EP3914872B1 - Wärmetauschermodul, wärmetauschersystem und verfahren zum herstellen des wärmetauschersystems - Google Patents

Wärmetauschermodul, wärmetauschersystem und verfahren zum herstellen des wärmetauschersystems Download PDF

Info

Publication number
EP3914872B1
EP3914872B1 EP20720767.1A EP20720767A EP3914872B1 EP 3914872 B1 EP3914872 B1 EP 3914872B1 EP 20720767 A EP20720767 A EP 20720767A EP 3914872 B1 EP3914872 B1 EP 3914872B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
feed line
supply pipe
line
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20720767.1A
Other languages
English (en)
French (fr)
Other versions
EP3914872A1 (de
Inventor
Thomas Uhrig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uhrig Energie GmbH
Original Assignee
Uhrig Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhrig Energie GmbH filed Critical Uhrig Energie GmbH
Publication of EP3914872A1 publication Critical patent/EP3914872A1/de
Application granted granted Critical
Publication of EP3914872B1 publication Critical patent/EP3914872B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0012Recuperative heat exchangers the heat being recuperated from waste water or from condensates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes

Definitions

  • the invention relates to a heat exchanger module, a heat exchanger system and a method for producing a heat exchanger system for, in particular subsequent, installation in a sewage pipeline.
  • Energy production from waste water by heat exchangers subsequently installed in the waste water pipeline is, for example, from DE 10 2005 048 689 A1 known.
  • heat exchange fluid piping for inflow into and outflow from the heat exchanger is mounted below drain surfaces and is thus protected from contamination by the waste water. This has no negative impact on heat generation, since in the known heat exchanger only the upper side comes into contact with the waste water.
  • the FR 2 954 819 A1 discloses an apparatus for extracting heat from a sewage collector, comprising a heat exchanger intended for immersion in the sewage stream and connection means between a heat transfer fluid circuit in the heat exchanger and heat transfer fluid inlet and return lines. Also disclosed is a system of heat transfer fluid channels associated with the heat exchanger, the system being connected to the heat exchanger.
  • the invention comprises a heat exchanger module for installation in a waste water pipeline, having a flow line section and a return line section which are fluidically connected to a heat exchanger chamber of the heat exchanger module, the respective flow line sections of a plurality of heat exchanger modules being fluidically connectable to one another to form a flow line and the respective return line sections of a plurality of heat exchanger modules to one another Return line can be fluidically connected and within the flow line section a feed line can be arranged or is arranged, by means of which the flow line section can be fed or fed with a heat exchanger fluid.
  • An advantage of the present invention is that a space-saving heat exchanger module is made available, which is particularly suitable for use in cramped and/or restricted spaces such as a sewer.
  • the available space can be better utilized in such a way that more space can be occupied by the heat exchanger chamber compared to a conventional heat exchanger module in which a feed line is provided outside the flow line section.
  • a heat exchanger module with increased heat exchange performance can thus be used with the same space conditions.
  • a further advantage of the present invention is that the heat exchanger module has a smaller cross-sectional area, which ensures a better flow of waste water and a lower tendency of the heat exchanger module to become soiled, particularly when used in a sewer.
  • Another advantage of the present invention is that the feed line, in particular possible connection points of a multi-part feed line, is better protected against dirt and/or damage.
  • the heat exchanger module can contain at least one heat exchanger element with a heat exchanger chamber and can be used, for example, for heat recovery from cooling water from power plants, for storing solar energy in hot water buffers or for heat recovery from waste heat - in particular from waste water - from buildings, machines or other systems.
  • air or a gas or gas mixture can flow around the heat exchanger element at least in sections.
  • a sewage pipeline may be a pipeline for collecting and guiding sewage, wherein a sewage flow direction is parallel to or coincident with the longitudinal direction of the sewage pipeline.
  • the sewage flow direction is usually determined by a slope of the sewage pipeline and basically runs parallel to the longitudinal direction described above or coincides with it.
  • a sewage pipeline can also be an open sewage channel within the meaning of the present invention.
  • the flow line section can be a section of a flow line, wherein the flow line section and/or the flow line can be designed as a closed line or as an open channel. The same applies to the return line section and/or the return line.
  • the feed line can be designed as a closed line or as an open channel, from which the flow line section and/or the flow line or the return line section and/or the return line can be fed or is fed with the heat exchanger fluid. It is basically described that the feed line can be arranged or is arranged in the flow line section and/or in the flow line. The associated advantages can also be achieved if, as an alternative to this, the feed line can be arranged or is arranged accordingly in the return line section and/or the return line.
  • the heat exchange fluid can be water, in particular waste water, air or a gas or gas mixture.
  • upstream In the context of this description, the terms “upstream”, “downstream” and the like are to be understood in relation to the direction of flow of a medium described in each case, optionally in a line described in each case.
  • outside or inside and the like used in the context of the present invention mean that a center point, particularly an idealized or imagined center point, is an innermost point.
  • An outer area in relation to this is an, in particular idealized or imaginary, peripheral area which at least partially surrounds the center point.
  • a point or region that is designated as being more outward than another point or region is radially further from the center toward the circumferential region than the other point or region that is more inward.
  • the terms “above” or “above” and the like mean a direction and/or a position of an element in relation to another element counter to the direction of gravity.
  • the terms “below” or “below” and the like used below mean a direction and/or a position of one element in relation to another element in the direction of gravity.
  • a cross-sectional area of the flow line section minus a cross-sectional area of the feed line can be approximately the same size as the cross-sectional area of the feed line.
  • a flow resistance in the flow line section can thus be kept approximately the same as a flow resistance in the feed line.
  • the feed line can be designed in one piece.
  • a leak-prone connection point of an otherwise multi-piece feed line within the flow line section can be avoided.
  • a fluid flow of the heat exchange fluid in the feed line can be directed in the opposite direction to a fluid flow of the heat exchange fluid in the flow line section.
  • the flow line section can be fed with the heat exchanger fluid at a downstream end of the feed line.
  • the heat exchange fluid traverses the entire feed line before entering the delivery line section, from which the heat exchange fluid enters the individual heat exchange modules.
  • the feed line can be or can be arranged concentrically in the flow line section, in particular by means of guide rings and/or spacers.
  • an outer circumference of the feed line can touch an inner circumference of the feed line section at least in sections.
  • a concentric or eccentric position of the feed line with respect to the delivery line section can be achieved by means of guide rings and/or spacers which can be integrally formed on the feed line.
  • guide rings and/or spacers which can be integrally formed on the feed line.
  • the feed line can be made of plastic. Increased durability and/or easier handling of the feed line, in particular when introducing the feed line into the flow line section, can thus be ensured.
  • Another aspect relates to a heat exchanger system with a modular structure, having a plurality of heat exchanger modules arranged one behind the other, each heat exchanger module having a feed line section and a return line section which are fluidically connected to a heat exchanger chamber of the heat exchanger module, the respective feed line sections of the individual heat exchanger modules being fluidically connected to one another to form a feed line and the respective return line sections of the individual heat exchanger modules are fluidically connected to one another to form a return line, and wherein a feed line is arranged within the feed line, by means of which the feed line can be fed or is fed with a heat exchanger fluid.
  • an advantage of the heat exchanger system according to the invention is that laying the heat exchanger system is simplified, in particular because of a simplified introduction of the feed line into the flow line of heat exchanger modules that have already been laid. In particular, it is therefore possible to dispense with a separate connection of feed line sections that are otherwise present in each heat exchanger module.
  • the plurality of heat exchanger modules arranged one behind the other can be fluidically connected in parallel with one another.
  • the heat exchanger modules arranged one behind the other can follow a course of the sewage pipeline in which they are laid, for example.
  • a fluid flow of the heat exchange fluid in the feed line can be directed in the opposite direction to a fluid flow of the heat exchange fluid in the supply line.
  • the feed line can be fed with the heat exchanger fluid at a downstream end of the feed line.
  • the heat exchange fluid traverses the entire feed line before entering the delivery line, from which the heat exchange fluid enters the individual heat exchange modules.
  • a sum of the lengths of the feed line, flow line and return line in each heat exchanger module can be approximately the same.
  • a so-called Tichelmann system Tichelmann's pipework
  • the pipes in a heating system from the heat generator (e.g. boiler, solar system) to the heat consumer (e.g. radiator, hot water tank) and back are laid in a ring so that the sum of the lengths of flow and return is is about the same size for each radiator.
  • a connection according to "Tichelmann” also means that the zeta values (pressure loss coefficients) of the pipe fittings for connecting several identical components (usually hot water tanks or solar collectors) are the same in total for each individual component, so that an even flow is guaranteed (source : Wikipedia https://de.wikipedia.org/wiki/Tichelmann-System).
  • a cross-sectional area of the flow line minus a cross-sectional area of the feed line can be approximately the same size as the cross-sectional area of the feed line.
  • a flow resistance in the supply line can thus be kept approximately the same as a flow resistance in the feed line.
  • the feed line can be formed in one piece.
  • a leak-prone connection point of an otherwise multi-piece feed line within the flow line can be avoided.
  • This configuration can also be used to further simplify laying of the heat exchanger system, since the introduction of the one-piece feed line into the flow line of the heat exchanger modules that have already been laid means a considerable simplification, especially if the feed line is virtually endless, i.e. in the form of a 100 m roll, for example.
  • a separate connection of feed line sections that are otherwise present for each heat exchanger module can therefore be dispensed with.
  • the feed line can be arranged concentrically in the flow line, in particular by means of guide rings and/or spacers.
  • an outer circumference of the feed line can touch an inner circumference of the flow line at least in sections.
  • a concentric or eccentric position of the feed line with respect to the delivery line can be achieved by means of guide rings and/or spacers which can be integrally formed on the feed line. This makes it easier to insert the feed line into the flow line and/or to maintain the desired position of the feed line in the flow line. It goes without saying that an external geometry of the guide rings and/or spacers is adapted to an internal geometry of the supply line and that an internal geometry of the guide rings and/or spacers is adapted to an external geometry of the feed line.
  • the feed line can be made of plastic. Increased durability and/or easier handling of the feed line, in particular when introducing the feed line into the flow line, can thus be ensured.
  • the method described above applies correspondingly to only a single heat exchanger module.
  • the heat exchanger module 1 has a heat exchanger element with a heat exchanger chamber 2, on which a supply line section 4 and a return line section 6 are fluidically connected to the heat exchanger chamber 2 at a respective connection port 8.
  • the heat exchanger module 1 can have a plurality of heat exchanger elements which are fluidically connected to one another.
  • the supply line section 4 and the return line section 6 can also be mechanically connected to the heat exchanger chamber 2 at a respective stiffening point 10 .
  • a feed line 12 is arranged, in which a heat exchanger fluid can be introduced in an introduction direction ER.
  • the feed line 12 is in 1 shown protruding from the feed line section 4 counter to the introduction direction ER, as is the case, for example, when the feed line 12 is inserted into the feed line section 4 .
  • the flow line section 4 is designed to be open at its downstream end as seen in the introduction direction ER, just like the feed line 12, in particular for the connection of a further heat exchanger module 1.
  • the flow line section 4 can be connected to the in Introductory direction ER seen downstream end be closed.
  • the feed line 12, on the other hand, also remains open in this case at its end on the downstream side, viewed in the direction of introduction ER.
  • the downstream end of the feed line 12, viewed in the direction of introduction ER is at a distance from the end of the feed line section 4, viewed in the direction of introduction ER, downstream, counter to the direction of introduction ER, in order to allow the heat exchanger fluid to pass more easily from the feed line 12 into the feed line section 4.
  • the heat exchanger fluid flows in an inflow direction ZR, which is directed counter to the inlet direction ER, and reaches the heat exchanger chamber 2 via the connection port 8.
  • the heat exchanger chamber 2 which is heated, for example, by the waste water flowing around it, heats the heat exchanger fluid, which flows via the other connection port 8 in the return line section 6 arrives. From there, the heated heat exchange fluid can be directed, for example, into a (not shown) radiator or the like, after which it is conveyed back into the feed line 12 by a pump (not shown), for example, in order to close the circuit.
  • In 2 1 is a schematic representation of the principle of a known Tichelmann system using the example of solar collectors 18 connected in parallel.
  • the pipes from the heat generator (e.g. boiler, solar system with solar collectors 18) to the heat consumer (e.g. radiator, hot water storage tank) and back are usually routed in a ring arrangement in such a way that the total the lengths of flow 14 and return 16 for each solar panel 18 is about the same size.
  • Solar panels 18 with a short lead 14 have a long return 16 and vice versa.
  • a connection according to "Tichelmann” also means that the zeta values (pressure loss coefficients) of the pipe fittings for connecting several identical components (usually hot water tanks or solar collectors 18) are the same in total for each individual component, so that an even flow is guaranteed (source: Wikipedia https:/ /de.wikipedia.org/wiki/Tichelmann-System).
  • the colder flow 14 is shown with solid lines and the warmer return 16 is shown with dash-two-dotted lines.
  • a heat exchange fluid pump and a heat consumer for utilizing the heat in the return 16 are omitted.
  • Cold heat exchanger fluid is introduced into the flow 14 in the introduction direction ER.
  • the flow 14 has a so-called Tichelmann line 20 upstream of the flow line 24 with the connection terminals 8 to the solar collectors 18 , viewed in the direction of introduction ER.
  • the Tichelmann line 20 is designed as an extension of the flow line 24 and is designed parallel thereto.
  • the heat exchanger fluid flows in the feed line 24 in an inflow direction ZR, which is directed counter to the introduction direction ER, although a fluid flow in the feed 14 is not reversed, ie always flows in the same direction.
  • the heat exchanger fluid flows via the respective connection port 8 into the respective heat exchanger module 1 and its heat exchanger chamber 2.
  • the heated heat exchanger fluid flows back into the circuit via the return line 26.
  • the Tichelmann line 20 ensures that the path of the heat exchanger fluid in the flow 14 is extended and so the sum of the lengths of the flow 14 and return 16 is approximately the same for each solar collector 18 .
  • heat exchanger system 22 in the in 3 shown heat exchanger system 22 are several heat exchanger modules 1 according to 1 connected in parallel with the so-called "Tichelmann line" 20, whereby a feed pressure of the heat exchanger fluid can be kept approximately the same in each of the heat exchanger modules 1, without providing control valves, as already mentioned above.
  • a uniform flow and thus a uniform heat transfer from the waste water to the heat exchanger fluid in the individual heat exchanger modules 1 is thus ensured.
  • the feed line 12 shown in broken lines, is designed as a Tichelmann line 20 and is arranged inside the flow line 24.
  • the heat exchanger fluid must pass through the feed line 12 completely before it emerges from the feed line 12 at a downstream end of the feed line 12 viewed in the introduction direction ER of the heat exchanger fluid and feeds the feed line 24 with it.
  • the heat exchanger fluid flows in the inflow direction ZR and via the respective connection port 8 into the respective heat exchanger module 1 of the heat exchanger system 22 and then back again via the return line 26, for example to a heat exchanger fluid pump (not shown), at the outlet of which the feed line 24 connected.
  • the inflow direction ZR of the heat exchanger fluid in the feed line 24 is directed counter to the introduction direction ER of the heat exchanger fluid into the feed line 12, i.e. within the feed 14 the flow direction of the heat exchanger fluid is reversed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft ein Wärmetauschermodul, ein Wärmetauschersystem und ein Verfahren zum Herstellen eines Wärmetauschersystems zum, insbesondere nachträglichen, Einbau in eine Abwasserrohrleitung.
  • Energiegewinnung aus Abwasser durch nachträglich in die Abwasserrohrleitung eingebaute Wärmetauscher ist beispielsweise aus der DE 10 2005 048 689 A1 bekannt.
  • Bei dem bekannten Wärmetauscher werden Wärmetauscherfluid-Rohrleitungen für den Zulauf in den und Ablauf aus dem Wärmetauscher unterhalb von Ablaufflächen angebracht und so vor Verunreinigung durch das Abwasser geschützt. Dies hat keinen negativen Einfluss auf die Wärmegewinnung, da bei dem bekannten Wärmetauscher ausschließlich dessen Oberseite in Kontakt mit dem Abwasser kommt.
  • Bei verbessertem Wärmetausch aber, bei dem auch eine Unterseite des Wärmetauschers mit dem Abwasser in Kontakt kommt, sind bei dem bekannten Wärmetauscher die Rohrleitungen für den Zu- und Ablauf nicht mehr vor Verunreinigung durch das Abwasser geschützt. Eine Verunreinigung der Rohrleitungen für den Zu- und Ablauf verringert aber eine Erwärmung des Wärmetauscherfluids in der Rohrleitung für den Ablauf, da Rohrleitung für den Ablauf einen Teil der Wärme an die Verunreinigungen außen auf der Rohrleitung abgibt, den sie von dem Wärmetauscherfluid in der Rohrleitung abzieht. Dazu kommt, dass das Wärmetauscherfluid in der Rohrleitung für den Zulauf von Verunreinigungen außen auf der Rohrleitung erwärmt wird, wodurch ein Temperaturunterschied zwischen den Rohrleitungen für den Zu- und Ablauf weiter verringert und somit eine Wärmegewinnung aus dem Abwasser weiter verschlechtert wird. Darüber hinaus stellen die die angeströmten Rohrleitungen einen Strömungswiderstand dar und beeinträchtigen so den Abwasserstrom in der Abwasserrohrleitung.
  • Die FR 2 954 819 A1 offenbart eine Vorrichtung zum Abziehen von Wärme aus einem Abwassersammler, umfassend einen Wärmetauscher, der zum Eintauchen im Abwasserstrom vorgesehen ist, und Verbindungsmittel zwischen einem Wärmeübertragungsfluidkreislauf in dem Wärmetauscher und Wärmeübertragungsfluideinlass- und Rücklaufleitungen. Es ist auch ein System von Wärmeübertragungsfluidkanälen offenbart, die dem Wärmetauscher zugeordnet sind, wobei das System mit dem Wärmetauscher verbunden ist.
  • Zur Vermeidung der oben genannten Nachteile ist es eine Aufgabe der vorliegenden Erfindung, ein verbessertes Wärmetauschermodul, Wärmetauschersystem und Verfahren zum Herstellen eines Wärmetauschersystems zur Verfügung zu stellen, wobei insbesondere ein Aufwand beim Verlegen der Wärmetauschermodule zu einem Wärmetauschersystem reduziert ist.
  • Die Aufgabe wird durch den Gegenstand des jeweiligen unabhängigen Patentanspruchs gelöst. Die Erfindung umfasst ein Wärmetauschermodul zum Einbau in eine Abwasserrohrleitung, aufweisend einen Vorlaufleitungsabschnitt und einen Rücklaufleitungsabschnitt, die mit einer Wärmetauscherkammer des Wärmetauschermoduls fluidisch verbunden sind, wobei die jeweiligen Vorlaufleitungsabschnitte mehrerer Wärmetauschermodule miteinander zu einer Vorlaufleitung fluidisch verbindbar sind und die jeweiligen Rücklaufleitungsabschnitte mehrerer Wärmetauschermodule miteinander zu einer Rücklaufleitung fluidisch verbindbar sind und wobei innerhalb des Vorlaufleitungsabschnitts eine Speiseleitung anordenbar oder angeordnet ist, mittels der der Vorlaufleitungsabschnitt mit einem Wärmetauscherfluid speisbar oder gespeist ist.
  • Ein Vorteil der vorliegenden Erfindung ist, dass ein platzsparendes Wärmetauschermodul zur Verfügung gestellt wird, das insbesondere zur Verwendung bei beengten und/oder beschränkten Platzverhältnissen wie beispielsweise einem Abwasserkanal geeignet ist. Insbesondere kann dabei der zur Verfügung stehende Platz derart besser ausgenutzt werden, dass mehr Platz von der Wärmetauscherkammer eingenommen werden kann im Vergleich zu einem herkömmlichen Wärmetauschermodul, bei dem eine Speiseleitung außerhalb des Vorlaufleitungsabschnitts vorgesehen ist. Somit kann bei gleichen Platzverhältnissen ein Wärmetauschermodul mit erhöhter Wärmetauschleistung zum Einsatz kommen.
  • Ein weiterer Vorteil der vorliegenden Erfindung ist, dass das Wärmetauschermodul eine geringere Querschnittsfläche aufweist, was insbesondere bei Verwendung in einem Abwasserkanal für einen besseren Abwasserstrom und für eine geringere Verschmutzungsneigung des Wärmetauschermoduls sorgt.
  • Darüber hinaus ist ein weiterer Vorteil der vorliegenden Erfindung, dass die Speiseleitung, insbesondere eventuelle Verbindungsstellen einer mehrteilig ausgebildeten Speiseleitung, besser vor Verschmutzung und/oder Beschädigung geschützt ist.
  • Das Wärmetauschermodul kann mindestens ein Wärmetauscherelement mit einer Wärmetauscherkammer enthalten und beispielsweise zur Wärmerückgewinnung aus Kühlwasser von Kraftwerksanlagen, zur Speicherung von Solarenergie in Warmwasserpuffern oder auch zur Wärmerückgewinnung aus Abwärme - insbesondere aus Abwasser - von Gebäuden, Maschinen oder sonstigen Anlagen eingesetzt werden. Alternativ oder zusätzlich zu dem oben Beschriebenen kann das Wärmetauscherelement zumindest abschnittsweise von Luft oder einem Gas bzw. Gasgemisch umströmt werden.
  • Eine Abwasserrohrleitung kann eine Rohrleitung zum Sammeln und Leiten von Abwasser sein, wobei eine Abwasserfließrichtung parallel zu der Längsrichtung der Abwasserrohrleitung verläuft bzw. mit dieser zusammenfällt. Die Abwasserfließrichtung ist in der Regel durch ein Gefälle der Abwasserrohrleitung festgelegt und verläuft grundsätzlich parallel zu der oben beschriebenen Längsrichtung bzw. fällt mit ihr zusammen. Eine Abwasserrohrleitung kann im Sinne der vorliegenden Erfindung auch eine offene Abwasserrinne sein.
  • Der Vorlaufleitungsabschnitt kann ein Abschnitt einer Vorlaufleitung sein, wobei der Vorlaufleitungsabschnitt und/oder die Vorlaufleitung als geschlossene Leitung oder als offene Rinne ausgebildet sein können. Entsprechendes gilt für den Rücklaufleitungsabschnitt und/oder die Rücklaufleitung.
  • Die Speiseleitung kann als geschlossene Leitung oder als offene Rinne ausgebildet sein, aus der der Vorlaufleitungsabschnitt und/oder die Vorlaufleitung oder der Rücklaufleitungsabschnitt und/oder die Rücklaufleitung mit dem Wärmetauscherfluid speisbar oder gespeist ist. Es ist grundsätzlich beschrieben, dass die Speiseleitung in dem Vorlaufleitungsabschnitt und/oder in der Vorlaufleitung anordenbar oder angeordnet ist. Die damit verbundenen Vorteile können ebenso erreicht werden, wenn alternativ dazu die Speiseleitung entsprechend in dem Rücklaufleitungsabschnitt und/oder der Rücklaufleitung anordenbar oder angeordnet ist.
  • Das Wärmetauscherfluid kann wie oben beschrieben Wasser, insbesondere Abwasser, Luft oder ein Gas bzw. Gasgemisch sein.
  • Die Begriffe "stromauf, "stromab" und dergleichen sind im Rahmen dieser Beschreibung in Bezug auf die Fließrichtung eines jeweils beschriebenen Mediums, gegebenenfalls in einer jeweils beschriebenen Leitung, zu verstehen.
  • Die verwendeten Begriffe "außen" oder "innen" und dergleichen bedeuten im Sinne der vorliegenden Erfindung, dass ein, insbesondere idealisierter oder gedachter, Mittelpunkt ein innerster Punkt ist. Ein in Bezug dazu äußerer Bereich ist ein, insbesondere idealisierter oder gedachter, Umfangsbereich, der den Mittelpunkt zumindest teilweise umgibt. Ein Punkt oder Bereich, der als weiter außen liegend bezeichnet ist als ein anderer Punkt oder Bereich, liegt also in Radialrichtung von dem Mittelpunkt ausgehend weiter in Richtung des Umfangsbereichs entfernt als der andere, weiter innen liegende, Punkt oder Bereich.
  • Die verwendeten Begriffe "oben" oder "oberhalb" und dergleichen bedeuten im Sinne der vorliegenden Erfindung eine Richtung und/oder eine Lage eines Elements in Bezug auf ein anderes Element entgegen der Schwerkraftrichtung. Die nachfolgend verwendeten Begriffe "unten" oder "unterhalb" und dergleichen bedeuten im Sinne der vorliegenden Erfindung eine Richtung und/oder eine Lage eines Elements in Bezug auf ein anderes Element in der Schwerkraftrichtung.
  • Vorteilhafterweise kann eine Querschnittsfläche des Vorlaufleitungsabschnitts abzüglich einer Querschnittsfläche der Speiseleitung etwa gleich groß sein wie die Querschnittsfläche der Speiseleitung. Somit kann ein Strömungswiderstand in dem Vorlaufleitungsabschnitt etwa gleich groß gehalten werden wie ein Strömungswiderstand in der Speiseleitung.
  • Insbesondere kann die Speiseleitung einstückig ausgebildet sein. Somit kann eine leckageanfällige Verbindungsstelle einer andernfalls mehrstückig ausgebildeten Speiseleitung innerhalb des Vorlaufleitungsabschnitts vermieden werden.
  • Ein Fluidstrom des Wärmetauscherfluids in der Speiseleitung kann in Gegenrichtung zu einem Fluidstrom des Wärmetauscherfluids in dem Vorlaufleitungsabschnitt gerichtet sein.
  • Insbesondere kann der Vorlaufleitungsabschnitt an einem stromabseitigen Ende der Speiseleitung mit dem Wärmetauscherfluid gespeist sein. Mit dieser Konfiguration durchläuft das Wärmetauscherfluid die komplette Speiseleitung, bevor es in den Vorlaufleitungsabschnitt eintritt, von dem das Wärmetauscherfluid in die einzelnen Wärmetauschermodule gelangt.
  • Die Speiseleitung kann, insbesondere mittels Führungsringen und/oder Distanzstücken, konzentrisch in dem Vorlaufleitungsabschnitt anordenbar oder angeordnet sein.
  • Alternativ dazu kann ein Außenumfang der Speiseleitung einen Innenumfang des Vorlaufleitungsabschnitts zumindest abschnittsweise berühren.
  • Eine konzentrische oder exzentrische Position der Speiseleitung in Bezug auf den Vorlaufleitungsabschnitt kann mittels Führungsringen und/oder Distanzstücken erreicht werden, die einstückig an der Speiseleitung ausgebildet sein können. Somit kann ein Einführen der Speiseleitung in den Vorlaufleitungsabschnitt und/oder ein Einhalten der gewünschten Position der Speiseleitung im Vorlaufleitungsabschnitt erleichtert werden. Dabei versteht es sich von selbst, dass eine Außengeometrie der Führungsringe und/oder Distanzstücke an eine Innengeometrie des Vorlaufleitungsabschnitts angepasst ist und dass eine Innengeometrie der Führungsringe und/oder Distanzstücke an eine Außengeometrie der Speiseleitung angepasst ist.
  • Die Speiseleitung kann aus Kunststoff ausgebildet sein. Somit kann eine erhöhte Haltbarkeit und/oder leichtere Handhabung der Speiseleitung, insbesondere beim Einbringen der Speiseleitung in den Vorlaufleitungsabschnitt, gewährleistet werden.
  • Ein weiterer Aspekt betrifft ein Wärmetauschersystem mit modularem Aufbau, aufweisend mehrere hintereinander angeordnete Wärmetauschermodule, wobei jedes Wärmetauschermodul einen Vorlaufleitungsabschnitt und einen Rücklaufleitungsabschnitt aufweist, die mit einer Wärmetauscherkammer des Wärmetauschermoduls fluidisch verbunden sind, wobei die jeweiligen Vorlaufleitungsabschnitte der einzelnen Wärmetauschermodule miteinander zu einer Vorlaufleitung fluidisch verbunden sind und die jeweiligen Rücklaufleitungsabschnitte der einzelnen Wärmetauschermodule miteinander zu einer Rücklaufleitung fluidisch verbunden sind und wobei innerhalb der Vorlaufleitung eine Speiseleitung angeordnet ist, mittels der die Vorlaufleitung mit einem Wärmetauscherfluid speisbar oder gespeist ist.
  • Zusätzlich zu den oben für das erfindungsgemäße Wärmetauschermodul genannten Vorteilen ist ein Vorteil des erfindungsgemäßen Wärmetauschersystems, dass ein Verlegen des Wärmetauschersystems vereinfacht ist, insbesondere wegen eines vereinfachten Einbringens der Speiseleitung in die Vorlaufleitung bereits verlegter Wärmetauschermodule. Insbesondere kann deswegen auf ein gesondertes Verbinden von ansonsten je Wärmetauschermodul vorhandenen Speiseleitungsabschnitten verzichtet werden.
  • Insbesondere können die mehreren hintereinander angeordneten Wärmetauschermodule fluidisch parallel zueinander geschaltet sein. Die hintereinander angeordneten Wärmetauschermodule können einem Verlauf der Abwasserrohrleitung folgen, in der sie beispielsweise verlegt sind.
  • Ein Fluidstrom des Wärmetauscherfluids in der Speiseleitung kann in Gegenrichtung zu einem Fluidstrom des Wärmetauscherfluids in der Vorlaufleitung gerichtet sein.
  • Insbesondere kann die Vorlaufleitung an einem stromabseitigen Ende der Speiseleitung mit dem Wärmetauscherfluid gespeist sein. Mit dieser Konfiguration durchläuft das Wärmetauscherfluid die komplette Speiseleitung, bevor es in die Vorlaufleitung eintritt, von der das Wärmetauscherfluid in die einzelnen Wärmetauschermodule gelangt.
  • Eine Summe der Längen von Speiseleitung, Vorlaufleitung und Rücklaufleitung bei jedem Wärmetauschermodul kann etwa gleich groß sein. Mit dieser Konfiguration kann eine sogenanntes Tichelmann-System (Tichelmannsche Rohrführung) verwirklicht werden. Beim Tichelmann-System werden beispielsweise in einer Heizanlage die Rohre vom Wärmeerzeuger (z. B. Heizkessel, Solaranlage) zum Wärmeverbraucher (z. B. Heizkörper, Warmwasserspeicher) und zurück in Ringverlegung so geführt, dass die Summe der Längen von Vorlauf und Rücklauf bei jedem Heizkörper etwa gleich groß ist. Heizkörper mit kurzem Vorlauf haben einen langen Rücklauf und umgekehrt. Der Sinn dabei ist, dass alle Heizkörper etwa gleichen Druckverlusten ausgesetzt sind und sich damit gleiche Volumenströme = gleiche Wärmeströme in den Heizkörpern einstellen, auch wenn keine Regelventile verwendet werden. Dies bewirkt ein gleichmäßiges Erwärmen auch von weiter entfernt gelegenen Heizkörpern. Eine Anbindung nach "Tichelmann" bedeutet auch, dass die zeta-Werte (Druckverlustbeiwerte) der Formstücke der Rohrleitung zum Anschluss mehrerer gleicher Komponenten (in der Regel Warmwasserspeicher oder Sonnenkollektoren) in der Summe je Einzelkomponente gleich sind, damit eine gleichmäßige Durchströmung gewährleistet ist (Quelle: Wikipedia https://de.wikipedia.org/wiki/Tichelmann-System).
  • Insbesondere kann eine Querschnittsfläche der Vorlaufleitung abzüglich einer Querschnittsfläche der Speiseleitung etwa gleich groß sein wie die Querschnittsfläche der Speiseleitung. Somit kann ein Strömungswiderstand in der Vorlaufleitung etwa gleich groß gehalten werden wie ein Strömungswiderstand in der Speiseleitung.
  • Vorteilhafterweise kann die Speiseleitung einstückig ausgebildet sein. Somit kann eine leckageanfällige Verbindungsstelle einer ansonsten mehrstückig ausgebildeten Speiseleitung innerhalb der Vorlaufleitung vermieden werden. Weiter kann mit dieser Konfiguration ein Verlegen des Wärmetauschersystems weiter vereinfacht werden, da das Einbringen der einstückigen Speiseleitung in die Vorlaufleitung der bereits verlegten Wärmetauschermodule eine erhebliche Vereinfachung bedeutet, insbesondere wenn die Speiseleitung quasi endlos, d.h. beispielsweise in Form einer 100 m-Rolle, vorliegt. Insbesondere kann deswegen auf ein gesondertes Verbinden von ansonsten je Wärmetauschermodul vorhandenen Speiseleitungsabschnitten verzichtet werden.
  • Die Speiseleitung kann, insbesondere mittels Führungsringen und/oder Distanzstücken, konzentrisch in der Vorlaufleitung angeordnet sein.
  • Alternativ dazu kann ein Außenumfang der Speiseleitung einen Innenumfang der Vorlaufleitung zumindest abschnittsweise berühren.
  • Eine konzentrische oder exzentrische Position der Speiseleitung in Bezug auf die Vorlaufleitung kann mittels Führungsringen und/oder Distanzstücken erreicht werden, die einstückig an der Speiseleitung ausgebildet sein können. Somit kann ein Einführen der Speiseleitung in die Vorlaufleitung und/oder ein Einhalten der gewünschten Position der Speiseleitung in der Vorlaufleitung erleichtert werden. Dabei versteht es sich von selbst, dass eine Außengeometrie der Führungsringe und/oder Distanzstücke an eine Innengeometrie der Vorlaufleitung angepasst ist und dass eine Innengeometrie der Führungsringe und/oder Distanzstücke an eine Außengeometrie der Speiseleitung angepasst ist.
  • Die Speiseleitung kann aus Kunststoff ausgebildet sein. Somit kann eine erhöhte Haltbarkeit und/oder leichtere Handhabung der Speiseleitung, insbesondere beim Einbringen der Speiseleitung in die Vorlaufleitung, gewährleistet werden.
  • Die Erfindung umfasst ein Verfahren zum Herstellen eines Wärmetauschersystems mit modularem Aufbau, aufweisend die Schritte:
    • Anordnen von mehreren Wärmetauschermodulen hintereinander in einer Abwasserrohrleitung, Vorsehen eines Vorlaufleitungsabschnitts und eines Rücklaufleitungsabschnitts an jedem Wärmetauschermodul und fluidisches Verbinden des Vorlaufleitungsabschnitts und des Rücklaufleitungsabschnitts mit einer Wärmetauscherkammer des Wärmetauschermoduls,
    • fluidisches Verbinden der jeweiligen Vorlaufleitungsabschnitte der einzelnen Wärmetauschermodule miteinander zu einer Vorlaufleitung und der jeweiligen Rücklaufleitungsabschnitte der einzelnen Wärmetauschermodule miteinander zu einer Rücklaufleitung und
    • Anordnen einer Speiseleitung innerhalb der Vorlaufleitung zum Speisen der Vorlaufleitung mit einem Wärmetauscherfluid.
  • Die Vorteile des Verfahrens zum Herstellen des Wärmetauschersystems ergeben sich analog aus den zum oben genannten Wärmetauschermodul und zum Wärmetauschersystem genannten Merkmalen und deren Vorteile.
  • Das oben beschriebene Verfahren gilt entsprechend für lediglich ein einzelnes Wärmetauschermodul.
  • Nachfolgend sind Ausführungsbeispiele des erfindungsgemäßen Wärmetauschermoduls und des Wärmetauschersystems anhand von Zeichnungen näher erläutert. Es versteht sich, dass die vorliegende Erfindung nicht auf die nachstehend beschriebenen Ausführungsbeispiele beschränkt ist, und dass einzelne Merkmale davon zu weiteren Ausführungsbeispielen kombiniert werden können.
  • Es zeigen:
  • Fig. 1
    eine räumliche Ansicht eines erfindungsgemäßen Wärmetauschermoduls gemäß dem Ausführungsbeispiel der Erfindung;
    Fig. 2
    eine schematische Prinzipdarstellung des bekannten Tichelmann-Systems; und
    Fig. 3
    eine schematische Prinzipdarstellung eines erfindungsgemäßen Wärmetauschersystems mit parallelgeschalteten Wärmetauschermodulen gemäß Fig. 1.
  • Bei der in Fig. 1 gezeigten räumlichen Ansicht eines erfindungsgemäßen Wärmetauschermoduls 1 gemäß dem Ausführungsbeispiel der Erfindung hat das Wärmetauschermodul 1 ein Wärmetauscherelement mit einer Wärmetauscherkammer 2, an der ein Vorlaufleitungsabschnitt 4 und ein Rücklaufleitungsabschnitt 6 an einem jeweiligen Verbindungsanschluss 8 mit der Wärmetauscherkammer 2 fluidisch verbunden sind. Gemäß einem nicht dargestellten Ausführungsbeispiel kann das Wärmetauschermodul 1 mehrere Wärmetauscherelemente haben, die untereinander fluidisch verbunden sind. Aus Stabilitätsgründen kann der Vorlaufleitungsabschnitt 4 und der Rücklaufleitungsabschnitt 6 zusätzlich an einer jeweiligen Versteifungsstelle 10 mit der Wärmetauscherkammer 2 mechanisch verbunden sein.
  • In dem Vorlaufleitungsabschnitt 4 ist eine Speiseleitung 12 angeordnet, in die ein Wärmetauscherfluid in einer Einleitrichtung ER einleitbar ist. Die Speiseleitung 12 ist in Fig. 1 entgegen der Einleitrichtung ER aus dem Vorlaufleitungsabschnitt 4 herausragend dargestellt, wie es beispielsweise beim Einführen der Speiseleitung 12 in den Vorlaufleitungsabschnitt 4 der Fall ist. Der Vorlaufleitungsabschnitt 4 ist an seinem in Einleitrichtung ER gesehen stromabseitigen Ende ebenso wie die Speiseleitung 12 offen ausgebildet, insbesondere für den Anschluss eines weiteren Wärmetauschermoduls 1.
  • Wenn das Wärmetauschermodul 1 als einziges betrieben werden soll, also nicht an ein beispielsweise dahinter angeordnetes zweites Wärmetauschermodul 1 angeschlossen werden soll, kann der Vorlaufleitungsabschnitt 4 an dem in Einleitrichtung ER gesehen stromabseitigen Ende geschlossen ausgebildet sein. Die Speiseleitung 12 hingegen bleibt auch in diesem Fall an ihrem in Einleitrichtung ER gesehen stromabseitigen Ende offen. Vorteilhafterweise ist das in Einleitrichtung ER gesehen stromabseitige Ende der Speiseleitung 12 von dem in Einleitrichtung ER gesehen stromabseitigen Ende des Vorlaufleitungsabschnitts 4 entgegen der Einleitrichtung ER beabstandet, um das Wärmetauscherfluid besser aus der Speiseleitung 12 in den Vorlaufleitungsabschnitt 4 gelangen zu lassen.
  • In dem Vorlaufleitungsabschnitt 4 strömt das Wärmetauscherfluid in einer Zuströmrichtung ZR, die entgegen der Einleitrichtung ER gerichtet ist, und gelangt über den Verbindungsanschluss 8 in die Wärmetauscherkammer 2. Die beispielsweise von umströmtem Abwasser erwärmte Wärmetauscherkammer 2 erwärmt das Wärmetauscherfluid, das über den anderen Verbindungsanschluss 8 in den Rücklaufleitungsabschnitt 6 gelangt. Von dort kann das erwärmte Wärmetauscherfluid beispielsweise in einen (nicht dargestellten) Heizkörper oder dergleichen geleitet werden, nach welchem sie beispielsweise von einer (nicht dargestellten) Pumpe wieder in die Speiseleitung 12 gefördert wird, um den Kreislauf zu schließen.
  • In Fig. 2 ist eine schematische Prinzipdarstellung eines bekannten Tichelmann-Systems am Beispiel parallel geschalteter Sonnenkollektoren 18 gezeigt.
  • Beim Tichelmann-System (Tichelmannsche Rohrführung) in einer Heizanlage werden üblicherweise die Rohre vom Wärmeerzeuger (z. B. Heizkessel, Solaranlage mit Sonnenkollektoren 18) zum Wärmeverbraucher (z. B. Heizkörper, Warmwasserspeicher) und zurück in Ringverlegung so geführt, dass die Summe der Längen von Vorlauf 14 und Rücklauf 16 bei jedem Sonnenkollektor 18 etwa gleich groß ist. Sonnenkollektoren 18 mit kurzem Vorlauf 14 haben einen lange Rücklauf 16 und umgekehrt. Der Sinn dabei ist, dass alle Sonnenkollektoren 18 etwa gleichen Druckverlusten ausgesetzt sind und sich damit gleiche Volumenströme = gleiche Wärmeströme in den einstellen, auch wenn keine Regelventile verwendet werden. Dies bewirkt ein gleichmäßiges Erwärmen eines Wärmetauscherfluids auch bei weiter entfernt gelegenen Sonnenkollektoren 18. Eine Anbindung nach "Tichelmann" bedeutet auch, dass die zeta-Werte (Druckverlustbeiwerte) der Formstücke der Rohrleitung zum Anschluss mehrerer gleicher Komponenten (in der Regel Warmwasserspeicher oder Sonnenkollektoren 18) in der Summe je Einzelkomponente gleich sind, damit eine gleichmäßige Durchströmung gewährleistet ist (Quelle: Wikipedia https://de.wikipedia.org/wiki/Tichelmann-System).
  • Der kältere Vorlauf 14 ist mit durchgezogenen Linien dargestellt und der wärmere Rücklauf 16 ist mit strich-zwei-punktierten Linien dargestellt. Eine Wärmetauscherfluidpumpe und ein Wärmeverbraucher (z. B. Heizkörper, Warmwasserspeicher) zum Nutzen der Wärme im Rücklauf 16 sind weggelassen. Kaltes Wärmetauscherfluid wird in Einleitrichtung ER in den Vorlauf 14 eingeleitet. Der Vorlauf 14 weist in Einleitrichtung ER gesehen stromauf der Vorlaufleitung 24 mit den Verbindungsanschlüssen 8 zu den Sonnenkollektoren 18 eine sogenannte Tichelmann-Leitung 20 auf. Die Tichelmann-Leitung 20 ist als Verlängerung der Vorlaufleitung 24 ausgebildet und parallel dazu ausgebildet. Mit dieser Anordnung strömt das Wärmetauscherfluid in der Vorlaufleitung 24 in einer Zuströmrichtung ZR, die entgegen der Einleitrichtung ER gerichtet ist, obwohl ein Fluidstrom im Vorlauf 14 nicht umgekehrt wird, also immer in der gleichen Richtung strömt. Von der Vorlaufleitung 24 gelangt das Wärmetauscherfluid über den jeweilige Verbindungsanschluss 8 in das jeweilige Wärmetauschermodul 1 und dessen Wärmetauscherkammer 2. Über die Rücklaufleitung 26 gelangt das erwärmte Wärmetauscherfluid zurück in den Kreislauf.
  • Die Tichelmann-Leitung 20 sorgt dafür, dass der Weg des Wärmetauscherfluids im Vorlauf 14 verlängert wird und so die Summe der Längen von Vorlauf 14 und Rücklauf 16 bei jedem Sonnenkollektor 18 etwa gleich groß ist.
  • In dem in Fig. 3 gezeigten Wärmetauschersystem 22 sind mehrere Wärmetauschermodule 1 gemäß Fig. 1 in Parallelschaltung mit der sogenannten "Tichelmann-Leitung" 20 angeschlossen, wodurch ein Einspeisedruck des Wärmetauscherfluids in die Wärmetauschermodule 1 jeweils etwa gleich groß gehalten werden kann, ohne Regelventile vorzusehen, wie oben schon erwähnt. Wie ebenfalls schon erwähnt, ist damit eine gleichmäßige Durchströmung und damit ein gleichmäßiger Wärmeübergang von dem Abwasser zu dem Wärmetauscherfluid in den einzelnen Wärmetauschermodulen 1 gewährleistet.
  • Die Speiseleitung 12, gestrichelt dargestellt, ist als Tichelmann-Leitung 20 ausgebildet und innerhalb der Vorlaufleitung 24 angeordnet. Das Wärmetauscherfluid muss die Speiseleitung 12 zur Gänze durchlaufen, ehe es an einem in Einleitrichtung ER des Wärmetauscherfluids gesehen stromabseitigen Ende der Speiseleitung 12 aus der Speiseleitung 12 austritt und die Vorlaufleitung 24 damit speist.
  • In der Vorlaufleitung 24 strömt das Wärmetauscherfluid in der Zuströmrichtung ZR und gelangt über den jeweiligen Verbindungsanschluss 8 in das jeweilige Wärmetauschermodul 1 des Wärmetauschersystems 22 und danach über die Rücklaufleitung 26 wieder zurück, beispielsweise zu einer (nicht dargestellten) Wärmetauscherfluidpumpe, an deren Ausgang die Vorlaufleitung 24 angeschlossen ist.
  • Die Zuströmrichtung ZR des Wärmetauscherfluids in der Vorlaufleitung 24 ist dabei entgegen der Einleitrichtung ER des Wärmetauscherfluids in die Speiseleitung 12 gerichtet, d.h. innerhalb des Vorlaufs 14 ist die Strömungsrichtung des Wärmetauscherfluids umgekehrt.
  • Bezugszeichenliste
  • 1
    Wärmetauschermodul
    2
    Wärmetauscherkammer
    4
    Vorlaufleitungsabschnitt
    6
    Rücklaufleitungsabschnitt
    8
    Verbindungsanschluss
    10
    Versteifungsstelle
    12
    Speiseleitung
    14
    Vorlauf
    16
    Rücklauf
    18
    Sonnenkollektor
    20
    Tichelmann-Leitung
    22
    Wärmetauschersystem
    24
    Vorlaufleitung
    26
    Rücklaufleitung
    ER
    Einleitrichtung
    ZR
    Zuströmrichtung

Claims (14)

  1. Wärmetauschermodul (1) zum Einbau in eine Abwasserrohrleitung, aufweisend:
    einen Vorlaufleitungsabschnitt (4) und einen Rücklaufleitungsabschnitt (6), die mit einer Wärmetauscherkammer (2) des Wärmetauschermoduls (1) fluidisch verbunden sind, wobei
    die jeweiligen Vorlaufleitungsabschnitte (4) mehrerer Wärmetauschermodule (1) miteinander zu einer Vorlaufleitung (24) fluidisch verbindbar sind und die jeweiligen Rücklaufleitungsabschnitte (6) mehrerer Wärmetauschermodule (1) miteinander zu einer Rücklaufleitung (26) fluidisch verbindbar sind, dadurch gekennzeichnet, dass
    innerhalb des Vorlaufleitungsabschnitts (4) eine Speiseleitung (12) angeordnet ist, mittels der der Vorlaufleitungsabschnitt (4) mit einem Wärmetauscherfluid speisbar ist.
  2. Wärmetauschermodul (1) nach Anspruch 1, wobei eine Querschnittsfläche des Vorlaufleitungsabschnitts (4) abzüglich einer Querschnittsfläche der Speiseleitung (12) etwa gleich groß ist wie die Querschnittsfläche der Speiseleitung (12).
  3. Wärmetauschermodul (1) nach Anspruch 1 oder 2, wobei die Speiseleitung (12) einstückig ausgebildet ist.
  4. Wärmetauschermodul (1) nach einem der vorherigen Ansprüche, wobei die Speiseleitung (12) konzentrisch in dem Vorlaufleitungsabschnitt (4) angeordnet ist oder ein Außenumfang der Speiseleitung (12) einen Innenumfang des Vorlaufleitungsabschnitts (4) zumindest abschnittsweise berührt.
  5. Wärmetauschermodul (1) nach einem der vorherigen Ansprüche, wobei die Speiseleitung (12) aus Kunststoff ausgebildet ist.
  6. Wärmetauschersystem (22) mit modularem Aufbau, aufweisend:
    mehrere hintereinander angeordnete Wärmetauschermodule (1) nach einem der Ansprüche 1 bis 5.
  7. Wärmetauschersystem (22) nach Anspruch 6, wobei ein Fluidstrom des Wärmetauscherfluids in der Speiseleitung (12) in Gegenrichtung zu einem Fluidstrom des Wärmetauscherfluids in der Vorlaufleitung (24) gerichtet ist.
  8. Wärmetauschersystem (22) nach Anspruch 6 oder 7, wobei die Vorlaufleitung (24) an einem stromabseitigen Ende der Speiseleitung (12) mit dem Wärmetauscherfluid gespeist ist.
  9. Wärmetauschersystem (22) nach Anspruch 6 bis 8, wobei eine Summe der Längen von Speiseleitung (12), Vorlaufleitung (24) und Rücklaufleitung (26) bei jedem Wärmetauschermodul (1) etwa gleich groß ist.
  10. Wärmetauschersystem (22) nach einem der Ansprüche 6 bis 9, wobei eine Querschnittsfläche der Vorlaufleitung (24) abzüglich einer Querschnittsfläche der Speiseleitung (12) etwa gleich groß ist wie die Querschnittsfläche der Speiseleitung (12).
  11. Wärmetauschersystem (22) nach einem der Ansprüche 6 bis 10, wobei die Speiseleitung (12) einstückig ausgebildet ist.
  12. Wärmetauschersystem (22) nach einem der Ansprüche 6 bis 11, wobei die Speiseleitung (12) konzentrisch in der Vorlaufleitung (24) angeordnet ist oder ein Außenumfang der Speiseleitung (12) einen Innenumfang der Vorlaufleitung (24) zumindest abschnittsweise berührt.
  13. Wärmetauschersystem (22) nach einem der vorherigen Ansprüche 6 bis 12, wobei die Speiseleitung (12) aus Kunststoff ausgebildet ist.
  14. Verfahren zum Herstellen eines Wärmetauschersystems (22) mit modularem Aufbau, aufweisend die Schritte:
    Anordnen von mehreren Wärmetauschermodulen (1) hintereinander in einer Abwasserrohrleitung,
    Vorsehen eines Vorlaufleitungsabschnitts (4) und eines Rücklaufleitungsabschnitts (6) an jedem Wärmetauschermodul (1) und fluidisches Verbinden des Vorlaufleitungsabschnitts (4) und des Rücklaufleitungsabschnitts (6) mit einer Wärmetauscherkammer (2) des Wärmetauschermoduls (1),
    fluidisches Verbinden der jeweiligen Vorlaufleitungsabschnitte (4) der einzelnen Wärmetauschermodule (1) miteinander zu einer Vorlaufleitung (24) und der jeweiligen Rücklaufleitungsabschnitte (6) der einzelnen Wärmetauschermodule (1) miteinander zu einer Rücklaufleitung (26), gekennzeichnet durch
    Anordnen einer Speiseleitung (12) innerhalb der Vorlaufleitung (24) zum Speisen der Vorlaufleitung (24) mit einem Wärmetauscherfluid.
EP20720767.1A 2019-04-15 2020-04-15 Wärmetauschermodul, wärmetauschersystem und verfahren zum herstellen des wärmetauschersystems Active EP3914872B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019002738.8A DE102019002738A1 (de) 2019-04-15 2019-04-15 Wärmetauschermodul, Wärmetauschersystem und Verfahren zum Herstellen des Wärmetauschersystems
PCT/EP2020/060527 WO2020212383A1 (de) 2019-04-15 2020-04-15 Wärmetauschermodul, wärmetauschersystem und verfahren zum herstellen des wärmetauschersystems

Publications (2)

Publication Number Publication Date
EP3914872A1 EP3914872A1 (de) 2021-12-01
EP3914872B1 true EP3914872B1 (de) 2022-06-29

Family

ID=70391091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20720767.1A Active EP3914872B1 (de) 2019-04-15 2020-04-15 Wärmetauschermodul, wärmetauschersystem und verfahren zum herstellen des wärmetauschersystems

Country Status (5)

Country Link
US (1) US20220196342A1 (de)
EP (1) EP3914872B1 (de)
CN (1) CN113994164A (de)
DE (1) DE102019002738A1 (de)
WO (1) WO2020212383A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020003467A1 (de) 2020-06-09 2021-12-09 Uhrig Energie Gmbh Abwasser-Wärmetauschermodul, Anschlusselement, Abwasser-Wärmetauschersystem und Verfahren zu seiner Herstellung

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883057A (en) * 1928-10-19 1932-10-18 Vilter Mfg Co Refrigeration unit
DE3413931A1 (de) * 1984-04-13 1985-10-24 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart Verdampfer, insbesondere fuer klimaanlagen in kraftfahrzeugen
JPS60251392A (ja) * 1984-05-25 1985-12-12 Matsushita Electric Works Ltd 排熱回収装置
CH690108C1 (de) * 1996-05-31 2004-01-30 Rabtherm Ag I G Installation zum Entzug von Waerme aus Abwasser.
WO2005088207A1 (de) * 2004-03-15 2005-09-22 Uestuen Orhan Wärmetauscher mit vakuumröhre
EP1591740B8 (de) * 2004-04-30 2007-11-07 Rabtherm AG Wärmetauscher und Installation zur Entnahme von Wärme aus Abwasser
DE102004032180A1 (de) * 2004-07-02 2005-12-08 Robert Bosch Gmbh Wärmeübertrager
US7967060B2 (en) * 2005-08-18 2011-06-28 Parker-Hannifin Corporation Evaporating heat exchanger
DE102005048689B3 (de) * 2005-10-11 2007-05-03 Uhrig Kanaltechnik Gmbh Wärmetauscher zur Abwasserwärmenutzung
US8171987B2 (en) * 2006-11-13 2012-05-08 Carrier Corporation Minichannel heat exchanger header insert for distribution
DE102007031084B4 (de) * 2007-07-04 2010-09-23 Fischer, Christel Abwasserrohr mit Wärmetauscherelement
US20110127023A1 (en) * 2008-07-10 2011-06-02 Taras Michael F Design characteristics for heat exchangers distribution insert
CN102203536A (zh) * 2008-09-16 2011-09-28 里昂水务法国公司 用于从流动的水取出热量的设备
DE102009035271B9 (de) * 2009-07-30 2010-12-02 Uhrig Kanaltechnik Gmbh Wärmetauschervorrichtung und Verwendung
US20110139422A1 (en) * 2009-12-15 2011-06-16 Delphi Technologies, Inc. Fluid distribution device
FR2954819B1 (fr) * 2009-12-30 2013-08-16 Lyonnaise Eaux France Dispositif pour extraire de la chaleur dans un collecteur d'eaux usees, et installation mettant en oeuvre de tels dispositifs.
US10001325B2 (en) * 2010-04-09 2018-06-19 Ingersoll-Rand Company Formed microchannel heat exchanger with multiple layers
DE102010019728B4 (de) * 2010-05-07 2013-06-27 Uhrig Kanaltechnik Gmbh Wärmetauschervorrichtung, Verwendung, Wärmetauscheranordnung
CN101922883B (zh) * 2010-09-13 2012-09-26 三花控股集团有限公司 制冷剂导管和具有该制冷剂导管的换热器
US9581397B2 (en) * 2011-12-29 2017-02-28 Mahle International Gmbh Heat exchanger assembly having a distributor tube retainer tab
DE102014223394A1 (de) * 2014-09-12 2016-03-17 Terra Calidus Gmbh Verlegbares Kanalrohrsegment
WO2017150993A1 (en) * 2016-03-03 2017-09-08 Normax-Invest Sp. Z.O.O. Tube freeze exchanger, particularly for feeding a chili accumulator
DE102016204175A1 (de) * 2016-03-14 2017-09-14 Thomas-Krenn.AG System, vorzugsweise für eine Temperaturregulierung eines Volumens
CA2947772C (en) * 2016-11-07 2021-06-15 Winston R. Mackelvie Waste heat exchanger with thermal storage
DE102018003689A1 (de) * 2018-04-19 2019-10-24 Uhrig Energie Gmbh Wärmetauscherelement, Wärmetauschermodul und Wärmetauschersystem
US10816272B2 (en) * 2018-06-27 2020-10-27 Winston MacKelvie Heat exchangers that save energy by heat exchange between a fresh liquid and waste fluids
US11713931B2 (en) * 2019-05-02 2023-08-01 Carrier Corporation Multichannel evaporator distributor
DE102020003467A1 (de) * 2020-06-09 2021-12-09 Uhrig Energie Gmbh Abwasser-Wärmetauschermodul, Anschlusselement, Abwasser-Wärmetauschersystem und Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
CN113994164A (zh) 2022-01-28
WO2020212383A1 (de) 2020-10-22
DE102019002738A1 (de) 2020-10-15
EP3914872A1 (de) 2021-12-01
US20220196342A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
DE102008001308B3 (de) Wärmeenergiemanagement für Produktionsanlagen
DE102009035271B3 (de) Wärmetauschervorrichtung und Verwendung
DE102014217503A1 (de) Spülmaschine mit einer Flüssigkeits-Transportleitung
EP3914872B1 (de) Wärmetauschermodul, wärmetauschersystem und verfahren zum herstellen des wärmetauschersystems
EP3781889B1 (de) Wärmetauscherelement, wärmetauschermodul und wärmetauschersystem
DE102007054703B4 (de) Wärmetauscher
EP2821713A2 (de) Verfahren zum Einspeisen von Speisewasser in eine Heizungsanlage und Heizungsanlage
DE102005030999B4 (de) Anordnung zur Strömungsführung in Rohrbündel-Wärmeaustauschern zur thermischen Behandlung von Suspensionen
WO2021249930A1 (de) Abwasser-wärmetauschermodul, anschlusselement, abwasser-wärmetauschersystem und verfahren zu seiner herstellung
DE102011103133A1 (de) Fernwärmekompaktstation
DE202009011326U1 (de) Wärmetauscher für den Rauchgaskanal einer Feuerung
EP3228943B1 (de) Verbindungseinheit zum verbinden einer druckhalte- und/oder entgasungsvorrichtung mit einem heizkreisverteiler einer heizungsanlage
DE102010019728B4 (de) Wärmetauschervorrichtung, Verwendung, Wärmetauscheranordnung
DE102007031084B4 (de) Abwasserrohr mit Wärmetauscherelement
DE202008017767U1 (de) Wärmetauscher
DE202019102232U1 (de) Wärmeübertrageranordnung mit wenigstens einem Mehrpass-Wärmeübertrager
DE102011114326A1 (de) Molchbarer, zerlegbarer Endloswärmetauscher
DE102011119954B4 (de) Vorrichtung zur Enteisung einer Photovoltaik- oder Solaranlage
EP2129975B1 (de) Wärmekraftanlage
EP2072914B1 (de) Vorrichtung zur gerichteten Durchführung mindestens eines Fluids entlang unterschiedlicher Strömungswege
DE202007014961U1 (de) Vorrichtung zur Energierückgewinnung aus Abgasen von Verbrennungsanlagen
DE10228535B4 (de) Anordnung zur Lagerung eines Filtereinsatzes für eine Heizungsanlage
DE102004012075B4 (de) Warmwasserversorgungsanlage mit einem Warmwasserspeicher mit Zirkulationsleitung
DE10311532A1 (de) Wärmeverteilermodul
DE202020101811U1 (de) Vormontierbares Verteilermodul für einen Heizkreis

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: UHRIG, THOMAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001309

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1501609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001309

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240423

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240423

Year of fee payment: 5