EP3916118A1 - Procédé de durcissement d'une tôle ou d'une bande d'un alliage d'aluminium de la série 6xxx - Google Patents

Procédé de durcissement d'une tôle ou d'une bande d'un alliage d'aluminium de la série 6xxx Download PDF

Info

Publication number
EP3916118A1
EP3916118A1 EP20176943.7A EP20176943A EP3916118A1 EP 3916118 A1 EP3916118 A1 EP 3916118A1 EP 20176943 A EP20176943 A EP 20176943A EP 3916118 A1 EP3916118 A1 EP 3916118A1
Authority
EP
European Patent Office
Prior art keywords
holding
strip
range
sheet
holding time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20176943.7A
Other languages
German (de)
English (en)
Inventor
Ramona Tosone
Florian Schmid
Stefan Pogatscher
Peter J. Uggowitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amag Rolling GmbH
Original Assignee
Amag Rolling GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amag Rolling GmbH filed Critical Amag Rolling GmbH
Priority to EP20176943.7A priority Critical patent/EP3916118A1/fr
Priority to PCT/EP2021/064291 priority patent/WO2021239919A1/fr
Priority to EP21733720.3A priority patent/EP4022103A1/fr
Publication of EP3916118A1 publication Critical patent/EP3916118A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the invention relates to a method for hardening a sheet or strip made of an aluminum alloy of the 6xxx series and a sheet or strip produced therewith.
  • the process time can be reduced with higher holding temperatures, for example at 180 ° C to 8 to 10 hours.
  • the disadvantage is that essentially ⁇ ′′ precipitates are formed at such higher holding temperatures, which means that the combination of elongation at break and tensile strength values that are known from heat treatments with reduced holding temperatures cannot be achieved.
  • the invention has therefore set itself the task of improving a method of the type described in such a way that the process time for curing with a heat treatment at comparatively low holding temperatures can be reduced with almost the same elongation at break and tensile strength values.
  • the invention solves the problem posed by the features of claim 1.
  • the heat treatment includes a second holding at a second holding temperature in the range from 150 to 250 ° C. during a second holding time as well includes subsequent, second accelerated cooling
  • a second holding at a second holding temperature in the range from 150 to 250 ° C. during a second holding time as well includes subsequent, second accelerated cooling
  • the first holding temperature is preferably in the range from 80 to 120 ° C. in order to nevertheless be able to ensure a comparatively high Mg-Si cluster formation in the 6xxx aluminum alloy in the case of shorter first holding time segments.
  • the above can be further improved by a first holding temperature in the range from 90 to 110 ° C.
  • the first holding time segments are less than or equal to 12 hours in order to use essentially all the trapped vacancies for the formation of Mg — Si clusters.
  • the first holding time segments are preferably in the range from 2 to 8 hours in order to allow a sufficient number of trapped vacancies to form Use Mg-Si clusters.
  • the above can be further improved by first holding periods in the range of 3 to 6 hours.
  • the second holding temperature is in the range from 170 to 230 ° C
  • a temperature range can be specified in which, taking into account a comparatively short second holding time, with a reduced tendency to ⁇ "precipitations, a large number of voids can advantageously be generated
  • Holding temperature in the range from 190 to 210 ° C can be further improved.
  • the second holding time of the second holding is preferably less than or equal to 15 minutes in order to create sufficient voids with a low tendency to precipitate in the 6xxx alloy.
  • the first holding temperatures are preferably the same over the entire first holding. Preferably, several or all of the first holding time segments are the same.
  • the repeated second holding at a second holding temperature is preferably the same during a second holding time.
  • the first hold time segment of the first hold time segments preferably lasts longer than the subsequent first hold time segments.
  • the first and / or second accelerated cooling takes place at a cooling rate of at least 20 ° C / s, in particular at least 50 ° C / s, preferably at least 80 ° C / s, so that the voids formed during the second hold are reliable to be able to frighten you.
  • the heating from the first hold to the second hold preferably takes place at a heating rate of at least 10 ° C./s, in particular at least 50 ° C./s.
  • the 6xxx aluminum alloy has from 0.2 to 1.5% by weight magnesium (Mg) and from 0.2 to 1.5% by weight silicon (Si) - which results in a large precipitation pressure when first held the formation of Mg-Si clusters and, on the second hold, can lead to an increased density of vacancies.
  • Mg magnesium
  • Si silicon
  • the 6xxx aluminum alloy can optionally have one or more elements: up to 1.1% by weight copper (Cu) and / or up to 0.7% by weight iron (Fe) and / or up to 1.0% by weight Manganese (Mn) and / or up to 0.35% by weight chromium (Cr) and / or up to 0.25% by weight zinc (Zn) and / or up to 0.15% by weight titanium (Ti) and / or up to 0.1% by weight of vanadium (V) and / or up to 0.2% by weight of zirconium (Zr) and / or up to 0.2% by weight of tin (Sn).
  • the remainder of the aluminum alloy has aluminum and impurities that are unavoidable due to the manufacturing process, each with a maximum of 0.05% by weight and a total of 0.15% by weight at most.
  • the aluminum alloy can contain from 0.2 to 1.2% by weight of magnesium (Mg) in order to further increase the formation of Mg — Si clusters.
  • the aluminum alloy is of the type AA6005, AA6016, AA6061, AA6063 or AA6082.
  • the sheet metal or strip preferably has a thickness of less than 5 mm, in particular 3 mm, in order to generate a sufficient number of voids and to prevent undesired excretions with the brief interruption of the first holding.
  • the invention has set itself the task of creating a sheet or strip subjected to hardening with comparatively high elongation at break and tensile strength values.
  • the invention solves the problem posed by the features of claim 13.
  • the aluminum alloy preferably has a cluster density of at least 2 ⁇ 10 24 clusters / m 3 with a Guinier radius> 1 nm (nanometer) and with a median Guinier radius of> 1.3 nm, measured with an atom probe tomography (LEAP) from Type LEAP 3000HR.
  • a Guinier radius> 1 nm (nanometer) and with a median Guinier radius of> 1.3 nm, measured with an atom probe tomography (LEAP) from Type LEAP 3000HR.
  • the width of the precipitation-free zones at the grain boundaries is preferably between 3 and 80 nm (nanometers) in order to limit a negative influence on the elongation values of the sheet or strip - all the more so if the width of the precipitation-free zones at the grain boundaries is between 5 and 50 nm.
  • the precipitates containing Mg and Si, in particular of the Mg 2 Si type, preferably have an average size of 30 to 100 nm (nanometers) at the grain boundaries in order to be able to ensure sufficient strength at high elongation values - especially if the precipitates have an average size of 50 to 70 nm at the grain boundaries.
  • rolled semi-finished products namely sheets A, B and C designed as thin sheets, each with a sheet thickness of 1.7 mm (millimeters) and an AA6016 aluminum alloy were used Mg wt% Si wt% Cu weight% Fe wt% Mn wt% Zn wt% Ti wt% Cr wt% 0.65 1.16 0.17 0.17 0.10 0.04 0.02 0.04 and the remainder is aluminum as well as impurities that are unavoidable due to the manufacturing process, each with a maximum of 0.05% by weight and a total of 0.15% by weight.
  • These sheets A, B and C are subjected to different processes V1, V2, V3 for curing.
  • These processes V1, V2, V3 all have other heat treatments that follow a solution heat treatment at 540 ° C. (degrees Celsius) for 2 minutes (minutes) and a subsequent, first accelerated cooling (namely water quenching).
  • This method is known from the prior art, in which a thin sheet A is subjected to a single-stage heat treatment after the solution heat treatment and the first accelerated cooling.
  • This single-stage heat treatment consists of a first holding with a first holding temperature (T1) at 100 ° C. and a first holding time (h1) of 7 days.
  • the heat treatments of methods V2, V3 according to the invention are multi-stage - as in FIG Fig. 1 can be seen.
  • This multistage is formed by interrupting a first hold four times by a second hold, including a second, accelerated cooling.
  • These holding sections are different from one another on the one hand in the first holding time sections h1a or h1b, h1c, h1d, h1e, on the other hand they are the same in the first holding temperature T1 - although the latter does not necessarily have to be the case.
  • Each holding section can maintain its individual holding temperature T1 during the individual first Hold time periods h1a, h1b, h1c, h1d and h1e, respectively.
  • the first holding temperature T1 or first holding temperatures T1 of the first holding time segments h1a, h1b, h1c, h1d, h1e only have to meet the condition of 60 to 140.degree.
  • Fig. 1 it can be recognized that the first holding time segments h1a, h1b, h1c, h1d and h1e last significantly longer than the second holding time h2 (cf. hour in relation to seconds).
  • Method V3 differs from method V2 only in point c, in that the second holding at a second holding temperature T2 at 205 ° C during a second holding time h2 of 45 seconds is carried out.
  • This holding time also fulfills the condition 28.82 seconds ⁇ h2 ⁇ 101.60 seconds for a grain size KG of 50 ⁇ m.
  • sheet C even has improved mechanical characteristics in comparison with sheet A at the 0.2% yield strength, which, as is known, can only be achieved with sheet A with an extremely long process time of 7 days.
  • Sheet C compared to sheet B, has both a small mean size of the precipitates and a smaller width of the precipitation-free zones, which explains the increased strength values at higher elongation values according to Table 1.
  • a significantly faster method for hardening 6xxx aluminum alloys can therefore be created using methods V2 and V3, with which excellent elongation at break and tensile strength values can also be achieved due to the hardening of the aluminum alloy with the formation of essentially Mg-Si clusters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Conductive Materials (AREA)
EP20176943.7A 2020-05-27 2020-05-27 Procédé de durcissement d'une tôle ou d'une bande d'un alliage d'aluminium de la série 6xxx Withdrawn EP3916118A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20176943.7A EP3916118A1 (fr) 2020-05-27 2020-05-27 Procédé de durcissement d'une tôle ou d'une bande d'un alliage d'aluminium de la série 6xxx
PCT/EP2021/064291 WO2021239919A1 (fr) 2020-05-27 2021-05-27 Procédé de durcissement d'une tôle ou d'une bande en alliage d'aluminium, et tôle ou bande produite à l'aide de ce procédé
EP21733720.3A EP4022103A1 (fr) 2020-05-27 2021-05-27 Procédé de durcissement d'une tôle ou d'une bande en alliage d'aluminium, et tôle ou bande produite à l'aide de ce procédé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20176943.7A EP3916118A1 (fr) 2020-05-27 2020-05-27 Procédé de durcissement d'une tôle ou d'une bande d'un alliage d'aluminium de la série 6xxx

Publications (1)

Publication Number Publication Date
EP3916118A1 true EP3916118A1 (fr) 2021-12-01

Family

ID=70918227

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20176943.7A Withdrawn EP3916118A1 (fr) 2020-05-27 2020-05-27 Procédé de durcissement d'une tôle ou d'une bande d'un alliage d'aluminium de la série 6xxx
EP21733720.3A Pending EP4022103A1 (fr) 2020-05-27 2021-05-27 Procédé de durcissement d'une tôle ou d'une bande en alliage d'aluminium, et tôle ou bande produite à l'aide de ce procédé

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21733720.3A Pending EP4022103A1 (fr) 2020-05-27 2021-05-27 Procédé de durcissement d'une tôle ou d'une bande en alliage d'aluminium, et tôle ou bande produite à l'aide de ce procédé

Country Status (2)

Country Link
EP (2) EP3916118A1 (fr)
WO (1) WO2021239919A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038136A (ja) * 2009-08-07 2011-02-24 Kobe Steel Ltd 成形性に優れたアルミニウム合金板
JP2013060627A (ja) * 2011-09-13 2013-04-04 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
US20170044650A1 (en) * 2015-08-10 2017-02-16 Ford Motor Company Heat Treatment for Reducing Distortion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038136A (ja) * 2009-08-07 2011-02-24 Kobe Steel Ltd 成形性に優れたアルミニウム合金板
JP2013060627A (ja) * 2011-09-13 2013-04-04 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
US20170044650A1 (en) * 2015-08-10 2017-02-16 Ford Motor Company Heat Treatment for Reducing Distortion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G MRÓWKA-NOWOTNIK: "Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys", ARCHIVES OF MATERIALS SCIENCE AND ENGINEERING, vol. 46, no. 2, 2 December 2010 (2010-12-02), pages 98 - 107, XP055726454 *
KEN TAKATA: "Improvement of Strength-Elongation Balance of AI-Mg-Si Sheet Alloy by Utilising Mg-Si Cluster and Its Proposed Mechanism", MATERIALS TRANSACTIONS, 2017

Also Published As

Publication number Publication date
EP4022103A1 (fr) 2022-07-06
WO2021239919A1 (fr) 2021-12-02

Similar Documents

Publication Publication Date Title
EP3314031B1 (fr) Bande almg facilement déformable et très résistante et son procédé de fabrication
DE1558521C3 (de) Verwendung einer Nickel Chrom Knetlegierung als superplastischer Werk stoff
DE2521330C2 (fr)
EP2559779B1 (fr) Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium
DE102005045341A1 (de) Hochfestes, hochzähes Al-Zn-Legierungsprodukt und Verfahren zum Herstellen eines solches Produkts
EP2270249B2 (fr) Bande AIMgSi pour applications ayant des exigences de déformation élevées
DE2264997A1 (de) Ausscheidungshaertbare nickel-, eisenlegierung
DE2103614B2 (de) Verfahren zur Herstellung von Halbzeug aus AIMgSIZr-Legierungen mit hoher Kerbschlagzähigkeit
DE112008003052T5 (de) Produkt aus Al-Mg-Zn-Knetlegierung und Herstellungsverfahren dafür
DE3621671A1 (de) Hochfestes ti-legierungsmaterial mit verbesserter bearbeitbarkeit und verfahren zu dessen herstellung
EP3825428B1 (fr) Composant moulé sous pression et procédé de fabrication d'un composant moulé sous pression
DE2606632C2 (de) Verwendung von Kohlenstoff-Stahl als superplastischer Wirkstoff und Verfahren zu dessen Wärmebehandlung
EP1518000B1 (fr) Alliage al-cu-mg-ag avec si, produit semi-fini realise a partir de cet alliage, et procede de realisation d'un produit semi-fini de ce type
DE69825414T2 (de) Aluminium-Legierung und Verfahren zu ihrer Herstellung
DE2655709C2 (de) Verfahren zur Verbesserung der Warmfestigkeit von Zirkonium und seinen Legierungen
DE2235168C2 (de) Verfahren zur Herstellung von Aluminiumlegierungen und deren Verwendung
DE112019000856T5 (de) Verfahren zur Herstellung von Aluminiumlegierungsbauelementen
DE1284095B (de) Verfahren zum Herstellen von Aluminiumlegierungsblechen hoher Zeitstandfestigkeit
DE2335113A1 (de) Aluminium-knetlegierungen
EP1748088B1 (fr) Procédé de fabrication de produit semi-fini ou de composant pour des applications de châssis ou de structure automobiles
EP3916118A1 (fr) Procédé de durcissement d'une tôle ou d'une bande d'un alliage d'aluminium de la série 6xxx
DE2500083B2 (de) Halbzeug aus Aluminium-Knetlegierungen und Verfahren zu dessen Herstellung
DE102019202676B4 (de) Gussbauteile mit hoher Festigkeit und Duktilität und geringer Heißrissneigung
DE2029963A1 (de) Ni ekel-Legierung
DE112020004885T5 (de) Geschweisstes bauteil mit ausgezeichneterspannungskorrosionsrissbeständigkeit und verfahren zur herstellung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20200910

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220602