EP3883338A1 - Kompaktheizer mit mantelrohrheizkörper - Google Patents

Kompaktheizer mit mantelrohrheizkörper Download PDF

Info

Publication number
EP3883338A1
EP3883338A1 EP21162769.0A EP21162769A EP3883338A1 EP 3883338 A1 EP3883338 A1 EP 3883338A1 EP 21162769 A EP21162769 A EP 21162769A EP 3883338 A1 EP3883338 A1 EP 3883338A1
Authority
EP
European Patent Office
Prior art keywords
heating element
heating wire
wire coils
element according
jacketed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21162769.0A
Other languages
English (en)
French (fr)
Inventor
Matthias Gartner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eichenauer Heizelemente GmbH and Co KG
Original Assignee
Eichenauer Heizelemente GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eichenauer Heizelemente GmbH and Co KG filed Critical Eichenauer Heizelemente GmbH and Co KG
Publication of EP3883338A1 publication Critical patent/EP3883338A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means

Definitions

  • the invention is based on a tubular heating element with a connecting pin at both ends of the tubular casing, with a heating conductor in electrical connection between the connecting pins at the two ends inside the tubular casing and the rest of the space in the tubular casing with a powdery or granular metal oxide, especially magnesium oxide, is replenished.
  • the task is therefore to produce a tubular heating element with a very high output at voltages of up to 120V, in particular up to 60V.
  • a further object of the invention is to use a tubular heating element to produce a powerful compact heater for smaller supply voltages below 120V, in particular of at most 60V, which, despite its high performance, only requires a small volume.
  • heating wire coils instead of a single heating wire, at least 4 heating wire coils are arranged in the interior of the jacket tube, for example 5 heating wire coils.
  • the heating wire coils can be arranged concentrically.
  • the coils can have different winding diameters and can therefore be wound very compactly.
  • the coils preferably all have the same winding diameter and are therefore on a line when viewed axially.
  • the coils are twisted into one another, thus forming a multiple helix.
  • the heating wires can at least partially touch one another.
  • contacting heating wire turns or those with a small turn spacing are insulated from one another in one embodiment, preferably by an outer insulation layer such as an oxide layer.
  • an outer insulation layer such as an oxide layer.
  • the heating wire coils can be attached individually or in groups to several connection pins per end. This allows different Controls produce different combinations of resistors and thus different powers. However, all heating wire coils are preferably fastened at the ends to a common connection pin.
  • the heating wire coils are attached to a preferably cylindrical side wall of connection pins.
  • the connection pin contacting the heating wire coils is preferably solid.
  • the heating wires are advantageously fastened by welding, in particular by spot welding.
  • the heating wires are preferably fastened to the connection pins in an axially offset manner, in particular along an axial line.
  • the heating wires lying next to one another touch at least in the fastening area.
  • all of the wires can advantageously be fastened in a single operation. In particular in the case of heating wire coils with a small winding spacing, this fastening does not lead to heating wire coils that are unevenly wound into one another with short circuits and voltage bridges.
  • the connecting pins have an end section which is of reduced thickness. This end section can protrude into the heating wire coils and contact them, in particular by welding.
  • heating wire coils and connection pins can be squeezed, i.e. pressed so strongly that plastic deformation occurs, i.e. round wire, for example, is somewhat flattened. After the squeezing, welding can take place. It is also possible, in particular, for a sleeve to surround the contact area of the heating wire coils and connection pin and for the sleeve to be squeezed and / or welded after being pushed on.
  • ends of heating wire coils are common, preferably twisted together, fastened in a sleeve and led to the outside.
  • Fastening can take place, for example, by squeezing or crimping. If, which is preferred, the heating wire coils are made of round wire, the wire then no longer has a circular cross-section at its crimped end section, but is somewhat flattened. Alternatively or additionally, soldering or welding can take place.
  • This sleeve can be designed as an end section of a connecting pin, but is preferably a separate component.
  • an end section of the connecting pin can be introduced into the sleeve from its opposite end face prior to fastening, so that the end of the connecting pin and the end of the heating wire coils in the sleeve are opposite one another with contact or a small distance.
  • the heating wires protrude to the opposite end of the sleeve.
  • the end of the heating wires is preferably flush with the end of the sleeve.
  • This can be achieved by post-processing, for example by inserting the heating wire coils into the sleeve and then cutting off or grinding off an end section of the sleeve together with the ends of the heating wires inserted therein. This creates a flat face which can then be connected to the face end of the connection pin, in particular by resistance welding.
  • the sleeve can be pressed together with the heating wires located therein, that is to say plastically deformed, for example compression-molded.
  • the sleeve and the connecting pin preferably have similar, extremely preferably the same, outer diameter.
  • connection pin in tubular heaters is usually made of steel.
  • the connection pin in the tubular heater according to the invention is preferably made of stainless steel, in particular of a stainless steel with a specific resistance lower than, for example, 0.6 ohm mm 2 / m, in particular less than 0.4 ohm mm 2 / m. This advantageously leads to a better welded connection, in particular in the case of a welded connection on the end face.
  • the connecting pins preferably protrude from the jacket tube and contact the heating wire coils in the jacket tube.
  • the heating wire coils also protrude from one or both ends of the jacket tube and the connection pin (s) also outside the jacket tube Contact the jacket pipe.
  • the connection pin in question can also be hard-soldered to the heating coils, since the temperatures outside the casing pipe do not rise by far as high as in the casing pipe, even with high heating outputs.
  • the heating wire coils preferably have a relative pitch S R of at least 1, for example 2 or more.
  • the relative slope S R is therefore preferably much greater than in conventional tubular heaters with only one or two heating wire coils. In this way, a greater heating output can advantageously be achieved.
  • the relative pitch S R can be calculated for a given coil by dividing the pitch s associated with one revolution, defined as the axial distance between two adjacent turns of the same heating wire, by the outer diameter D A of the wire coil.
  • the outer diameter DA of the heating coil is 2.5 to 6 times, preferably only 2.5 to 4.5 times the wire diameter d. As has been shown, this dimensioning is particularly advantageous taking into account the limited surface load on the heating wire and a compact design.
  • Jacketed tubular heating elements produced according to the invention preferably have a relative resistance of less than 1 ohm / m in relation to the straight, heated tubular jacket section. Nevertheless, the diameter of the jacket tube is at most 12 mm, preferably at most 9 mm, extremely preferably at most 7 mm.
  • alloys of two or more metals are used as heating wires in tubular heating elements, which have a relatively high specific electrical resistance of over 1 ohm mm 2 / m and have a low tendency to oxidation.
  • metal alloys are preferably used as heating wire according to the invention which have a specific resistance of less than 0.8 ohm mm 2 / m, in particular less than 0.4 ohm mm 2 / m, that is to say are not typical heating conductor alloys.
  • the preferred metal alloy also has a temperature resistance of at least 600.degree. C., preferably at least 1000.degree.
  • the tubular heating element is bent several times and / or continuously.
  • the tubular heating element is bent in such a way that the two tubular tubular ends have approximately the same spatial orientation.
  • the tubular heating element is advantageously bent in a helical and / or spiral and / or meandering manner. Most preferably, at least one bend has at least 90 ° and a central bending radius of at most twice the casing tube diameter. The tubular heating element bent in this way results in an extremely powerful compact heater.
  • Fig. 1 shows schematically an embodiment of a tubular heating element according to the invention in a multiple cut partial view.
  • the first section is a tangential section in the axial direction of the jacket tube 1 in order to reveal the inside of the jacket tube 1.
  • the jacket tube 1 is cut off at a distance from the jacket tube end 1.1.
  • the heating wires 5.1-5.5 of the heating wire coils are cut off individually at a greater distance from the casing pipe end 1.1 than the casing pipe 1 itself for better illustration. Without the cuts, the jacket tube 1 and the heating wires 5.1-5.5 would extend to an opposite second end of the jacket tube, which is not shown here.
  • heating wires 5.1-5.5 are arranged helically with the same winding diameter and the remaining space 7 is filled with metal oxide powder.
  • All heating wire coils have the same pitch; so it has approximately the same distances between adjacent heating wire turns.
  • the arrangement of the heating wires 5.1-5.5 among one another is retained over the entire distance between the two ends of the jacket tube 1, ie the sequence between the heating wires 5.1-5.5 remains unchanged over the entire distance.
  • the heating wires 5.1-5.5 thus form a multiple helix.
  • the ends of the heating wires 5.1-5.5 are also wound or plugged onto an end section of a connecting pin 2, also in compliance with their sequence, the contact pin 4 of which protrudes from the casing pipe 1.
  • Each heating wire 5.1-5.5 preferably has at least one full turn, extremely preferably at least three full turns, contact with the connecting pin 2.
  • the fastening of the heating wires 5.1-5.5 on the cylindrical side wall of the connecting pin 2 is in the exemplary embodiment by spot welding with a elongated electrode takes place, which fixes all heating wires 5.1-5.5 on the connection pin 2 at the same time.
  • all of the fastening points 6.1-6.5 lie on one line, extremely preferably on an axial line of the connection pin 2, in this exemplary embodiment with spacings between the heating wires 5.1-5.5.
  • the heating wires 5.1-5.5 are preferably in mutual contact the fastening points 6.1 - 6.5 arranged.
  • the fastenings can, however, also take place one after the other, or the fastening points 6.1-6.5 are distributed circumferentially and axially at the same height as the connecting pin 2. Other types of fastening are also possible.
  • the finished tubular heating element is sealed at its ends between the connecting pin 2 and the tubular casing 1 by a socket 3.
  • the straight tubular heating element shown is bent several times or continuously after its completion (not shown). This creates a powerful, compact radiator.
  • Fig. 1 the contact between the heating wire coils and the connection pin 2 of the contact pin 4 is shown only schematically and not to scale.
  • Fig. 2 shows a true-to-scale example of the contact between four heating wire coils 5.1-5.4 and a connection pin 2.
  • the connection pin 2 has an end section 2.1, the thickness of which is reduced, i.e. smaller than the remaining part of the connection pin and, in particular, also smaller than the thickness of the connection pin 2 formed contact pins 4 at the opposite end.
  • the end section 2.1 of the connecting pin 2 protrudes into the heating wire coils 5.1-5.4.
  • Fig. 3 shows a longitudinal section of a portion of FIGS. 2 and 4 shows a cross section to Fig. 2 .
  • the heating wire coils are made of round wire. After the heating wire coils have been plugged onto the end section 2.1 of the connection pin 2, the heating wire coils can still be squeezed there. As a result, the heating wire 5.1-5.4 is plastically deformed in this area, so that the cross-section of the heating wire 5.1-5.4 and the end section 2.1 of the connecting pin 2 are no longer circular there, but rather flattened somewhat.
  • the common outer contour is reduced by the compression with the reduction of the gaps and the entire connection area is more compact. In this way, the contact area to the connection pin 2 is increased.
  • the heating wire coils are preferably welded to the end section 2.1 of the connecting pin 2.
  • the contacting point can also have an outer sleeve 8 which surrounds the heating wires 5.1-5.4 with the end section 2.1.
  • compression by squeezing the contact area is also preferably carried out in this embodiment.
  • Fig. 5 as well as the Figures 6a and 6b show a further example of the contact between four heating wire coils and a contact pin 2.
  • This exemplary embodiment differs from the exemplary embodiment in FIG Figures 2 to 4 essentially in that the end section 2.1 is at least partially pushed into a sleeve 8 from the first side and the ends of the heating wire coils 5.1-5.4 are pushed into the sleeve from the second side, their end faces ideally touching.
  • the sleeve 8 was pressed after it had been pushed on, as a result of which in turn the underlying end sections of the heating wires 5.1-5.4 and the end section 2.1 were plastically deformed, that is to say pressed somewhat flat.
  • welding is then preferably carried out for secure contacting.
  • an end section of the connecting pin can protrude into the heating coils.
  • the end section 2.1 of the connecting pin 2 does not protrude into the heating wire coils 5.1-5.4, but the end of the connecting pin 2 and the end of the heating wire coils 5.1-5.4 are opposite each other in the sleeve 8 with contact or a small distance.
  • the contact is preferably made by introducing solder into the sleeve 8.
  • soldering is only effective in applications in which the application temperature does not reach the solder melting temperature.
  • FIG. 7 Another example of contacting is in Fig. 7 shown.
  • only the heating wires 5.1-5.4 are introduced into a sleeve 8 and connected to the sleeve 8, preferably welded.
  • the internal heating wires 5.1-5.4 protrude up to the end face of the sleeve 8, which is made flat in particular by machining.
  • the end face of the end section 2.1 is then connected to this end face of the sleeve 8, in particular connected by resistance welding.
  • the sleeve and the end section 2.1 preferably have similar, extremely preferably the same, outer diameter.
  • All of the examples shown above of the contact between heating wire coils 5.1-5.4 and the end section 2.1 of the connection pin 2 are preferably implemented in such a way that this contact lies within the jacket tube 1.
  • the contact pin 4 then protrudes from the jacket tube 1 and the end section 2.1 of the connecting pin 2 contacting the heating wire coils is in the jacket pipe 1.
  • the heating wire coils 5.1-5.4 protrude from the jacket pipe 1 and the contact between heating wire coils 5.1 - 5.4 and end section 2.1 takes place outside of the jacket pipe 1, as in the case of Fig. 8 embodiment shown. Since the temperatures outside the jacket tube 1 are by far not as high as in the jacket tube 1, instead of welding, soldering or even just crimping or squeezing can be used to form contacts in this case

Landscapes

  • Resistance Heating (AREA)

Abstract

Beschrieben wird ein Mantelrohrheizkörper mit einem Mantelrohr (1) und jeweils mindestens einem elektrischer Anschlussstift (2) an beiden Enden (1.1) des Mantelrohres (1), wobei im Inneren des Mantelrohres (1) ein Heizleiter in elektrischer Verbindung zwischen den Anschlussstiften (2) an den beiden Enden (1.1) angeordnet ist und der übrige Raum (7) im Mantelrohr (1) mit einem pulver- oder kornförmigem Metalloxid, insbesondere Magnesiumoxid, aufgefüllt ist. Erfindungsgemäß ist vorgesehen, dass der Heizleiter aus wenigstens 4 parallel geschalteten Heizdrahtwendeln (5.1-5.5) besteht.

Description

  • Die Erfindung geht aus von einem Mantelrohrheizkörper mit jeweils einem Anschlussstift an beiden Enden des Mantelrohres, wobei im Inneren des Mantelrohres ein Heizleiter in elektrischer Verbindung zwischen den Anschlussstiften an den beiden Enden angeordnet ist und der übrige Raum im Mantelrohr mit einem pulver- oder kornförmigen Metalloxid, insbesondere Magnesiumoxid, aufgefüllt ist.
  • Für biegbare Mantelrohrheizkörper mit kleineren Versorgungsspannungen bis 120V, insbesondere bis 60V, wie sie im Automobilbereich üblich sind, sind der verfügbaren Leistung bezogen auf die Mantelrohrlänge Grenzen gesetzt, da der für hohe Leistung erforderliche kleine Widerstand nur mit dicken, steifen und daher nicht biegbaren Heizdrähten zu realisieren ist, deren Oberflächenbelastung dann aber meist zu hoch ist. Weiterhin sind für kompakte, kleinvolumige Heizkörper, wie sie in der Automobilindustrie z.B. zur Beheizung von Kühlwasser oder Abgasen. benötigt werden, Rohrheizkörpers mit hoher Leistung erforderlich.
  • Aufgabe ist es daher, einen Mantelrohrheizkörper mit sehr hoher Leistung bei Spannungen bis 120V, insbesondere bis 60V herzustellen. Weiterhin ist es Aufgabe der Erfindung, unter Verwendung eines Mantelrohrheizkörpers einen leistungsstarken Kompaktheizer für kleinere Versorgungsspannungen unter 120V, insbesondere von höchstens 60V herzustellen, der trotz seiner Leistungsstärke nur ein kleines Volumen benötigt.
  • Diese Aufgabe wird durch einen Mantelrohrheizkörper mit den im Anspruch 1 angegebenen Merkmalen und einem Kompaktheizer nach Anspruch 14 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.
  • Erfindungsgemäß sind anstelle eines einzigen Heizdrahtes im Inneren des Mantelrohres mindestens 4 Heizdrahtwendeln angeordnet, beispielsweise 5 Heizdrahtwendeln. Die Heizdrahtwendeln können konzentrisch angeordnet sein. Die Wendeln können verschiedene Windungsdurchmesser aufweisen und dadurch sehr kompakt gewickelt sein. Bevorzugt haben die Wendeln aber alle den gleichen Windungsdurchmesser und liegen daher axial gesehen auf einer Linie. Dabei sind die Wendeln ineinander gewunden, bilden also eine Mehrfach-Helix.
  • Die Heizdrähte können sich zumindest teilweise berühren. Um Kurzschlüsse oder Spannungsbrücken und damit verbundene Gesamtwiderstandsänderungen zu vermeiden, sind sich berührende Heizdrahtwindungen oder solche mit geringem Windungsabstand in einer Ausgestaltungsvariante gegeneinander isoliert, bevorzugt durch eine äußere Isolationsschicht wie beispielsweise eine Oxidschicht. Überraschend hat sich aber gezeigt, dass auch Mantelrohrheizkörper mit 4 und mehr koaxial gewundenen Heizdrahtwendeln ohne Heizdrahtaußenisolierung auch mit geringem Windungsabstand ohne nennenswerte Widerstandsänderung hergestellt werden können, da die Federkraft der Heizdrähte sehr homogen ist. Diese Ausgestaltung ist bevorzugt.
  • Die Heizdrahtwendeln können einzeln oder in Gruppen an mehreren Anschlussstiften je Ende befestigt sein. Dadurch können unterschiedliche Ansteuerungen unterschiedliche Widerstandskombinationen und somit unterschiedliche Leistungen erzeugen. Bevorzugt sind jedoch alle Heizdrahtwendeln an den Enden jeweils an einem gemeinsamen Anschlussstift befestigt.
  • Bei einer Anschlussvariante sind die Heizdrahtwendeln an einer bevorzugt zylindrischen Seitenwand von Anschlussstiften befestigt. Bei dieser Ausgestaltung ist der die Heizdrahtwendeln kontaktierende Anschlussstifts bevorzugt massiv. Die Befestigung der Heizdrähte erfolgt vorteilhaft durch Verschweißen, insbesondere durch Punktschweißen. Bevorzugt erfolgt dabei die Befestigung der Heizdrähte an den Anschlussstiften axial versetzt, insbesondere entlang einer axialen Linie. Bei einer äußerst vorteilhaften Variante berühren sich die nebeneinander liegenden Heizdrähte zumindest im Befestigungsbereich. Dadurch lässt sich vorteilhaft die Befestigung aller Drähte in einem einzigen Arbeitsgang herstellen. Insbesondere bei Heizdrahtwendeln mit geringem Windungsabstand führt diese Befestigung nicht zu ungleich ineinander gewundenen Heizdrahtwendeln mit Kurzschlüssen und Spannungsbrücken.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Anschlussstifte einen Endabschnitt haben, der eine reduzierte Stärke hat. Dieser Endabschnitt kann in die Heizdrahtwendeln hineinragen und diese kontaktieren, insbesondere durch Verschweißen. Um elektrischen Kontakt herzustellen oder zu verbessern, können Heizdrahtwendeln und Anschlussstifte verquetscht werden, also so stark verpresst werden, dass eine plastische Verformung auftritt, also beispielsweise Runddraht etwas abgeplattet wird. Nach dem Verquetschen kann eine Verschweißung erfolgen. Möglich ist insbesondere auch, dass eine Hülse den Kontaktbereich von Heizdrahtwendeln und Anschlussstift umgibt und die Hülse nach dem Aufschieben verquetscht und/oder verschweißt wird.
  • Bei einer Anschlussvariante sind Enden von Heizdrahtwendeln gemeinsam, bevorzugt zusammen verdrillt, in einer Hülse befestigt und nach außen geführt. Die Befestigung kann z.B. durch Verquetschen bzw. Vercrimpen erfolgen. Wenn, was bevorzugt ist, die Heizdrahtwendeln aus Runddraht sind, hat der Draht an seinem verquetschten Endabschnitt dann keinen kreisförmigen Querschnitt mehr, sondern ist etwas plattgedrückt. Alternativ oder zusätzlich kann ein Verlöten oder Verschweißen erfolgen. Diese Hülse kann als ein Endabschnitt eines Anschlussstifts ausgebildet sein, ist aber bevorzugt ein separates Bauteil.
  • Bei einer separaten Hülse kann in die Hülse von ihrer gegenüberliegenden Stirnseite vor der Befestigung ein Endabschnitt des Anschlussstiftes eingebracht sein, sodass sich das Ende des Anschlussstifts und das Ende der Heizdrahtwendeln in der Hülse mit Kontakt oder geringem Abstand gegenüberliegen.
  • Bei einer vorteilhaften Ausführungsform ragen jedoch die Heizdrähte bis zum gegenüberliegenden Ende der Hülse. Bevorzugt ist dabei das Ende der Heizdrähte bündig mit dem Ende der Hülse. Dies kann durch Nachbearbeitung erreicht werden, beispielsweise indem die Heizdrahtwendeln in Hülse gesteckt und dann ein Endabschnitt der Hülse zusammen mit den darin steckenden Enden der Heizdrähte abgeschnitten oder abgeschliffen wird. So entsteht eine ebene Stirnseite die anschließend mit dem stirnseitigen Ende des Anschlussstiftes verbunden werden kann, insbesondere durch Widerstandsschweißen. Vor einer solchen Nachbearbeitung kann die Hülse zusammen mit den darin liegenden Heizdrähten verpresst, also plastisch verformt werden, beispielsweise formverpresst. Bevorzugt haben dabei die Hülse und der Anschlussstift ähnliche, äußerst bevorzugt gleiche, Außendurchmesser.
  • Üblicherweise besteht ein Anschlussstift bei Rohrheizkörpern aus Stahl. Bevorzugt besteht jedoch der Anschlussstift bei dem erfindungsgemäßen Rohrheizkörper aus Edelstahl, insbesondere aus einem Edelstahl mit einem geringeren spezifischen Widerstand als beispielsweise 0,6 Ohm mm2/m, insbesondere geringer als 0,4 Ohm mm2/m. Vorteilhaft führt dies zu einer besseren Schweißverbindung, insbesondere bei einer stirnseitigen Schweißverbindung.
  • Bevorzugt ragen die Anschlussstifte aus dem Mantelrohr heraus und kontaktieren die Heizdrahtwendeln in dem Mantelrohr. Es ist aber auch möglich, dass die Heizdrahtwendeln an einem oder beiden Enden des Mantelrohrs ebenfalls aus diesem herausragen und den oder die Anschlussstifte auch außerhalb des Mantelrohres kontaktieren. In diesem Fall kann der betreffende Anschlussstift mit den Heizwendeln auch hartverlötet sein, da die Temperaturen außerhalb des Mantelrohrs auch bei hohen Heizleistungen bei weitem nicht so hoch ansteigen, wie in dem Mantelrohr.
  • Die Heizdrahtwendeln haben bevorzugt eine relative Steigung SR von wenigstens 1, beispielsweise 2 oder mehr. Die relative Steigung SR ist also bevorzugt wesentlich größer als bei herkömmlichen Mantelrohrheizern mit nur einer oder zwei Heizdrahtwendeln. Vorteilhaft lässt sich so eine größere Heizleistung verwirklichen. Die relative Steigung SR lässt sich für eine gegebene Wendel berechnen, indem man die mit einem Umlauf verbundene Steigung s, definiert als axialer Abstand zweier benachbarten Windungen des gleichen Heizdrahtes, durch den Außendurchmesser DA der Drahtwendel teilt.
  • In einer weiteren vorteilhaften Ausgestaltung beträgt der Außendurchmesser DA der Heizwendel das 2,5-fache bis 6-fache, bevorzugt lediglich das 2,5-fache bis 4,5-fache des Drahtdurchmessers d. Wie sich gezeigt hat ist diese Dimensionierung besonders vorteilhaft unter Berücksichtigung von begrenzter Oberflächenbelastung des Heizdrahtes und kompakter Bauweise.
  • Erfindungsgemäß hergestellte Mantelrohrheizkörper haben bevorzugt einen relativen Widerstand von weniger als 1 Ohm/m bezogen auf den geraden, beheizten Mantelrohrabschnitt. Trotzdem beträgt der Durchmesser des Mantelrohres höchstens 12 mm, bevorzugt höchstens 9 mm, äußerst bevorzugt höchstens 7 mm.
  • Gemäß dem Stand der Technik werden als Heizdrähte bei Mantelrohrheizkörper Legierungen aus zwei oder mehr Metallen eingesetzt, die einen relativ hohen spezifischen elektrischen Widerstand von über 1 Ohm mm2/m haben und eine geringe Neigung zur Oxidation besitzen. In Abkehr von dieser Lehre sind erfindungsgemäß bevorzugt Metalllegierungen als Heizdraht eingesetzt, die einen spezifischen Widerstand von weniger als 0,8 Ohm mm2/m, insbesondere weniger als 0,4 Ohm mm2/m haben, also keine typischen Heizleiterlegierungen sind. Um trotzdem der durch die hohe Leistung bedingt hohen Temperatur standhalten zu können, besitzt die bevorzugte Metalllegierung gleichzeitig eine Temperaturbeständigkeit von mindestens 600°C, bevorzugt mindestens 1000°C.
  • Um ausgehend von einem derartigen Mantelrohrheizkörper zu einem leistungsstarken Kompaktheizer zu gelangen, ist der Mantelrohrheizkörper mehrfach und/oder kontinuierlich gebogen. In einer bevorzugten Ausgestaltung ist der Mantelrohrheizkörper so gebogen, dass die beiden Mantelrohrenden in etwa die gleiche räumliche Ausrichtung haben. Vorteilhaft ist der Mantelrohrheizkörper wendelartig und/oder spiralförmig und/oder mäanderförmig gebogen. Äußerst bevorzugt weist dabei mindestens eine Biegung mindestens 90° und einen mittigen Biegeradius von höchstens dem doppelten des Mantelrohrdurchmessers auf. Durch den derart gebogenen Mantelrohrheizkörper erhält man einen äußerst leistungsstarken Kompaktheizer.
  • Weitere Einzelheiten und Vorteile der Erfindung werden an Ausführungsbeispielen unter Bezugnahme auf die beigefügten Zeichnungen erläutert. Gleiche und einander entsprechende Komponenten sind dabei mit übereinstimmenden Bezugszeichen versehen. Es zeigen:
  • Fig. 1
    schematisch ein Mantelrohrheizkörperende in einem tangentialen Anschnitt,
    Fig. 2
    einen Längsschnitt eines weiteren Ausführungsbeispiels eines Mantelrohrheizkörperendes;
    Fig. 3
    eine Detailansicht des Ausschnitts X von Fig. 2,
    Fig. 4
    einen Querschnitt zu Fig. 2 entlang der Schnittlinie A-A,
    Fig. 5
    einen Längsschnitt eines weiteren Ausführungsbeispiels eines Mantelrohrheizkörperendes, und
    Fig. 6a
    eine Detailansicht des Ausschnitts X von Fig. 5,
    Fig. 6b
    einen Querschnitt zu Fig. 5 entlang der Schnittlinie A-A,
    Fig. 7a
    einen Längsschnitt eines weiteren Ausführungsbeispiels eines Mantelrohrheizkörperendes;
    Fig. 7b
    eine Detailansicht des Ausschnitts X von Fig. 7a,
    Fig. 7c
    einen Querschnitt zu Fig. 7a entlang der Schnittlinie A-A,
    Fig. 8
    weiteres Ausführungsbeispiel eines Mantelrohrheizkörpers.
  • Fig. 1 zeigt schematisch ein Ausführungsbeispiel eines erfindungsgemäßen Mantelrohrheizkörpers in einer mehrfach geschnittenen Teilansicht. Der erste Schnitt ist ein tangentialer Schnitt in axialer Richtung des Mantelrohres 1, um den Blick ins Innere des Mantelrohres 1 freizugeben. In einem weiteren Schnitt ist das Mantelrohr 1 in einem Abstand vom Mantelrohrende 1.1 abgeschnitten. Abweichend davon sind zur besseren Darstellung die Heizdrähte 5.1 - 5.5 der Heizdrahtwendeln in einem größeren Abstand zum Mantelrohrende 1.1 als das Mantelrohr 1 selbst einzeln abgeschnitten. Ohne die Schnitte würden sich das Mantelrohr 1 und die Heizdrähte 5.1 - 5.5 bis zu einem gegenüberliegenden zweiten Ende des Mantelrohres, das hier nicht gezeigt ist, erstrecken.
  • Im Inneren des Mantelrohres 1 sind vier oder mehr, beispielsweise fünf Heizdrähte 5.1 - 5.5 wendelförmig mit gleichem Windungsdurchmesser angeordnet und der verbleibende Raum 7 mit Metalloxidpulver aufgefüllt.
  • Alle Heizdrahtwendeln haben dieselbe Wendelsteigung; es hat also etwa gleiche Abstände zwischen benachbarten Heizdrahtwindungen. Auf der gesamten Strecke zwischen den beiden Enden des Mantelrohr 1 bleibt die Anordnung der Heizdrähte 5.1 - 5.5 untereinander erhalten, d. h. die Reihenfolge zwischen den Heizdrähten 5.1 - 5.5 bleibt auf der ganzen Strecke unverändert. Die Heizdrähte 5.1 - 5.5 bilden also eine Mehrfach-Helix. Am Mantelrohrende 1.1 sind die Enden der Heizdrähte 5.1 - 5.5 ebenfalls unter Einhaltung ihrer Reihenfolge auf einen Endabschnitt eines Anschlussstifts 2 aufgewickelt oder aufgesteckt, dessen Kontaktpin 4 aus dem Mantelrohr 1 herausragt. Bevorzugt hat dabei jeder Heizdraht 5.1 - 5.5 über mindestens eine volle Windung, äußerst bevorzugt über mindestens drei volle Windungen Kontakt zu dem Anschlussstift 2. Die Befestigung der Heizdrähte 5.1 - 5.5 an der zylindrischen Seitenwand des Anschlussstiftes 2 ist in der beispielhaften Ausführung durch Punktschweißen mit einer länglichen Elektrode erfolgt, die zeitgleich alle Heizdrähte 5.1 - 5.5 an dem Anschlussstift 2 festlegt. Vorteilhaft liegen dabei alle Befestigungspunkte 6.1 - 6.5 auf einer Linie, äußerst bevorzugt auf einer axialen Linie des Anschlussstiftes 2, in dieser beispielhaften Ausführung mit Abständen zwischen den Heizdrähten 5.1 - 5.5. Bevorzugt sind aber die Heizdrähte 5.1 - 5.5 sich gegenseitig berührend an den Befestigungspunkten 6.1 - 6.5 angeordnet. Die Befestigungen können aber auch nacheinander erfolgt sein, oder die Befestigungspunkte 6.1 - 6.5 liegen umfangsmäßig verteilt axial auf gleicher Höhe des Anschlussstiftes 2. Auch andere Arten der Befestigung sind möglich.
  • Der fertiggestellte Mantelrohrheizkörper ist an seinen Enden zwischen dem Anschlussstift 2 und dem Mantelrohr 1 durch eine Buchse 3 abgedichtet.
  • Um einen Kompaktheizer zu erhalten ist der dargestellte gerade Mantelrohrheizkörper nach seiner Fertigstellung noch mehrfach oder kontinuierlich gebogen (nicht dargestellt). Dadurch ist ein leistungsstarker, kompakter Heizkörper hergestellt.
  • In Fig. 1 ist die Kontaktierung zwischen Heizdrahtwendeln und Anschlussstift 2 des Kontaktpins 4 nur schematisch und nicht maßstäblich dargestellt. Fig. 2 zeigt ein maßstabsgetreues Beispiel der Kontaktierung zwischen vier Heizdrahtwendeln 5.1 - 5.4 und einem Anschlussstift 2. Der Anschlussstift 2 hat einen Endabschnitt 2.1, dessen Stärke reduziert ist, also kleiner als der übrige Teil des Anschlussstifts ist und insbesondere auch kleiner als die Stärke des von dem Anschlussstift 2 gebildeten Kontaktpins 4 am gegenüberliegenden Ende.
  • Der Endabschnitt 2.1 des Anschlussstifts 2 ragt in die Heizdrahtwendeln 5.1 - 5.4 hinein. Fig. 3 zeigt einen Längsschnitt eines Ausschnitts von Fig. 2 und Fig. 4 zeigt einen Querschnitt zu Fig. 2. Die Heizdrahtwendeln sind aus Runddraht. Nach dem Aufstecken der Heizdrahtwendeln auf den Endabschnitt 2.1 des Anschlussstifts 2 können die die Heizdrahtwendeln dort noch verquetscht werden. Dadurch wird der Heizdraht 5.1 - 5.4 in diesem Bereich plastisch verformt, so dass der Querschnitt des Heizdrahts 5.1 - 5.4 und der Endabschnitt 2.1 des Anschlussstiftes 2 dort nicht mehr kreisförmig, sondern etwas abgeplattet ist. Die gemeinsame Außenkontur ist durch die Komprimierung mit Verringerung der Zwischenräume verkleinert und der gesamte Anschlussbereich ist kompakter. Auf diese Weise wird die Kontaktfläche zu dem Anschlussstift 2 vergrößert. Zur sicheren Verbindung sind die Heizdrahtwendeln mit dem Endabschnitt 2.1 des Anschlussstifts 2 bevorzugt verschweißt.
  • Zusätzlich kann die Kontaktierungsstelle noch eine äußere Hülse 8 aufweisen, die die Heizdrähte 5.1-5.4 mit dem Endabschnitt 2.1 umgibt. Vor der Verbindung durch Verschweißen oder Verlöten ist auch bei dieser Ausgestaltung bevorzugt eine Komprimierung durch Verquetschen des Kontaktierungsbereiches erfolgt.
  • Fig. 5 sowie die Fig. 6a und 6b zeigen ein weiteres Beispiel der Kontaktierung zwischen vier Heizdrahtwendeln und einem Kontaktstift 2. Dieses Ausführungsbeispiel unterscheidet sich von dem Ausführungsbeispiel der Figuren 2 bis 4 im Wesentlichen dadurch, dass der Endabschnitt 2.1 zumindest teilweise von der ersten Seite in eine Hülse 8 eingeschoben ist und die Enden der Heizdrahtwendeln 5.1 - 5.4 von der zweiten Seite in die Hülse eingeschoben sind, wobei ihre Stirnseiten sich idealerweise berühren. Die Hülse 8 wurde nach dem Aufschieben verpresst, wodurch wiederum die darunterliegenden Endabschnitte der Heizdrähte 5.1 - 5.4 und der Endabschnitt 2.1 plastisch verformt, also etwas platt gedrückt wurden. Zur sicheren Kontaktierung erfolgte auch bei dieser Ausführung anschließend bevorzugt eine Verschweißung.
  • Bei Verwendung einer Hülse 8 kann ein Endabschnitt des Anschlussstifts in die Heizwendeln hineinragen. Bei dem gezeigten Ausführungsbeispiel ragt der Endabschnitt 2.1 des Anschlussstifts 2 aber nicht in die Heizdrahtwendeln 5.1 - 5.4 hinein, sondern das Ende des Anschlussstifts 2 und das Ende der Heizdrahtwendeln 5.1 - 5.4 liegen sich in der Hülse 8 mit Kontakt oder geringem Abstand gegenüber. Bei dieser Ausführungsform erfolgt die Kontaktierung bevorzugt durch Einbringen von Lot in die Hülse 8 Eine Verlötung ist aber nur in Anwendungsfällen zielführend, in denen die Anwendungstemperatur nicht die Lotschmelztemperatur erreicht.
  • Ein weiteres Beispiel zur Kontaktierung ist in Fig. 7 gezeigt. In dieser Ausführung sind lediglich die Heizdrähte 5.1 - 5.4 in eine Hülse 8 eingebracht und mit der Hülse 8 verbunden, bevorzugt verschweißt. Die innenliegenden Heizdrähte 5.1 - 5.4 ragen bis zur endseitigen Stirnseite der Hülse 8, die insbesondere durch Bearbeitung eben ausgeführt ist. Mit dieser endseitigen Stirnseite der Hülse 8 ist anschließend die endseitige Stirnseite des Endabschnittes 2.1 verbunden, insbesondere durch Widerstandsschweißen verbunden. Bevorzugt haben dabei die Hülse und der Endabschnitt 2.1 ähnliche, äußerst bevorzugt gleiche, Außendurchmesser.
  • Alle vorstehend gezeigten Beispiele der Kontaktierung zwischen Heizdrahtwendeln 5.1 - 5.4 und Endabschnitt 2.1 des Anschlussstiftes 2, sind bevorzugt so umgesetzt, dass diese Kontaktierung innerhalb des Mantelrohrs 1 liegt. Der Kontaktstift 4 ragt dann also aus dem Mantelrohr 1 heraus und der die Heizdrahtwendeln kontaktierende Endabschnitt 2.1 des Anschlussstiftes 2 ist in dem Mantelrohr 1. Es ist aber auch möglich, dass die Heizdrahtwendeln 5.1 - 5.4 aus dem Mantelrohr 1 herausragen und die Kontaktierung zwischen Heizdrahtwendeln 5.1 - 5.4 und Endabschnitt 2.1 außerhalb des Mantelrohrs 1 erfolgt, wie bei dem in Fig. 8 gezeigten Ausführungsbeispiel. Da die Temperaturen außerhalb des Mantelrohrs 1 bei weitem nicht so hoch sind, wie in dem Mantelrohr 1, kann in diesem Fall statt einer Verschweißung auch einer Verlötung oder sogar nur eine Vercrimpung oder Verquetschung zur Kontaktbildung verwendet werden
  • Bezugszeichenliste
    • 1 Mantelrohr
    • 1.1 Mantelrohrende
    • 2 Anschlussstift
    • 2.1 Endabschnitt des Anschlussstifts
    • 3 Buchse
    • 4 Kontaktpin
    • 5.1 Heizdraht
    • 5.2 Heizdraht
    • 5.3 Heizdraht
    • 5.4 Heizdraht
    • 5.5 Heizdraht
    • 6.1 Befestigung
    • 6.2. Befestigung
    • 6.3 Befestigung
    • 6.4 Befestigung
    • 6.5 Befestigung
    • 7 Raum
    • 8 Hülse
    • S Steigung einer Drahtwendel
    • DA Außendurchmesser einer Drahtwendel
    • d Durchmesser eines Heizdrahtes

Claims (14)

  1. Mantelrohrheizkörper mit einem Mantelrohr (1) und jeweils mindestens einem elektrischer Anschlussstift (2) an beiden Enden (1.1) des Mantelrohres (1), wobei im Inneren des Mantelrohres (1) ein Heizleiter in elektrischer Verbindung zwischen den Anschlussstiften (2) an den beiden Enden (1.1) angeordnet ist und der übrige Raum (7) im Mantelrohr (1) mit einem pulver- oder kornförmigem Metalloxid, insbesondere Magnesiumoxid, aufgefüllt ist, dadurch gekennzeichnet, dass der Heizleiter aus wenigstens 4 parallel geschalteten Heizdrahtwendeln (5.1 - 5.5) besteht.
  2. Mantelrohrheizkörper nach Anspruch 1, dadurch gekennzeichnet, dass die Anschlussstifte (2) jeweils einen Endabschnitt (2.1) aufweisen, an dem sie von den Heizdrahtwendeln (5.1 - 5.5) kontaktiert werden.
  3. Mantelrohrheizkörper nach Anspruch 2, dadurch gekennzeichnet, dass der Endabschnitt (2.1) eine reduzierte Stärke aufweist.
  4. Mantelrohrheizkörper nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Endabschnitt (2.1) in die Heizdrahtwendeln (5.1 - 5.5) hineinragt.
  5. Mantelrohrheizkörper nach einem der vorstehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zumindest einer der Anschlussstifte (2) die Heizdrahtwendeln (5.1 - 5.5) stirnseitig berührt.
  6. Mantelrohrheizkörper nach einen der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Heizdrahtwendeln (5.1 - 5.5) an wenigstens einem Ende aus dem Mantelrohr (1) herausragen und den Anschlussstift (2) an wenigstens einem Ende des Mantelrohrs (1) außerhalb des Mantelrohrs (1) kontaktieren.
  7. Mantelrohrheizkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Anschlussstifte (2) mit den Heizdrahtwendeln (5.1 - 5.5) verpresst sind.
  8. Mantelrohrheizkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Anschlussstifte (2) mit den Heizdrahtwendeln (5.1 - 5.5) verschweißt sind.
  9. Mantelrohrheizkörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Anschlussstifte (2) jeweils in eine Hülse (8) hineinragen, in der sie von den Heizdrahtwendeln (5.1 - 5.5) kontaktiert werden.
  10. Mantelrohrheizkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Metallrohr (1) einen Außendurchmesser von maximal 12 mm hat.
  11. Mantelrohrheizkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Widerstand nach der Fertigung entlang der gestreckten beheizten Länge des Mantelrohres (1) kleiner 1 Ohm/m ist.
  12. Mantelrohrheizkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Legierung der Heizdrähte (5.1 - 5.5) einen spezifischen Widerstand von weniger als 0,8 Ohm mm2/m hat, bevorzugt weniger als 0,4 Ohm mm2/m hat.
  13. Mantelrohrheizkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Heizdrahtwendeln (5.1 - 5.5) eine relative Steigung SR von 1 oder mehr haben.
  14. Kompaktheizer mit mindestens einem Mantelrohrheizkörper nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Mantelrohrheizkörper wendelartig und/oder spiralförmig und/oder mäanderförmig gebogen ist, wobei mindestens eine Biegung mindestens 90° und einen mittigen Biegeradius von höchstens dem doppelten Mantelrohrdurchmesser aufweist.
EP21162769.0A 2020-03-17 2021-03-16 Kompaktheizer mit mantelrohrheizkörper Pending EP3883338A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020001751.7A DE102020001751A1 (de) 2020-03-17 2020-03-17 Kompaktheizer mit Mantelrohrheizkörper

Publications (1)

Publication Number Publication Date
EP3883338A1 true EP3883338A1 (de) 2021-09-22

Family

ID=74884834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21162769.0A Pending EP3883338A1 (de) 2020-03-17 2021-03-16 Kompaktheizer mit mantelrohrheizkörper

Country Status (2)

Country Link
EP (1) EP3883338A1 (de)
DE (1) DE102020001751A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210112634A1 (en) * 2019-10-15 2021-04-15 Türk & Hillinger GmbH Electric tubular heating element and related method
US20210112632A1 (en) * 2019-10-15 2021-04-15 Türk & Hillinger GmbH Electrical Heating Element, Electrical Heating Device, and Method for Manufacturing an Electrical Heating Device with Such a Heating Element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB658711A (en) * 1948-06-09 1951-10-10 British Thomson Houston Co Ltd Improvements in and relating to electric heating units
US2858401A (en) * 1956-02-27 1958-10-28 Gen Electric Electric heating units and methods of making the same
FR2723284A1 (fr) * 1994-07-26 1996-02-02 Seb Sa Element chauffant blinde multipuissance
US6104011A (en) * 1997-09-04 2000-08-15 Watlow Electric Manufacturing Company Sheathed thermocouple with internal coiled wires
US20140178057A1 (en) * 2012-12-21 2014-06-26 Eemax, Inc. Next generation bare wire water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB658711A (en) * 1948-06-09 1951-10-10 British Thomson Houston Co Ltd Improvements in and relating to electric heating units
US2858401A (en) * 1956-02-27 1958-10-28 Gen Electric Electric heating units and methods of making the same
FR2723284A1 (fr) * 1994-07-26 1996-02-02 Seb Sa Element chauffant blinde multipuissance
US6104011A (en) * 1997-09-04 2000-08-15 Watlow Electric Manufacturing Company Sheathed thermocouple with internal coiled wires
US20140178057A1 (en) * 2012-12-21 2014-06-26 Eemax, Inc. Next generation bare wire water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210112634A1 (en) * 2019-10-15 2021-04-15 Türk & Hillinger GmbH Electric tubular heating element and related method
US20210112632A1 (en) * 2019-10-15 2021-04-15 Türk & Hillinger GmbH Electrical Heating Element, Electrical Heating Device, and Method for Manufacturing an Electrical Heating Device with Such a Heating Element
US11895744B2 (en) * 2019-10-15 2024-02-06 Türk & Hillinger GmbH Electric tubular heating element and related method
US11895743B2 (en) * 2019-10-15 2024-02-06 Türk & Hillinger GmbH Electrical heating element, electrical heating device, and method for manufacturing an electrical heating device with such a heating element

Also Published As

Publication number Publication date
DE102020001751A1 (de) 2021-09-23

Similar Documents

Publication Publication Date Title
DE3347160A1 (de) Elektrische heizeinrichtung fuer kunststoffspritzduesen
EP3883338A1 (de) Kompaktheizer mit mantelrohrheizkörper
DE2949174C2 (de)
DE19943192A1 (de) Rohrförmiges Heizelement
DE102019127691A1 (de) Elektrisches Heizelement, elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung mit einem solchen Heizelement
WO2005104256A2 (de) Elektrische funktionseinheit und verfahren zu deren herstellung
EP3777473B1 (de) Keramischer heizwiderstand, elektrisches heizelement sowie vorrichtung zur erwärmung eines fluides
DE102018103048A1 (de) Elektrische Heizvorrichtung
DE102016121571A1 (de) Wärmeleitkörper für eine Düsenheizung und Düsenheizung
DE102020126010A1 (de) Elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung
DE202020101182U1 (de) Elektrische Heizvorrichtung
DE202017100531U1 (de) Rohrwendelpatrone
DE102020006821A1 (de) Kompaktheizer mit Mantelrohrheizkörper
DE3729490A1 (de) Elektrisches verbindungselement
DE1094383B (de) Elektrisches Strahlungsheizelement
DE102019127692A1 (de) Elektrischer Rohrheizkörper und Verfahren zu dessen Herstellung
DE202020105695U1 (de) Elektrische Heizvorrichtung mit spezieller Heizleitergeometrie
DE2907870A1 (de) Elektrischer rohrheizkoerper
DE2509101C3 (de) Elektrischer Rohrheizkörper mit flachovalem Querschnitt
EP2348251A2 (de) Vorrichtung zum Erhitzen einer Flüssigkeit und Verfahren zur Herstellung einer Heizvorrichtung zum Erhitzen einer Flüssigkeit
DE102021119376A1 (de) Mantelheizkörper
DE2327484C3 (de) Wanderfeldröhre
DE2811898C3 (de) Elektrischer Rohrkondensator und Verfahren zur Herstellung
EP1117274B1 (de) Elektrischer Heizkörper
DE2613677A1 (de) Elektrischer drahtwiderstand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220126

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240412