EP3914872B1 - Heat exchanger module, heat exchanger system and method for producing the heat exchanger system - Google Patents
Heat exchanger module, heat exchanger system and method for producing the heat exchanger system Download PDFInfo
- Publication number
- EP3914872B1 EP3914872B1 EP20720767.1A EP20720767A EP3914872B1 EP 3914872 B1 EP3914872 B1 EP 3914872B1 EP 20720767 A EP20720767 A EP 20720767A EP 3914872 B1 EP3914872 B1 EP 3914872B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- feed line
- supply pipe
- line
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000012530 fluid Substances 0.000 claims description 52
- 239000002351 wastewater Substances 0.000 claims description 18
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims 2
- 239000010865 sewage Substances 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 239000013529 heat transfer fluid Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0012—Recuperative heat exchangers the heat being recuperated from waste water or from condensates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/06—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/027—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
Definitions
- the invention relates to a heat exchanger module, a heat exchanger system and a method for producing a heat exchanger system for, in particular subsequent, installation in a sewage pipeline.
- Energy production from waste water by heat exchangers subsequently installed in the waste water pipeline is, for example, from DE 10 2005 048 689 A1 known.
- heat exchange fluid piping for inflow into and outflow from the heat exchanger is mounted below drain surfaces and is thus protected from contamination by the waste water. This has no negative impact on heat generation, since in the known heat exchanger only the upper side comes into contact with the waste water.
- the FR 2 954 819 A1 discloses an apparatus for extracting heat from a sewage collector, comprising a heat exchanger intended for immersion in the sewage stream and connection means between a heat transfer fluid circuit in the heat exchanger and heat transfer fluid inlet and return lines. Also disclosed is a system of heat transfer fluid channels associated with the heat exchanger, the system being connected to the heat exchanger.
- the invention comprises a heat exchanger module for installation in a waste water pipeline, having a flow line section and a return line section which are fluidically connected to a heat exchanger chamber of the heat exchanger module, the respective flow line sections of a plurality of heat exchanger modules being fluidically connectable to one another to form a flow line and the respective return line sections of a plurality of heat exchanger modules to one another Return line can be fluidically connected and within the flow line section a feed line can be arranged or is arranged, by means of which the flow line section can be fed or fed with a heat exchanger fluid.
- An advantage of the present invention is that a space-saving heat exchanger module is made available, which is particularly suitable for use in cramped and/or restricted spaces such as a sewer.
- the available space can be better utilized in such a way that more space can be occupied by the heat exchanger chamber compared to a conventional heat exchanger module in which a feed line is provided outside the flow line section.
- a heat exchanger module with increased heat exchange performance can thus be used with the same space conditions.
- a further advantage of the present invention is that the heat exchanger module has a smaller cross-sectional area, which ensures a better flow of waste water and a lower tendency of the heat exchanger module to become soiled, particularly when used in a sewer.
- Another advantage of the present invention is that the feed line, in particular possible connection points of a multi-part feed line, is better protected against dirt and/or damage.
- the heat exchanger module can contain at least one heat exchanger element with a heat exchanger chamber and can be used, for example, for heat recovery from cooling water from power plants, for storing solar energy in hot water buffers or for heat recovery from waste heat - in particular from waste water - from buildings, machines or other systems.
- air or a gas or gas mixture can flow around the heat exchanger element at least in sections.
- a sewage pipeline may be a pipeline for collecting and guiding sewage, wherein a sewage flow direction is parallel to or coincident with the longitudinal direction of the sewage pipeline.
- the sewage flow direction is usually determined by a slope of the sewage pipeline and basically runs parallel to the longitudinal direction described above or coincides with it.
- a sewage pipeline can also be an open sewage channel within the meaning of the present invention.
- the flow line section can be a section of a flow line, wherein the flow line section and/or the flow line can be designed as a closed line or as an open channel. The same applies to the return line section and/or the return line.
- the feed line can be designed as a closed line or as an open channel, from which the flow line section and/or the flow line or the return line section and/or the return line can be fed or is fed with the heat exchanger fluid. It is basically described that the feed line can be arranged or is arranged in the flow line section and/or in the flow line. The associated advantages can also be achieved if, as an alternative to this, the feed line can be arranged or is arranged accordingly in the return line section and/or the return line.
- the heat exchange fluid can be water, in particular waste water, air or a gas or gas mixture.
- upstream In the context of this description, the terms “upstream”, “downstream” and the like are to be understood in relation to the direction of flow of a medium described in each case, optionally in a line described in each case.
- outside or inside and the like used in the context of the present invention mean that a center point, particularly an idealized or imagined center point, is an innermost point.
- An outer area in relation to this is an, in particular idealized or imaginary, peripheral area which at least partially surrounds the center point.
- a point or region that is designated as being more outward than another point or region is radially further from the center toward the circumferential region than the other point or region that is more inward.
- the terms “above” or “above” and the like mean a direction and/or a position of an element in relation to another element counter to the direction of gravity.
- the terms “below” or “below” and the like used below mean a direction and/or a position of one element in relation to another element in the direction of gravity.
- a cross-sectional area of the flow line section minus a cross-sectional area of the feed line can be approximately the same size as the cross-sectional area of the feed line.
- a flow resistance in the flow line section can thus be kept approximately the same as a flow resistance in the feed line.
- the feed line can be designed in one piece.
- a leak-prone connection point of an otherwise multi-piece feed line within the flow line section can be avoided.
- a fluid flow of the heat exchange fluid in the feed line can be directed in the opposite direction to a fluid flow of the heat exchange fluid in the flow line section.
- the flow line section can be fed with the heat exchanger fluid at a downstream end of the feed line.
- the heat exchange fluid traverses the entire feed line before entering the delivery line section, from which the heat exchange fluid enters the individual heat exchange modules.
- the feed line can be or can be arranged concentrically in the flow line section, in particular by means of guide rings and/or spacers.
- an outer circumference of the feed line can touch an inner circumference of the feed line section at least in sections.
- a concentric or eccentric position of the feed line with respect to the delivery line section can be achieved by means of guide rings and/or spacers which can be integrally formed on the feed line.
- guide rings and/or spacers which can be integrally formed on the feed line.
- the feed line can be made of plastic. Increased durability and/or easier handling of the feed line, in particular when introducing the feed line into the flow line section, can thus be ensured.
- Another aspect relates to a heat exchanger system with a modular structure, having a plurality of heat exchanger modules arranged one behind the other, each heat exchanger module having a feed line section and a return line section which are fluidically connected to a heat exchanger chamber of the heat exchanger module, the respective feed line sections of the individual heat exchanger modules being fluidically connected to one another to form a feed line and the respective return line sections of the individual heat exchanger modules are fluidically connected to one another to form a return line, and wherein a feed line is arranged within the feed line, by means of which the feed line can be fed or is fed with a heat exchanger fluid.
- an advantage of the heat exchanger system according to the invention is that laying the heat exchanger system is simplified, in particular because of a simplified introduction of the feed line into the flow line of heat exchanger modules that have already been laid. In particular, it is therefore possible to dispense with a separate connection of feed line sections that are otherwise present in each heat exchanger module.
- the plurality of heat exchanger modules arranged one behind the other can be fluidically connected in parallel with one another.
- the heat exchanger modules arranged one behind the other can follow a course of the sewage pipeline in which they are laid, for example.
- a fluid flow of the heat exchange fluid in the feed line can be directed in the opposite direction to a fluid flow of the heat exchange fluid in the supply line.
- the feed line can be fed with the heat exchanger fluid at a downstream end of the feed line.
- the heat exchange fluid traverses the entire feed line before entering the delivery line, from which the heat exchange fluid enters the individual heat exchange modules.
- a sum of the lengths of the feed line, flow line and return line in each heat exchanger module can be approximately the same.
- a so-called Tichelmann system Tichelmann's pipework
- the pipes in a heating system from the heat generator (e.g. boiler, solar system) to the heat consumer (e.g. radiator, hot water tank) and back are laid in a ring so that the sum of the lengths of flow and return is is about the same size for each radiator.
- a connection according to "Tichelmann” also means that the zeta values (pressure loss coefficients) of the pipe fittings for connecting several identical components (usually hot water tanks or solar collectors) are the same in total for each individual component, so that an even flow is guaranteed (source : Wikipedia https://de.wikipedia.org/wiki/Tichelmann-System).
- a cross-sectional area of the flow line minus a cross-sectional area of the feed line can be approximately the same size as the cross-sectional area of the feed line.
- a flow resistance in the supply line can thus be kept approximately the same as a flow resistance in the feed line.
- the feed line can be formed in one piece.
- a leak-prone connection point of an otherwise multi-piece feed line within the flow line can be avoided.
- This configuration can also be used to further simplify laying of the heat exchanger system, since the introduction of the one-piece feed line into the flow line of the heat exchanger modules that have already been laid means a considerable simplification, especially if the feed line is virtually endless, i.e. in the form of a 100 m roll, for example.
- a separate connection of feed line sections that are otherwise present for each heat exchanger module can therefore be dispensed with.
- the feed line can be arranged concentrically in the flow line, in particular by means of guide rings and/or spacers.
- an outer circumference of the feed line can touch an inner circumference of the flow line at least in sections.
- a concentric or eccentric position of the feed line with respect to the delivery line can be achieved by means of guide rings and/or spacers which can be integrally formed on the feed line. This makes it easier to insert the feed line into the flow line and/or to maintain the desired position of the feed line in the flow line. It goes without saying that an external geometry of the guide rings and/or spacers is adapted to an internal geometry of the supply line and that an internal geometry of the guide rings and/or spacers is adapted to an external geometry of the feed line.
- the feed line can be made of plastic. Increased durability and/or easier handling of the feed line, in particular when introducing the feed line into the flow line, can thus be ensured.
- the method described above applies correspondingly to only a single heat exchanger module.
- the heat exchanger module 1 has a heat exchanger element with a heat exchanger chamber 2, on which a supply line section 4 and a return line section 6 are fluidically connected to the heat exchanger chamber 2 at a respective connection port 8.
- the heat exchanger module 1 can have a plurality of heat exchanger elements which are fluidically connected to one another.
- the supply line section 4 and the return line section 6 can also be mechanically connected to the heat exchanger chamber 2 at a respective stiffening point 10 .
- a feed line 12 is arranged, in which a heat exchanger fluid can be introduced in an introduction direction ER.
- the feed line 12 is in 1 shown protruding from the feed line section 4 counter to the introduction direction ER, as is the case, for example, when the feed line 12 is inserted into the feed line section 4 .
- the flow line section 4 is designed to be open at its downstream end as seen in the introduction direction ER, just like the feed line 12, in particular for the connection of a further heat exchanger module 1.
- the flow line section 4 can be connected to the in Introductory direction ER seen downstream end be closed.
- the feed line 12, on the other hand, also remains open in this case at its end on the downstream side, viewed in the direction of introduction ER.
- the downstream end of the feed line 12, viewed in the direction of introduction ER is at a distance from the end of the feed line section 4, viewed in the direction of introduction ER, downstream, counter to the direction of introduction ER, in order to allow the heat exchanger fluid to pass more easily from the feed line 12 into the feed line section 4.
- the heat exchanger fluid flows in an inflow direction ZR, which is directed counter to the inlet direction ER, and reaches the heat exchanger chamber 2 via the connection port 8.
- the heat exchanger chamber 2 which is heated, for example, by the waste water flowing around it, heats the heat exchanger fluid, which flows via the other connection port 8 in the return line section 6 arrives. From there, the heated heat exchange fluid can be directed, for example, into a (not shown) radiator or the like, after which it is conveyed back into the feed line 12 by a pump (not shown), for example, in order to close the circuit.
- In 2 1 is a schematic representation of the principle of a known Tichelmann system using the example of solar collectors 18 connected in parallel.
- the pipes from the heat generator (e.g. boiler, solar system with solar collectors 18) to the heat consumer (e.g. radiator, hot water storage tank) and back are usually routed in a ring arrangement in such a way that the total the lengths of flow 14 and return 16 for each solar panel 18 is about the same size.
- Solar panels 18 with a short lead 14 have a long return 16 and vice versa.
- a connection according to "Tichelmann” also means that the zeta values (pressure loss coefficients) of the pipe fittings for connecting several identical components (usually hot water tanks or solar collectors 18) are the same in total for each individual component, so that an even flow is guaranteed (source: Wikipedia https:/ /de.wikipedia.org/wiki/Tichelmann-System).
- the colder flow 14 is shown with solid lines and the warmer return 16 is shown with dash-two-dotted lines.
- a heat exchange fluid pump and a heat consumer for utilizing the heat in the return 16 are omitted.
- Cold heat exchanger fluid is introduced into the flow 14 in the introduction direction ER.
- the flow 14 has a so-called Tichelmann line 20 upstream of the flow line 24 with the connection terminals 8 to the solar collectors 18 , viewed in the direction of introduction ER.
- the Tichelmann line 20 is designed as an extension of the flow line 24 and is designed parallel thereto.
- the heat exchanger fluid flows in the feed line 24 in an inflow direction ZR, which is directed counter to the introduction direction ER, although a fluid flow in the feed 14 is not reversed, ie always flows in the same direction.
- the heat exchanger fluid flows via the respective connection port 8 into the respective heat exchanger module 1 and its heat exchanger chamber 2.
- the heated heat exchanger fluid flows back into the circuit via the return line 26.
- the Tichelmann line 20 ensures that the path of the heat exchanger fluid in the flow 14 is extended and so the sum of the lengths of the flow 14 and return 16 is approximately the same for each solar collector 18 .
- heat exchanger system 22 in the in 3 shown heat exchanger system 22 are several heat exchanger modules 1 according to 1 connected in parallel with the so-called "Tichelmann line" 20, whereby a feed pressure of the heat exchanger fluid can be kept approximately the same in each of the heat exchanger modules 1, without providing control valves, as already mentioned above.
- a uniform flow and thus a uniform heat transfer from the waste water to the heat exchanger fluid in the individual heat exchanger modules 1 is thus ensured.
- the feed line 12 shown in broken lines, is designed as a Tichelmann line 20 and is arranged inside the flow line 24.
- the heat exchanger fluid must pass through the feed line 12 completely before it emerges from the feed line 12 at a downstream end of the feed line 12 viewed in the introduction direction ER of the heat exchanger fluid and feeds the feed line 24 with it.
- the heat exchanger fluid flows in the inflow direction ZR and via the respective connection port 8 into the respective heat exchanger module 1 of the heat exchanger system 22 and then back again via the return line 26, for example to a heat exchanger fluid pump (not shown), at the outlet of which the feed line 24 connected.
- the inflow direction ZR of the heat exchanger fluid in the feed line 24 is directed counter to the introduction direction ER of the heat exchanger fluid into the feed line 12, i.e. within the feed 14 the flow direction of the heat exchanger fluid is reversed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
Die Erfindung betrifft ein Wärmetauschermodul, ein Wärmetauschersystem und ein Verfahren zum Herstellen eines Wärmetauschersystems zum, insbesondere nachträglichen, Einbau in eine Abwasserrohrleitung.The invention relates to a heat exchanger module, a heat exchanger system and a method for producing a heat exchanger system for, in particular subsequent, installation in a sewage pipeline.
Energiegewinnung aus Abwasser durch nachträglich in die Abwasserrohrleitung eingebaute Wärmetauscher ist beispielsweise aus der
Bei dem bekannten Wärmetauscher werden Wärmetauscherfluid-Rohrleitungen für den Zulauf in den und Ablauf aus dem Wärmetauscher unterhalb von Ablaufflächen angebracht und so vor Verunreinigung durch das Abwasser geschützt. Dies hat keinen negativen Einfluss auf die Wärmegewinnung, da bei dem bekannten Wärmetauscher ausschließlich dessen Oberseite in Kontakt mit dem Abwasser kommt.In the known heat exchanger, heat exchange fluid piping for inflow into and outflow from the heat exchanger is mounted below drain surfaces and is thus protected from contamination by the waste water. This has no negative impact on heat generation, since in the known heat exchanger only the upper side comes into contact with the waste water.
Bei verbessertem Wärmetausch aber, bei dem auch eine Unterseite des Wärmetauschers mit dem Abwasser in Kontakt kommt, sind bei dem bekannten Wärmetauscher die Rohrleitungen für den Zu- und Ablauf nicht mehr vor Verunreinigung durch das Abwasser geschützt. Eine Verunreinigung der Rohrleitungen für den Zu- und Ablauf verringert aber eine Erwärmung des Wärmetauscherfluids in der Rohrleitung für den Ablauf, da Rohrleitung für den Ablauf einen Teil der Wärme an die Verunreinigungen außen auf der Rohrleitung abgibt, den sie von dem Wärmetauscherfluid in der Rohrleitung abzieht. Dazu kommt, dass das Wärmetauscherfluid in der Rohrleitung für den Zulauf von Verunreinigungen außen auf der Rohrleitung erwärmt wird, wodurch ein Temperaturunterschied zwischen den Rohrleitungen für den Zu- und Ablauf weiter verringert und somit eine Wärmegewinnung aus dem Abwasser weiter verschlechtert wird. Darüber hinaus stellen die die angeströmten Rohrleitungen einen Strömungswiderstand dar und beeinträchtigen so den Abwasserstrom in der Abwasserrohrleitung.With improved heat exchange, however, in which an underside of the heat exchanger also comes into contact with the waste water, the pipelines for the inlet and outlet are no longer protected from contamination by the waste water in the known heat exchanger. However, contamination of the inflow and outflow tubing reduces heating of the heat exchange fluid in the outflow tubing because outflow tubing gives up some of the heat to the contaminants on the outside of the tubing, which it draws from the heat exchange fluid in the tubing . In addition, the heat exchange fluid in the contaminant inflow piping is heated outside of the piping, thereby further reducing a temperature difference between the inflow and outflow piping, and thus further deteriorating heat recovery from the waste water. Furthermore the pipelines flowed against represent a flow resistance and thus impair the waste water flow in the waste water pipeline.
Die
Zur Vermeidung der oben genannten Nachteile ist es eine Aufgabe der vorliegenden Erfindung, ein verbessertes Wärmetauschermodul, Wärmetauschersystem und Verfahren zum Herstellen eines Wärmetauschersystems zur Verfügung zu stellen, wobei insbesondere ein Aufwand beim Verlegen der Wärmetauschermodule zu einem Wärmetauschersystem reduziert ist.In order to avoid the disadvantages mentioned above, it is an object of the present invention to provide an improved heat exchanger module, heat exchanger system and method for producing a heat exchanger system, with the effort involved in laying the heat exchanger modules to a heat exchanger system being reduced in particular.
Die Aufgabe wird durch den Gegenstand des jeweiligen unabhängigen Patentanspruchs gelöst. Die Erfindung umfasst ein Wärmetauschermodul zum Einbau in eine Abwasserrohrleitung, aufweisend einen Vorlaufleitungsabschnitt und einen Rücklaufleitungsabschnitt, die mit einer Wärmetauscherkammer des Wärmetauschermoduls fluidisch verbunden sind, wobei die jeweiligen Vorlaufleitungsabschnitte mehrerer Wärmetauschermodule miteinander zu einer Vorlaufleitung fluidisch verbindbar sind und die jeweiligen Rücklaufleitungsabschnitte mehrerer Wärmetauschermodule miteinander zu einer Rücklaufleitung fluidisch verbindbar sind und wobei innerhalb des Vorlaufleitungsabschnitts eine Speiseleitung anordenbar oder angeordnet ist, mittels der der Vorlaufleitungsabschnitt mit einem Wärmetauscherfluid speisbar oder gespeist ist.The object is achieved by the subject matter of the respective independent patent claim. The invention comprises a heat exchanger module for installation in a waste water pipeline, having a flow line section and a return line section which are fluidically connected to a heat exchanger chamber of the heat exchanger module, the respective flow line sections of a plurality of heat exchanger modules being fluidically connectable to one another to form a flow line and the respective return line sections of a plurality of heat exchanger modules to one another Return line can be fluidically connected and within the flow line section a feed line can be arranged or is arranged, by means of which the flow line section can be fed or fed with a heat exchanger fluid.
Ein Vorteil der vorliegenden Erfindung ist, dass ein platzsparendes Wärmetauschermodul zur Verfügung gestellt wird, das insbesondere zur Verwendung bei beengten und/oder beschränkten Platzverhältnissen wie beispielsweise einem Abwasserkanal geeignet ist. Insbesondere kann dabei der zur Verfügung stehende Platz derart besser ausgenutzt werden, dass mehr Platz von der Wärmetauscherkammer eingenommen werden kann im Vergleich zu einem herkömmlichen Wärmetauschermodul, bei dem eine Speiseleitung außerhalb des Vorlaufleitungsabschnitts vorgesehen ist. Somit kann bei gleichen Platzverhältnissen ein Wärmetauschermodul mit erhöhter Wärmetauschleistung zum Einsatz kommen.An advantage of the present invention is that a space-saving heat exchanger module is made available, which is particularly suitable for use in cramped and/or restricted spaces such as a sewer. In particular, the available space can be better utilized in such a way that more space can be occupied by the heat exchanger chamber compared to a conventional heat exchanger module in which a feed line is provided outside the flow line section. A heat exchanger module with increased heat exchange performance can thus be used with the same space conditions.
Ein weiterer Vorteil der vorliegenden Erfindung ist, dass das Wärmetauschermodul eine geringere Querschnittsfläche aufweist, was insbesondere bei Verwendung in einem Abwasserkanal für einen besseren Abwasserstrom und für eine geringere Verschmutzungsneigung des Wärmetauschermoduls sorgt.A further advantage of the present invention is that the heat exchanger module has a smaller cross-sectional area, which ensures a better flow of waste water and a lower tendency of the heat exchanger module to become soiled, particularly when used in a sewer.
Darüber hinaus ist ein weiterer Vorteil der vorliegenden Erfindung, dass die Speiseleitung, insbesondere eventuelle Verbindungsstellen einer mehrteilig ausgebildeten Speiseleitung, besser vor Verschmutzung und/oder Beschädigung geschützt ist.In addition, another advantage of the present invention is that the feed line, in particular possible connection points of a multi-part feed line, is better protected against dirt and/or damage.
Das Wärmetauschermodul kann mindestens ein Wärmetauscherelement mit einer Wärmetauscherkammer enthalten und beispielsweise zur Wärmerückgewinnung aus Kühlwasser von Kraftwerksanlagen, zur Speicherung von Solarenergie in Warmwasserpuffern oder auch zur Wärmerückgewinnung aus Abwärme - insbesondere aus Abwasser - von Gebäuden, Maschinen oder sonstigen Anlagen eingesetzt werden. Alternativ oder zusätzlich zu dem oben Beschriebenen kann das Wärmetauscherelement zumindest abschnittsweise von Luft oder einem Gas bzw. Gasgemisch umströmt werden.The heat exchanger module can contain at least one heat exchanger element with a heat exchanger chamber and can be used, for example, for heat recovery from cooling water from power plants, for storing solar energy in hot water buffers or for heat recovery from waste heat - in particular from waste water - from buildings, machines or other systems. Alternatively or in addition to what is described above, air or a gas or gas mixture can flow around the heat exchanger element at least in sections.
Eine Abwasserrohrleitung kann eine Rohrleitung zum Sammeln und Leiten von Abwasser sein, wobei eine Abwasserfließrichtung parallel zu der Längsrichtung der Abwasserrohrleitung verläuft bzw. mit dieser zusammenfällt. Die Abwasserfließrichtung ist in der Regel durch ein Gefälle der Abwasserrohrleitung festgelegt und verläuft grundsätzlich parallel zu der oben beschriebenen Längsrichtung bzw. fällt mit ihr zusammen. Eine Abwasserrohrleitung kann im Sinne der vorliegenden Erfindung auch eine offene Abwasserrinne sein.A sewage pipeline may be a pipeline for collecting and guiding sewage, wherein a sewage flow direction is parallel to or coincident with the longitudinal direction of the sewage pipeline. The sewage flow direction is usually determined by a slope of the sewage pipeline and basically runs parallel to the longitudinal direction described above or coincides with it. A sewage pipeline can also be an open sewage channel within the meaning of the present invention.
Der Vorlaufleitungsabschnitt kann ein Abschnitt einer Vorlaufleitung sein, wobei der Vorlaufleitungsabschnitt und/oder die Vorlaufleitung als geschlossene Leitung oder als offene Rinne ausgebildet sein können. Entsprechendes gilt für den Rücklaufleitungsabschnitt und/oder die Rücklaufleitung.The flow line section can be a section of a flow line, wherein the flow line section and/or the flow line can be designed as a closed line or as an open channel. The same applies to the return line section and/or the return line.
Die Speiseleitung kann als geschlossene Leitung oder als offene Rinne ausgebildet sein, aus der der Vorlaufleitungsabschnitt und/oder die Vorlaufleitung oder der Rücklaufleitungsabschnitt und/oder die Rücklaufleitung mit dem Wärmetauscherfluid speisbar oder gespeist ist. Es ist grundsätzlich beschrieben, dass die Speiseleitung in dem Vorlaufleitungsabschnitt und/oder in der Vorlaufleitung anordenbar oder angeordnet ist. Die damit verbundenen Vorteile können ebenso erreicht werden, wenn alternativ dazu die Speiseleitung entsprechend in dem Rücklaufleitungsabschnitt und/oder der Rücklaufleitung anordenbar oder angeordnet ist.The feed line can be designed as a closed line or as an open channel, from which the flow line section and/or the flow line or the return line section and/or the return line can be fed or is fed with the heat exchanger fluid. It is basically described that the feed line can be arranged or is arranged in the flow line section and/or in the flow line. The associated advantages can also be achieved if, as an alternative to this, the feed line can be arranged or is arranged accordingly in the return line section and/or the return line.
Das Wärmetauscherfluid kann wie oben beschrieben Wasser, insbesondere Abwasser, Luft oder ein Gas bzw. Gasgemisch sein.As described above, the heat exchange fluid can be water, in particular waste water, air or a gas or gas mixture.
Die Begriffe "stromauf, "stromab" und dergleichen sind im Rahmen dieser Beschreibung in Bezug auf die Fließrichtung eines jeweils beschriebenen Mediums, gegebenenfalls in einer jeweils beschriebenen Leitung, zu verstehen.In the context of this description, the terms “upstream”, “downstream” and the like are to be understood in relation to the direction of flow of a medium described in each case, optionally in a line described in each case.
Die verwendeten Begriffe "außen" oder "innen" und dergleichen bedeuten im Sinne der vorliegenden Erfindung, dass ein, insbesondere idealisierter oder gedachter, Mittelpunkt ein innerster Punkt ist. Ein in Bezug dazu äußerer Bereich ist ein, insbesondere idealisierter oder gedachter, Umfangsbereich, der den Mittelpunkt zumindest teilweise umgibt. Ein Punkt oder Bereich, der als weiter außen liegend bezeichnet ist als ein anderer Punkt oder Bereich, liegt also in Radialrichtung von dem Mittelpunkt ausgehend weiter in Richtung des Umfangsbereichs entfernt als der andere, weiter innen liegende, Punkt oder Bereich.The terms "outside" or "inside" and the like used in the context of the present invention mean that a center point, particularly an idealized or imagined center point, is an innermost point. An outer area in relation to this is an, in particular idealized or imaginary, peripheral area which at least partially surrounds the center point. Thus, a point or region that is designated as being more outward than another point or region is radially further from the center toward the circumferential region than the other point or region that is more inward.
Die verwendeten Begriffe "oben" oder "oberhalb" und dergleichen bedeuten im Sinne der vorliegenden Erfindung eine Richtung und/oder eine Lage eines Elements in Bezug auf ein anderes Element entgegen der Schwerkraftrichtung. Die nachfolgend verwendeten Begriffe "unten" oder "unterhalb" und dergleichen bedeuten im Sinne der vorliegenden Erfindung eine Richtung und/oder eine Lage eines Elements in Bezug auf ein anderes Element in der Schwerkraftrichtung.In the context of the present invention, the terms “above” or “above” and the like mean a direction and/or a position of an element in relation to another element counter to the direction of gravity. In the context of the present invention, the terms “below” or “below” and the like used below mean a direction and/or a position of one element in relation to another element in the direction of gravity.
Vorteilhafterweise kann eine Querschnittsfläche des Vorlaufleitungsabschnitts abzüglich einer Querschnittsfläche der Speiseleitung etwa gleich groß sein wie die Querschnittsfläche der Speiseleitung. Somit kann ein Strömungswiderstand in dem Vorlaufleitungsabschnitt etwa gleich groß gehalten werden wie ein Strömungswiderstand in der Speiseleitung.Advantageously, a cross-sectional area of the flow line section minus a cross-sectional area of the feed line can be approximately the same size as the cross-sectional area of the feed line. A flow resistance in the flow line section can thus be kept approximately the same as a flow resistance in the feed line.
Insbesondere kann die Speiseleitung einstückig ausgebildet sein. Somit kann eine leckageanfällige Verbindungsstelle einer andernfalls mehrstückig ausgebildeten Speiseleitung innerhalb des Vorlaufleitungsabschnitts vermieden werden.In particular, the feed line can be designed in one piece. Thus, a leak-prone connection point of an otherwise multi-piece feed line within the flow line section can be avoided.
Ein Fluidstrom des Wärmetauscherfluids in der Speiseleitung kann in Gegenrichtung zu einem Fluidstrom des Wärmetauscherfluids in dem Vorlaufleitungsabschnitt gerichtet sein.A fluid flow of the heat exchange fluid in the feed line can be directed in the opposite direction to a fluid flow of the heat exchange fluid in the flow line section.
Insbesondere kann der Vorlaufleitungsabschnitt an einem stromabseitigen Ende der Speiseleitung mit dem Wärmetauscherfluid gespeist sein. Mit dieser Konfiguration durchläuft das Wärmetauscherfluid die komplette Speiseleitung, bevor es in den Vorlaufleitungsabschnitt eintritt, von dem das Wärmetauscherfluid in die einzelnen Wärmetauschermodule gelangt.In particular, the flow line section can be fed with the heat exchanger fluid at a downstream end of the feed line. With this configuration, the heat exchange fluid traverses the entire feed line before entering the delivery line section, from which the heat exchange fluid enters the individual heat exchange modules.
Die Speiseleitung kann, insbesondere mittels Führungsringen und/oder Distanzstücken, konzentrisch in dem Vorlaufleitungsabschnitt anordenbar oder angeordnet sein.The feed line can be or can be arranged concentrically in the flow line section, in particular by means of guide rings and/or spacers.
Alternativ dazu kann ein Außenumfang der Speiseleitung einen Innenumfang des Vorlaufleitungsabschnitts zumindest abschnittsweise berühren.As an alternative to this, an outer circumference of the feed line can touch an inner circumference of the feed line section at least in sections.
Eine konzentrische oder exzentrische Position der Speiseleitung in Bezug auf den Vorlaufleitungsabschnitt kann mittels Führungsringen und/oder Distanzstücken erreicht werden, die einstückig an der Speiseleitung ausgebildet sein können. Somit kann ein Einführen der Speiseleitung in den Vorlaufleitungsabschnitt und/oder ein Einhalten der gewünschten Position der Speiseleitung im Vorlaufleitungsabschnitt erleichtert werden. Dabei versteht es sich von selbst, dass eine Außengeometrie der Führungsringe und/oder Distanzstücke an eine Innengeometrie des Vorlaufleitungsabschnitts angepasst ist und dass eine Innengeometrie der Führungsringe und/oder Distanzstücke an eine Außengeometrie der Speiseleitung angepasst ist.A concentric or eccentric position of the feed line with respect to the delivery line section can be achieved by means of guide rings and/or spacers which can be integrally formed on the feed line. Thus, an introduction of the feed line in the flow line section and / or Compliance with the desired position of the feed line can be facilitated in the flow line section. It goes without saying that an outer geometry of the guide rings and/or spacers is adapted to an inner geometry of the flow line section and that an inner geometry of the guide rings and/or spacers is adapted to an outer geometry of the feed line.
Die Speiseleitung kann aus Kunststoff ausgebildet sein. Somit kann eine erhöhte Haltbarkeit und/oder leichtere Handhabung der Speiseleitung, insbesondere beim Einbringen der Speiseleitung in den Vorlaufleitungsabschnitt, gewährleistet werden.The feed line can be made of plastic. Increased durability and/or easier handling of the feed line, in particular when introducing the feed line into the flow line section, can thus be ensured.
Ein weiterer Aspekt betrifft ein Wärmetauschersystem mit modularem Aufbau, aufweisend mehrere hintereinander angeordnete Wärmetauschermodule, wobei jedes Wärmetauschermodul einen Vorlaufleitungsabschnitt und einen Rücklaufleitungsabschnitt aufweist, die mit einer Wärmetauscherkammer des Wärmetauschermoduls fluidisch verbunden sind, wobei die jeweiligen Vorlaufleitungsabschnitte der einzelnen Wärmetauschermodule miteinander zu einer Vorlaufleitung fluidisch verbunden sind und die jeweiligen Rücklaufleitungsabschnitte der einzelnen Wärmetauschermodule miteinander zu einer Rücklaufleitung fluidisch verbunden sind und wobei innerhalb der Vorlaufleitung eine Speiseleitung angeordnet ist, mittels der die Vorlaufleitung mit einem Wärmetauscherfluid speisbar oder gespeist ist.Another aspect relates to a heat exchanger system with a modular structure, having a plurality of heat exchanger modules arranged one behind the other, each heat exchanger module having a feed line section and a return line section which are fluidically connected to a heat exchanger chamber of the heat exchanger module, the respective feed line sections of the individual heat exchanger modules being fluidically connected to one another to form a feed line and the respective return line sections of the individual heat exchanger modules are fluidically connected to one another to form a return line, and wherein a feed line is arranged within the feed line, by means of which the feed line can be fed or is fed with a heat exchanger fluid.
Zusätzlich zu den oben für das erfindungsgemäße Wärmetauschermodul genannten Vorteilen ist ein Vorteil des erfindungsgemäßen Wärmetauschersystems, dass ein Verlegen des Wärmetauschersystems vereinfacht ist, insbesondere wegen eines vereinfachten Einbringens der Speiseleitung in die Vorlaufleitung bereits verlegter Wärmetauschermodule. Insbesondere kann deswegen auf ein gesondertes Verbinden von ansonsten je Wärmetauschermodul vorhandenen Speiseleitungsabschnitten verzichtet werden.In addition to the advantages mentioned above for the heat exchanger module according to the invention, an advantage of the heat exchanger system according to the invention is that laying the heat exchanger system is simplified, in particular because of a simplified introduction of the feed line into the flow line of heat exchanger modules that have already been laid. In particular, it is therefore possible to dispense with a separate connection of feed line sections that are otherwise present in each heat exchanger module.
Insbesondere können die mehreren hintereinander angeordneten Wärmetauschermodule fluidisch parallel zueinander geschaltet sein. Die hintereinander angeordneten Wärmetauschermodule können einem Verlauf der Abwasserrohrleitung folgen, in der sie beispielsweise verlegt sind.In particular, the plurality of heat exchanger modules arranged one behind the other can be fluidically connected in parallel with one another. The heat exchanger modules arranged one behind the other can follow a course of the sewage pipeline in which they are laid, for example.
Ein Fluidstrom des Wärmetauscherfluids in der Speiseleitung kann in Gegenrichtung zu einem Fluidstrom des Wärmetauscherfluids in der Vorlaufleitung gerichtet sein.A fluid flow of the heat exchange fluid in the feed line can be directed in the opposite direction to a fluid flow of the heat exchange fluid in the supply line.
Insbesondere kann die Vorlaufleitung an einem stromabseitigen Ende der Speiseleitung mit dem Wärmetauscherfluid gespeist sein. Mit dieser Konfiguration durchläuft das Wärmetauscherfluid die komplette Speiseleitung, bevor es in die Vorlaufleitung eintritt, von der das Wärmetauscherfluid in die einzelnen Wärmetauschermodule gelangt.In particular, the feed line can be fed with the heat exchanger fluid at a downstream end of the feed line. With this configuration, the heat exchange fluid traverses the entire feed line before entering the delivery line, from which the heat exchange fluid enters the individual heat exchange modules.
Eine Summe der Längen von Speiseleitung, Vorlaufleitung und Rücklaufleitung bei jedem Wärmetauschermodul kann etwa gleich groß sein. Mit dieser Konfiguration kann eine sogenanntes Tichelmann-System (Tichelmannsche Rohrführung) verwirklicht werden. Beim Tichelmann-System werden beispielsweise in einer Heizanlage die Rohre vom Wärmeerzeuger (z. B. Heizkessel, Solaranlage) zum Wärmeverbraucher (z. B. Heizkörper, Warmwasserspeicher) und zurück in Ringverlegung so geführt, dass die Summe der Längen von Vorlauf und Rücklauf bei jedem Heizkörper etwa gleich groß ist. Heizkörper mit kurzem Vorlauf haben einen langen Rücklauf und umgekehrt. Der Sinn dabei ist, dass alle Heizkörper etwa gleichen Druckverlusten ausgesetzt sind und sich damit gleiche Volumenströme = gleiche Wärmeströme in den Heizkörpern einstellen, auch wenn keine Regelventile verwendet werden. Dies bewirkt ein gleichmäßiges Erwärmen auch von weiter entfernt gelegenen Heizkörpern. Eine Anbindung nach "Tichelmann" bedeutet auch, dass die zeta-Werte (Druckverlustbeiwerte) der Formstücke der Rohrleitung zum Anschluss mehrerer gleicher Komponenten (in der Regel Warmwasserspeicher oder Sonnenkollektoren) in der Summe je Einzelkomponente gleich sind, damit eine gleichmäßige Durchströmung gewährleistet ist (Quelle: Wikipedia https://de.wikipedia.org/wiki/Tichelmann-System).A sum of the lengths of the feed line, flow line and return line in each heat exchanger module can be approximately the same. With this configuration, a so-called Tichelmann system (Tichelmann's pipework) can be implemented. With the Tichelmann system, for example, the pipes in a heating system from the heat generator (e.g. boiler, solar system) to the heat consumer (e.g. radiator, hot water tank) and back are laid in a ring so that the sum of the lengths of flow and return is is about the same size for each radiator. Radiators with a short lead have a long return and vice versa. The purpose of this is that all radiators are exposed to approximately the same pressure losses and thus the same volume flows = same heat flows in the radiators, even if no control valves are used. This results in even heating, even from radiators that are farther away. A connection according to "Tichelmann" also means that the zeta values (pressure loss coefficients) of the pipe fittings for connecting several identical components (usually hot water tanks or solar collectors) are the same in total for each individual component, so that an even flow is guaranteed (source : Wikipedia https://de.wikipedia.org/wiki/Tichelmann-System).
Insbesondere kann eine Querschnittsfläche der Vorlaufleitung abzüglich einer Querschnittsfläche der Speiseleitung etwa gleich groß sein wie die Querschnittsfläche der Speiseleitung. Somit kann ein Strömungswiderstand in der Vorlaufleitung etwa gleich groß gehalten werden wie ein Strömungswiderstand in der Speiseleitung.In particular, a cross-sectional area of the flow line minus a cross-sectional area of the feed line can be approximately the same size as the cross-sectional area of the feed line. A flow resistance in the supply line can thus be kept approximately the same as a flow resistance in the feed line.
Vorteilhafterweise kann die Speiseleitung einstückig ausgebildet sein. Somit kann eine leckageanfällige Verbindungsstelle einer ansonsten mehrstückig ausgebildeten Speiseleitung innerhalb der Vorlaufleitung vermieden werden. Weiter kann mit dieser Konfiguration ein Verlegen des Wärmetauschersystems weiter vereinfacht werden, da das Einbringen der einstückigen Speiseleitung in die Vorlaufleitung der bereits verlegten Wärmetauschermodule eine erhebliche Vereinfachung bedeutet, insbesondere wenn die Speiseleitung quasi endlos, d.h. beispielsweise in Form einer 100 m-Rolle, vorliegt. Insbesondere kann deswegen auf ein gesondertes Verbinden von ansonsten je Wärmetauschermodul vorhandenen Speiseleitungsabschnitten verzichtet werden.Advantageously, the feed line can be formed in one piece. Thus, a leak-prone connection point of an otherwise multi-piece feed line within the flow line can be avoided. This configuration can also be used to further simplify laying of the heat exchanger system, since the introduction of the one-piece feed line into the flow line of the heat exchanger modules that have already been laid means a considerable simplification, especially if the feed line is virtually endless, i.e. in the form of a 100 m roll, for example. In particular, a separate connection of feed line sections that are otherwise present for each heat exchanger module can therefore be dispensed with.
Die Speiseleitung kann, insbesondere mittels Führungsringen und/oder Distanzstücken, konzentrisch in der Vorlaufleitung angeordnet sein.The feed line can be arranged concentrically in the flow line, in particular by means of guide rings and/or spacers.
Alternativ dazu kann ein Außenumfang der Speiseleitung einen Innenumfang der Vorlaufleitung zumindest abschnittsweise berühren.As an alternative to this, an outer circumference of the feed line can touch an inner circumference of the flow line at least in sections.
Eine konzentrische oder exzentrische Position der Speiseleitung in Bezug auf die Vorlaufleitung kann mittels Führungsringen und/oder Distanzstücken erreicht werden, die einstückig an der Speiseleitung ausgebildet sein können. Somit kann ein Einführen der Speiseleitung in die Vorlaufleitung und/oder ein Einhalten der gewünschten Position der Speiseleitung in der Vorlaufleitung erleichtert werden. Dabei versteht es sich von selbst, dass eine Außengeometrie der Führungsringe und/oder Distanzstücke an eine Innengeometrie der Vorlaufleitung angepasst ist und dass eine Innengeometrie der Führungsringe und/oder Distanzstücke an eine Außengeometrie der Speiseleitung angepasst ist.A concentric or eccentric position of the feed line with respect to the delivery line can be achieved by means of guide rings and/or spacers which can be integrally formed on the feed line. This makes it easier to insert the feed line into the flow line and/or to maintain the desired position of the feed line in the flow line. It goes without saying that an external geometry of the guide rings and/or spacers is adapted to an internal geometry of the supply line and that an internal geometry of the guide rings and/or spacers is adapted to an external geometry of the feed line.
Die Speiseleitung kann aus Kunststoff ausgebildet sein. Somit kann eine erhöhte Haltbarkeit und/oder leichtere Handhabung der Speiseleitung, insbesondere beim Einbringen der Speiseleitung in die Vorlaufleitung, gewährleistet werden.The feed line can be made of plastic. Increased durability and/or easier handling of the feed line, in particular when introducing the feed line into the flow line, can thus be ensured.
Die Erfindung umfasst ein Verfahren zum Herstellen eines Wärmetauschersystems mit modularem Aufbau, aufweisend die Schritte:
- Anordnen von mehreren Wärmetauschermodulen hintereinander in einer Abwasserrohrleitung, Vorsehen eines Vorlaufleitungsabschnitts und eines Rücklaufleitungsabschnitts an jedem Wärmetauschermodul und fluidisches Verbinden des Vorlaufleitungsabschnitts und des Rücklaufleitungsabschnitts mit einer Wärmetauscherkammer des Wärmetauschermoduls,
- fluidisches Verbinden der jeweiligen Vorlaufleitungsabschnitte der einzelnen Wärmetauschermodule miteinander zu einer Vorlaufleitung und der jeweiligen Rücklaufleitungsabschnitte der einzelnen Wärmetauschermodule miteinander zu einer Rücklaufleitung und
- Anordnen einer Speiseleitung innerhalb der Vorlaufleitung zum Speisen der Vorlaufleitung mit einem Wärmetauscherfluid.
- arranging several heat exchanger modules one behind the other in a waste water pipeline, providing a supply line section and a return line section on each heat exchanger module and fluidically connecting the supply line section and the return line section to a heat exchanger chamber of the heat exchanger module,
- Fluidly connecting the respective supply line sections of the individual heat exchanger modules to one another to form a supply line and the respective return line sections of the individual heat exchanger modules to one another to form a return line and
- arranging a feed line within the supply line for feeding the supply line with a heat exchange fluid.
Die Vorteile des Verfahrens zum Herstellen des Wärmetauschersystems ergeben sich analog aus den zum oben genannten Wärmetauschermodul und zum Wärmetauschersystem genannten Merkmalen und deren Vorteile.The advantages of the method for producing the heat exchanger system result analogously from the features mentioned above for the heat exchanger module and the heat exchanger system and their advantages.
Das oben beschriebene Verfahren gilt entsprechend für lediglich ein einzelnes Wärmetauschermodul.The method described above applies correspondingly to only a single heat exchanger module.
Nachfolgend sind Ausführungsbeispiele des erfindungsgemäßen Wärmetauschermoduls und des Wärmetauschersystems anhand von Zeichnungen näher erläutert. Es versteht sich, dass die vorliegende Erfindung nicht auf die nachstehend beschriebenen Ausführungsbeispiele beschränkt ist, und dass einzelne Merkmale davon zu weiteren Ausführungsbeispielen kombiniert werden können.Exemplary embodiments of the heat exchanger module according to the invention and of the heat exchanger system are explained in more detail below with reference to drawings. It goes without saying that the present invention is not limited to the exemplary embodiments described below, and that individual features thereof can be combined to form further exemplary embodiments.
Es zeigen:
- Fig. 1
- eine räumliche Ansicht eines erfindungsgemäßen Wärmetauschermoduls gemäß dem Ausführungsbeispiel der Erfindung;
- Fig. 2
- eine schematische Prinzipdarstellung des bekannten Tichelmann-Systems; und
- Fig. 3
- eine schematische Prinzipdarstellung eines erfindungsgemäßen Wärmetauschersystems mit parallelgeschalteten Wärmetauschermodulen gemäß
Fig. 1 .
- 1
- a spatial view of a heat exchanger module according to the invention according to the embodiment of the invention;
- 2
- a schematic representation of the principle of the known Tichelmann system; and
- 3
- a schematic basic representation of a heat exchanger system according to the invention with parallel heat exchanger modules according to
1 .
Bei der in
In dem Vorlaufleitungsabschnitt 4 ist eine Speiseleitung 12 angeordnet, in die ein Wärmetauscherfluid in einer Einleitrichtung ER einleitbar ist. Die Speiseleitung 12 ist in
Wenn das Wärmetauschermodul 1 als einziges betrieben werden soll, also nicht an ein beispielsweise dahinter angeordnetes zweites Wärmetauschermodul 1 angeschlossen werden soll, kann der Vorlaufleitungsabschnitt 4 an dem in Einleitrichtung ER gesehen stromabseitigen Ende geschlossen ausgebildet sein. Die Speiseleitung 12 hingegen bleibt auch in diesem Fall an ihrem in Einleitrichtung ER gesehen stromabseitigen Ende offen. Vorteilhafterweise ist das in Einleitrichtung ER gesehen stromabseitige Ende der Speiseleitung 12 von dem in Einleitrichtung ER gesehen stromabseitigen Ende des Vorlaufleitungsabschnitts 4 entgegen der Einleitrichtung ER beabstandet, um das Wärmetauscherfluid besser aus der Speiseleitung 12 in den Vorlaufleitungsabschnitt 4 gelangen zu lassen.If the
In dem Vorlaufleitungsabschnitt 4 strömt das Wärmetauscherfluid in einer Zuströmrichtung ZR, die entgegen der Einleitrichtung ER gerichtet ist, und gelangt über den Verbindungsanschluss 8 in die Wärmetauscherkammer 2. Die beispielsweise von umströmtem Abwasser erwärmte Wärmetauscherkammer 2 erwärmt das Wärmetauscherfluid, das über den anderen Verbindungsanschluss 8 in den Rücklaufleitungsabschnitt 6 gelangt. Von dort kann das erwärmte Wärmetauscherfluid beispielsweise in einen (nicht dargestellten) Heizkörper oder dergleichen geleitet werden, nach welchem sie beispielsweise von einer (nicht dargestellten) Pumpe wieder in die Speiseleitung 12 gefördert wird, um den Kreislauf zu schließen.In the
In
Beim Tichelmann-System (Tichelmannsche Rohrführung) in einer Heizanlage werden üblicherweise die Rohre vom Wärmeerzeuger (z. B. Heizkessel, Solaranlage mit Sonnenkollektoren 18) zum Wärmeverbraucher (z. B. Heizkörper, Warmwasserspeicher) und zurück in Ringverlegung so geführt, dass die Summe der Längen von Vorlauf 14 und Rücklauf 16 bei jedem Sonnenkollektor 18 etwa gleich groß ist. Sonnenkollektoren 18 mit kurzem Vorlauf 14 haben einen lange Rücklauf 16 und umgekehrt. Der Sinn dabei ist, dass alle Sonnenkollektoren 18 etwa gleichen Druckverlusten ausgesetzt sind und sich damit gleiche Volumenströme = gleiche Wärmeströme in den einstellen, auch wenn keine Regelventile verwendet werden. Dies bewirkt ein gleichmäßiges Erwärmen eines Wärmetauscherfluids auch bei weiter entfernt gelegenen Sonnenkollektoren 18. Eine Anbindung nach "Tichelmann" bedeutet auch, dass die zeta-Werte (Druckverlustbeiwerte) der Formstücke der Rohrleitung zum Anschluss mehrerer gleicher Komponenten (in der Regel Warmwasserspeicher oder Sonnenkollektoren 18) in der Summe je Einzelkomponente gleich sind, damit eine gleichmäßige Durchströmung gewährleistet ist (Quelle: Wikipedia https://de.wikipedia.org/wiki/Tichelmann-System).With the Tichelmann system (Tichelmann pipework) in a heating system, the pipes from the heat generator (e.g. boiler, solar system with solar collectors 18) to the heat consumer (e.g. radiator, hot water storage tank) and back are usually routed in a ring arrangement in such a way that the total the lengths of
Der kältere Vorlauf 14 ist mit durchgezogenen Linien dargestellt und der wärmere Rücklauf 16 ist mit strich-zwei-punktierten Linien dargestellt. Eine Wärmetauscherfluidpumpe und ein Wärmeverbraucher (z. B. Heizkörper, Warmwasserspeicher) zum Nutzen der Wärme im Rücklauf 16 sind weggelassen. Kaltes Wärmetauscherfluid wird in Einleitrichtung ER in den Vorlauf 14 eingeleitet. Der Vorlauf 14 weist in Einleitrichtung ER gesehen stromauf der Vorlaufleitung 24 mit den Verbindungsanschlüssen 8 zu den Sonnenkollektoren 18 eine sogenannte Tichelmann-Leitung 20 auf. Die Tichelmann-Leitung 20 ist als Verlängerung der Vorlaufleitung 24 ausgebildet und parallel dazu ausgebildet. Mit dieser Anordnung strömt das Wärmetauscherfluid in der Vorlaufleitung 24 in einer Zuströmrichtung ZR, die entgegen der Einleitrichtung ER gerichtet ist, obwohl ein Fluidstrom im Vorlauf 14 nicht umgekehrt wird, also immer in der gleichen Richtung strömt. Von der Vorlaufleitung 24 gelangt das Wärmetauscherfluid über den jeweilige Verbindungsanschluss 8 in das jeweilige Wärmetauschermodul 1 und dessen Wärmetauscherkammer 2. Über die Rücklaufleitung 26 gelangt das erwärmte Wärmetauscherfluid zurück in den Kreislauf.The
Die Tichelmann-Leitung 20 sorgt dafür, dass der Weg des Wärmetauscherfluids im Vorlauf 14 verlängert wird und so die Summe der Längen von Vorlauf 14 und Rücklauf 16 bei jedem Sonnenkollektor 18 etwa gleich groß ist.The
In dem in
Die Speiseleitung 12, gestrichelt dargestellt, ist als Tichelmann-Leitung 20 ausgebildet und innerhalb der Vorlaufleitung 24 angeordnet. Das Wärmetauscherfluid muss die Speiseleitung 12 zur Gänze durchlaufen, ehe es an einem in Einleitrichtung ER des Wärmetauscherfluids gesehen stromabseitigen Ende der Speiseleitung 12 aus der Speiseleitung 12 austritt und die Vorlaufleitung 24 damit speist.The
In der Vorlaufleitung 24 strömt das Wärmetauscherfluid in der Zuströmrichtung ZR und gelangt über den jeweiligen Verbindungsanschluss 8 in das jeweilige Wärmetauschermodul 1 des Wärmetauschersystems 22 und danach über die Rücklaufleitung 26 wieder zurück, beispielsweise zu einer (nicht dargestellten) Wärmetauscherfluidpumpe, an deren Ausgang die Vorlaufleitung 24 angeschlossen ist.In the
Die Zuströmrichtung ZR des Wärmetauscherfluids in der Vorlaufleitung 24 ist dabei entgegen der Einleitrichtung ER des Wärmetauscherfluids in die Speiseleitung 12 gerichtet, d.h. innerhalb des Vorlaufs 14 ist die Strömungsrichtung des Wärmetauscherfluids umgekehrt.The inflow direction ZR of the heat exchanger fluid in the
- 11
- Wärmetauschermodulheat exchanger module
- 22
- Wärmetauscherkammerheat exchanger chamber
- 44
- Vorlaufleitungsabschnittflow line section
- 66
- Rücklaufleitungsabschnittreturn line section
- 88th
- Verbindungsanschlussconnection port
- 1010
- Versteifungsstellestiffening point
- 1212
- Speiseleitungfeed line
- 1414
- Vorlaufleader
- 1616
- Rücklaufreturn
- 1818
- Sonnenkollektorsolar panel
- 2020
- Tichelmann-LeitungTichelmann line
- 2222
- Wärmetauschersystemheat exchanger system
- 2424
- Vorlaufleitungflow line
- 2626
- Rücklaufleitungreturn line
- ERHE
- Einleitrichtungdischarge direction
- ZRZR
- Zuströmrichtunginflow direction
Claims (14)
- Heat exchanger module (1) for installation in a wastewater pipeline, comprising:a supply pipe portion (4) and a return pipe portion (6) which are fluidically connected to a heat exchanger chamber (2) of the heat exchanger module (1), whereinthe respective supply pipe portions (4) of a plurality of heat exchanger modules (1) can be fluidically interconnected to form a supply pipe (24), and the respective return pipe portions (6) of a plurality of heat exchanger modules (1) can be fluidically interconnected to form a return pipe (26), characterised in thata feed line (12) is arranged within the supply pipe portion (4), by means of which feed line the supply pipe portion (4) can be fed with a heat exchanger fluid.
- Heat exchanger module (1) according to claim 1, wherein a cross-sectional area of the supply pipe portion (4) minus a cross-sectional area of the feed line (12) is approximately the same size as the cross-sectional area of the feed line (12).
- Heat exchanger module (1) according to either claim 1 or claim 2, wherein the feed line (12) is formed in one piece.
- Heat exchanger module (1) according to any of the preceding claims, wherein the feed line (12) is arranged concentrically in the supply pipe portion (4), or an outer periphery of the feed line (12) touches an inner periphery of the supply pipe portion (4), at least in portions.
- Heat exchanger module (1) according to any of the preceding claims, wherein the feed line (12) is made of plastics material.
- Heat exchanger system (22) having a modular structure, comprising:
a plurality of heat exchanger modules (1) according to any of claims 1 to 5, which are arranged one behind the other. - Heat exchanger system (22) according to claim 6, wherein a fluid flow of the heat exchanger fluid in the feed line (12) is directed in the opposite direction to a fluid flow of the heat exchanger fluid in the supply line (24).
- Heat exchanger system (22) according to either claim 6 or claim 7, wherein the supply line (24) is fed with the heat exchanger fluid at a downstream end of the feed line (12).
- Heat exchanger system (22 according to claims 6 to 8, wherein a sum of the lengths of the feed line (12), supply pipe (24) and return pipe (26) is approximately the same in each heat exchanger module (1).
- Heat exchanger system (22) according to any of claims 6 to 9, wherein a cross-sectional area of the supply pipe (24) minus a cross-sectional area of the feed line (12) is approximately the same size as the cross-sectional area of the feed line (12).
- Heat exchanger system (22) according to any of claims 6 to 10, wherein the feed line (12) is formed in one piece.
- Heat exchanger system (22) according to any of claims 6 to 11, wherein the feed line (12) is arranged concentrically in the supply pipe (24), or an outer periphery of the feed line (12) touches an inner periphery of the supply pipe (24), at least in portions.
- Heat exchanger system (22) according to any of the preceding claims 6 to 12, wherein the feed line (12) is made of plastics material.
- Method for producing a heat exchanger system (22) having a modular structure, comprising the steps of:arranging a plurality of heat exchanger modules (1) one behind the other in a wastewater pipeline,providing a supply pipe portion (4) and a return pipe portion (6) at each heat exchanger module (1) and fluidically connecting the supply pipe portion (4) and the return pipe portion (6) to a heat exchanger chamber (2) of the heat exchanger module (1),fluidically interconnecting the respective supply pipe portions (4) of the individual heat exchanger modules (1) to form a supply pipe (24), and fluidically interconnecting the respective return pipe portions (6) of the individual heat exchanger modules (1) to form a return pipe (26), characterised byarranging a feed line (12) within the supply pipe (24) in order to feed the supply pipe (24) with a heat exchanger fluid.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019002738.8A DE102019002738A1 (en) | 2019-04-15 | 2019-04-15 | Heat exchanger module, heat exchanger system and method for producing the heat exchanger system |
PCT/EP2020/060527 WO2020212383A1 (en) | 2019-04-15 | 2020-04-15 | Heat exchanger module, heat exchanger system and method for producing the heat exchanger system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3914872A1 EP3914872A1 (en) | 2021-12-01 |
EP3914872B1 true EP3914872B1 (en) | 2022-06-29 |
Family
ID=70391091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20720767.1A Active EP3914872B1 (en) | 2019-04-15 | 2020-04-15 | Heat exchanger module, heat exchanger system and method for producing the heat exchanger system |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220196342A1 (en) |
EP (1) | EP3914872B1 (en) |
CN (1) | CN113994164A (en) |
DE (1) | DE102019002738A1 (en) |
WO (1) | WO2020212383A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020003467A1 (en) | 2020-06-09 | 2021-12-09 | Uhrig Energie Gmbh | Wastewater heat exchanger module, connection element, wastewater heat exchanger system and method for its manufacture |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1883057A (en) * | 1928-10-19 | 1932-10-18 | Vilter Mfg Co | Refrigeration unit |
DE3413931A1 (en) * | 1984-04-13 | 1985-10-24 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart | EVAPORATOR, ESPECIALLY FOR AIR CONDITIONING IN MOTOR VEHICLES |
JPS60251392A (en) * | 1984-05-25 | 1985-12-12 | Matsushita Electric Works Ltd | Waste heat retrieving device |
CH690108C1 (en) * | 1996-05-31 | 2004-01-30 | Rabtherm Ag I G | Installation for extracting heat from waste water. |
WO2005088207A1 (en) * | 2004-03-15 | 2005-09-22 | Uestuen Orhan | Heat exchanger with a vacuum tubes |
DE502004005077D1 (en) * | 2004-04-30 | 2007-11-08 | Ligrufa Ag | Heat exchanger and installation for removing heat from waste water |
DE102004032180A1 (en) * | 2004-07-02 | 2005-12-08 | Robert Bosch Gmbh | Heat exchanger for gas or oil heated water heater has heat conducting ribs fitted in space between inner and outer tubes in such way that uniform distribution of heat can be established on circumference of outer tube |
US7967060B2 (en) * | 2005-08-18 | 2011-06-28 | Parker-Hannifin Corporation | Evaporating heat exchanger |
DE102005048689B3 (en) * | 2005-10-11 | 2007-05-03 | Uhrig Kanaltechnik Gmbh | Heat exchanger for wastewater heat utilization |
US8171987B2 (en) * | 2006-11-13 | 2012-05-08 | Carrier Corporation | Minichannel heat exchanger header insert for distribution |
DE102007031084B4 (en) * | 2007-07-04 | 2010-09-23 | Fischer, Christel | Sewer pipe with heat exchanger element |
US20110127023A1 (en) * | 2008-07-10 | 2011-06-02 | Taras Michael F | Design characteristics for heat exchangers distribution insert |
CA2737359A1 (en) * | 2008-09-16 | 2010-03-25 | Lyonnaise Des Eaux France | Installation for removing heat from flowing water |
DE102009035271B9 (en) * | 2009-07-30 | 2010-12-02 | Uhrig Kanaltechnik Gmbh | Heat exchanger device and use |
US20110139422A1 (en) * | 2009-12-15 | 2011-06-16 | Delphi Technologies, Inc. | Fluid distribution device |
FR2954819B1 (en) * | 2009-12-30 | 2013-08-16 | Lyonnaise Eaux France | DEVICE FOR EXTRACTING HEAT FROM A WASTEWATER COLLECTOR, AND INSTALLATION COMPRISING SUCH DEVICES. |
WO2011126488A2 (en) * | 2010-04-09 | 2011-10-13 | Ingersoll-Rand Company | Formed microchannel heat exchanger |
DE102010019728B4 (en) * | 2010-05-07 | 2013-06-27 | Uhrig Kanaltechnik Gmbh | Heat exchanger device, use, heat exchanger assembly |
CN101922883B (en) * | 2010-09-13 | 2012-09-26 | 三花控股集团有限公司 | Refrigerant guide pipe and heat exchanger with same |
US9581397B2 (en) * | 2011-12-29 | 2017-02-28 | Mahle International Gmbh | Heat exchanger assembly having a distributor tube retainer tab |
DE102014223394A1 (en) * | 2014-09-12 | 2016-03-17 | Terra Calidus Gmbh | Layable sewer pipe segment |
WO2017150993A1 (en) * | 2016-03-03 | 2017-09-08 | Normax-Invest Sp. Z.O.O. | Tube freeze exchanger, particularly for feeding a chili accumulator |
DE102016204175A1 (en) * | 2016-03-14 | 2017-09-14 | Thomas-Krenn.AG | System, preferably for temperature regulation of a volume |
CA2947772C (en) * | 2016-11-07 | 2021-06-15 | Winston R. Mackelvie | Waste heat exchanger with thermal storage |
DE102018003689A1 (en) * | 2018-04-19 | 2019-10-24 | Uhrig Energie Gmbh | Heat exchanger element, heat exchanger module and heat exchanger system |
US10816272B2 (en) * | 2018-06-27 | 2020-10-27 | Winston MacKelvie | Heat exchangers that save energy by heat exchange between a fresh liquid and waste fluids |
US11713931B2 (en) * | 2019-05-02 | 2023-08-01 | Carrier Corporation | Multichannel evaporator distributor |
DE102020003467A1 (en) * | 2020-06-09 | 2021-12-09 | Uhrig Energie Gmbh | Wastewater heat exchanger module, connection element, wastewater heat exchanger system and method for its manufacture |
-
2019
- 2019-04-15 DE DE102019002738.8A patent/DE102019002738A1/en not_active Withdrawn
-
2020
- 2020-04-15 US US17/603,734 patent/US20220196342A1/en active Pending
- 2020-04-15 CN CN202080029034.7A patent/CN113994164A/en active Pending
- 2020-04-15 EP EP20720767.1A patent/EP3914872B1/en active Active
- 2020-04-15 WO PCT/EP2020/060527 patent/WO2020212383A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2020212383A1 (en) | 2020-10-22 |
EP3914872A1 (en) | 2021-12-01 |
CN113994164A (en) | 2022-01-28 |
DE102019002738A1 (en) | 2020-10-15 |
US20220196342A1 (en) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008001308B3 (en) | Storage tank for use in e.g. paper factory, has control device guiding fluid flow with higher temperature through outlets or inlets on higher height level and fluid flow with lower temperature through outlets or inlets on lower height level | |
DE102009035271B3 (en) | Heat exchanger device for attachment along longitudinal direction of drainage channel, has heat exchanger chamber formed between two wall sections and hydraulically connected with supply line by connection region | |
DE102014217503A1 (en) | Dishwasher with a liquid transport line | |
EP3914872B1 (en) | Heat exchanger module, heat exchanger system and method for producing the heat exchanger system | |
EP3781889B1 (en) | Heat exchanger element, heat exchanger module and heat exchanger system | |
DE102007054703B4 (en) | heat exchangers | |
EP2821713A2 (en) | Method for feeding feedwater into a heating system and heating system | |
DE102005030999B4 (en) | Arrangement for flow guidance in tube bundle heat exchangers for the thermal treatment of suspensions | |
WO2021249930A1 (en) | Waste water heat exchanger module, connection element, waste water heat exchanger system and method for the production thereof | |
DE102011103133A1 (en) | Heating substation of long-distance heating system, has heat exchanger preheater that is connected to output buffer storage for preheating drinking water, and is connected with circulation return pipe | |
DE202009011326U1 (en) | Heat exchanger for the flue gas duct of a furnace | |
EP3228943B1 (en) | Connection unit for connecting a pressure maintenance and/or degassing device with a heating circuit distributor of a heating system | |
DE102010019728B4 (en) | Heat exchanger device, use, heat exchanger assembly | |
DE102007031084B4 (en) | Sewer pipe with heat exchanger element | |
DE202008017767U1 (en) | heat exchangers | |
DE202019102232U1 (en) | Heat exchanger arrangement with at least one multi-pass heat exchanger | |
DE102011114326A1 (en) | Piggable system of collapsible endless heat exchanger, has tubular casing and jacket tube whose length and diameter are set differently so that heat exchange of heat exchanger system is not interrupted | |
DE10047823A1 (en) | Absorber for solar collectors has parallel distributor pipes, feeder and discharge connections, collector pipes, and narrower water-drain | |
DE102011119954B4 (en) | Device for de-icing a photovoltaic or solar system | |
EP2129975B1 (en) | Thermal power plant | |
EP2072914B1 (en) | Device for targeted guidance of at least one fluid along different flow routes | |
DE202007014961U1 (en) | Apparatus for recovering energy from waste gases from incinerators | |
DE10228535B4 (en) | Arrangement for the storage of a filter insert for a heating system | |
DE102004012075B4 (en) | Hot water supply system has hot water line integrated into circulation circuit by circulation line which is connected to hot water connection by connecting piece which incorporates injector | |
DE10311532A1 (en) | Heat spreader module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210824 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: UHRIG, THOMAS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220124 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020001309 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1501609 Country of ref document: AT Kind code of ref document: T Effective date: 20220715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220929 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220930 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220929 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221031 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221029 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020001309 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230415 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230415 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240423 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240423 Year of fee payment: 5 |