EP3879847A1 - Microphone circuit for linearizing the proximity effect in a directional microphone - Google Patents

Microphone circuit for linearizing the proximity effect in a directional microphone Download PDF

Info

Publication number
EP3879847A1
EP3879847A1 EP20161953.3A EP20161953A EP3879847A1 EP 3879847 A1 EP3879847 A1 EP 3879847A1 EP 20161953 A EP20161953 A EP 20161953A EP 3879847 A1 EP3879847 A1 EP 3879847A1
Authority
EP
European Patent Office
Prior art keywords
microphone
circuit
proximity effect
impedance
linearizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20161953.3A
Other languages
German (de)
French (fr)
Inventor
Bernhard Pinter
Christoph Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Austrian Audio GmbH
Original Assignee
Austrian Audio GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austrian Audio GmbH filed Critical Austrian Audio GmbH
Priority to EP20161953.3A priority Critical patent/EP3879847A1/en
Priority to EP21717326.9A priority patent/EP4115711A1/en
Priority to PCT/EP2021/055579 priority patent/WO2021180583A1/en
Priority to EP21709687.4A priority patent/EP4118841A1/en
Priority to US17/905,922 priority patent/US20230164484A1/en
Publication of EP3879847A1 publication Critical patent/EP3879847A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/326Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for microphones

Definitions

  • the invention relates to a microphone circuit for linearizing the proximity effect in a directional microphone according to the preamble of claim 1
  • Directional microphones are normally used for both studio recordings and live performances. These microphones have the property of delivering different frequency responses depending on whether the sound source is in the near or far field. In the near field, there is a higher sound pressure at low frequencies, an effect known as the proximity effect. This proximity effect is often undesirable because, for example, universal microphones should be able to be used well both in the near field and in the far field.
  • Microphone circuits are used in the prior art for various purposes such as, for example, handle noise or footfall noise suppression or for the purpose of other recording signal adaptations. As a rule, attempts are made to influence the microphone signal as early as possible, ideally directly after the microphone capsule, in order to keep the total energy in the system low. Possible microphone filter circuits are implemented as active, passive or a combination of these networks in any arrangement. Manual control is optionally available to the user via a switch on the microphone.
  • the US 9 813 791 B1 shows a microphone circuit in which the electrical recording signal is manipulated by switching on a classic high-pass filter between the two operating states "voice mode” and “music mode” in order to counteract the close-up effect.
  • a microphone circuit for the directional microphone which has at least one impedance element.
  • the impedance element can be any passive electronic component that has an effective and / or reactance.
  • the value of the impedance connected in parallel is preferably between 20 and 1000 ohms.
  • the impedance element connected in this invention only dampens the natural resonance or quality of the vibrating dynamic microphone system.
  • the amplitude response of the microphone returns to its original sale on both sides outside of its effective range.
  • the natural resonance damping of the oscillating dynamic system in the application described here takes place on an electrical level with the help of components already present in the system. These components can, for example, correspond to a hum compensation coil, noise suppression coil or EMC components and thus take on a double function in the system.
  • the value of the impedance connected in parallel is also between 20 and 1000 ohms.
  • the Fig. 1 shows an example of a microphone circuit 1 according to the invention, in which a microphone capsule 2 of an impedance 3 can be connected in parallel via a switch S1.
  • a microphone capsule 2 of an impedance 3 can be connected in parallel via a switch S1.
  • the representation shown with open switch S1 corresponds to an undamped behavior.
  • the Fig. 2 shows an example of a microphone circuit 5 according to the invention, which has a microphone capsule 2 and an impedance 3, which can be, for example, a hum compensation coil, a noise suppression coil, or more generally a mechanically oscillating system that attenuates mechanical noises (handle noises, footfall noise, etc.). This also consists of a membrane / coil system without sound penetration.
  • the impedance 3 and the microphone capsule 2 are connected in series. This position corresponds to the undamped behavior at signal output 4 Fig. 3 . If the switch S2 is closed, the impedance 3 and the microphone capsule 2 are connected in parallel, which results in the damped behavior at the signal output 4 Fig. 3 is equivalent to.
  • the Fig. 3 shows an amplitude response normalized in each case at 1 kHz for an undamped (corresponding to the prior art) and a damped output signal that can be achieved according to the invention for the frequency range from 20 Hz to 20,000 Hz.
  • the difference in amplitude between the damped and undamped state for the frequency range 50Hz - 300Hz can be clearly seen.
  • the impedance 3 can either be adjusted via the in FIGS. 1 and 2 Deactivate shown switch S1 or S2, or by means of an amplifier (not shown) to follow the output signal.
  • FIGS. 1 and 2 The embodiments according to the invention shown are to be understood as examples. Although it is advantageous in most cases if the designs have the switches S1 or S2 shown in the figures, for cases in which this is not desired for certain reasons, a microphone circuit is of course also possible without the switches S1 or S2 gets by. This execution then corresponds to FIGS. 1 and 2 permanently closed switches.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

Mikrofonschaltung, die zwecks Dämpfung der Resonanz und Linearisierung des Proximity-Effekts dadurch gekennzeichnet ist, dass ein Impedanzelement (3) parallel zum Mikrofon schaltbar ist. Die Impedanz dieses Elements liegt bevorzugt zwischen 20 und 1000 Ohm.Microphone circuit which, for the purpose of damping the resonance and linearizing the proximity effect, is characterized in that an impedance element (3) can be switched in parallel to the microphone. The impedance of this element is preferably between 20 and 1000 ohms.

Description

Die Erfindung betrifft eine Mikrofonschaltung zur Linearisierung des Proximity-Effekts bei einem Richtmikrofon entsprechend dem Oberbegriff des Anspruches 1The invention relates to a microphone circuit for linearizing the proximity effect in a directional microphone according to the preamble of claim 1

Sowohl bei Studioaufnahmen, als auch bei Live-Auftritten werden normalerweise Richtmikrofone verwendet. Diese Mikrofone haben die Eigenschaft, abhängig davon, ob sich die Schallquelle im Nah- oder im Fernfeld befindet, unterschiedliche Frequenzantworten zu liefern. Im Nahfeld tritt bei tiefen Frequenzen ein höherer Schalldruck auf, ein Effekt, der als Proximity-Effekt oder auch Nahbesprechungseffekt bekannt ist. Dieser Proximity-Effekt ist häufig unerwünscht, da beispielsweise Universalmikrofone sowohl im Nah- als auch im Fernfeld gut einsetzbar sein sollen.Directional microphones are normally used for both studio recordings and live performances. These microphones have the property of delivering different frequency responses depending on whether the sound source is in the near or far field. In the near field, there is a higher sound pressure at low frequencies, an effect known as the proximity effect. This proximity effect is often undesirable because, for example, universal microphones should be able to be used well both in the near field and in the far field.

Mikrofonschaltungen werden im Stand der Technik für verschiedene Einsatzzwecke wie z.B. Griffgeräusch- oder Trittschall-Unterdrückung oder zum Zwecke anderer Aufnahmesignal-Anpassungen verwendet. In der Regel wird versucht das Mikrofonsignal frühest möglich zu beeinflussen, optimaler Weise direkt nach der Mikrofonkapsel, um die Gesamtenergie im System gering zu halten. Mögliche Mikrofon-Filter-Schaltungen sind als aktive, passive oder einer Kombination dieser Netzwerke in beliebiger Anordnung umgesetzt. Optional steht dem Anwender die manuelle Steuerung über Schalter am Mikrofon zur Verfügung.Microphone circuits are used in the prior art for various purposes such as, for example, handle noise or footfall noise suppression or for the purpose of other recording signal adaptations. As a rule, attempts are made to influence the microphone signal as early as possible, ideally directly after the microphone capsule, in order to keep the total energy in the system low. Possible microphone filter circuits are implemented as active, passive or a combination of these networks in any arrangement. Manual control is optionally available to the user via a switch on the microphone.

Die US 9 813 791 B1 zeigt eine Mikrofonschaltung, bei der durch die Zuschaltung eines klassischen Hochpass-Filters zwischen den zwei Betriebszuständen "Voice-Mode" und "Music-Mode" wird das elektrische Aufnahmesignal manipuliert, um dem Nahbesprechungs-Effekt entgegen zu wirken.the US 9 813 791 B1 shows a microphone circuit in which the electrical recording signal is manipulated by switching on a classic high-pass filter between the two operating states "voice mode" and "music mode" in order to counteract the close-up effect.

Eine weitere aus dem Stand der Technik bekannte Möglichkeit ist die mechanische Dämpfung einer Mikrofonkapsel, etwa mittels Netzen oder Dämpfungsauflagen für die Mikrofonmembran. Da der Proximity-Effekt in einem Frequenzbereich von 50Hz-300Hz auftritt, ist diese Lösung grundsätzlich möglich. Nachteilig an dieser Umsetzung ist jedoch, dass aufgrund der rein mechanischen Natur das Verhalten starr ist und keine Adaptierungsmöglichkeiten an das Umfeld bietet. Erschwerend kommt hinzu, dass die Dämpfungskomponenten die Richtcharakteristik der Mikrofone verändern, was unerwünscht ist.Another possibility known from the prior art is the mechanical damping of a microphone capsule, for example by means of nets or damping pads for the microphone diaphragm. Since the proximity effect occurs in a frequency range of 50Hz-300Hz, this solution is basically possible. The disadvantage of this implementation, however, is that, due to the purely mechanical nature, the behavior is rigid and offers no adaptation options to the environment. To make matters worse, the Attenuation components change the directional characteristics of the microphones, which is undesirable.

Es ist Ziel und Aufgabe der Erfindung dieses Problem zu lösen, also eine Dämpfung von Richtmikrofonen und eine damit einhergehende Linearisierung des Proximity-Effekts ohne mechanische Komponenten zu erreichen.It is the aim and object of the invention to solve this problem, that is to say to achieve attenuation of directional microphones and an associated linearization of the proximity effect without mechanical components.

Erfindungsgemäß geschieht dies durch die im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmale; mit anderen Worten durch eine Mikrofonschaltung für das Richtmikrofon, die wenigstens ein Impedanzelement aufweist. Das Impedanzelement kann dabei ein beliebiges passives elektronisches Bauelement sein, das über einen Wirk- und/oder Blindwiderstand verfügt. Der Wert der parallel geschalteten Impedanz beträgt dabei bevorzugt zwischen 20 und 1000 Ohm.According to the invention, this is done by the features specified in the characterizing part of claim 1; in other words, by a microphone circuit for the directional microphone which has at least one impedance element. The impedance element can be any passive electronic component that has an effective and / or reactance. The value of the impedance connected in parallel is preferably between 20 and 1000 ohms.

Im Gegensatz zu klassischen Filtern dämpft das in dieser Erfindung zugeschaltete Impedanzelement lediglich die Eigenresonanz bzw. Güte des schwingenden dynamischen Mikrofonsystems. Der Amplitudengang des Mikrofons kehrt beidseitig außerhalb seines Wirkungsbereiches wieder zu seinem ursprünglichen Verkauf zurück. Die Eigenresonanz-Bedämpfung des schwingenden dynamischen Systems in der hier beschriebenen Anwendung erfolgt auf elektrischer Ebene mithilfe bereits vorhandener Bauteile im System. Diese Komponenten können beispielweise einer Brummkompensationsspule, Rauschunterdrückungsspule oder EMV Bauteilen entsprechen und dadurch eine Doppelfunktion im System übernehmen. Der Wert der parallel geschalteten Impedanz beträgt auch dabei zwischen 20 und 1000 Ohm.In contrast to classic filters, the impedance element connected in this invention only dampens the natural resonance or quality of the vibrating dynamic microphone system. The amplitude response of the microphone returns to its original sale on both sides outside of its effective range. The natural resonance damping of the oscillating dynamic system in the application described here takes place on an electrical level with the help of components already present in the system. These components can, for example, correspond to a hum compensation coil, noise suppression coil or EMC components and thus take on a double function in the system. The value of the impedance connected in parallel is also between 20 and 1000 ohms.

Die Erfindung wird im Folgenden Anhand der Zeichnung näher erläutert, dabei zeigt:

  • die Fig. 1 eine erfindungsgemäße Mikrofonschaltung mit einer Mikrofonkapsel und einer parallelgeschalteten Impedanz,
  • die Fig. 2 eine andere erfindungsgemäße Mikrofonschaltung mit einer Mikrofonkapsel und einer wahlweise in Serie oder parallel schaltbaren Brummkompensationsspule oder Rauschunterdrückungsspule,
  • die Fig. 3 die erfindungsgemäß erreichbaren Unterschiede des Amplitudengangs eines Ausgangssignals
The invention is explained in more detail below with reference to the drawing, which shows:
  • the Fig. 1 a microphone circuit according to the invention with a microphone capsule and an impedance connected in parallel,
  • the Fig. 2 Another microphone circuit according to the invention with a microphone capsule and a hum compensation coil or noise suppression coil that can be switched in series or in parallel,
  • the Fig. 3 the differences in the amplitude response of an output signal that can be achieved according to the invention

Entsprechend dem Fachjargon wird im Folgenden und in den Ansprüchen statt der Bezeichnung: "Impedanzelement" oft einfach: "Impedanz" verwendet.In accordance with the technical jargon, in the following and in the claims, instead of the designation: "impedance element", simply: "impedance" is used.

Die Fig. 1 zeigt ein Beispiel einer erfindungsgemäßen Mikrofonschaltung 1, bei der eine Mikrofonkapsel 2 einer Impedanz 3 über einen Schalter S1 parallelschaltbar ist. Für das am Signalausgang 4 auftretende Signal und die sich aus den Schaltungszuständen ergebenden Unterschiede wird auf die Fig. 3 verwiesen, wobei die gezeigte Darstellung mit offenem Schalter S1 einem ungedämpften Verhalten entspricht.the Fig. 1 shows an example of a microphone circuit 1 according to the invention, in which a microphone capsule 2 of an impedance 3 can be connected in parallel via a switch S1. For the signal occurring at the signal output 4 and the differences resulting from the circuit states, refer to the Fig. 3 referenced, the representation shown with open switch S1 corresponds to an undamped behavior.

Die Fig. 2 zeigt ein Beispiel einer erfindungsgemäßen Mikrofonschaltung 5, die eine Mikrofonkapsel 2 und eine Impedanz 3 aufweist, welche beispielsweise eine Brummkompensationsspule, eine Rauschunterdrückungsspule, oder allgemeiner ein mechanisch schwingendes System, das mechanische Geräusche (Griffgeräusche, Trittschall, usw.) dämpft, sein kann. Dieses besteht auch aus einem Membran/Spulen-System ohne Schalleintritt. In der dargestellten Stellung befinden sich die Impedanz 3 und die Mikrofonkapsel 2 in Serienschaltung. Diese Stellung entspricht am Signalausgang 4 dem ungedämpften Verhalten aus Fig. 3. Wird der Schalter S2 geschlossen, so befindet befinden sich die Impedanz 3 und die Mikrofonkapsel 2 in Parallelschaltung, was am Signalausgang 4 dem gedämpften Verhalten aus Fig. 3 entspricht.the Fig. 2 shows an example of a microphone circuit 5 according to the invention, which has a microphone capsule 2 and an impedance 3, which can be, for example, a hum compensation coil, a noise suppression coil, or more generally a mechanically oscillating system that attenuates mechanical noises (handle noises, footfall noise, etc.). This also consists of a membrane / coil system without sound penetration. In the position shown, the impedance 3 and the microphone capsule 2 are connected in series. This position corresponds to the undamped behavior at signal output 4 Fig. 3 . If the switch S2 is closed, the impedance 3 and the microphone capsule 2 are connected in parallel, which results in the damped behavior at the signal output 4 Fig. 3 is equivalent to.

Die Fig. 3 zeigt einen jeweils bei 1kHz normierten Amplitudengang für ein ungedämpftes (dem Stand der Technik entsprechendes) und ein gedämpftes, erfindungsgemäß erzielbares Ausgangssignal für den Frequenzbereich von 20Hz - 20.000Hz. Deutlich zu sehen ist der Amplitudenunterschied zwischen gedämpften und ungedämpften Zustand für den Frequenzbereich 50Hz - 300Hz.the Fig. 3 shows an amplitude response normalized in each case at 1 kHz for an undamped (corresponding to the prior art) and a damped output signal that can be achieved according to the invention for the frequency range from 20 Hz to 20,000 Hz. The difference in amplitude between the damped and undamped state for the frequency range 50Hz - 300Hz can be clearly seen.

Wird aufgrund der Rahmenbedingungen ein höheres Ausgangssignal im betreffenden Frequenzbereich gewünscht, so lässt sich die Impedanz 3 entweder über die in Fig. 1 und Fig. 2 dargestellten Schalter S1 bzw. S2 deaktivieren, oder mittels einem, dem Ausgangssignal nachzuhaltenden, Verstärker (nicht dargestellt).If, due to the general conditions, a higher output signal in the relevant frequency range is desired, then the impedance 3 can either be adjusted via the in FIGS. 1 and 2 Deactivate shown switch S1 or S2, or by means of an amplifier (not shown) to follow the output signal.

Die in Fig. 1 und Fig. 2 gezeigten erfindungsgemäßen Ausführungsformen sind beispielhaft zu verstehen. So ist es zwar in den meisten Fällen vorteilhaft wenn die Ausführungen über die in den Figuren dargestellten Schalter S1 bzw. S2 verfügen, für Fälle, in denen das aus bestimmten Gründen nicht gewünscht ist, ist aber selbstverständlich auch ein Mikrofonschaltung möglich, die ohne die Schalter S1 bzw. S2 auskommt. Diese Ausführung entspricht dann analog zu Fig. 1 und Fig. 2 dauerhaft geschlossenen Schaltern.In the FIGS. 1 and 2 The embodiments according to the invention shown are to be understood as examples. Although it is advantageous in most cases if the designs have the switches S1 or S2 shown in the figures, for cases in which this is not desired for certain reasons, a microphone circuit is of course also possible without the switches S1 or S2 gets by. This execution then corresponds to FIGS. 1 and 2 permanently closed switches.

Die in den einzelnen Ausgestaltungen und Beispielen angegebenen Merkmale und Varianten können mit denen der anderen Beispiele und Ausgestaltungen frei kombiniert und insbesondere zur Kennzeichnung der Erfindung in den Ansprüchen ohne zwangläufige Mitnahme der anderen Details der jeweiligen Ausgestaltung bzw. des jeweiligen Beispiels verwendet werden.The features and variants specified in the individual configurations and examples can be freely combined with those of the other examples and configurations and used in particular to characterize the invention in the claims without necessarily including the other details of the respective configuration or the respective example.

Liste der Bezugszeichen:List of reference symbols:

11
MikrofonschaltungMicrophone circuit
22
Mikrofonmicrophone
33rd
ImpedanzelementImpedance element
44th
SignalausgangSignal output
55
MikrofonschaltungMicrophone circuit

Claims (4)

Mikrofonschaltung (1, 5) zur Linearisierung des Proximity-Effekts bei einem Richtmikrofon (2), dadurch gekennzeichnet, dass die Mikrofonschaltung zumindest ein Impedanzelement (3) aufweist, das parallel zum Mikrofon (2) schaltbar ist.Microphone circuit (1, 5) for linearizing the proximity effect in a directional microphone (2), characterized in that the microphone circuit has at least one impedance element (3) which can be switched parallel to the microphone (2). Mikrofonschaltung (1, 5) nach Anspruch 1, dadurch gekennzeichnet, dass das parallel angeordnete Impedanzelement (3) über einen Schalter (S1, S2) zugeschalten werden kann.Microphone circuit (1, 5) according to Claim 1, characterized in that the impedance element (3) arranged in parallel can be switched on via a switch (S1, S2). Mikrofonschaltung (1, 5) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Impedanzelement (3) eine Brummkompensationsspule oder Rauschunterdrückungsspule ist, die im nicht dämpfenden Zustand mit dem Richtmikrofon (2) in Serie geschaltet ist.Microphone circuit (1, 5) according to one of Claims 1 or 2, characterized in that the impedance element (3) is a hum compensation coil or noise suppression coil which is connected in series with the directional microphone (2) in the non-attenuating state. Mikrofonschaltung (1, 5) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Impedanz des Impedanzelements (3) zwischen 20 und 1000 Ohm beträgt.Microphone circuit (1, 5) according to one of Claims 1 to 3, characterized in that the impedance of the impedance element (3) is between 20 and 1000 ohms.
EP20161953.3A 2020-03-10 2020-03-10 Microphone circuit for linearizing the proximity effect in a directional microphone Withdrawn EP3879847A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20161953.3A EP3879847A1 (en) 2020-03-10 2020-03-10 Microphone circuit for linearizing the proximity effect in a directional microphone
EP21717326.9A EP4115711A1 (en) 2020-03-10 2021-02-21 Direct-current dual polarity, light-emitting led circuit
PCT/EP2021/055579 WO2021180583A1 (en) 2020-03-10 2021-03-05 Microphone circuit for the linearisation of the proximity effect in a dynamic directional microphone
EP21709687.4A EP4118841A1 (en) 2020-03-10 2021-03-05 Microphone circuit for the linearisation of the proximity effect in a dynamic directional microphone
US17/905,922 US20230164484A1 (en) 2020-03-10 2021-03-05 Microphone circuit for the linearization of the proximity effect in a dynamic directional microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20161953.3A EP3879847A1 (en) 2020-03-10 2020-03-10 Microphone circuit for linearizing the proximity effect in a directional microphone

Publications (1)

Publication Number Publication Date
EP3879847A1 true EP3879847A1 (en) 2021-09-15

Family

ID=69784246

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20161953.3A Withdrawn EP3879847A1 (en) 2020-03-10 2020-03-10 Microphone circuit for linearizing the proximity effect in a directional microphone
EP21709687.4A Pending EP4118841A1 (en) 2020-03-10 2021-03-05 Microphone circuit for the linearisation of the proximity effect in a dynamic directional microphone

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21709687.4A Pending EP4118841A1 (en) 2020-03-10 2021-03-05 Microphone circuit for the linearisation of the proximity effect in a dynamic directional microphone

Country Status (3)

Country Link
US (1) US20230164484A1 (en)
EP (2) EP3879847A1 (en)
WO (1) WO2021180583A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070079694A1 (en) * 2005-02-25 2007-04-12 Pakzad Samad F Procedure and device for linearizing the characteristic curve of a vibration signal transducer such as a microphone
US20080019540A1 (en) * 2006-07-24 2008-01-24 Van Kats Arthur William Electret Microphone Circuit
US9813791B1 (en) 2012-10-19 2017-11-07 Rodger Cloud Active phantom-powered ribbon microphone with switchable proximity effect response filtering for voice and music applications

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2227580A (en) * 1938-06-30 1941-01-07 Bell Telephone Labor Inc Acoustic device
US4220069A (en) * 1979-06-20 1980-09-02 Fender C Leo Electromagnetic pickup for stringed musical instruments
US4401859A (en) * 1981-05-29 1983-08-30 Electro-Voice, Incorporated Directional microphone with high frequency selective acoustic lens
ATA74486A (en) * 1986-03-20 1987-04-15 Akg Akustische Kino Geraete DIRECTIONAL MICROPHONE ACCORDING TO THE ELECTROSTATIC OR ELECTRODYNAMIC CONVERTER PRINCIPLE
US5523526A (en) * 1993-07-23 1996-06-04 Genesis Magnetics Corporation Sustaining devices for stringed musical instruments
US6208135B1 (en) * 1994-07-22 2001-03-27 Steve J. Shattil Inductive noise cancellation circuit for electromagnetic pickups
US6222928B1 (en) * 1999-05-10 2001-04-24 The United States Of America As Represented By The Secretary Of The Navy Universal impedance matcher for a microphone-to-radio connection
US20060078152A1 (en) * 2004-10-08 2006-04-13 Royer David E Ribbon microphone incorporating a special-purpose transformer and/or other transducer-output circuitry
US20100208929A1 (en) * 2009-02-13 2010-08-19 Robert Heil Microphone having rear phase rejection collection tube
JP5783937B2 (en) * 2011-12-08 2015-09-24 株式会社オーディオテクニカ Dynamic microphone unit and dynamic microphone
US8818009B2 (en) * 2012-10-23 2014-08-26 Shure Acquisition Holdings, Inc. Dual diaphragm dynamic microphone transducer
US10217450B2 (en) * 2017-06-07 2019-02-26 Donald L Baker Humbucking switching arrangements and methods for stringed instrument pickups

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070079694A1 (en) * 2005-02-25 2007-04-12 Pakzad Samad F Procedure and device for linearizing the characteristic curve of a vibration signal transducer such as a microphone
US20080019540A1 (en) * 2006-07-24 2008-01-24 Van Kats Arthur William Electret Microphone Circuit
US9813791B1 (en) 2012-10-19 2017-11-07 Rodger Cloud Active phantom-powered ribbon microphone with switchable proximity effect response filtering for voice and music applications

Also Published As

Publication number Publication date
WO2021180583A1 (en) 2021-09-16
EP4118841A1 (en) 2023-01-18
US20230164484A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
DE69933627T2 (en) Apparatus and method for adjusting the phase and amplitude response of a microphone
DE2713023C2 (en)
DE112013001294T5 (en) Transducer with motion control
EP3879847A1 (en) Microphone circuit for linearizing the proximity effect in a directional microphone
EP1406469B1 (en) Feedback compensator in acoustic amplifying systems, hearing-aid, method for feedback compensation and use of said method in hearing-aids
DE102005043664B4 (en) condenser microphone
EP1728322A1 (en) Circuit arrangement and signal processing device
EP0342353B1 (en) Arrangement for diminishing the noise level within a motor car
DE10134927C1 (en) Filter circuit and method for processing an audio signal
AT407103B (en) HEARING AID WITH FILTER CIRCUIT
DE102017203631B3 (en) Method for frequency distortion of an audio signal
DE10323126A1 (en) Adaptive bass booster for active bass loudspeaker, controls gain of linear amplifier using control signal proportional to perceived loudness, and has amplifier output connected to bass loudspeaker
DE10012519B4 (en) Wireless microphone with a microphone amplifier
EP1540818B1 (en) Circuit arrangement and signal processing device
EP1921746B2 (en) Electronic circuit for the adjustment of the output power and / or frequency characteristic of the power amplifier for a hearing aid
DE2451475A1 (en) Linearisation circuit for electro-acoustic transducer - makes use of network tuned to disturbance frequency of system
EP0568721B1 (en) Method of adapting the acoustic volume and the second-order high-pass filter of a loudspeaker chassis
DE3633156A1 (en) Circuit arrangement for improving the sound of loudspeakers
DE102006007779B4 (en) Filter bank arrangement and signal processing device
DE2456445A1 (en) Amplifying circuit for electro-acoustic signals - has transfer circuit tuned to frequency of external interference noise
DE3443690C2 (en)
DE4441755C1 (en) Electronic hearing aid circuit with noise suppression
DE4236577C2 (en) Preamplifier for electric guitars
EP0111773A1 (en) Circuit for a piezoelectric tweeter
DE102015219792A1 (en) Passive fully balanced crossover for multiway loudspeaker boxes, especially two- to five-way loudspeaker boxes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220316