EP2559779B1 - Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium - Google Patents

Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium Download PDF

Info

Publication number
EP2559779B1
EP2559779B1 EP11177747.0A EP11177747A EP2559779B1 EP 2559779 B1 EP2559779 B1 EP 2559779B1 EP 11177747 A EP11177747 A EP 11177747A EP 2559779 B1 EP2559779 B1 EP 2559779B1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy
scandium
vanadium
aluminium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11177747.0A
Other languages
German (de)
English (en)
Other versions
EP2559779A1 (fr
Inventor
Matthias Dr.-Ing. Hilpert
Gregor Dr.-Ing. Terlinde
Thomas Dr.-Ing. Witulski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Fuchs KG
Original Assignee
Otto Fuchs KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP11177747.0A priority Critical patent/EP2559779B1/fr
Application filed by Otto Fuchs KG filed Critical Otto Fuchs KG
Priority to ES11177747.0T priority patent/ES2565482T3/es
Priority to PCT/EP2012/064982 priority patent/WO2013023907A1/fr
Priority to US14/234,981 priority patent/US10240228B2/en
Priority to CA2843325A priority patent/CA2843325C/fr
Priority to CN201280040155.7A priority patent/CN103748246B/zh
Priority to BR112014001323A priority patent/BR112014001323A2/pt
Publication of EP2559779A1 publication Critical patent/EP2559779A1/fr
Application granted granted Critical
Publication of EP2559779B1 publication Critical patent/EP2559779B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium

Definitions

  • the invention relates to a heat-resistant Al-Cu-Mg-Ag alloy for the production of semi-finished products or products, suitable for use at elevated temperatures, with high static and dynamic strength properties in conjunction with improved creep resistance.
  • the invention also relates to a method for producing a semifinished product or product from such an aluminum alloy.
  • alloys AA2618 and AA2618A Particularly resistant to creep are alloys AA2618 and AA2618A. However, semi-finished products and products produced from these alloys have only relatively low static and dynamic strength values.
  • the alloys for producing semi-finished products with high static and dynamic strength properties according to AA2014, AA2014A and AA2214 differ from the thermally long-term stable ones Alloys according to AA2618 and AA2618A mainly by the fact that the high-strength aluminum alloys relatively high proportions of the elements silicon, copper and manganese, while relatively lower proportions of the elements magnesium and iron, while the above-described long-term thermally stable aluminum alloys a contrast reduced proportion of silicon , Copper and manganese, but an increased iron, nickel and magnesium content.
  • nickel is added to the long-term thermally stable alloys.
  • the alloy AA2016 differs from the above-described alloys mainly by an admixture of the element silver with proportions between 0.30 and 0.7 wt .-%. There are also differences in the other alloying elements compared with the composition of the aforementioned high-strength aluminum alloy and with respect to the abovementioned aluminum alloys whose semifinished products have good creep resistance.
  • the invention is therefore based on the object to propose an alloy from which a semifinished product or a product can be produced, which satisfies the desired properties of the static and dynamic strength and long-term stability under temperature influences.
  • a further improvement of the properties in question of a semifinished product or product produced from such an alloy can be achieved if it is ensured that the sum of the elements zirconium, titanium, scandium and vanadium is less than or equal to 0.4% by weight, in particular is less than or equal to 0.35% by weight.
  • the aluminum alloy preferably contains zirconium with proportions between 0.03 and 0.15 wt .-%. Titanium is preferably included in the alloy at levels of between 0.03 and 0.09 weight percent.
  • the aluminum alloy preferably contains 0.3 to 0.6% by weight of silver.
  • Silicon is preferred in the construction of alloy properties between 0.3 and 0.6 wt .-% involved.
  • the manganese content of the aluminum alloy will preferably be adjusted to 0.1 to 0.3 wt%.
  • the alloy or the semifinished products or products produced therefrom have a particularly good creep resistance if the sum of the elements silver, zirconium, scandium and vanadium is at least 0.60% by weight and not more than 1.1% by weight. is.
  • the elements silver and scandium to be present in the alloy in proportions so that the ratio of the silver constituents to the scandium fractions is between 5 and 23, preferably between 9 and 14.
  • the elements scandium and zirconium are present in a ratio between 1 and 17, preferably between 6 and 12 in the alloy.
  • a ratio of the silver content to the vanadium content between 0.5 and 14 is considered particularly expedient, in particular a ratio between 5 and 9.
  • a sufficient dissolution of the elements zirconium, scandium and vanadium can be achieved by moving the melt during the melting of the alloy thus before the step of casting and during the casting of a billet. It is particularly expedient if the melt is moved by convection. Such convection can be generated by external magnetic influences, for example in an induction furnace. Therefore, the aluminum alloy is preferably melted in an induction furnace.
  • FIG. 1 shows a comparison of the chemical composition of the claimed alloy with previously known aluminum alloys.
  • those alloys are compared which, as is known, can be used to produce semi-finished products or products with high static and dynamic strength properties. These are the alloys AA2014, AA2014A and AA2214.
  • two prior art alloys which are said to have particularly good long-term stability under thermal influences, are compared. These are the alloys AA2618 and AA2618A.
  • the previously known AA2016 alloy is also shown in the table on the proportions of the respective alloying elements.
  • the information given in the table on the proportions of the respective alloying elements is the International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, The Aluminum Association Inc., 1525 Wilson Boulevard, Arlington, April 2006 s.
  • the alloy according to the invention is indicated by "W".
  • W the alloy according to the invention.
  • the juxtaposition of the alloy compositions presents the differences of the claimed heat-resistant aluminum alloys by the addition of vanadium and scandium elements and the particular choice of other alloying constituents including theirs It is also clear from this comparison that the claimed alloy W could not be derived as a sum or otherwise from these previously known alloys.
  • the two alloys W1 and W2 had the following chemical composition: W1 W2 element Wt .-% Wt .-% Si 0.51 0.50 Fe 0.092 0.084 Cu 4.06 4.22 Mn 0,186 0.207 mg 0.591 0.586 Cr 0.009 0,013 Ni 0,002 0.009 Zn 0.009 0,007 Ti 0,128 0.059 Zr 0.146 0.059 V 0.131 0.115 sc 0,137 0,089 Ag 0.46 0.49 Others individually 0.05 0.05 Other total 0.15 0.15 al rest rest rest
  • the alloys W1 and W2 on an industrial scale to continuous casting blocks with a diameter of 370 mm, taking care that the elements zirconium, scandium and vanadium were sufficiently dissolved during the casting of the billets.
  • the melt has been set in motion by generating a convection in the melt.
  • the continuous casting blocks were homogenized to compensate for the crystallization induced crystallization.
  • the blocks were homogenized in two stages in a temperature range of 500 ° C to 550 ° C and cooled. After dressing the cast skin, the homogenized blocks were preheated to about 400 ° C and repeatedly formed into open-die forgings with a thickness of 100 mm and a width of 250 mm.
  • alloy W1 and W2 were solution-treated for at least 2 hours at 500 ° C, quenched in water and then cured between 165 ° C and 200 ° C warm.
  • Tensile samples were taken from the hot-hardened open-die forgings, which were used to determine the strength properties at room temperature in the sample position along (L). The results are shown in the table below: alloy R p0.2 [MPa] R m [MPa] A 5 [%] 2016 446 490 11.1 2618 344 432 10.4 W1 399 449 8.1 W2 383 437 10.6
  • the table also gives the strength properties for hot forged forgings of AA2016 and AA2618 alloys in the thermoset condition.
  • Highest strength shows the alloy AA2016, followed by W1, W2 and AA2618. Of all alloys a sufficient ductility of> 8% is achieved. Particularly noteworthy here is that with the experimental alloys W1, W2, although the strength values of the comparative alloy AA2016 could not be achieved, the strength values achieved clearly exceeded those of the other comparative alloy AA2618. For the applications in question For example, the strength values exhibited by the trial alloys W1, W2 are sufficient. It is essential that the trial alloys W1, W2, as described below with reference to FIG. 2 described, compared to the already creep resistant comparative alloy AA2618 have a significantly better creep resistance.
  • FIG. 2 shows in the diagram the creep properties of the respective alloy at 190 ° C and a creep stress of 200 MPa. While the alloy AA2618 known to be particularly resistant to creep and previously used for such purposes already breaks after about 320 hours and has already undergone a plastic strain of about 1% at about 230 hours, the investigated time of 500 hours did not suffice to cause the experimental alloy W2 to break. At the time of breakage of the specimen made of the alloy AA2618, only a plastic deformation of about 0.2% was observed in the experimental alloy W2. The improved creep resistance of the claimed alloy over the particularly creep-resistant alloy AA2618 is obvious.
  • the specimens of the further trial alloy W1 have a creep resistance similar to that described in FIG. 2 in the diagram on the basis of experimental alloy W2.
  • FIG. 3 shows such a diagram.
  • the AA2618 alloy previously known to be especially resistant to creeping, is characterized by a relatively low inclination of its fracture line.
  • the AA2014 alloy which meets the high static and dynamic requirements, has a significantly steeper inclination angle of its fracture line. The curves of these two alloys intersect.
  • the alloy AA2214 withstands higher voltages in the curve section which lies above the curve of the alloy AA2618, and decreases with respect to its breaking stress much faster than the alloy AA2618 with increasing temperature and / or time.
  • the alloy AA2016 is also included in this diagram for comparison. Since this curve is to the right of the AA2014 alloy curve, it becomes clear that it is more durable than the AA2014 alloy. It also becomes clear that the alloy AA2016 requires a higher voltage to cause a break up to a certain point in time.
  • the range of the Larsen-Miller diagram Faced with these curves of previously known aluminum alloys is the range of the Larsen-Miller diagram, in which are the values of semi-finished products or products made with the claimed alloy.
  • the line of the specimens of the trial alloys W1 and W2 is plotted, taking into account, with respect to this line representation, that this line represents not the fracture line, but the state of the test specimens after a test time of 500 hours. A break did not occur within this time (see also in comparison to this FIG. 2 ). Therefore, the drawn lines concerning the trial alloys W1, W2 are considered as minimum lines.
  • the actual fracture lines of the experimental alloys W1, W2 are much further to the right in the Larsen-Miller diagram.
  • the inclination of these two curves is likely to be much lower than drawn. For this reason, the representation of a field has been chosen in order to be able to contrast the improved properties of the claimed alloy with the properties of the prior art alloys discussed.
  • the improved creep behavior of the claimed alloy is the Larsen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Forging (AREA)

Claims (14)

  1. Alliage d'Al-Cu-Mg-Ag résistant à la chaleur destiné à fabriquer des produits semi-finis ou finis, convenant pour une utilisation à des températures élevées, avec des propriétés de résistance statiques et dynamiques élevées associées à une résistance au fluage améliorée, contenant :
    - 0,3 - 0,7 % en poids silicium (Si)
    - max 0,15 % en poids fer (Fe)
    - 3,5 - 4,7 % en poids cuivre (Cu)
    - 0,05 - 0,5 % en poids manganèse (Mn)
    - 0,3 - 0,9 % en poids magnésium (Mg)
    - 0,02 - 0,15 % en poids titane (Ti)
    - 0,03 - 0,25 % en poids zircon (Zr)
    - 0,1 - 0,7 % en poids argent (Ag)
    - 0,03 - 0,5 % en poids scandium (Sc)
    - 0,03 - 0,2 % en poids vanadium (V)
    - max. 0,05 % en poids autres, individuellement
    - max 0,15 % en poids autres, au total
    - reste aluminium
  2. Alliage d'aluminium selon la revendication 1, caractérisé en ce que celui-ci contient :
    - 0,12 à 0,15 % en poids titane (Ti)
    - 0,14 à 0,16 % en poids zircon (Zr)
    - 0,13 à 0,17 % en poids scandium (Sc) et
    - 0,12 à 0,15 % en poids vanadium (V).
  3. Alliage d'aluminium selon la revendication 1 ou 2, caractérisé en ce que le total des éléments zircon, titane, scandium et vanadium est inférieur ou égal à 0,4 % en poids.
  4. Alliage d'aluminium selon la revendication 1, caractérisé en ce que celui-ci contient :
    - 0,04 à 0,06 % en poids titane (Ti)
    - 0,05 à 0,07 % en poids zircon (Zr)
    - 0,08 à 0,10 % en poids scandium (Sc) et
    - 0,10 à 0,12 % en poids vanadium (V).
  5. Alliage d'aluminium selon l'une des revendications 1 à 4, caractérisé en ce que celui-ci contient :
    - 0,45 à 0,55 % en poids silicium (Si)
    - 4,10 à 4,30 % en poids cuivre (Cu)
    - 0,15 à 0,25 % en poids manganèse (Mn)
    - 0,5 à 0,7 % en poids magnésium (Mg) et
    - 0,40 à 0,55 % en poids argent (Ag).
  6. Alliage d'aluminium selon l'une des revendications précédentes, caractérisé en ce que le total des éléments cuivre, zircon, scandium et vanadium est au moins de 0,60 % en poids et au maximum de 1,1 % en poids.
  7. Alliage d'aluminium selon l'une des revendications précédentes, caractérisé en ce que celui-ci contient les éléments argent et scandium selon une proportion Ag : Sc = 5 - 23.
  8. Alliage d'aluminium selon l'une des revendications précédentes, caractérisé en ce que celui-ci contient les éléments scandium et zircon selon une proportion Sc : Zr = 1 - 17.
  9. Alliage d'aluminium selon l'une des revendications précédentes, caractérisé en ce que celui-ci contient les éléments argent et vanadium selon une proportion Ag : V = 0,5 - 14.
  10. Alliage d'aluminium selon l'une des revendications précédentes, caractérisé en ce que l'alliage d'aluminium contient une proportion de fer au maximum de 0,09 % en poids.
  11. Procédé de fabrication d'un produit semi-fini ou fini en alliage d'aluminium selon l'une des revendications 1 à 10 caractérisé par les étapes suivantes :
    (a) Coulage d'un lingot en alliage avec une dissolution suffisante des éléments zircon, scandium et vanadium,
    (b) Homogénéisation du lingot coulé à une température située juste sous la température du début de fusion de l'alliage pendant un temps suffisant pour obtenir une répartition la plus régulière possible des éléments de l'alliage dans la structure métallurgique, de façon privilégiée à 485 à 510 °C pendant une durée de 10 à 25 h,
    (c) Formage à chaud du lingot homogénéisé, par filage, forgeage (y compris filage inverse) et/ou laminage à une plage de température de 280 à 470 °C,
    (d) Recuit de mise en solution du produit semi-fini filé, forgé et/ou laminé à des températures suffisamment élevées pour mettre en solution les éléments de l'alliage nécessaires au durcissement, répartis de façon homogène dans la structure, de façon privilégiée à une température de 480 à 510 °C pendant une durée de 30 minutes à 8 h,
    (e) Trempe du produit semi-fini recuit dans l'eau à une température située entre la température ambiante et 100 °C (eau bouillante) ou dans des mélanges d'eau - glycol à des températures ≤ 50 °C et à des taux de glycol allant jusqu'à 60 %,
    (f) Au choix formage à froid du produit semi-fini trempé par refoulement ou étirage dans une proportion qui entraîne une réduction des efforts résiduels, qui se sont produits au cours de la trempe dans le fluide frais de refroidissement, de façon privilégiée de 1 à 5 % et
    (g) Durcissement à chaud du produit semi-fini, qui a été trempé de cette manière et, au choix, refoulé à froid ou étiré, à des températures qui sont adaptées à l'utilisation prévue, de façon privilégiée entre 80 et 210 °C pendant une durée de 5 à 35 h, de façon privilégiée de 10 à 25 h, au cours d'un processus à 1, 2 ou 3 niveaux.
  12. Procédé selon la revendication 11, caractérisé en ce que avant l'étape de coulage du lingot et pendant le coulage du lingot la matière en fusion est mise en mouvement afin d'obtenir une dissolution suffisante des éléments zircon, scandium et vanadium.
  13. Procédé selon la revendication 12, caractérisé en ce que la matière en fusion est mise en mouvement par convection.
  14. Procédé selon la revendication 13, caractérisé en ce que la matière en fusion est mise en fusion dans un four à induction.
EP11177747.0A 2011-08-17 2011-08-17 Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium Not-in-force EP2559779B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES11177747.0T ES2565482T3 (es) 2011-08-17 2011-08-17 Aleación de Al-Cu-Mg-Ag resistente al calor, así como procedimiento para la fabricación de un producto semiacabado o producto a partir de una aleación de aluminio de este tipo
EP11177747.0A EP2559779B1 (fr) 2011-08-17 2011-08-17 Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium
US14/234,981 US10240228B2 (en) 2011-08-17 2012-08-01 Heat-resistant Al—Cu—Mg—Ag alloy and process for producing a semifinished part or product composed of such an aluminum alloy
CA2843325A CA2843325C (fr) 2011-08-17 2012-08-01 Alliage al-cu-mg-ag resistant a la chaleur ainsi que procede de fabrication d'un produit semi-fini ou d'un produit a partir d'un tel alliage d'aluminium
PCT/EP2012/064982 WO2013023907A1 (fr) 2011-08-17 2012-08-01 Alliage al-cu-mg-ag résistant à la chaleur ainsi que procédé de fabrication d'un produit semi-fini ou d'un produit à partir d'un tel alliage d'aluminium
CN201280040155.7A CN103748246B (zh) 2011-08-17 2012-08-01 耐热性Al-Cu-Mg-Ag合金和生产由这种铝合金构成的半成品或成品的方法
BR112014001323A BR112014001323A2 (pt) 2011-08-17 2012-08-01 liga de al-cu-mg-ag resistente ao calor e processo para a fabricação de produtos semiacabados e produtos da liga de alumínio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11177747.0A EP2559779B1 (fr) 2011-08-17 2011-08-17 Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium

Publications (2)

Publication Number Publication Date
EP2559779A1 EP2559779A1 (fr) 2013-02-20
EP2559779B1 true EP2559779B1 (fr) 2016-01-13

Family

ID=46601825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11177747.0A Not-in-force EP2559779B1 (fr) 2011-08-17 2011-08-17 Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium

Country Status (7)

Country Link
US (1) US10240228B2 (fr)
EP (1) EP2559779B1 (fr)
CN (1) CN103748246B (fr)
BR (1) BR112014001323A2 (fr)
CA (1) CA2843325C (fr)
ES (1) ES2565482T3 (fr)
WO (1) WO2013023907A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3841968B1 (fr) 2010-03-26 2022-11-30 University Of Virginia Patent Foundation Procédé, système et produit-programme d'ordinateur permettant d'améliorer la précision des capteurs de glucose utilisant l'observation de la délivrance d'insuline dans le diabète
JP5879181B2 (ja) * 2011-06-10 2016-03-08 株式会社神戸製鋼所 高温特性に優れたアルミニウム合金
CN103451583B (zh) * 2013-09-12 2016-09-07 中国商用飞机有限责任公司 生产飞机机翼长桁用型材的方法
EP2927335B1 (fr) 2014-04-03 2016-07-13 Otto Fuchs KG Alliage bronze-aluminium, procédé de fabrication et produit en bronze-aluminium
US20150322556A1 (en) 2014-05-06 2015-11-12 Goodrich Corporation Lithium free elevated temperature aluminum copper magnesium silver alloy for forged aerospace products
DE102014106933A1 (de) 2014-05-16 2015-11-19 Otto Fuchs Kg Sondermessinglegierung und Legierungsprodukt
CN105401029A (zh) * 2015-12-15 2016-03-16 常熟市虹桥铸钢有限公司 一种耐热铸造合金
CN106086734B (zh) * 2016-08-11 2017-09-29 江苏亚太安信达铝业有限公司 2618a铝合金叶轮锻件的锻造方法
CN106756343A (zh) * 2017-02-27 2017-05-31 东莞市铝美铝型材有限公司 一种钻杆用高强耐热铝合金及其制备方法
CN108103373B (zh) * 2017-12-28 2019-11-19 中南大学 一种含银Al-Cu-Mg合金及获得高强度P织构的热处理方法
RU2707114C1 (ru) * 2019-04-29 2019-11-22 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ термомеханической обработки полуфабрикатов из термоупрочняемых Al-Cu-Mg-Ag сплавов
CN110724865A (zh) * 2019-11-01 2020-01-24 北京工业大学 一种Al-Cu-Mg-Ag-Si-Sc耐热合金及制备工艺
CN111424200B (zh) * 2020-04-23 2021-10-08 西安交通大学 一种高强高耐热低钪银添加的Al-Cu-Mg系合金及其热处理工艺
CN112281034A (zh) * 2020-10-16 2021-01-29 中国航发北京航空材料研究院 一种铸造铝合金及其制备方法
CN114086040B (zh) * 2021-08-20 2022-06-28 中国航发北京航空材料研究院 一种铝镁硅钪锆系合金及其制备方法
CN115927935A (zh) * 2022-10-18 2023-04-07 中国航发北京航空材料研究院 一种Al-Cu-Mg-Ag-Si-Sc高耐热性铝合金及其制备方法
CN115558827A (zh) * 2022-10-18 2023-01-03 中国航发北京航空材料研究院 一种Al-Cu-Mg-Ag-Si-Sc-Mn-Zr高强高耐热性铝合金及其制备方法
CN117127071A (zh) * 2023-10-27 2023-11-28 中铝材料应用研究院有限公司 铝合金材料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475166A (en) 1969-01-15 1969-10-28 Electronic Specialty Co Aluminum base alloy
GB1320271A (en) 1971-01-29 1973-06-13 Atomic Energy Authority Uk Aluminium alloys
JPH03107440A (ja) * 1989-09-20 1991-05-07 Showa Alum Corp ロードセル用アルミニウム合金
WO1996010099A1 (fr) * 1994-09-26 1996-04-04 Ashurst Technology Corporation (Ireland) Limited Alliages de fonderie d'aluminium a haute resistance pour applications structurelles
US6146477A (en) * 1999-08-17 2000-11-14 Johnson Brass & Machine Foundry, Inc. Metal alloy product and method for producing same
DE50204136D1 (de) 2002-06-29 2005-10-06 Fuchs Fa Otto Al-cu-mg-ag-legierung mit si, halbzeug aus einer solchen legierung sowie verfahren zur herstellung eines solchen halbzeuges
US7604704B2 (en) * 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
US7494552B2 (en) * 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
CA2523674C (fr) * 2003-05-28 2015-01-13 Pechiney Rolled Products Alliage al-cu-mg-ag-mn destine a des applications structurales necessitant une resistance et une ductilite ameliorees
US8043445B2 (en) 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
US7449073B2 (en) * 2004-07-15 2008-11-11 Alcoa Inc. 2000 Series alloys with enhanced damage tolerance performance for aerospace applications
CN101297054A (zh) * 2005-10-25 2008-10-29 阿勒里斯铝业科布伦茨有限公司 适用于航空航天应用的Al-Cu-Mg合金
EP2038446B1 (fr) * 2006-07-07 2017-07-05 Aleris Rolled Products Germany GmbH Procédé de fabrication des alliages d'aluminium de la serie AA7000

Also Published As

Publication number Publication date
WO2013023907A1 (fr) 2013-02-21
US20140166161A1 (en) 2014-06-19
BR112014001323A2 (pt) 2017-04-18
EP2559779A1 (fr) 2013-02-20
CN103748246B (zh) 2016-08-17
CA2843325C (fr) 2019-04-23
ES2565482T3 (es) 2016-04-05
CN103748246A (zh) 2014-04-23
US10240228B2 (en) 2019-03-26
CA2843325A1 (fr) 2013-02-21

Similar Documents

Publication Publication Date Title
EP2559779B1 (fr) Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium
EP1683882B1 (fr) Alliage d'Aluminium avec sensitivité à la trempe réduite et procédé de fabrication d'un produit demi-final lors de cet alliage
DE69326838T3 (de) Zähe aluminiumlegierung mit kupfer und magnesium
EP3314031B1 (fr) Bande almg facilement déformable et très résistante et son procédé de fabrication
DE102013002483B4 (de) Nickel-Kobalt-Legierung
EP1718778B1 (fr) Materiau a base d'alliage d'aluminium, procede de production et utilisation correspondants
DE60017868T2 (de) Strukturelement eines Flugzeugs aus Al-Cu-Mg Legierung
DE102006005250B4 (de) Eisen-Nickel-Legierung
EP1518000B1 (fr) Alliage al-cu-mg-ag avec si, produit semi-fini realise a partir de cet alliage, et procede de realisation d'un produit semi-fini de ce type
EP2449145B1 (fr) Bande AIMgSi pour applications ayant des exigences de déformation élevées
DE112008003052T5 (de) Produkt aus Al-Mg-Zn-Knetlegierung und Herstellungsverfahren dafür
DE60300004T2 (de) Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs
DE2103614B2 (de) Verfahren zur Herstellung von Halbzeug aus AIMgSIZr-Legierungen mit hoher Kerbschlagzähigkeit
EP3825428A1 (fr) Composant moulé sous pression et procédé de fabrication d'un composant moulé sous pression
DE112004001985T5 (de) Verfahren zum Herstellen einer hochschadenstoleranten Aluminiumlegierung
EP1017867B1 (fr) Alliage a base d'aluminium et procede permettant de le soumettre a un traitement thermique
DE2500084C3 (de) Verfahren zur Herstellung von Aluminium-Halbzeug
DE60019803T2 (de) Hochresistente aluminiumbasis-legierungen und daraus hergestellte artikel
WO2016020519A1 (fr) Produits semi-finis à haute résistance et en même temps durs, et composants en acier fortement allié, leur procédé de fabrication et utilisation
EP3818187B1 (fr) Alliage d'aluminium et produit d'alliage d'aluminium survieilli obtenu à partir d'un tel alliage
EP1748088B1 (fr) Procédé de fabrication de produit semi-fini ou de composant pour des applications de châssis ou de structure automobiles
EP3423606B1 (fr) Alliage de coulée en aluminium
EP2103701A1 (fr) Alliage d'aluminium et procédé de fabrication d'un produit à partir d'un alliage d'aluminium
DE1290727B (de) Verfahren zur Herstellung von Nioblegierungen hoher Festigkeit
DE102019202676B4 (de) Gussbauteile mit hoher Festigkeit und Duktilität und geringer Heißrissneigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150903

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 770574

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008656

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALDO ROEMPLER PATENTANWALT, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2565482

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160405

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160113

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008656

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

26N No opposition filed

Effective date: 20161014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160817

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110817

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210831

Year of fee payment: 11

Ref country code: AT

Payment date: 20210625

Year of fee payment: 11

Ref country code: FR

Payment date: 20210823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210917

Year of fee payment: 11

Ref country code: GB

Payment date: 20210824

Year of fee payment: 11

Ref country code: CH

Payment date: 20210824

Year of fee payment: 11

Ref country code: SE

Payment date: 20210823

Year of fee payment: 11

Ref country code: NO

Payment date: 20210820

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011008656

Country of ref document: DE

Representative=s name: HAVERKAMP PATENTANWAELTE PARTG MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220630

Year of fee payment: 12

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 770574

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220817

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220818

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220817

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220817

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220817

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011008656

Country of ref document: DE