EP3895225A2 - Stabilisation de photovoltaïques organiques structurés au laser - Google Patents

Stabilisation de photovoltaïques organiques structurés au laser

Info

Publication number
EP3895225A2
EP3895225A2 EP19853242.6A EP19853242A EP3895225A2 EP 3895225 A2 EP3895225 A2 EP 3895225A2 EP 19853242 A EP19853242 A EP 19853242A EP 3895225 A2 EP3895225 A2 EP 3895225A2
Authority
EP
European Patent Office
Prior art keywords
layer
laser
particularly preferably
stabilizing
structuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19853242.6A
Other languages
German (de)
English (en)
Inventor
Ulrike Bewersdorff-Sarlette
Martin PFEIFFER-JACOB
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heliatek GmbH
Original Assignee
Heliatek GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heliatek GmbH filed Critical Heliatek GmbH
Publication of EP3895225A2 publication Critical patent/EP3895225A2/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention describes a method for producing a layer for stabilizing the poses of a laser-structured
  • OCV organic photovoltaics
  • stabilizing layer for laser-structured organic photovoltaics
  • Organic photovoltaic modules consist of a stack on a substrate comprising two electrodes, one of which
  • Electrode on the substrate and the other are applied as a counter electrode remote from the substrate.
  • An organic layer stack is located between the two electrodes. The organic
  • Photovoltaic modules can be manufactured, for example, by evaporating the materials, by printing polymers or by processing from liquids.
  • organic photoactive components is for example in
  • Heterojunctions e.g. bulc-heterojunction
  • a photoactive layer in a layer stack of a cell can comprise only one acceptor or only one donor absorber material or can also comprise a combination of several absorber materials of different and / or the same type, and contribute to the formation of the
  • the organic layer stack between the electrodes can consist not only of photoactive (absorber) layers. Instead, other layers, for example transport layers, preferably doped transport layers between individual photoactive (absorber) layers /
  • photoactive (absorber) layer system and the electrodes introduced to build up multi-cell systems. This makes it possible to optimally arrange the photoactive layers with respect to the field strength distribution of the optical field.
  • Organic photovoltaic modules organic solar cells or organic solar cells
  • the encapsulation can be carried out by means of barrier films or by direct encapsulation.
  • Laser-processed organic photovoltaic modules are structured using laser processes. This method is / can be used above all in the roll-to-roll process, firstly for the interconnection of individual solar cell strips on a module, and also for the electrical separation of solar modules.
  • the interconnection of organic photovoltaic strips to a module can be implemented by laser interconnection (PI, P2, P3, P4), this principle is described for example in DE 10 2016 118 177 A1. This creates poses, so-called laser scribes, especially when structuring the electrodes, which reflect the height of the layer stack of the flat topology of a stack of an organic one
  • DE 10 2015 116 418 A1 proposes printing a UV-crosslinked layer as a protective winding layer, the layer being applied silicone-based and liquid, in order to cause short-circuits in the course of further process steps, for example when winding up the module, by folding it over or in to prevent the poses.
  • US 2008 / 0102206A1 discloses a process for producing a multilayer coating in one process step by varying the processing parameters.
  • the printed UV-crosslinked layer proposed in DE 10 2015 116 418 A1 can also outgas after the crosslinking, as a result of which the adhesion of the subsequent encapsulation can be impaired. There was also occasional detachment of the counter electrode
  • the task is to create a water barrier as part of the process
  • Coating should not be used as a protective wrapping layer, since these parameters rather enable a rigid coating.
  • the technical problem on which the present invention was based was, on the one hand, to stabilize throws created by laser structuring of the individual layers of the solar cell, in order to enable sealing or tight enclosure by means of a thin layer, which eliminates the disadvantages found in the prior art and on the other hand can be integrated in a roll-to-roll process.
  • the possible application is particularly important for OPV based on small molecules. After this layer has been applied, a smooth surface can be applied Encapsulation can be applied. It is also important that the layer allows the semi-finished product to be wound up on its own and that it is not harmful to later opening and closing
  • the inventors understand a semi-finished product to be an OPV module that is not yet encapsulated.
  • the end product is encapsulated and equipped with the necessary connections for operation.
  • the purpose of an encapsulation is to provide a barrier against environmental influences, for example water / water vapor, so that the service life of the OPV module is increased.
  • Nanoporous materials consist of a regular framework that has a regular porous structure.
  • the size of the pores is in the nanometer range. According to IUPAC, they are divided into three groups
  • microporous materials with a size ⁇ 2 nm
  • mesoporous materials with a size of 2 to 50 nm and
  • macroporous materials with a size of more than 50 nm.
  • the encapsulation can then be placed on this stabilizing layer
  • planarization may be necessary for encapsulation.
  • the SiOCH layer can be applied by means of plasma enhanced
  • PECVD Chemical vapor deposition
  • arcPECVD hollow cathode-supported PECVD
  • BTMSM bis-trimethylsilymethane
  • TEOS tetraethylorthosilicate
  • TMS tetramethylsilane
  • Precursers further precursors (precursor materials) are conceivable) are deposited.
  • OLEDs organic light emitting diode
  • the microwave PECVD method known. No laser structuring of the layers is necessary and known in the production of the OLEDs, this results in a flat topology in OLEDs, and the encapsulation can be done, for example, by a
  • Thin film encapsulation which is carried out by microwave PECVD deposition, can be implemented directly.
  • a plasma polymer is proposed as one of the barrier materials that has a low dielectric constant k (low-k material).
  • the method according to the invention differs from the microwave PECVD method used in the OLED area, which is primarily oxidic in nature and the organic content of a layer
  • thicker layers up to 500 ° nm or up to approximately 1 or 2 pm, can also be deposited than in the case of direct SiN encapsulation, which is typically approximately 100 ° nm thick.
  • this layer has nanoporous properties so that the
  • Manufacturing parameters do not lead to a nanoporous, flexible layer, but rather to a very stable and
  • SiOCH is a silicon oxide (SiOx) that receives organic properties by means of a carbon content, i.e. the carbon content influences the chemical structure and the polymer-like, partially cross-linked chain structure.
  • the material is more elastic and flexible than SiOx, it is a
  • the provision of the laser-structured OPV includes at least the following steps:
  • the stabilization layer comprises a SiOCH material or a SiOCH-like material that has nanoporous properties.
  • Organic of the photovoltaic module is a transparent, long-term stable material and has sufficient mechanical stability, ie adhesion and flexibility or thermal expansion, so that no additional stress due to different expansion of the different materials (organic and
  • the stabilization layer ideally implements a subsequent encapsulation of the complete module with barrier films and adhesives to protect the organic stack of the solar cell against unwanted interaction with the adhesive of the barrier film.
  • the stabilization layer enables winding and unwinding during the later process steps for producing the end product in the roll-to-roll process and / or during the
  • the stabilizing layer leads to better protection of the organic stack of the solar cell against unwanted
  • Fig. 1 shows an example of the topography of laser-structured organic solar cells with the projections (A) (and (B)), which are to be stabilized and planarized for an encapsulation, including the stabilizing layer (5) according to the invention, an optional planarizing layer (6) and an encapsulation (7).
  • the organic applied between the first and the second electrode (counter electrode) Layer stack comprising both absorber and (partially) doped and undoped transport layers and to which the second electrode (counter-electrode) is subsequently applied.
  • a stabilization layer based on a nanoporous plasma polymer is applied to the layer stack described above to protect the laser-structured poses.
  • the stabilization is carried out in preparation for a subsequent encapsulation by a method which comprises the following working steps: a) provision of the organic stack of the solar cell with P3 structuring b) application of the stabilization layer (5) and subsequent application of the encapsulation (7).
  • the stabilizing layer (5) comprises a nanoporous plasma polymer comprising at least one precursor selected from the group tetramethylsilane (TMS), hexamethyldisiloxane (HMDSO),
  • TEOS Tetraethylorthosilicate
  • HDSN Hexamethyldisilazane
  • Silane Silane
  • Triethoxysilane TriEOS
  • Tetramethoxysilane TMOS
  • Trimethoxysilane TriMOS
  • the stabilization layer (5) has a thickness greater than 100 nm, preferably greater than 150 nm, particularly preferably greater than 200 nm, very particularly preferably greater than 300 nm, more than particularly preferably greater than 500 nm.
  • the stabilizing layer (5) comprises at least 2at% silicon or titanium, and at least 2at% oxygen or nitrogen, and contains at least 2at% carbon.
  • the stabilizing layer (5) comprises a carbon content greater than 15at%, preferably greater than 20at%, particularly preferably greater than 25 at%
  • the stabilizing layer (5) can be designed as a gradient, the carbon content varying over the thickness of the layer by at least 2at%, preferably by at least 4at%, particularly preferably by more than 6 at%.
  • a reaction gas is selected from nitrogen and / or oxygen
  • the stabilization layer comprises a material similar to SiOCH, for example SiONCH, SiNCH.
  • a layer containing titanium can be used as
  • Stabilizing layer can be used. This can be done using titanium-containing monomers, e.g. Titanium propoxide or
  • Tetraisopropoyl orthotitanate TIPT
  • TXCI 4 Tetraisopropoyl orthotitanate
  • tetramethyaluminum, trimethylaluminum is proposed as the stabilizing layer that can be produced by using Al 2O 3 in conjunction with N 2O .
  • an inert gas selected from the group of noble gases for example argon, xenon, neon, is used during production
  • argon is used.
  • the ratio of the reaction gas to the precursor is greater than 4, preferably greater than 6, and is less than 20, preferably less than 12, particularly preferably less than 10 If the ratios are too low, the layer tension of the stabilizing layer becomes too great.
  • the coating pressure is less than 50 Pa, preferably less than 10 Pa, particularly preferably less than 5 Pa.
  • the plasma power per sccm precursor monomer is not greater than 100 W / sccm, the plasma power is preferably in a range between 15 and 80 W / sccm, in a range between 30 and 80 W / sccm, particularly preferably in a range between 40 and 50 W / sccm.
  • the subsequent encapsulation (7) can be carried out using barrier films or direct encapsulation. This can be achieved by known methods.
  • the planarization layer (6) can, for example, by the
  • the module can also be encapsulated with at least one PECVD layer or ALD (atomic layer deposition) layer.
  • PECVD layer or ALD (atomic layer deposition) layer.
  • ALD atomic layer deposition
  • Embodiment 1 Layers containing materials based on small molecules in a roll-to-roll coating system.
  • the lifespan is in both cases (with or without
  • Stabilizing layer the same, or slightly improved with epoxy adhesive.
  • the solar module is separated by SiOCH deposition in the overall process thin-film encapsulation, including wrapping and unwinding, and comprises the following process steps:
  • the solar module is separated by SiOCH deposition in the overall process thin-film encapsulation, including wrapping and unwinding, and comprises the following process steps:
  • A, B poses due to the laser structuring of the counter electrode and the structuring of the OPV

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Lors de la structuration au laser de composants photovoltaïques organiques, des projections sont générées qui peuvent dépasser la hauteur de l'empilement de couches d'un facteur multiple. L'invention concerne une technologie de stabilisation des projections structurées par laser pour permettre un traitement ultérieur du produit semi-fini et leur intégration dans une encapsulation ultérieure du composant OPV.
EP19853242.6A 2018-12-14 2019-12-16 Stabilisation de photovoltaïques organiques structurés au laser Pending EP3895225A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018132342.5A DE102018132342A1 (de) 2018-12-14 2018-12-14 Stabilisierung laserstrukturierter organischer Photovoltaik
PCT/DE2019/101097 WO2020119865A2 (fr) 2018-12-14 2019-12-16 Stabilisation de photovoltaïques organiques structurés au laser

Publications (1)

Publication Number Publication Date
EP3895225A2 true EP3895225A2 (fr) 2021-10-20

Family

ID=69630103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19853242.6A Pending EP3895225A2 (fr) 2018-12-14 2019-12-16 Stabilisation de photovoltaïques organiques structurés au laser

Country Status (7)

Country Link
US (1) US20220310949A1 (fr)
EP (1) EP3895225A2 (fr)
JP (1) JP2022513232A (fr)
KR (1) KR20210102298A (fr)
CN (1) CN113261125A (fr)
DE (1) DE102018132342A1 (fr)
WO (1) WO2020119865A2 (fr)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087445B2 (ja) * 1995-10-31 2008-05-21 エコール ポリテクニーク フェデラル ドゥ ローザンヌ 光起電力セル電池及びその製造方法
AUPP953999A0 (en) * 1999-03-30 1999-04-29 Sustainable Technologies Australia Limited Methods to manufacture single cell and multi-cell regenerative photoelectrochemical devices
EP1611484B1 (fr) 2003-03-19 2021-11-10 Heliatek GmbH Composant photo-actif presentant des couches organiques
US20080102223A1 (en) * 2006-11-01 2008-05-01 Sigurd Wagner Hybrid layers for use in coatings on electronic devices or other articles
US20080102206A1 (en) * 2006-11-01 2008-05-01 Sigurd Wagner Multilayered coatings for use on electronic devices or other articles
JP2009110796A (ja) * 2007-10-30 2009-05-21 Sony Corp 色素増感光電変換素子モジュールおよびその製造方法ならびに電子機器
JP5456054B2 (ja) * 2009-11-02 2014-03-26 シャープ株式会社 湿式太陽電池および湿式太陽電池モジュール
ES2857904T3 (es) 2010-05-04 2021-09-29 Heliatek Gmbh Componente fotoactivo con capas orgánicas
US20120121823A1 (en) * 2010-11-12 2012-05-17 Applied Materials, Inc. Process for lowering adhesion layer thickness and improving damage resistance for thin ultra low-k dielectric film
EP2656119B1 (fr) * 2010-12-20 2015-08-26 3M Innovative Properties Company Films anti-réfléchissants polymères et vitreux revêtus de nanoparticules de silice, procédés de fabrication et dispositifs photo-absorbants les utilisant
JP5967983B2 (ja) * 2012-03-07 2016-08-10 東レエンジニアリング株式会社 シリコン含有膜及びシリコン含有膜形成方法
US8933468B2 (en) * 2012-03-16 2015-01-13 Princeton University Office of Technology and Trademark Licensing Electronic device with reduced non-device edge area
US10388897B2 (en) * 2012-05-18 2019-08-20 Oxford University Innovation Limited Optoelectronic device comprising porous scaffold material and perovskites
US20160218308A1 (en) * 2013-09-04 2016-07-28 Dyesol Ltd Photovoltaic device
US10910590B2 (en) * 2014-03-27 2021-02-02 Universal Display Corporation Hermetically sealed isolated OLED pixels
DE112015004366A5 (de) * 2014-09-26 2017-06-08 Heliatek Gmbh Verfahren zum aufbringen einer schutzschicht, schutzschicht selbst und halbfabrikat mit einer schutzschicht
DE102016118177A1 (de) 2016-09-26 2018-03-29 Heliatek Gmbh Organisches Bauelement zur Umwandlung von Licht in elektrische Energie mit verbesserter Effizienz und Lebensdauer bei Teilverschattung
CN108987585A (zh) * 2017-06-02 2018-12-11 姚冀众 一种封装的钙钛矿太阳能电池组件及其封装方法
CN107603339A (zh) * 2017-07-14 2018-01-19 苏州星烁纳米科技有限公司 量子点墨水及电致发光器件

Also Published As

Publication number Publication date
JP2022513232A (ja) 2022-02-07
DE102018132342A1 (de) 2020-06-18
CN113261125A (zh) 2021-08-13
WO2020119865A2 (fr) 2020-06-18
US20220310949A1 (en) 2022-09-29
KR20210102298A (ko) 2021-08-19
WO2020119865A3 (fr) 2020-09-03

Similar Documents

Publication Publication Date Title
EP2238634B1 (fr) Procédé pour produire un composant électronique
KR101739517B1 (ko) 산화니켈 나노입자를 포함하는 박막의 제조방법 및 이를 이용한 태양전지
EP2308117A2 (fr) Dispositif émettant un rayonnement et procédé de fabrication d'un dispositif émettant un rayonnement
EP2301092B1 (fr) Composant optoelectronique encapsule et son procede de fabrication
EP1565947A2 (fr) Composant photovoltaique et procede de production de ce composant
DE102008031405A1 (de) Verfahren zur Herstellung eines organischen elektronischen Bauelements und organisches elektronisches Bauelement
WO2017178233A1 (fr) Encapsulation multicouche, procédé d'encapsulation et composant optoélectronique
DE102011005612A1 (de) Organisches Optoelektronisches Bauelement und Verfahren zur Herstellung eines Optoelektronischen Bauelements
DE102016109485A1 (de) Verfahren zum herstellen eines optoelektronischen bauelements, optoelektronisches bauelement und schutzschicht
DE102015116418A1 (de) Verfahren zum Aufbringen der Schutzschicht, Schutzschicht selbst und Halbfabrikat mit einer Schutzschicht
EP3895225A2 (fr) Stabilisation de photovoltaïques organiques structurés au laser
US9530570B2 (en) Manufacturing method of solid-state dye-sensitized solar cells and electrolyte filling device used therefor
EP2847786B1 (fr) Procédé de connexion de substrats
DE102011017403A1 (de) Verfahren zum Abscheiden eines transparenten Barriereschichtsystems
DE112020002193T5 (de) Plasmaunterstützte Abscheidung von Atomlagen bei hoher Spannung und niedrigem Druck
EP4211731A1 (fr) Revêtement pour composant optoélectronique, procédé de fabrication d'un tel revêtement et composant optoélectronique comprenant un tel revêtement
WO2017178234A1 (fr) Procédé de fabrication d'un composant électroluminescent organique et composant électroluminescent organique
EP1575101A1 (fr) Dispositif OLED et panneau d'affichage basé sur des OLED à durée de vie plus grande
DE102021127720A1 (de) Elektrisch leitfähige Beschichtung eines elektrischen Bauelements zur elektrisch leitfähigen Kontaktierung einer außerhalb der Beschichtung angeordneten Sammelschiene
EP3427313B1 (fr) Procédé de fabrication d'un film semi-conducteur et composant électronique
EP2061915A2 (fr) Dispositif et procédé de formation de couches fines de nitrure de silicium sur des surfaces de panneaux solaires en silicium cristallin
DE102019129832A1 (de) Optoelektronisches Bauelement, sowie Verfahren zur Kontaktierung eines optoelektronischen Bauelements
WO2023131379A1 (fr) Procédé de fabrication d'une couche photoactive dans un système de couches d'un composant électronique organique
KR101482446B1 (ko) 박막형 ci(g)s 태양전지용 기판 및 그 제조방법

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210607

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRAGER, NICOLE

Inventor name: FAHLTEICH, JOHN

Inventor name: TOP, MICHIEL

Inventor name: PFEIFFER-JACOB, MARTIN

Inventor name: BEWERSDORFF-SARLETTE, ULRIKE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221208