EP3879847A1 - Mikrofonschaltung zur linearisierung des proximity-effekts bei einem richtmikrofon - Google Patents
Mikrofonschaltung zur linearisierung des proximity-effekts bei einem richtmikrofon Download PDFInfo
- Publication number
- EP3879847A1 EP3879847A1 EP20161953.3A EP20161953A EP3879847A1 EP 3879847 A1 EP3879847 A1 EP 3879847A1 EP 20161953 A EP20161953 A EP 20161953A EP 3879847 A1 EP3879847 A1 EP 3879847A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- microphone
- circuit
- proximity effect
- impedance
- linearizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/32—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
- H04R1/326—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for microphones
Definitions
- the invention relates to a microphone circuit for linearizing the proximity effect in a directional microphone according to the preamble of claim 1
- Directional microphones are normally used for both studio recordings and live performances. These microphones have the property of delivering different frequency responses depending on whether the sound source is in the near or far field. In the near field, there is a higher sound pressure at low frequencies, an effect known as the proximity effect. This proximity effect is often undesirable because, for example, universal microphones should be able to be used well both in the near field and in the far field.
- Microphone circuits are used in the prior art for various purposes such as, for example, handle noise or footfall noise suppression or for the purpose of other recording signal adaptations. As a rule, attempts are made to influence the microphone signal as early as possible, ideally directly after the microphone capsule, in order to keep the total energy in the system low. Possible microphone filter circuits are implemented as active, passive or a combination of these networks in any arrangement. Manual control is optionally available to the user via a switch on the microphone.
- the US 9 813 791 B1 shows a microphone circuit in which the electrical recording signal is manipulated by switching on a classic high-pass filter between the two operating states "voice mode” and “music mode” in order to counteract the close-up effect.
- a microphone circuit for the directional microphone which has at least one impedance element.
- the impedance element can be any passive electronic component that has an effective and / or reactance.
- the value of the impedance connected in parallel is preferably between 20 and 1000 ohms.
- the impedance element connected in this invention only dampens the natural resonance or quality of the vibrating dynamic microphone system.
- the amplitude response of the microphone returns to its original sale on both sides outside of its effective range.
- the natural resonance damping of the oscillating dynamic system in the application described here takes place on an electrical level with the help of components already present in the system. These components can, for example, correspond to a hum compensation coil, noise suppression coil or EMC components and thus take on a double function in the system.
- the value of the impedance connected in parallel is also between 20 and 1000 ohms.
- the Fig. 1 shows an example of a microphone circuit 1 according to the invention, in which a microphone capsule 2 of an impedance 3 can be connected in parallel via a switch S1.
- a microphone capsule 2 of an impedance 3 can be connected in parallel via a switch S1.
- the representation shown with open switch S1 corresponds to an undamped behavior.
- the Fig. 2 shows an example of a microphone circuit 5 according to the invention, which has a microphone capsule 2 and an impedance 3, which can be, for example, a hum compensation coil, a noise suppression coil, or more generally a mechanically oscillating system that attenuates mechanical noises (handle noises, footfall noise, etc.). This also consists of a membrane / coil system without sound penetration.
- the impedance 3 and the microphone capsule 2 are connected in series. This position corresponds to the undamped behavior at signal output 4 Fig. 3 . If the switch S2 is closed, the impedance 3 and the microphone capsule 2 are connected in parallel, which results in the damped behavior at the signal output 4 Fig. 3 is equivalent to.
- the Fig. 3 shows an amplitude response normalized in each case at 1 kHz for an undamped (corresponding to the prior art) and a damped output signal that can be achieved according to the invention for the frequency range from 20 Hz to 20,000 Hz.
- the difference in amplitude between the damped and undamped state for the frequency range 50Hz - 300Hz can be clearly seen.
- the impedance 3 can either be adjusted via the in FIGS. 1 and 2 Deactivate shown switch S1 or S2, or by means of an amplifier (not shown) to follow the output signal.
- FIGS. 1 and 2 The embodiments according to the invention shown are to be understood as examples. Although it is advantageous in most cases if the designs have the switches S1 or S2 shown in the figures, for cases in which this is not desired for certain reasons, a microphone circuit is of course also possible without the switches S1 or S2 gets by. This execution then corresponds to FIGS. 1 and 2 permanently closed switches.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
Mikrofonschaltung, die zwecks Dämpfung der Resonanz und Linearisierung des Proximity-Effekts dadurch gekennzeichnet ist, dass ein Impedanzelement (3) parallel zum Mikrofon schaltbar ist. Die Impedanz dieses Elements liegt bevorzugt zwischen 20 und 1000 Ohm.
Description
- Die Erfindung betrifft eine Mikrofonschaltung zur Linearisierung des Proximity-Effekts bei einem Richtmikrofon entsprechend dem Oberbegriff des Anspruches 1
- Sowohl bei Studioaufnahmen, als auch bei Live-Auftritten werden normalerweise Richtmikrofone verwendet. Diese Mikrofone haben die Eigenschaft, abhängig davon, ob sich die Schallquelle im Nah- oder im Fernfeld befindet, unterschiedliche Frequenzantworten zu liefern. Im Nahfeld tritt bei tiefen Frequenzen ein höherer Schalldruck auf, ein Effekt, der als Proximity-Effekt oder auch Nahbesprechungseffekt bekannt ist. Dieser Proximity-Effekt ist häufig unerwünscht, da beispielsweise Universalmikrofone sowohl im Nah- als auch im Fernfeld gut einsetzbar sein sollen.
- Mikrofonschaltungen werden im Stand der Technik für verschiedene Einsatzzwecke wie z.B. Griffgeräusch- oder Trittschall-Unterdrückung oder zum Zwecke anderer Aufnahmesignal-Anpassungen verwendet. In der Regel wird versucht das Mikrofonsignal frühest möglich zu beeinflussen, optimaler Weise direkt nach der Mikrofonkapsel, um die Gesamtenergie im System gering zu halten. Mögliche Mikrofon-Filter-Schaltungen sind als aktive, passive oder einer Kombination dieser Netzwerke in beliebiger Anordnung umgesetzt. Optional steht dem Anwender die manuelle Steuerung über Schalter am Mikrofon zur Verfügung.
- Die
US 9 813 791 B1 - Eine weitere aus dem Stand der Technik bekannte Möglichkeit ist die mechanische Dämpfung einer Mikrofonkapsel, etwa mittels Netzen oder Dämpfungsauflagen für die Mikrofonmembran. Da der Proximity-Effekt in einem Frequenzbereich von 50Hz-300Hz auftritt, ist diese Lösung grundsätzlich möglich. Nachteilig an dieser Umsetzung ist jedoch, dass aufgrund der rein mechanischen Natur das Verhalten starr ist und keine Adaptierungsmöglichkeiten an das Umfeld bietet. Erschwerend kommt hinzu, dass die Dämpfungskomponenten die Richtcharakteristik der Mikrofone verändern, was unerwünscht ist.
- Es ist Ziel und Aufgabe der Erfindung dieses Problem zu lösen, also eine Dämpfung von Richtmikrofonen und eine damit einhergehende Linearisierung des Proximity-Effekts ohne mechanische Komponenten zu erreichen.
- Erfindungsgemäß geschieht dies durch die im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmale; mit anderen Worten durch eine Mikrofonschaltung für das Richtmikrofon, die wenigstens ein Impedanzelement aufweist. Das Impedanzelement kann dabei ein beliebiges passives elektronisches Bauelement sein, das über einen Wirk- und/oder Blindwiderstand verfügt. Der Wert der parallel geschalteten Impedanz beträgt dabei bevorzugt zwischen 20 und 1000 Ohm.
- Im Gegensatz zu klassischen Filtern dämpft das in dieser Erfindung zugeschaltete Impedanzelement lediglich die Eigenresonanz bzw. Güte des schwingenden dynamischen Mikrofonsystems. Der Amplitudengang des Mikrofons kehrt beidseitig außerhalb seines Wirkungsbereiches wieder zu seinem ursprünglichen Verkauf zurück. Die Eigenresonanz-Bedämpfung des schwingenden dynamischen Systems in der hier beschriebenen Anwendung erfolgt auf elektrischer Ebene mithilfe bereits vorhandener Bauteile im System. Diese Komponenten können beispielweise einer Brummkompensationsspule, Rauschunterdrückungsspule oder EMV Bauteilen entsprechen und dadurch eine Doppelfunktion im System übernehmen. Der Wert der parallel geschalteten Impedanz beträgt auch dabei zwischen 20 und 1000 Ohm.
- Die Erfindung wird im Folgenden Anhand der Zeichnung näher erläutert, dabei zeigt:
- die
Fig. 1 eine erfindungsgemäße Mikrofonschaltung mit einer Mikrofonkapsel und einer parallelgeschalteten Impedanz, - die
Fig. 2 eine andere erfindungsgemäße Mikrofonschaltung mit einer Mikrofonkapsel und einer wahlweise in Serie oder parallel schaltbaren Brummkompensationsspule oder Rauschunterdrückungsspule, - die
Fig. 3 die erfindungsgemäß erreichbaren Unterschiede des Amplitudengangs eines Ausgangssignals - Entsprechend dem Fachjargon wird im Folgenden und in den Ansprüchen statt der Bezeichnung: "Impedanzelement" oft einfach: "Impedanz" verwendet.
- Die
Fig. 1 zeigt ein Beispiel einer erfindungsgemäßen Mikrofonschaltung 1, bei der eine Mikrofonkapsel 2 einer Impedanz 3 über einen Schalter S1 parallelschaltbar ist. Für das am Signalausgang 4 auftretende Signal und die sich aus den Schaltungszuständen ergebenden Unterschiede wird auf dieFig. 3 verwiesen, wobei die gezeigte Darstellung mit offenem Schalter S1 einem ungedämpften Verhalten entspricht. - Die
Fig. 2 zeigt ein Beispiel einer erfindungsgemäßen Mikrofonschaltung 5, die eine Mikrofonkapsel 2 und eine Impedanz 3 aufweist, welche beispielsweise eine Brummkompensationsspule, eine Rauschunterdrückungsspule, oder allgemeiner ein mechanisch schwingendes System, das mechanische Geräusche (Griffgeräusche, Trittschall, usw.) dämpft, sein kann. Dieses besteht auch aus einem Membran/Spulen-System ohne Schalleintritt. In der dargestellten Stellung befinden sich die Impedanz 3 und die Mikrofonkapsel 2 in Serienschaltung. Diese Stellung entspricht am Signalausgang 4 dem ungedämpften Verhalten ausFig. 3 . Wird der Schalter S2 geschlossen, so befindet befinden sich die Impedanz 3 und die Mikrofonkapsel 2 in Parallelschaltung, was am Signalausgang 4 dem gedämpften Verhalten ausFig. 3 entspricht. - Die
Fig. 3 zeigt einen jeweils bei 1kHz normierten Amplitudengang für ein ungedämpftes (dem Stand der Technik entsprechendes) und ein gedämpftes, erfindungsgemäß erzielbares Ausgangssignal für den Frequenzbereich von 20Hz - 20.000Hz. Deutlich zu sehen ist der Amplitudenunterschied zwischen gedämpften und ungedämpften Zustand für den Frequenzbereich 50Hz - 300Hz. - Wird aufgrund der Rahmenbedingungen ein höheres Ausgangssignal im betreffenden Frequenzbereich gewünscht, so lässt sich die Impedanz 3 entweder über die in
Fig. 1 und Fig. 2 dargestellten Schalter S1 bzw. S2 deaktivieren, oder mittels einem, dem Ausgangssignal nachzuhaltenden, Verstärker (nicht dargestellt). - Die in
Fig. 1 und Fig. 2 gezeigten erfindungsgemäßen Ausführungsformen sind beispielhaft zu verstehen. So ist es zwar in den meisten Fällen vorteilhaft wenn die Ausführungen über die in den Figuren dargestellten Schalter S1 bzw. S2 verfügen, für Fälle, in denen das aus bestimmten Gründen nicht gewünscht ist, ist aber selbstverständlich auch ein Mikrofonschaltung möglich, die ohne die Schalter S1 bzw. S2 auskommt. Diese Ausführung entspricht dann analog zuFig. 1 und Fig. 2 dauerhaft geschlossenen Schaltern. - Die in den einzelnen Ausgestaltungen und Beispielen angegebenen Merkmale und Varianten können mit denen der anderen Beispiele und Ausgestaltungen frei kombiniert und insbesondere zur Kennzeichnung der Erfindung in den Ansprüchen ohne zwangläufige Mitnahme der anderen Details der jeweiligen Ausgestaltung bzw. des jeweiligen Beispiels verwendet werden.
-
- 1
- Mikrofonschaltung
- 2
- Mikrofon
- 3
- Impedanzelement
- 4
- Signalausgang
- 5
- Mikrofonschaltung
Claims (4)
- Mikrofonschaltung (1, 5) zur Linearisierung des Proximity-Effekts bei einem Richtmikrofon (2), dadurch gekennzeichnet, dass die Mikrofonschaltung zumindest ein Impedanzelement (3) aufweist, das parallel zum Mikrofon (2) schaltbar ist.
- Mikrofonschaltung (1, 5) nach Anspruch 1, dadurch gekennzeichnet, dass das parallel angeordnete Impedanzelement (3) über einen Schalter (S1, S2) zugeschalten werden kann.
- Mikrofonschaltung (1, 5) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Impedanzelement (3) eine Brummkompensationsspule oder Rauschunterdrückungsspule ist, die im nicht dämpfenden Zustand mit dem Richtmikrofon (2) in Serie geschaltet ist.
- Mikrofonschaltung (1, 5) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Impedanz des Impedanzelements (3) zwischen 20 und 1000 Ohm beträgt.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20161953.3A EP3879847A1 (de) | 2020-03-10 | 2020-03-10 | Mikrofonschaltung zur linearisierung des proximity-effekts bei einem richtmikrofon |
EP21717326.9A EP4115711A1 (de) | 2020-03-10 | 2021-02-21 | Lichtemittierende led-gleichstromschaltung mit dualer polarität |
US17/905,922 US20230164484A1 (en) | 2020-03-10 | 2021-03-05 | Microphone circuit for the linearization of the proximity effect in a dynamic directional microphone |
EP21709687.4A EP4118841A1 (de) | 2020-03-10 | 2021-03-05 | Mikrofonschaltung zur linearisierung des proximity-effekts bei einem dynamischen richtmikrofon |
PCT/EP2021/055579 WO2021180583A1 (de) | 2020-03-10 | 2021-03-05 | Mikrofonschaltung zur linearisierung des proximity-effekts bei einem dynamischen richtmikrofon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20161953.3A EP3879847A1 (de) | 2020-03-10 | 2020-03-10 | Mikrofonschaltung zur linearisierung des proximity-effekts bei einem richtmikrofon |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3879847A1 true EP3879847A1 (de) | 2021-09-15 |
Family
ID=69784246
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20161953.3A Withdrawn EP3879847A1 (de) | 2020-03-10 | 2020-03-10 | Mikrofonschaltung zur linearisierung des proximity-effekts bei einem richtmikrofon |
EP21709687.4A Pending EP4118841A1 (de) | 2020-03-10 | 2021-03-05 | Mikrofonschaltung zur linearisierung des proximity-effekts bei einem dynamischen richtmikrofon |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21709687.4A Pending EP4118841A1 (de) | 2020-03-10 | 2021-03-05 | Mikrofonschaltung zur linearisierung des proximity-effekts bei einem dynamischen richtmikrofon |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230164484A1 (de) |
EP (2) | EP3879847A1 (de) |
WO (1) | WO2021180583A1 (de) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070079694A1 (en) * | 2005-02-25 | 2007-04-12 | Pakzad Samad F | Procedure and device for linearizing the characteristic curve of a vibration signal transducer such as a microphone |
US20080019540A1 (en) * | 2006-07-24 | 2008-01-24 | Van Kats Arthur William | Electret Microphone Circuit |
US9813791B1 (en) | 2012-10-19 | 2017-11-07 | Rodger Cloud | Active phantom-powered ribbon microphone with switchable proximity effect response filtering for voice and music applications |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2227580A (en) * | 1938-06-30 | 1941-01-07 | Bell Telephone Labor Inc | Acoustic device |
US4220069A (en) * | 1979-06-20 | 1980-09-02 | Fender C Leo | Electromagnetic pickup for stringed musical instruments |
US4401859A (en) * | 1981-05-29 | 1983-08-30 | Electro-Voice, Incorporated | Directional microphone with high frequency selective acoustic lens |
ATA74486A (de) * | 1986-03-20 | 1987-04-15 | Akg Akustische Kino Geraete | Richtmikrophon nach dem elektrostatischen oder elektrodynamischen wandlerprinzip |
US6208135B1 (en) * | 1994-07-22 | 2001-03-27 | Steve J. Shattil | Inductive noise cancellation circuit for electromagnetic pickups |
US5523526A (en) * | 1993-07-23 | 1996-06-04 | Genesis Magnetics Corporation | Sustaining devices for stringed musical instruments |
US6222928B1 (en) * | 1999-05-10 | 2001-04-24 | The United States Of America As Represented By The Secretary Of The Navy | Universal impedance matcher for a microphone-to-radio connection |
US6760454B1 (en) * | 2000-08-04 | 2004-07-06 | Trw Inc. | Passive voice-activated microphone and transceiver system |
US20060078152A1 (en) * | 2004-10-08 | 2006-04-13 | Royer David E | Ribbon microphone incorporating a special-purpose transformer and/or other transducer-output circuitry |
DE102008053458A1 (de) * | 2008-10-28 | 2010-04-29 | Siemens Medical Instruments Pte. Ltd. | Hörvorrichtung mit spezieller Situationserkennungseinheit und Verfahren zum Betreiben einer Hörvorrichtung |
US20100208929A1 (en) * | 2009-02-13 | 2010-08-19 | Robert Heil | Microphone having rear phase rejection collection tube |
JP5783937B2 (ja) * | 2011-12-08 | 2015-09-24 | 株式会社オーディオテクニカ | ダイナミックマイクロホンユニットおよびダイナミックマイクロホン |
US8818009B2 (en) * | 2012-10-23 | 2014-08-26 | Shure Acquisition Holdings, Inc. | Dual diaphragm dynamic microphone transducer |
US10217450B2 (en) * | 2017-06-07 | 2019-02-26 | Donald L Baker | Humbucking switching arrangements and methods for stringed instrument pickups |
-
2020
- 2020-03-10 EP EP20161953.3A patent/EP3879847A1/de not_active Withdrawn
-
2021
- 2021-03-05 EP EP21709687.4A patent/EP4118841A1/de active Pending
- 2021-03-05 WO PCT/EP2021/055579 patent/WO2021180583A1/de unknown
- 2021-03-05 US US17/905,922 patent/US20230164484A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070079694A1 (en) * | 2005-02-25 | 2007-04-12 | Pakzad Samad F | Procedure and device for linearizing the characteristic curve of a vibration signal transducer such as a microphone |
US20080019540A1 (en) * | 2006-07-24 | 2008-01-24 | Van Kats Arthur William | Electret Microphone Circuit |
US9813791B1 (en) | 2012-10-19 | 2017-11-07 | Rodger Cloud | Active phantom-powered ribbon microphone with switchable proximity effect response filtering for voice and music applications |
Also Published As
Publication number | Publication date |
---|---|
EP4118841A1 (de) | 2023-01-18 |
WO2021180583A1 (de) | 2021-09-16 |
US20230164484A1 (en) | 2023-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69933627T2 (de) | Vorrichtung und Verfahren zur Anpassung des Phasen- und Amplitudenfrequenzgangs eines Mikrofons | |
DE2713023C2 (de) | ||
EP0071845B1 (de) | Gerät zur Kompensation von Gehörschäden | |
DE112013001294T5 (de) | Wandler mit Bewegungssteuerung | |
EP3879847A1 (de) | Mikrofonschaltung zur linearisierung des proximity-effekts bei einem richtmikrofon | |
EP1406469B1 (de) | Rückkopplungskompensator in einem akustischen Verstärkungssystem, Hörhilfsgerät, Verfahren zur Rückkopplungskompensation und Anwendung des Verfahrens in einem Hörhilfsgerät | |
EP1398993B1 (de) | Vorrichtung und Verfahren zur Rückkopplungskompensation in einem akustischen Verstärkungssystem, insbesondere in einem Hörgerät | |
EP1728322A1 (de) | Schaltkreis-anordnung und signalverarbeitungs-vorrichtung | |
EP0342353B1 (de) | Anordnung zur Verminderung des Geräuschpegels im Innenraum eines Kraftfahrzeugs | |
AT407103B (de) | Hörgerät mit filterschaltung | |
DE10012519B4 (de) | Drahtlosmikrofon mit einem Mikrofonverstärker | |
DE102017203631B3 (de) | Verfahren zur Frequenzverzerrung eines Audiosignals | |
DE10323126A1 (de) | Adaptive Bassanhebung für aktive Basslautsprecherboxen | |
EP1540818B1 (de) | Schaltkreis-anordnung und signalverarbeitungs-vorrichtung | |
EP1921746B2 (de) | Schaltungsanordnung zur Einstellung der Ausgangsleistung und/oder des Frequenzganges eines Endverstärkers für ein Hörhilfegerät | |
DE2451475A1 (de) | Schaltungsanordnung fuer elektroakustische wandler | |
DE102022127818A1 (de) | Halbleiterschaltung zur Nachbildung von Übersteuerungseffekten eines Röhrenverstärkers | |
EP0568721B1 (de) | Verfahren zur Anpassung des akustischen Volumens und des Hochpassfilters 2. Ordnung eines Lautsprecher-Chassis | |
DE3633156A1 (de) | Schaltungsanordnung zur klangverbesserung von lautsprechern | |
DE102006007779B4 (de) | Filterbank-Anordnung und Signalverarbeitungs-Vorrichtung | |
DE2456445A1 (de) | Schaltungseinrichtung zum verstaerken elektroakustischer signale | |
DE4441755C1 (de) | Elektrische Hörhilfeschaltung | |
DE4236577C2 (de) | Vorverstärker für elektrische Gitarren | |
DE449747C (de) | Lautsprecher | |
EP0111773A1 (de) | Schaltungsanordnung für einen piezoelektrischen Hochton-Wandler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20220316 |