583B1 EP 20704595 A EP20704595 A EP 20704595A EP 3921583 B1 EP3921583 B1 EP 3921583B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- door leaf
- buffer space
- transport container
- container according
- temperature control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims description 37
- 238000005338 heat storage Methods 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 13
- 239000002826 coolant Substances 0.000 claims description 7
- 239000002274 desiccant Substances 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 3
- 238000005057 refrigeration Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 239000003570 air Substances 0.000 description 28
- 230000002093 peripheral effect Effects 0.000 description 7
- 239000012080 ambient air Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 239000012782 phase change material Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011833 salt mixture Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- YCOZIPAWZNQLMR-UHFFFAOYSA-N heptane - octane Natural products CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229940126601 medicinal product Drugs 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- -1 salt hydrates Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/042—Air treating means within refrigerated spaces
- F25D17/047—Pressure equalising devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/02—Doors; Covers
- F25D23/025—Secondary closures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/08—Parts formed wholly or mainly of plastics materials
- F25D23/082—Strips
- F25D23/087—Sealing strips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2321/00—Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
- F25D2321/14—Collecting condense or defrost water; Removing condense or defrost water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/10—Refrigerator top-coolers
Definitions
- the invention relates to a transport container for transporting temperature-sensitive transport goods, comprising a chamber for accommodating the transport goods and a shell enclosing the chamber and equipped with a door device, the door device for closing a door opening of the shell comprising at least one door leaf, with at least one inner peripheral seal between the at least one door panel and the door opening and at least one outer peripheral seal between the at least one door panel and the door opening are provided.
- Temperature ranges of 2 to 25°C, in particular 2 to 8°C or 15 to 25°C, are specified as storage and transport conditions for various medicinal products.
- transport containers with special insulating properties are used. These containers, as known from DE8631174U and EP0805321 , are equipped with passive or active temperature control elements.
- Active temperature control elements require an external energy supply for their operation. They are based on the conversion of a non-thermal form of energy into a thermal one form of energy. The release or absorption of heat takes place, for example, as part of a thermodynamic cycle, such as by means of a compression refrigeration machine. Another design of active temperature control elements works on the basis of the thermoelectric principle, with so-called Peltier elements being used. Because of the complex construction of the active temperature control elements, containers of this type are expensive and relatively large. Furthermore, they are dependent on an energy supply due to the system. If there is no energy supply, the containers cannot be cooled or heated.
- Passive temperature control elements do not require an external supply of energy during use, but use their heat storage capacity, with heat being released or absorbed depending on the temperature level to or from the interior of the transport container to be temperature-controlled. However, such passive temperature control elements are exhausted as soon as the temperature equalization with the interior of the transport container is complete.
- a special form of passive temperature control elements are latent heat storage devices, which can store thermal energy in phase change materials whose latent heat of fusion, heat of solution or absorption heat is significantly greater than the heat that they can store based on their normal specific heat capacity.
- a disadvantage of latent heat storage devices is the fact that they lose their effectiveness as soon as the entire material has completely gone through the phase change. However, by performing the opposite phase change, the latent heat storage device can be recharged.
- transport containers When transporting transport containers by air freight, transport containers must enable pressure equalization between the interior of the transport container and the pressurized cabin of the aircraft, especially since the cabin pressure in the passenger cabin and in the cargo hold is set lower than the ambient air pressure during take-off and landing.
- transport casks are usually equipped with a valve or a door seal which, when a predetermined differential pressure between the environment and the cask chamber is exceeded, allows an air flow from the cask chamber to the outside (when climbing) or from the outside into the cask chamber (when descending). In the latter case, however, warm ambient air enters the container interior with the air flow, which has a significantly colder temperature than the environment, so that the dew point can be undershot and water from the air can condense. The occurrence of condensate in the container chamber is undesirable because it affects the transported goods.
- the present invention therefore aims to further develop a transport container of the type mentioned at the outset such that the occurrence of condensate in the container chamber can be reliably avoided.
- the invention in a transport container of the type mentioned essentially consists in that the inner and the outer seal each comprise at least one sealing element that can be displaced by the pressure difference and which allows air to pass from the outside when a predetermined pressure difference is exceeded opens inwards or vice versa, that a buffer space delimited by the inner and the outer seal is arranged and that a temperature control element is provided in order to cool the buffer space.
- the invention is thus based on the idea of cooling the air entering from the environment due to pressure equalization before it enters the interior of the container chamber.
- a buffer space is created, which is formed between the outer and the inner circumferential seal and into which the ambient air flows before it enters the container chamber.
- a temperature control element ensures that the buffer space is cooled. Due to the pre-cooling of the ambient air, drying also takes place, with any condensate occurring along the flow path of the air upstream of the container chamber and in particular in the buffer space, but in any case not in the container chamber itself.
- the air flowing in from the environment when the pressure is equalized passes through the outer circumferential seal between the at least one door leaf and the door opening, with this seal comprising at least one sealing element that can be displaced by the pressure difference, so that when a predetermined pressure difference is exceeded, the ambient air can flow inwards into the buffer space .
- the buffer space forms a buffer in which the air is pre-cooled and any condensate is collected.
- the pre-cooled air passes through the at least one inner circumferential seal between the at least one door panel and the door opening, so that the pre-cooled air reaches the container chamber.
- the at least one sealing element is preferably designed in such a way that it allows air to pass through at a pressure difference of 200-300 mbar.
- the buffer space arranged between the inner and the outer seal is annular. The ambient air can therefore flow into the buffer space from all sides.
- the buffer space is delimited by the at least one door leaf and by a surface of the shell that forms the door opening.
- the temperature control element is arranged in the region of the casing facing the buffer space in order to cool the outer surface of the casing that delimits the buffer space. This makes it possible to also use a temperature control element arranged in the shell, which was originally intended for the temperature control of the chamber, for the temperature control of the buffer space.
- the door device is double-walled and includes to close the Door opening of the shell at least one inner door panel and at least one outer door panel, wherein the at least one inner peripheral seal is provided between the at least one inner door panel and the door opening and the at least one outer peripheral seal is provided between the at least one outer door panel and the door opening and wherein the Buffer space between the at least one inner door panel and the at least one outer door panel is arranged.
- the buffer space is therefore arranged in a double-wall structure of the door device and comprises an intermediate space between an outer and an inner door panel of the door device.
- the volume of the buffer space can be maximized without having to significantly increase the overall size of the transport container.
- a larger area is available for the temperature control of the buffer space, namely preferably the inner surface of the outer door panel facing the buffer space and/or the outer surface of the inner outer door panel facing the buffer space.
- the outer and the inner door leaf can preferably be opened and closed separately, i.e. the outer door leaf and then the inner door leaf must be opened first in order to get into the container chamber.
- the design can also be such that the outer and the inner door leaf can be opened and closed together.
- the outer and the inner door leaf can form two layers of a door, between which the buffer space mentioned is provided.
- the at least one inner door leaf includes the temperature control element, which is designed to surround the buffer space facing outer surface of the at least one inner door panel to cool.
- the tempering element can be arranged in the inner door leaf, with the heat transfer into the buffer space being able to take place via the correspondingly large surface of the door leaf.
- the temperature control element used for cooling the buffer space can preferably be the same temperature control element that is also used for the temperature control of the container chamber. In this way, a particularly energy-efficient design is achieved, in which hardly any additional energy is required to cool the buffer space.
- the temperature control element is preferably designed to keep the buffer space or the outer surface of the at least one inner door leaf facing the buffer space at a temperature which is at most 5-10°C above, preferably at most 2-5°C above the temperature of the chamber. This effectively prevents condensation in the container chamber.
- the temperature of the container chamber is maintained at, for example, 2 to 8°C or 15 to 25°, with the buffer space having the same or a slightly higher temperature.
- the temperature control element is preferably designed as a cooling element, with an embodiment as an active or as a passive cooling element being possible.
- the temperature control element particularly preferably comprises a latent heat store, ie an element that stores thermal energy in a phase change material whose latent heat of fusion, heat of solution or heat of absorption is significantly greater than the heat that they can store due to their normal specific heat capacity.
- phase change material are paraffin, for example n-tetradecane or n-hexadecane, esters, for example methyl esters, linear alcohols, ethers, organic anhydrides, salt hydrates, water-salt mixtures and/or salt solutions.
- Preferred phase transition materials include paraffins and salt mixtures, such as RT5 from Rubitherm or paraffins from Sasol.
- phase change material has a phase transition temperature of 3-10°C, in particular approx. 5°C.
- a transport container with a latent heat store having such a phase change material can be used particularly well for the transport of medicines.
- the latent heat accumulator can preferably be designed as a plate-shaped element.
- An advantageous embodiment results when the plate-shaped element has a large number of honeycomb-shaped hollow chambers, in particular, which are filled with the latent heat storage material, with a honeycomb structure element according to FIG WO 2011/032299 A1 is particularly advantageous.
- the temperature control element is designed as an active temperature control element and preferably comprises a compression refrigeration machine or a Peltier element.
- the temperature control element preferably includes both a latent heat store and an evaporative cooling system.
- the combination of two different cooling systems namely an evaporative cooling system with a latent heat storage device, has a number of advantages.
- the performance of the evaporative cooling system can be reduced so that it can be made smaller and lighter.
- the total cooling capacity can be split between the evaporative cooling system and latent heat storage.
- the cooling system can be designed so that when the performance of the evaporative cooling system is no longer sufficient and the temperature of the chamber increases, the additional cooling capacity is drawn from the latent heat storage device, which requires energy for the phase transition from solid to liquid.
- the cooling system can preferably be designed in such a way that the phase transition temperature (solid to liquid) of the latent heat storage device is selected to be lower than the temperature resulting from the cooling capacity of the evaporative cooling system.
- the temperature of the chamber and/or the buffer space can preferably be reduced to a temperature of 12-20°C, with further cooling to a temperature in the range of 2-8°C being carried out with the aid of the latent heat accumulator.
- Evaporative cooling system can be worked with a higher relative humidity, whereby the amount of desiccant can be reduced.
- the amount of latent heat storage can also be reduced, since it only has to provide the energy for cooling from the range of 12-20°C to the range of 2-8°C.
- a partially charged (i.e. not fully crystallized) latent heat storage device can be used to protect the chamber against hypothermia or to keep it within the desired temperature range of e.g. 2-8°C when the outside temperature falls below the level of the desired temperature range drops.
- the latent heat accumulator is designed with a phase transition temperature of approx. 4-6°C.
- the transport container is stored in a cold store (e.g. bonded warehouse) for a long period of time (e.g. several days), e.g. at a temperature of 2-8°C, and the evaporative cooling system is set to a cooling capacity to achieve a temperature higher than that prevailing in the cold store temperature is set, the evaporative cooling system is not active during the storage period, so no coolant is consumed.
- the period of storage can be used to charge the latent heat store, which happens automatically in the cold store at a temperature of, for example, below 6°C if the phase transition temperature of the latent heat store is accordingly 6°C.
- the excess cooling capacity can then be used to recharge the latent heat storage device, i.e. return it to the solid or crystallized state.
- At least two outer seals are provided one behind the other and at a distance from one another in the direction of an air flow from the outside into the buffer space, each comprising a sealing element that can be displaced by the pressure difference, which, when a predetermined Pressure difference opens an air passage from the outside into the buffer space.
- the provision of at least two cascading outer seals also has the effect that a further buffer volume is created between the first and the second outer seal for the air flowing from the environment into the buffer space when the pressure is equalized.
- Three seals effective one behind the other are particularly preferably provided.
- the outer door leaf can also be equipped with a temperature control element.
- the at least one outer door leaf comprises a layer with a latent heat accumulator.
- the at least one outer door leaf can comprise a thermal insulation layer.
- the sealing element of the outer and/or inner seal can be designed to enable pressure equalization in such a way that it is designed as an elastically deflectable sealing lip of the seal.
- the sealing lip can preferably be formed in one piece with the seal.
- the inner and/or outer seal can be attached to the at least one door leaf, preferably to the inner or outer door leaf, or also to the door opening, with a circumferential arrangement of the seal being advantageous in any case in order to ensure that the door device is sealed on all sides . If the seal is attached to at least one door leaf and, as is fundamentally conceivable, two door leaves are provided which can be pivoted in opposite directions in the sense of a double-wing door, each door leaf is provided with a circumferential seal.
- one of the two outer seals is fastened to the outer door leaf and the other of the two outer seals is fastened to the door opening.
- the buffer space has a collection chamber for condensate or is connected to it.
- FIG. 1 a perspective view of a cuboid transport container in a first embodiment with the doors open, 2 a cross section of the transport container along the plane II 1 , 3 a detailed view of the cross section according to FIG 2 and 4 a cross section of the transport container analogous to 2 , but in a modified version.
- a transport container 1 which is cuboid and whose shell 2 surrounds a container chamber 3 on five sides.
- the shell 2 On the sixth side, the shell 2 has a door opening 4 which can be closed with an inner door and an outer door.
- the inner door comprises two inner door leaves 5, which can be swung open in opposite directions in the manner of a double-wing door.
- the outer door comprises an outer door panel 6.
- the shell 2, the inner door panels 5 and the outer door panel 6 comprise heat-insulating material and temperature control elements which ensure that the container chamber 3 is kept at a predetermined temperature level of, for example, 2-8°C or 15- 25°C remains.
- first outer peripheral seal 8 provided between the outer door leaf 6 and the shell 2 , which is attached to an outer peripheral edge portion of the door leaf 6 formed with a smaller thickness.
- a second and a third outer seal 9 and 10 are provided further inwards between the outer door leaf 16 and the shell 2, which are also formed circumferentially and provide an additional seal.
- the second outer seal 9 is attached to the shell 2 and the third outer seal 10 is attached to the door leaf 6 .
- the seals 8, 9 and 10 are each arranged on the front side, so that they are compressed by the closing movement of the door leaf 6.
- An inner seal 11 is arranged between the inner door panel 5 and the shell 2, which is attached to the narrow side of the door panel 5 and the door panel 5 surrounds the circumference.
- the gap 7 leads into an intermediate space 12 which is formed between the two parallel door leaves 5 and 6. If there is a pressure difference between the container chamber 3 and the environment, the seals 8, 9, 10 and 11 are deformed in such a way that the pressure is equalized and a certain amount of air 13 passes through the gap 7 into the intermediate or buffer space 12 and the container chamber 3 can.
- the buffer space 12 serves as a buffer space in which a volume of air is stored and pre-cooled by means of a temperature control element (not shown), the temperature control element preferably being arranged in the inner door panel 5 in order to fill the buffer space 12 via the buffer space-facing outer surface of the door panel 5 to cool.
- the air in the buffer space 12 is thereby cooled to a temperature that is low or the temperature prevailing in the container chamber 3 corresponds to the temperature above, whereby any condensation of water in the buffer space 12 takes place before this air enters the container chamber 3.
- the door device is not double-walled with an intermediate space, it comprises only the door leaf 14 or, in the case of a double-leaf door, two door leaves 14.
- a first outer circumferential seal 15 is provided between the door leaf 14 and the shell 2, which is formed with a smaller thickness peripheral edge portion of the door leaf 14 is attached.
- a second outer seal 16 is provided further inwards between the door leaf 14 and the shell 2, which is also formed circumferentially and provides an additional seal.
- the seals 15 and 16 are each arranged on the front side, so that they are compressed in the closing direction by the closing movement of the door leaf 14 .
- an inner seal 18 is arranged between the door leaf 14 and the shell 2, which is attached to the narrow side of the door leaf 14 and the door leaf 14 surrounds the circumference.
- a second inner seal 19 can optionally be arranged next to the inner seal 18 .
- the gap 7 leads into a first space 17 which is formed between the two outer seals 15 and 16 .
- the buffer space 12 adjoins the first space 17 on the inside towards the chamber 3 and is delimited on the inside by the inner seal 18 and possibly 19 .
- the seals 15, 16, 18 and possibly 19 are deformed in such a way that pressure equalization takes place and a certain amount of air 13 through the gap 7 into the first space 17, an equivalent amount of air from the first space 17 into the buffer space 12 and an equivalent amount of air from the buffer space into the container chamber 3.
- the buffer space 12 serves as a buffer in which a volume of air is kept in stock and is pre-cooled by means of a temperature control element (not shown), the temperature control element preferably being arranged in the casing 2 . If necessary, a partial temperature control or cooling of the air can already take place in the first space 17 , so that only the remaining temperature control or cooling has to take place in the subsequent buffer space 12 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Packages (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
- Die Erfindung betrifft einen Transportbehälter zum Transport von temperaturempfindlichem Transportgut, umfassend eine Kammer zur Aufnahme des Transportguts und eine die Kammer umschließende, mit einer Türvorrichtung ausgestattete Hülle, wobei die Türvorrichtung zum Verschließen einer Türöffnung der Hülle wenigstens ein Türblatt umfasst, wobei wenigstens eine innere umlaufende Dichtung zwischen dem wenigstens einen Türblatt und der Türöffnung und wenigstens eine äußere umlaufende Dichtung zwischen dem wenigstens einen Türblatt und der Türöffnung vorgesehen sind.
- Beim Transport von temperaturempfindlichem Transportgut, wie z.B. Arzneimitteln, über Zeiträume von mehreren Stunden oder Tagen müssen vorgegebene Temperaturbereiche bei der Lagerung und dem Transport eingehalten werden, um die Verwendbarkeit und die Sicherheit des Transportguts zu gewährleisten. Für verschiedene Arzneimittel sind Temperaturbereiche von 2 bis 25°C, insbesondere 2 bis 8°C oder 15 bis 25°C als Lager- und Transportbedingungen festgeschrieben.
- Damit der gewünschte Temperaturbereich beim Transport permanent und nachweislich eingehalten wird, werden Transportcontainer mit besonderem Isolationsvermögen eingesetzt. Diese Container, wie bekannt aus
DE8631174U undEP0805321 , werden mit passiven oder aktiven Temperierelementen ausgestattet. - Aktive Temperierelemente benötigen für Ihren Betrieb eine externe Energiezufuhr. Sie beruhen auf der Umwandlung einer nicht-thermischen Energieform in eine thermische Energieform. Die Abgabe oder Aufnahme von Wärme erfolgt dabei zum Beispiel im Rahmen eines thermodynamischen Kreisprozesses, wie z.B. mittels einer Kompressionskältemaschine. Eine andere Ausbildung von aktiven Temperierelementen arbeitet auf Grundlage des thermoelektrischen Prinzips, wobei sog. Peltier-Elemente eingesetzt werden. Aufgrund des aufwendigen Aufbaus der aktiven Temperierelemente sind Behälter dieser Art teuer und relativ groß. Weiters sind sie systembedingt auf eine Energiezufuhr angewiesen. Falls keine Energiezufuhr vorhanden ist, können die Behälter nicht gekühlt bzw. beheizt werden.
- Passive Temperierelemente erfordern während der Anwendung keine externe Energiezufuhr, sondern nützen ihre Wärmespeicherkapazität, wobei es je nach Temperaturniveau zu einer Abgabe oder einer Aufnahme von Wärme an den bzw. aus dem zu temperierenden Transportbehälterinnenraum kommt. Solche passiven Temperierelemente sind jedoch erschöpft, sobald der Temperaturausgleich mit dem Transportbehälterinnenraum abgeschlossen ist.
- Eine besondere Form von passiven Temperierelementen sind Latentwärmespeicher, die thermische Energie in Phasenwechselmaterialien speichern können, deren latente Schmelzwärme, Lösungswärme oder Absorptionswärme wesentlich größer ist als die Wärme, die sie aufgrund ihrer normalen spezifischen Wärmekapazität speichern können. Nachteilig bei Latentwärmespeichern ist der Umstand, dass sie ihre Wirkung verlieren, sobald das gesamte Material den Phasenwechsel vollständig durchlaufen hat. Durch Ausführen des gegenläufigen Phasenwechsels kann der Latentwärmespeicher jedoch wieder aufgeladen werden.
- Bei der Beförderung von Transportbehältern per Luftfracht müssen Transportbehälter einen Druckausgleich zwischen dem Inneren des Transportbehälters und der Druckkabine des Flugzeugs ermöglichen, zumal der in der Passagierkabine und im Frachtraum herrschende Kabinendruck niedriger eingestellt wird als dies dem Umgebungsluftdruck bei Start und Landung entspricht. Für den Druckausgleich sind Transportbehälter üblicherweise mit einem Ventil oder einer Türdichtung ausgestattet, die bei Überschreiten eines vorgegebenen Differenzdrucks zwischen der Umgebung und der Behälterkammer einen Luftstrom aus der Behälterkammer nach außen (beim Steigflug) oder von außen in die Behälterkammer (beim Sinkflug) erlaubt. Im letzteren Fall gelangt mit dem Luftstrom jedoch warme Umgebungsluft in den Behälterinnenraum, der eine gegenüber der Umgebung deutlich kältere Temperatur aufweist, sodass es zur Unterschreitung des Taupunktes und zur Kondensation von Wasser aus der Luft kommen kann. Das Auftreten von Kondensat in der Behälterkammer ist unerwünscht, weil es das Transportgut beeinträchtigt.
- Die vorliegende Erfindung zielt daher darauf ab, einen Transportbehälter der eingangs genannten Art dahingehend weiterzubilden, dass das Auftreten von Kondensat in der Behälterkammer zuverlässig vermieden werden kann.
- Zur Lösung dieser Aufgabe besteht die Erfindung bei einem Transportbehälter der eingangs genannten Art im Wesentlichen darin, dass die innere und die äußere Dichtung jeweils wenigstens ein durch Druckdifferenz verlagerbares Dichtungselement umfassen, welches bei Überschreiten einer vorgegebenen Druckdifferenz einen Luftdurchtritt von außen nach innen oder umgekehrt öffnet, dass ein von der inneren und der äußeren Dichtung begrenzter Pufferraum angeordnet ist und dass ein Temperierelement vorgesehen ist, um den Pufferraum zu kühlen.
- Die Erfindung beruht somit auf der Idee, die von der Umgebung auf Grund eines Druckausgleichs eintretende Luft abzukühlen, bevor sie in das Innere der Behälterkammer gelangt. Zu diesem Zweck wird ein Pufferraum geschaffen, der zwischen der äußeren und der inneren umlaufenden Dichtung ausgebildet ist und in welchen die Umgebungsluft einströmt, bevor sie in die Behälterkammer gelangt. Ein Temperierelement sorgt hierbei dafür, dass der Pufferraum gekühlt wird. Auf Grund der Vorkühlung der Umgebungsluft erfolgt auch eine Trocknung, wobei ein allfälliges Kondensat entlang der Strömungsstrecke der Luft stromaufwärts der Behälterkammer und insbesondere in dem Pufferraum anfällt, jedenfalls aber nicht in der Behälterkammer selbst.
- Die bei einem Druckausgleich aus der Umgebung einströmende Luft passiert dabei die äußere umlaufende Dichtung zwischen dem wenigstens einen Türblatt und der Türöffnung, wobei diese Dichtung wenigstens ein durch Druckdifferenz verlagerbares Dichtungselement umfasst, sodass bei Überschreiten einer vorgegebenen Druckdifferenz die Umgebungsluft nach innen in den Pufferraum strömen kann. Der Pufferraum bildet hierbei einen Puffer aus, in dem die Luft vorgekühlt und allfälliges Kondensat gesammelt wird. Bei einem Druckausgleich passiert die vorgekühlte Luft die wenigstens eine innere umlaufende Dichtung zwischen dem wenigstens einen Türblatt und der Türöffnung, sodass die vorgekühlte Luft in die Behälterkammer gelangt.
- Dadurch, dass ein Luftdurchlass nur bei Überschreiten einer vorgegebenen Druckdifferenz zugelassen wird, kann die einströmende Luftmenge so gering gehalten werden, dass der für die Vorkühlung der Luft erforderliche Wärmeübergang von der Luft auf die den Pufferraum begrenzenden Bauteile bzw. das Temperierelement sichergestellt ist. In bevorzugter Weise ist das wenigstens eine Dichtungselement derart ausgebildet, dass es bei einer Druckdifferenz von 200-300 mbar einen Luftdurchlass erlaubt.
- Mit Rücksicht auf die umlaufende Ausgestaltung der wenigstens einen inneren und der wenigstens einen äußeren Dichtung ergibt sich gemäß einer bevorzugten Ausführungsform für den zwischen der inneren und der äußeren Dichtung angeordneten Pufferraum, dass dieser ringförmig ausgebildet ist. Die Umgebungsluft kann daher von allen Seiten in den Pufferraum einströmen.
- Insbesondere ist hierbei vorgesehen, dass der Pufferraum von dem wenigstens einen Türblatt und von einer die Türöffnung ausbildenden Fläche der Hülle begrenzt ist.
- Weiters ist bevorzugt vorgesehen, dass das Temperierelement in dem dem Pufferraum zugewandten Bereich der Hülle angeordnet ist, um die den Pufferraum begrenzende Außenfläche der Hülle zu kühlen. Dadurch gelingt es, ein in der Hülle angeordnetes Temperierelement, welches ursprünglich für die Temperierung der Kammer vorgesehen ist, für die Temperierung des Pufferraums mitzuverwenden.
- Gemäß einer bevorzugten Ausbildung ist die Türvorrichtung doppelwandig ausgeführt und umfasst zum Verschließen der Türöffnung der Hülle wenigstens ein inneres Türblatt und wenigstens ein äußeres Türblatt, wobei die wenigstens eine innere umlaufende Dichtung zwischen dem wenigstens einen inneren Türblatt und der Türöffnung und die wenigstens eine äußere umlaufende Dichtung zwischen dem wenigstens einen äußeren Türblatt und der Türöffnung vorgesehen sind und wobei der Pufferraum zwischen dem wenigstens einen inneren Türblatt und dem wenigstens einen äußeren Türblatt angeordnet ist. Der Pufferraum ist bei dieser Ausbildung somit in einem Doppelwandaufbau der Türvorrichtung angeordnet und umfasst einen Zwischenraum zwischen einem äußeren und einem inneren Türblatt der Türvorrichtung. Dadurch kann das Volumen des Pufferraums maximiert werden, ohne den Transportbehälter insgesamt wesentlich vergrößern zu müssen. Insbesondere steht hierbei eine größere Fläche für die Temperierung des Pufferraums zur Verfügung, nämlich bevorzugt die dem Pufferraum zugewandte innere Oberfläche des äußeren Türblatts und/oder die dem Pufferraum zugewandte äußere Oberfläche des inneren äußeren Türblatts.
- Das äußere und das innere Türblatt sind bevorzugt gesondert öffen- und schließbar, d.h. es muss zuerst das äußere Türblatt und dann das innere Türblatt geöffnet werden, um in die Behälterkammer zu gelangen. Alternativ kann die Ausbildung aber auch so getroffen werden, dass das äußere und das innere Türblatt gemeinsam öffen- und schließbar sind. Insbesondere können das äußere und das innere Türblatt zwei Lagen einer Tür ausbilden, zwischen denen der genannte Pufferraum vorgesehen ist.
- Gemäß einer bevorzugten Ausbildung ist vorgesehen, dass das wenigstens eine innere Türblatt das Temperierelement umfasst, welches ausgebildet ist, um die dem Pufferraum zugewandte Außenfläche des wenigstens einen inneren Türblatts zu kühlen. Das Temperierelement kann hierbei im inneren Türblatt angeordnet sein, wobei der Wärmeübergang in den Pufferraum über die entsprechend große Fläche des Türblattes erfolgen kann. Bei dem für die Kühlung des Pufferraums verwendeten Temperierelement kann es sich in bevorzugter Weise um dasselbe Temperierelement handeln, das auch für die Temperierung der Behälterkammer eingesetzt wird. Auf diese Weise gelingt ein besonders energieeffizienter Aufbau, bei dem für die Kühlung des Pufferraums kaum zusätzliche Energie erforderlich ist.
- Bevorzugt ist das Temperierelement ausgebildet, um den Pufferraum bzw. die dem Pufferraum zugewandte Außenfläche des wenigstens einen inneren Türblatts auf einer Temperatur zu halten, die höchstens 5-10°C oberhalb, bevorzugt höchstens 2-5°C oberhalb der Temperatur der Kammer liegt. Dadurch wird eine Kondensation in der Behälterkammer wirksam verhindert. Die Temperatur der Behälterkammer ist hierbei z.B. auf 2 bis 8°C oder 15 bis 25° gehalten, wobei der Pufferraum dieselbe oder eine geringfügig höhere Temperatur aufweist.
- Das Temperierelement ist bevorzugt als Kühlelement ausgebildet, wobei eine Ausführung als aktives oder als passives Kühlelement möglich ist.
- Besonders bevorzugt umfasst das Temperierelement einen Latentwärmespeicher, d.h. ein Element, das thermische Energie in einem Phasenwechselmaterial speichert, dessen latente Schmelzwärme, Lösungswärme oder Absorptionswärme wesentlich größer ist als die Wärme, die sie aufgrund ihrer normalen spezifischen Wärmekapazität speichern können. Als Phasenwechselmaterial kommen Paraffin, bspw. n-Tetradecan oder n-Hexadecan, Ester, bspw. Methylester, lineare Alkohole, Ether, organische Anhydride, Salzhydrate, Wasser-Salz Gemische und/oder Salz-Lösungen in Frage. Bevorzugte Phasenübergangsmaterialien umfassen Paraffine und Salzmischungen, wie z.B. RT5 der Firma Rubitherm oder Paraffine der Firma Sasol.
- Hierbei ist bevorzugt vorgesehen, dass das Phasenwechselmaterial eine Phasenübergangstemperatur von 3-10°C, insbesondere ca. 5°C, aufweist. Ein Transportbehälter mit einem ein solches Phasenwechselmaterial aufweisenden Latentwärmespeicher kann besonders gut für den Transport von Medikamenten verwendet werden.
- Der Latentwärmespeicher kann bevorzugt als plattenförmiges Element ausgebildet sein. Eine vorteilhafte Ausbildung ergibt sich, wenn das plattenförmige Element eine Vielzahl von insbesondere wabenförmigen Hohlkammern aufweist, die mit dem Latentwärmespeichermaterial gefüllt sind, wobei ein Wabenstrukturelement gemäß der
WO 2011/032299 A1 besonders vorteilhaft ist. - Alternativ kann vorgesehen sein, dass das Temperierelement als aktives Temperierelement ausgebildet ist und bevorzugt eine Kompressionskältemaschine oder ein Peltier-Element umfasst.
- Weiters kann vorgesehen sein, dass das Temperierelement ein Verdunstungskühlsystem aufweist, umfassend
- ein Verdunstungselement mit einer Kühlfläche,
- ein Trocknungsmittel zur Aufnahme von im Verdunstungselement verdunstetem Kühlmittel,
- eine Transportstrecke zum Transport des verdunsteten Kühlmittels zum Trocknungsmittel,
- ggf. eine mit dem Verdunstungselement in Fluidverbindung bringbare Vorratskammer für das Kühlmittel.
- Bevorzugt umfasst das Temperierelement sowohl einen Latentwärmespeicher als auch ein Verdunstungskühlsystem. Die Kombination von zwei verschiedenen Kühlsystemen, nämlich eines Verdunstungskühlsystems mit einem Latentwärmespeicher, bringt eine Reihe von Vorteilen mit sich. Die Leistung des Verdunstungskühlsystems kann reduziert werden, sodass dieses kleinbauender und mit weniger Gewicht ausgeführt werden kann. Die Gesamtkühlleistung kann zwischen dem Verdunstungskühlsystem und dem Latentwärmespeicher aufgeteilt werden. Das Kühlsystem kann so ausgelegt werden, dass dann, wenn die Leistung des Verdunstungskühlsystems nicht mehr ausreicht und sich die Temperatur der Kammer erhöht, die zusätzliche Kühlleistung vom Latentwärmespeicher bezogen wird, welcher Energie für den Phasenübergang von fest zu flüssig benötigt.
- Das Kühlsystem kann in bevorzugter Weise so ausgebildet sein, dass die Phasenübergangstemperatur (fest zu flüssig) des Latentwärmespeichers niedriger gewählt ist als die sich aus der Kühlleistung des Verdunstungskühlsystems ergebende Temperatur. Mit dem Verdunstungskühlsystem kann die Temperatur der Kammer und/oder des Pufferraums bevorzugt auf eine Temperatur von 12-20°C reduziert werden, wobei die weitere Abkühlung auf eine Temperatur im Bereich von 2-8°C mit Hilfe des Latentwärmespeichers vorgenommen wird. Durch diese Kombination kann beim Trocknungsmittel des
- Verdunstungskühlsystems mit einer höheren relativen Luftfeuchte gearbeitet werden, wodurch die Trocknungsmittelmenge reduziert werden kann. Auch die Menge des Latentwärmespeichers kann dabei reduziert werden, da dieser nur die Energie für die Kühlung vom Bereich von 12-20°C auf den Bereich von 2-8°C zur Verfügung stellen muss.
- Ein weiterer Vorteil liegt darin, dass bei einem teilgeladenen (d.h. nicht vollständig kristallisierten) Latentwärmespeicher dieser genutzt werden kann, um die Kammer gegen Unterkühlung zu schützen bzw. innerhalb des gewünschten Temperaturbereichs von z.B. 2-8°C zu halten, wenn die Außentemperatur unter das Niveau des gewünschten Temperaturbereichs absinkt.
- Bei einer bevorzugten Ausbildung, bei welcher das Transportgut in der Kammer in einem Temperaturbereich von 2-8°C gehalten werden soll, ist der Latentwärmespeicher mit einer Phasenübergangstemperatur von ca. 4-6°C ausgebildet.
- Wenn der Transportcontainer für längere Zeit (z.B. mehrere Tage) in einem Kühlhaus gelagert wird (z.B. in einem Zolllager), z.B. bei einer Temperatur von 2-8°C, und das Verdunstungskühlsystem auf eine Kühlleistung zur Erreichung einer über der im Kühlhaus herrschenden Temperatur liegenden Temperatur eingestellt ist, ist das Verdunstungskühlsystem während der Lagerzeit nicht aktiv, sodass kein Kühlmittel verbraucht wird. Des weiteren kann der Zeitraum der Lagerung genutzt werden, um den Latentwärmespeicher aufzuladen, was im Kühlhaus bei einer Temperatur von z.B. unter 6°C automatisch passiert, wenn die Phasenübergangstemperatur des Latentwärmespeichers dementsprechend bei 6°C liegt. Dadurch kann bei minimaler Auslegung der beiden Systeme (Latentwärmespeicher und Verdunstungskühlsystem) eine längere Nutzungs- bzw. Transportdauer des Transportcontainers erreicht werden als wenn lediglich ein Kühlsystem alleine verwendet würde.
- Ein weiterer Vorteil ergibt sich dann, wenn das Verdunstungskühlsystem mehr Kühlleistung zur Verfügung stellt als erforderlich. Die überschüssige Kühlleistung kann dann dazu genutzt werden, um den Latentwärmespeicher wieder aufzuladen, d.h. in den festen bzw. kristallisierten Zustand zurückzuführen.
- Um die Abdichtung der Türvorrichtung zu verbessern, kann vorgesehen sein, dass wenigstens zwei äußere, in Richtung eines Luftstromes von außen in den Pufferraum hintereinander und in Abstand voneinander liegende Dichtungen vorgesehen sind, die jeweils ein durch Druckdifferenz verlagerbares Dichtungselement umfassen, welches bei Überschreiten einer vorgegebenen Druckdifferenz einen Luftdurchtritt von außen in den Pufferraum öffnet. Das Vorsehen von wenigstens zwei kaskadierend angeordneten äußeren Dichtungen hat zusätzlich den Effekt, dass zwischen der ersten und der zweiten äußeren Dichtung ein weiteres Puffervolumen für die bei einem Druckausgleich von der Umgebung in den Pufferraum strömende Luft geschaffen wird. Besonders bevorzugt sind drei hintereinander wirksame Dichtungen vorgesehen.
- Auch das äußere - Türblatt kann mit einem Temperierungselement ausgestattet sein. Insbesondere kann vorgesehen sein, dass das wenigstens eine äußere Türblatt eine Schicht mit einem Latentwärmespeicher umfasst.
- Alternativ oder zusätzlich kann das wenigstens eine äußere Türblatt eine Wärmeisolationsschicht umfassen.
- In konstruktiver Hinsicht kann das Dichtungselement der äußeren und/oder inneren Dichtung zur Ermöglichung des Druckausgleichs so ausgeführt sein, dass es als elastisch auslenkbare Dichtungslippe der Dichtung ausgebildet ist. Dabei kann die Dichtungslippe bevorzugt einstückig mit der Dichtung ausgebildet sein.
- Die innere und/oder äußere Dichtung kann an dem wenigstens einen Türblatt, bevorzugt am inneren bzw. äußeren Türblatt, befestigt sein oder auch an der Türöffnung, wobei in jedem Fall eine umlaufende Anordnung der Dichtung vorteilhaft ist, um eine allseitige Abdichtung der Türvorrichtung zu gewährleisten. Wenn die Dichtung an dem wenigstens einen Türblatt befestigt ist und, wie dies grundsätzlich denkbar ist, zwei Türblätter vorgesehen sind, die im Sinne einer Doppelflügeltür gegensinnig schwenkbar sind, ist jedes Türblatt mit einer umlaufenden Dichtung versehen.
- Bei einer Ausführung mit zwei hintereinander angeordneten äußeren Dichtungen ist bevorzugt vorgesehen, dass die eine der beiden äußeren Dichtungen an dem äußeren Türblatt und die andere der beiden äußeren Dichtung an der Türöffnung befestigt ist.
- Um gegebenenfalls im Pufferraum anfallendes Kondensat aufzusammeln, ist bevorzugt vorgesehen, dass der Pufferraum eine Sammelkammer für Kondensat aufweist oder mit dieser verbunden ist.
- Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. In dieser zeigen
Fig. 1 eine perspektivische Ansicht eines quaderförmiges Transportbehälters in einer ersten Ausführung mit geöffneten Türen,Fig. 2 einen Querschnitt des Transportbehälters entlang der Ebene II derFig. 1 ,Fig. 3 eine Detailansicht des Querschnitts gemäßFig. 2 undFig. 4 einen Querschnitt des Transportbehälters analog zuFig. 2 , aber in einer abgewandelten Ausführung. - In
Fig. 1 ist ein Transportbehälter 1 dargestellt, der quaderförmig ausgebildet ist und dessen Hülle 2 eine Behälterkammer 3 an fünf Seiten umgibt. An der sechsten Seite weist die Hülle 2 eine Türöffnung 4 auf, welche mit einer inneren Tür und einer äußeren Tür verschließbar ist. Die innere Tür umfasst zwei innere Türblätter 5, die nach Art einer Doppelflügeltüre gegensinnig aufgeschwenkt werden können. Die äußere Tür umfasst ein äußeres Türblatt 6. Die Hülle 2, die inneren Türblätter 5 und das äußere Türblatt 6 umfassen wärmedämmendes Material sowie Temperierelemente, welche dafür sorgen, dass die Behälterkammer 3 auf einem vorgegebenen Temperaturniveau von z.B. 2-8°C oder 15-25°C bleibt. - In der Querschnittsansicht gemäß
Fig. 2 sind die Türblätter 5 und 6 geschlossen dargestellt und schließen die Türöffnung vollständig ab. - In der Detailansicht gemäß
Fig. 3 ist die Abdichtung des zwischen der Türvorrichtung und der Hülle 2 vorhandenen Spalts 7 gezeigt. Zwischen dem äußeren Türblatt 6 und der Hülle 2 ist eine erste äußere umlaufende Dichtung 8 vorgesehen, die an einem äußeren, mit geringerer Dicke ausgebildeten umlaufenden Randabschnitt des Türblattes 6 befestigt ist. Weiter innen sind zwischen dem äußeren Türblatt 16 und der Hülle 2 eine zweite und eine dritte äußere Dichtung 9 und 10 vorgesehen, die ebenfalls umlaufend ausgebildet sind und für eine zusätzliche Abdichtung sorgen. Die zweite äußere Dichtung 9 ist dabei an der Hülle 2 und die dritte äußere Dichtung 10 ist an dem Türblatt 6 befestigt. Die Dichtungen 8, 9 und 10 sind jeweils stirnseitig angeordnet, sodass sie durch die Schließbewegung des Türblatts 6 komprimiert werden. - Zwischen dem inneren Türblatt 5 und der Hülle 2 ist eine innere Dichtung 11 angeordnet, die an der Schmalseite des Türblatts 5 befestigt ist und das Türblatt 5 umfangsmäßig umgibt.
- Der Spalt 7 führt in einen Zwischenraum 12, der zwischen den beiden parallelen Türblättern 5 und 6 ausgebildet ist. Bei Vorliegen eines Druckunterschieds zwischen der Behälterkammer 3 und der Umgebung werden die Dichtungen 8, 9, 10 und 11 so verformt, dass ein Druckausgleich stattfinden und eine gewisse Luftmenge 13 durch den Spalt 7 in den Zwischen- bzw. Pufferraum 12 und die Behälterkammer 3 gelangen kann. Der Pufferraum 12 dient hierbei als Pufferraum, in dem ein Luftvolumen vorrätig gehalten und mittels eines Temperierelements (nicht gezeigt) vorgekühlt wird, wobei das Temperierelement vorzugsweise in dem inneren Türblatt 5 angeordnet ist, um den Pufferraum 12 über die dem Pufferraum zugewandte Außenfläche des Türblatts 5 zu kühlen. Die im Pufferraum 12 befindliche Luft wird dadurch auf eine Temperatur abgekühlt, die der im Behälterkammer 3 herrschenden Temperatur oder einer gering darüber liegenden Temperatur entspricht, wodurch eine allfällige Kondensation von Wasser im Pufferraum 12 stattfindet, bevor diese Luft in die Behälterkammer 3 gelangt.
- Bei der alternativen Ausführung gemäß
Fig. 4 ist die Türvorrichtung nicht doppelwandig mit einem dazwischen liegenden Zwischenraum ausgeführt, sondern umfasst lediglich das Türblatt 14 bzw. im Fall einer Doppelflügeltür zwei Türblätter 14. Zwischen dem Türblatt 14 und der Hülle 2 ist eine erste äußere umlaufende Dichtung 15 vorgesehen, die an einem äußeren, mit geringerer Dicke ausgebildeten umlaufenden Randabschnitt des Türblattes 14 befestigt ist. Weiter innen ist zwischen dem Türblatt 14 und der Hülle 2 eine zweite äußere Dichtung 16 vorgesehen, die ebenfalls umlaufend ausgebildet ist und für eine zusätzliche Abdichtung sorgt. Die Dichtungen 15 und 16 sind jeweils stirnseitig angeordnet, sodass sie durch die Schließbewegung des Türblatts 14 in Schließrichtung komprimiert werden. - Zwischen dem Türblatt 14 und der Hülle 2 ist weiters eine innere Dichtung 18 angeordnet, die an der Schmalseite des Türblatts 14 befestigt ist und das Türblatt 14 umfangsmäßig umgibt. Neben der inneren Dichtung 18 kann optional eine zweite innere Dichtung 19 angeordnet sein.
- Der Spalt 7 führt in einen ersten Raum 17, der zwischen den beiden äußeren Dichtung 15 und 16 ausgebildet ist. An den ersten Raum 17 schließt nach innen zur Kammer 3 hin der Pufferraum 12 an, der innenseitig durch die innere Dichtung 18 sowie ggf. 19 begrenzt ist. Bei Vorliegen eines Druckunterschieds zwischen der Behälterkammer 3 und der Umgebung werden die Dichtungen 15, 16, 18 und ggf. 19 so verformt, dass ein Druckausgleich stattfinden und eine gewisse Luftmenge 13 durch den Spalt 7 in den ersten Raum 17, eine äquivalente Luftmenge vom ersten Raum 17 in den Pufferraum 12 und eine äquivalente Luftmenge vom Pufferraum in die Behälterkammer 3 gelangen kann. Der Pufferraum 12 dient hierbei als Puffer, in dem ein Luftvolumen vorrätig gehalten und mittels eines Temperierelements (nicht gezeigt) vorgekühlt wird, wobei das Temperierelement vorzugsweise in der Hülle 2 angeordnet ist. Ggf. kann eine teilweise Temperierung bzw. Kühlung der Luft auch schon in dem ersten Raum 17 erfolgen, sodass im nachfolgenden Pufferraum 12 nur noch die restliche Temperierung bzw. Abkühlung erfolgen muss.
Claims (16)
- Transportbehälter (1) zum Transport von temperaturempfindlichem Transportgut, umfassend eine Kammer (3) zur Aufnahme des Transportguts und eine die Kammer (3) umschließende, mit einer Türvorrichtung ausgestattete Hülle (2), wobei die Türvorrichtung zum Verschließen einer Türöffnung (4) der Hülle (2) wenigstens ein Türblatt (5,6) umfasst, wobei wenigstens eine innere umlaufende Dichtung (11; 18) zwischen dem wenigstens einen Türblatt (5,6) und der Türöffnung (4) und wenigstens eine äußere umlaufende Dichtung (8,9,10; 15,16) zwischen dem wenigstens einen Türblatt (5,6) und der Türöffnung (4) vorgesehen sind, dadurch gekennzeichnet, dass die innere und die äußere Dichtung (10,11; 16,18) jeweils wenigstens ein durch Druckdifferenz verlagerbares Dichtungselement umfassen, welches bei Überschreiten einer vorgegebenen Druckdifferenz einen Luftdurchtritt von außen nach innen oder umgekehrt öffnet, dass ein von der inneren und der äußeren Dichtung (10,11; 16,18) begrenzter Pufferraum (12) angeordnet ist und dass ein Temperierelement vorgesehen ist, um den Pufferraum (12) zu kühlen.
- Transportbehälter nach Anspruch 1, dadurch gekennzeichnet, dass der Pufferraum (12) zwischen der inneren und der äußeren Dichtung (10,11; 16,18) angeordnet und ringförmig ausgebildet ist.
- Transportbehälter nach Anspruch 2, dadurch gekennzeichnet, dass der Pufferraum (12) von dem wenigstens einen Türblatt (5,6) und von einer die Türöffnung (4) ausbildenden Fläche der Hülle (2) begrenzt ist.
- Transportbehälter nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das Temperierelement in dem dem Pufferraum (12) zugewandten Bereich der Hülle angeordnet ist, um die den Pufferraum (12) begrenzende Außenfläche der Hülle (2) zu kühlen.
- Transportbehälter nach Anspruch 1, dadurch gekennzeichnet, dass die Türvorrichtung doppelwandig ausgeführt ist und zum Verschließen der Türöffnung (4) der Hülle (2) wenigstens ein inneres Türblatt (5) und wenigstens ein äußeres Türblatt (6) umfasst, wobei die wenigstens eine innere umlaufende Dichtung (11) zwischen dem wenigstens einen inneren Türblatt (5) und der Türöffnung (4) und die wenigstens eine äußere umlaufende Dichtung (8,9,10) zwischen dem wenigstens einen äußeren Türblatt (6) und der Türöffnung (4) vorgesehen sind, und dass der Pufferraum (12) zwischen dem wenigstens einen inneren Türblatt (5) und dem wenigstens einen äußeren Türblatt (6) angeordnet ist.
- Transportbehälter nach Anspruch 5, dadurch gekennzeichnet, dass das wenigstens eine innere Türblatt (5) das Temperierelement umfasst, welches ausgebildet ist, um die dem Pufferraum (12) zugewandte Außenfläche des wenigstens einen inneren Türblatts (5) zu kühlen.
- Transportbehälter nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Temperierelement ausgebildet ist, um den Pufferraum (12) bzw. die dem Pufferraum (12) zugewandte Außenfläche des wenigstens einen inneren Türblatts (5) auf einer Temperatur zu halten, die höchstens 5-10°C oberhalb, bevorzugt höchstens 2-5°C oberhalb der Temperatur der Kammer (3) liegt.
- Transportbehälter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Temperierelement als Kühlelement ausgebildet ist.
- Transportbehälter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Temperierelement einen Latentwärmespeicher umfasst.
- Transportbehälter nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Temperierelement als aktives Temperierelement ausgebildet ist und bevorzugt eine Kompressionskältemaschine oder ein Peltier-Element umfasst.
- Transportbehälter nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Temperierelement ein Verdunstungskühlsystem aufweist, umfassend- ein Verdunstungselement mit einer Kühlfläche,- ein Trocknungsmittel zur Aufnahme von im Verdunstungselement verdunstetem Kühlmittel,- eine Transportstrecke zum Transport des verdunsteten Kühlmittels zum Trocknungsmittel,- ggf. eine mit dem Verdunstungselement in Fluidverbindung bringbare Vorratskammer für das Kühlmittel.
- Transportbehälter nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass wenigstens zwei äußere, in Richtung eines Luftstromes von außen in den Pufferraum (12) hintereinander und in Abstand voneinander liegende Dichtungen (8,9,10) vorgesehen sind, die jeweils ein durch Druckdifferenz verlagerbares Dichtungselement umfassen, welches bei Überschreiten einer vorgegebenen Druckdifferenz einen Luftdurchtritt von außen in den Pufferraum (12) öffnet.
- Transportbehälter nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das wenigstens eine Türblatt (5,6), insbesondere das äußere Türblatt (6), eine Schicht mit einem Latentwärmespeicher umfasst.
- Transportbehälter nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das wenigstens eine Türblatt (5,6), insbesondere das äußere Türblatt (6), eine Wärmeisolationsschicht umfasst.
- Transportbehälter nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Dichtungselement als elastisch auslenkbare Dichtungslippe der Dichtung (8,9,10,11) ausgebildet ist.
- Transportbehälter nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Pufferraum (12) eine Sammelkammer für Kondensat aufweist oder mit dieser verbunden ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA49/2019A AT522200A1 (de) | 2019-02-07 | 2019-02-07 | Transportbehälter |
PCT/IB2020/050742 WO2020161572A1 (de) | 2019-02-07 | 2020-01-30 | Transportbehälter |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3921583A1 EP3921583A1 (de) | 2021-12-15 |
EP3921583B1 true EP3921583B1 (de) | 2022-11-30 |
Family
ID=69528889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20704595.6A Active EP3921583B1 (de) | 2019-02-07 | 2020-01-30 | Transportbehälter |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220196313A1 (de) |
EP (1) | EP3921583B1 (de) |
CN (1) | CN113366275B (de) |
AT (1) | AT522200A1 (de) |
BR (1) | BR112021014489A2 (de) |
CA (1) | CA3129276A1 (de) |
WO (1) | WO2020161572A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT524696A1 (de) * | 2021-01-15 | 2022-08-15 | Rep Ip Ag | Transportbehälter |
CN113793454B (zh) * | 2021-09-13 | 2022-08-30 | 重庆旷维科技有限公司 | 一种存储空间可调节的智能快递柜 |
US11859895B2 (en) * | 2022-02-10 | 2024-01-02 | Whirlpool Corporation | Refrigeration unit |
EP4303506A1 (de) * | 2022-07-07 | 2024-01-10 | Rep Ip Ag | Behälter zum transportieren von temperaturempfindlichen gütern |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2480257A (en) * | 1945-04-02 | 1949-08-30 | Int Harvester Co | Refrigerator construction |
US3240029A (en) * | 1964-05-04 | 1966-03-15 | Gen Motors Corp | Refrigerator cabinets and insulation thereof |
GB1395719A (en) * | 1971-09-18 | 1975-05-29 | Hemmings Co Ltd C | Cold-rooms and cold-stores |
JPS5724358U (de) * | 1980-07-17 | 1982-02-08 | ||
IT207399Z2 (it) * | 1985-11-22 | 1988-01-18 | Ilpea Spa | Cornice in materiale rigido atta a delimitare i bordi del mobile di un congelatore orizzontale. |
US5363670A (en) * | 1993-04-19 | 1994-11-15 | Anthony Bartilucci | Self-contained cooler/freezer apparatus |
ATE210268T1 (de) * | 1996-05-03 | 2001-12-15 | Liebherr Werk Lienz Ges Mbh | Kühl- und/oder gefriergerät |
US6584797B1 (en) * | 2001-06-06 | 2003-07-01 | Nanopore, Inc. | Temperature-controlled shipping container and method for using same |
US7451603B2 (en) * | 2004-03-22 | 2008-11-18 | General Mills, Inc. | Portable cooled merchandizing unit |
DE102005021590A1 (de) * | 2005-05-10 | 2006-11-16 | BSH Bosch und Siemens Hausgeräte GmbH | Kältegerät mit Rahmenheizung |
CN101280991B (zh) * | 2007-04-05 | 2010-05-26 | 深圳清华大学研究院 | 一种自动调节冷藏集装箱箱体内外气压平衡的装置及其方法 |
CH701771A2 (de) | 2009-09-15 | 2011-03-15 | Nico Ros | Geschlossenzelliges Paneel mit Wabenstruktur aus zwei Schichten einer strukturierten Folie. |
CN201828099U (zh) * | 2010-08-10 | 2011-05-11 | 广州市穗凌电器有限公司 | 一种冰箱、冰柜门封结构 |
WO2012062314A1 (en) * | 2010-11-08 | 2012-05-18 | A/S Vestfrost | Refrigerator with a temperature buffer |
CN203586665U (zh) * | 2013-12-14 | 2014-05-07 | 广东奥马电器股份有限公司 | 平衡冰箱内外压强的装置及冰箱 |
CN205002492U (zh) * | 2015-08-28 | 2016-01-27 | 青岛海尔智能技术研发有限公司 | 一种具有压力补偿功能的制冷设备 |
US20170350635A1 (en) * | 2016-06-06 | 2017-12-07 | Google Inc. | Container with passive temperature controls |
US10415870B2 (en) * | 2016-09-16 | 2019-09-17 | Bennett Karl Langlotz | Pressure relief facility for refrigeration appliances |
CN108426413B (zh) * | 2018-04-19 | 2021-04-23 | 海尔智家股份有限公司 | 对开式门体组件及冰箱 |
-
2019
- 2019-02-07 AT ATA49/2019A patent/AT522200A1/de unknown
-
2020
- 2020-01-30 BR BR112021014489-7A patent/BR112021014489A2/pt unknown
- 2020-01-30 WO PCT/IB2020/050742 patent/WO2020161572A1/de unknown
- 2020-01-30 CN CN202080013172.6A patent/CN113366275B/zh active Active
- 2020-01-30 EP EP20704595.6A patent/EP3921583B1/de active Active
- 2020-01-30 US US17/428,536 patent/US20220196313A1/en active Pending
- 2020-01-30 CA CA3129276A patent/CA3129276A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3921583A1 (de) | 2021-12-15 |
CN113366275A (zh) | 2021-09-07 |
BR112021014489A2 (pt) | 2021-09-28 |
CA3129276A1 (en) | 2020-08-13 |
WO2020161572A1 (de) | 2020-08-13 |
US20220196313A1 (en) | 2022-06-23 |
AT522200A1 (de) | 2020-09-15 |
CN113366275B (zh) | 2023-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3921583B1 (de) | Transportbehälter | |
EP3356751A1 (de) | Thermoschutzspeicherzelle einer kühltransportbox | |
EP3671078B1 (de) | Wärmegedämmter behälter | |
EP2795210B1 (de) | Kühlelement und kühlvorrichtung | |
DE102013002555A1 (de) | Verfahren und Vorrichtung zur Vorkonditionierung von Latentwärmespeicherelementen | |
EP3128266B1 (de) | Transportbehälter zum transport von temperaturempfindlichem transportgut | |
WO2014076586A1 (de) | Modularer isolierbehälter und verfahren zum betreiben eines solchen | |
DE19948480A1 (de) | Wärmetauscher, wie Verdampfer, Verflüssiger oder dergleichen | |
AT517516B1 (de) | Transportbehälter zum Transport von temperaturempfindlichem Transportgut | |
WO2018015350A1 (de) | Kühlbehälter und verfahren zum transport von kryoproben | |
AT522314A4 (de) | Transportbehälter | |
EP3497383B1 (de) | Transportbehälter | |
EP3497384A1 (de) | Transportbehälter | |
WO2004001305A1 (de) | Kühl- und gefriervorrichtung | |
DE102010007686A1 (de) | Vorrichtung zur Einstellung tiefkalter Temperaturen | |
DE102018206141A1 (de) | Behältnis zur Ausbildung eines Wärmezwischenspeichers | |
DE202010011159U1 (de) | Kühlbox | |
EP3803235B1 (de) | Transportbehälter zum transport von temperaturempfindlichem transportgut und verfahren zur herstellung eines solchen transportbehälters | |
WO2018015337A1 (de) | Kühlfahrzeug und verfahren zum transport von kryoproben | |
DE1601899A1 (de) | Luftfracht-Kuehlbehaelter | |
EP2631577B1 (de) | Kühl- und/oder Gefriergerät | |
EP1558882B1 (de) | Kühlbehälter mit eutektischer platte | |
EP2946150A1 (de) | Behälter und verfahren zum kühlen und/oder kühlhalten eines kühlguts | |
DE202007005036U1 (de) | Transportwagen für Fertiggerichte | |
DE102017114402A1 (de) | Thermo-Verpackungssystem für temperatursensible Güter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210714 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220920 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1534957 Country of ref document: AT Kind code of ref document: T Effective date: 20221215 Ref country code: DE Ref legal event code: R096 Ref document number: 502020002109 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230331 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230228 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230330 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230301 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020002109 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240129 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240129 Year of fee payment: 5 Ref country code: GB Payment date: 20240129 Year of fee payment: 5 Ref country code: CH Payment date: 20240202 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240125 Year of fee payment: 5 Ref country code: BE Payment date: 20240129 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |