EP3860822A1 - Verfahren zur herstellung von polymeren, in welchen füllstoffe eingearbeitet und homogen verteilt sind - Google Patents

Verfahren zur herstellung von polymeren, in welchen füllstoffe eingearbeitet und homogen verteilt sind

Info

Publication number
EP3860822A1
EP3860822A1 EP19790125.9A EP19790125A EP3860822A1 EP 3860822 A1 EP3860822 A1 EP 3860822A1 EP 19790125 A EP19790125 A EP 19790125A EP 3860822 A1 EP3860822 A1 EP 3860822A1
Authority
EP
European Patent Office
Prior art keywords
melt
viscosity
carrier liquid
polymer
fillers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19790125.9A
Other languages
English (en)
French (fr)
Inventor
Daniel Gneuss
Detlef Gneuss
Stephan Gneuss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gneuss GmbH
Original Assignee
Gneuss GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gneuss GmbH filed Critical Gneuss GmbH
Publication of EP3860822A1 publication Critical patent/EP3860822A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • C08J3/2056Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase the polymer being pre-melted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/487Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with consecutive casings or screws, e.g. for feeding, discharging, mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/728Measuring data of the driving system, e.g. torque, speed, power, vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/268Throttling of the flow, e.g. for cooperating with plasticising elements or for degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92019Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the invention relates to a method for producing polymers in which fillers are incorporated and homogeneously distributed, with the features of the preamble of claim 1.
  • WO 201 1/060 839 A1 discloses a process for the production of very finely divided filler-containing polymers.
  • a twin-screw extruder is fed with the polymer input material via the hopper, where it is conveyed and melted under pressure. After the pressure builds up, a filler suspension is injected into the melt in the conveying and mixing zone, the melt pressure being above the vapor pressure. After the homogeneous mixing of the polymer and filler suspension, the mixture is degassed in a degassing device at the end of a conveying and mixing section, the solvent evaporating.
  • the process is not suitable for medium to high-viscosity polymers, because homogeneous mixing of the polymer with the filler is precluded by the high viscosity of the melt compared to the carrier liquid.
  • a high degree of mixing and distribution can only be achieved by using special mechanical stirring and mixing devices, i.e. with a lot of drive power and pressure.
  • fillers are introduced into a polymeric, sticky base substance by finely comminuting the fillers and mixing them into the base substance in a ratio of 1: 7. Mixing takes place via mechanical mixing devices such as stirrers and kneaders.
  • GB 1 373 155 A describes the targeted depolymerization of rubber and plastic waste in a multi-screw extruder, the extruder screws being arranged next to one another in one plane. There is also no connection with the mixing in of the finest fillers.
  • the invention has for its object to provide a method for producing a filled polymer which is filled with finely divided fillers with particle sizes smaller than 10 gm, such as nanoparticles, by which method the fillers quickly, with little energy expenditure and particularly even in a medium to high viscosity polymer melt can be mixed in without causing damage to the polymer.
  • the invention takes precisely this step: a polymer which can be split into monomers by a back reaction is used to absorb the fillers, and it is used as a carrier.
  • the liquid used for the fillers is exactly the low-molecular cleavage product that is split off during the formation reaction.
  • the reverse reaction is deliberately initiated so that a depolymerization takes place before and / or during the mixing in of the fillers and the homogenization of the suspension, which reduces the viscosity of the polymer.
  • all polycondensates can be used as the polymer in which, under the conditions which can be set in a melt extrusion, for. B. with regard to temperature and pressure, the back reaction to the polycondensation can be initiated as soon as the cleavage product is added as carrier liquid.
  • plastics, polyamides and polycarbonates come into consideration as plastics and water or mono- or polyhydric alcohols as carrier liquid.
  • the homogeneous distribution of the fillers in the polymer which is decisive in the end, must also be achieved, but a homogeneous distribution of the remaining carrier liquid must also be achieved, so that local segregation does not occur during the subsequent removal of the carrier liquid.
  • the fillers can be mixed well into the melt, so that a homogeneous mixture of the fillers, e.g. Nanoparticles with which melt is created.
  • the fillers remain in the suspension until they come into contact with the melt, i.e. there is no previous evaporation of the aqueous carrier medium.
  • the fillers do not agglomerate during the injection and mixing process.
  • melt in connection with the present invention denotes not only the remaining polymeric components in molten form, but also the split polymer molecules and monomeric components that may be increasingly contained in the mixture as a result of the back reaction already carried out .
  • the removal of the carrier liquid to be carried out in the next step is accompanied by the fact that the viscosity of the polymer melt is again increased significantly. Because, for example, by removing water, which forms the carrier liquid for the fillers, from the mixture of polymers, monomers, fillers and carrier liquid, significantly more is achieved than just mechanical separation of the carrier liquid. Rather, by removing the water with the simultaneous influence of pressure and temperature, polycondensation is used again as a chemical formation reaction, as a result of which molecular chains are reconnected or extended with monomers, so that the viscosity increases.
  • the basic idea of the invention is therefore not only to use a liquid as a temporary carrier for the fillers, but also for the temporary chemical change of the polymer into which the fillers are to be mixed.
  • the fine mixing is temporarily easy to achieve, and in the end the polymer comes out of the process with the old properties as before or even with a viscosity that is adapted to the respective application and thus optimized.
  • polymer input material is fed into a twin-screw extruder via an inlet funnel and then the polymer input material is melted in the twin-screw extruder. Subsequently, a pressure is built up in the melt in the twin-screw extruder via a conveying and mixing section. After the pressure has been built up, a suspension consisting of the fillers and a carrier liquid is injected into the melt in an injection chamber arranged in the initial region of the conveying and mixing section, the pressure in the twin-screw extruder or in the injection chamber depending on the polymer input material and suspension in the range of 50 bar, preferably 25 bar, and in particular to about 5 bar above or below the phase change limit of the carrier liquid.
  • the melt viscosity is mixed homogeneously, and the homogeneous polymer mixture is transferred to a degassing extruder at the end of the conveying and mixing section.
  • the carrier liquid is evaporated and removed from the polymer mixture by increasing the melt viscosity in the degassing extruder, while the fillers remain homogeneously distributed in the polymer mixture, so that a polymer melt containing finely divided fillers arises, which is then released from the degassing extruder.
  • a start-up process is initiated via a control device, in which initially only carrier liquid is injected into the conveying and mixing section, so that the polymer input material becomes less viscous, and that after switching over by the control device from carrier liquid injection on suspension injection, the suspension can be mixed directly into the low-viscosity melt.
  • a control device in which initially only carrier liquid is injected into the conveying and mixing section, so that the polymer input material becomes less viscous, and that after switching over by the control device from carrier liquid injection on suspension injection, the suspension can be mixed directly into the low-viscosity melt.
  • the aqueous constituent of the suspension ensures that the replenished and freshly melted polymer material also becomes less viscous due to hydrolysis that is wanted here, but usually avoided as far as possible, which has the advantage of easy and good incorporation of the filler particles into the polymer. Melt results.
  • the pressure in the injection chamber is controlled between 20 bar and 200 bar, a pressure sensor in the injection chamber giving the actual pressure values to the control device, which determine the target pressure by influencing an adjustable melt throttle, which is arranged between the twin-screw extruder and the degassing extruder and / or specifies a suspension pump. It is advantageous that at a given flow rate and flow rate, the control device regulates the evacuation capacity in the degassing extruder by setting the negative pressure, whereby the viscosity of the melt discharged can be adjusted.
  • the reversal of the viscosity from low-viscosity to high-viscosity due to the withdrawal of water has time limits depending on the material. If the time between the injection of the water or the aqueous suspension and the degassing process becomes too long, the viscosity can no longer be reversed to the desired extent, so that the time window should be kept longer than 1 second and less than 30 seconds.
  • the evacuation removes at least 90%, preferably at least 99%, of the carrier liquid from the melt within 1 to 10 seconds.
  • This rapid removal of the carrier liquid in one stage is necessary in order to prevent the viscosity reversal from low-viscosity to high-viscosity being carried out without the melt being damaged.
  • an addition of the time window for mixing the aqueous suspension into the melt and the completion of the subsequent evacuation must not exceed about 30 seconds, since otherwise damage to the polymer used can be recorded.
  • the amount of suspension supplied is between 0.02 and 25 percent by volume of the amount of polymer.
  • inert gas be metered in in the region of the injection chamber.
  • This can be carbon dioxide, nitrogen or a noble gas, e.g. Carbon dioxide has a positive effect on the process of homogenization, since carbon dioxide dissolves in large quantities both in the water as a carrier liquid and in the polymer melt, and - like the water - additionally reduces the viscosity of the melt and the phase transition of the water from liquid to gaseous significantly influenced.
  • the object is achieved in particular by a cascade connection of a twin-screw extruder for melting polymer starting material and for mixing with a suspension with a single-shaft degassing extruder, the cascade connection being assigned a control device which both starts the cascade connection and also regulates the actual production of the finely divided filler-containing polymer.
  • the cascade connection of a twin-screw extruder for melting and mixing, which is inexpensive to produce without a vacuum connection and which can be operated cheaply without a vacuum, and a degassing extruder mean that two extruders that can be driven separately are used, each of which is regulated individually for optimum speed and power consumption can, so that the optimum conditions for the extraction of the carrier liquid can be set in the twin-screw extruder for melting the input material, introducing the suspension and mixing in the degassing extruder.
  • the degassing extruder has a multi-screw extruder part which is arranged in an evacuation drum and essentially consists of a rotatably driven guide body which holds the plurality of screws in cylindrical recesses, the cylindrical recesses of the guide body having the screws in their enclose the respective longitudinal extent greater than 180 ° and less than 360 °, and the opening slots thus created are aligned with the wall of the evacuation drum, and the screws in the guide body are driven in rotation by toothed gears.
  • the use of an agitator is initially provided.
  • the use of the open injection nozzle which offers the suspensions no further obstacle that could lead to agglomeration of the filler particles, also contributes to the fact that fillers with particle sizes smaller than 10 pm, preferably nanoparticles with particle sizes in the range of 200 nm up to 300 nm and not agglomerates of filler particles get into the melt, so that a particularly rapid mixing of the filler particles and a good homogeneous mixing of the melt with the filler particles is possible.
  • FIG. 1 shows a twin-screw extruder 1 and a degassing extruder 2, both of which are connected in series in cascade form.
  • the twin-screw extruder has an inlet funnel 3, via which polymer input material can be fed gravimetrically to the twin-screw extruder.
  • the polymer input material is plasticized and transported via a conveying and mixing section 4 to the exit 5 'of the twin-screw extruder 1.
  • the output 5 'of the twin-screw extruder 1 goes directly via a throttle 5 into the input 6 of the degassing extruder 2.
  • the twin-screw extruder 1 has an injection chamber 7 with an injection nozzle 7 ′, which can be fed by a water supply 8 or a suspension pump 9, the suspension pump 9 drawing off the suspension from a suspension silo 10 - hen can.
  • the suspension silo 10 has agitators 11 via which the filler particles remain distributed as evenly as possible in the suspension without the filler particles agglomerating in the suspension.
  • the degassing extruder 2 has a vacuum connection 12, i.e. in this case only one degassing shaft, via which the melt conveyed from the twin-screw extruder 1 into the degassing extruder 2 can be degassed in the area of an evacuation drum 13.
  • the melt is through a discharge 14, for. B. a screw or pump, a discharge tool 15 is supplied.
  • a control device 16 is coupled to the drive 17 of the twin-screw extruder 1 and to the drive 18 of the degassing extruder 2. This enables the plasticizing and mixing process, as well as the degassing process to be controlled separately and optimally in each case.
  • the intake device 3, the suspension pump 9, the agitator 11, the water supply 8, adjustable delivery and shear elements 19 of the degassing extruder 2, and the vacuum connection 12 are also not shown in detail via the control device 16 , or the discharge 14 regulated. But also other sensors, not shown, such as. B. the pressure detector 20 or pressure gauge at the vacuum connection, temperature sensor, tachometer etc. give signals to the control device 16, via which both the start-up and the production is controlled via the cascade connection.
  • the polymer input material is first plasticized and transported to the exit 5 via the conveying and mixing section 4.
  • the control device 16 controls the drive 17 with respect to speed and power and, depending on the signals from a pressure sensor 21, the throttle 5 with respect to the pressure build-up in the conveying and mixing section 4.
  • Inert gas can be fed into the injection chamber 7 under a correspondingly controllable pressure via a gas connection 22, which can also be controlled by the control device 16, in order to be able to influence the viscosity of the melt even better.
  • the water supply 8 is first switched on via the control device 16, while the suspension pump 9 is not yet driven. After a corresponding pressure has built up on the conveying line and can be determined by the pressure sensor 21 and the polymer melt has a desired low viscosity due to the water supply, the water supply 8 is switched off via the control device 16 and the suspension pump 9 is switched on, so that the suspension can then be conveyed from the suspension silo 10 into the twin-screw extruder 1 by means of the suspension pump 9.
  • the suspension while controlling the speed and the power of the drive 17, mixed as optimally as possible into the polymer melt.
  • the melt is fed via conveying and shearing elements 19 into the evacuation drum 13 of the degassing extruder 2.
  • the conveying and shearing elements 19 and the signals from the pressure detection 20 serve to meter the melt before it enters the evacuation drum 13 in such a way that the evacuation drum has an optimal amount of melt which is circulated here via screws and is transported, the melt offering the vacuum the largest possible and constantly renewing surface, so that the degassing of the melt can take place very quickly and effectively.
  • shear forces are also introduced into the melt via the evacuation drum, the chain length of the polymer molecules becomes longer again.
  • the polymer melt becomes more viscous.
  • the desired viscosity of the polymer melt can be set at a preset flow rate and flow rate by adjusting the vacuum by means of the control device 16.
  • the melt is fed to the discharge tool 15 via the discharge 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Zur Herstellung von Polymeren, in welchen Füllstoffe mit Partikelgrößen kleiner 10 μm eingearbeitet und homogen verteilt sind, wird ein Polymer-Eingangsmaterial in einen Doppelschneckenextruder (1) eingegeben und dort zu einer Schmelze aufgeschmolzen. In einer Förder- und Mischstrecke (4) wird eine Suspension, die aus den Füllstoffen und einer Trägerflüssigkeit besteht, in die Schmelze injiziert. Dabei wird die Schmelzeviskosität durch Einspritzen der Trägerflüssigkeit in der Förder- und Mischstrecke (4) erniedrigt, indem als Polymer ein spaltbares Polykondensat und als Trägerflüssigkeit das bei der Polykondensation anfallende niedermolekulare Abspaltprodukt verwendet werden, so dass das aufgeschmolzene Polymer innerhalb der Förder- und Mischstrecke (4) wenigstens teilweise depolymerisiert wird. Die Mischung aus der durch Aufspaltung in ihrer Viskosität reduzierten Schmelze, der restlichen Trägerflüssigkeit und den Füllstoffen wird homogenisiert. Abschließend wird die Viskosität der Schmelze wieder erhöht. In einem Entgasungsextruder (2) wird zur Viskositätserhöhung eine Polykondensation durchgeführt, indem ein Vakuum angelegt und das Abspaltprodukt mittels des Vakuums aus dem Entgasungsextruder (2) abgeschieden wird.

Description

Verfahren zur Herstellung von Polymeren, in welchen Füllstoffe eingearbeitet und homogen verteilt sind
Die Erfindung betrifft ein Verfahren zur Herstellung von Polymeren, in welchen Füllstoffe eingearbeitet und homogen verteilt sind, mit den Merkmalen des Oberbegriffs des Anspruchs 1 .
Es ist bereits bekannt, die Eigenschaften wie Aussehen, Haptik, Leitfähigkeit, Festigkeit usw. von Kunststoffen durch Einbringen von Füllstoffen in eine ent- sprechende Kunststoffschmelze zu beeinflussen. Dabei ist festzustellen, dass mit abnehmendem Partikeldurchmesser des Füllstoffes das Verhältnis von Oberfläche zu Volumen des Füllstoffes zunimmt. Da dieses Verhältnis oder die Oberfläche der Füllstoffe in einer Reihe von Anwendungen die Eigenschaften der Kunststoffe wesentlich bestimmt, ist es häufig notwendig, möglichst feine Partikel zu verwenden. Dabei ist dafür Sorge zu tragen, dass die Partikel nicht verklumpen, da bei verklumpten Partikeln das oben erwähnte Verhältnis bzw. die aktive Oberfläche wieder kleiner würde. Oft ist man bestrebt, sogenannte Nanoteilchen mit Durchmessern kleiner 100nm einzusetzen. Wegen der Zu nahme des Oberflächen-Volumen-Verhältnisses wird es bei abnehmender Teilchengröße immer schwieriger, eine Agglomeratbildung der Füllstoffe zu verhindern, so dass klassische Methoden, wie z.B. aus der DE 10 2009 013 418 A1 bekannt, nach denen Nanopartikel in Form von Pulver in die Schmelze eingemischt werden, sich in der Praxis als nicht geeignet erweisen.
Es ist aber auch bekannt, Füllstoffe aufweisende Suspensionen in eine Schmelze einzubringen und nach Vermischen der Suspension mit der Schmelze den flüssigen Bestandteil der Suspension der Schmelze zu entzie- hen. Aus der WO 201 1/ 060 839 A1 ist ein Verfahren zur Herstellung von feinst verteilte Füllstoffe aufweisenden Polymeren bekannt. Einem Doppelschne- ckenextruder wird über den Trichter Polymer-Eingangsmaterial zugeführt und darin unter Druckaufbau gefördert und erschmolzen. Nach dem Druckaufbau wird in der Förder- und Mischzone eine Füllstoffsuspension in die Schmelze injiziert, wobei der Schmelzedruck über dem Dampfdruck liegt. Nach dem ho- mogenen Vermischen von Polymer und Fülfstoffsuspension wird die Mischung am Ende einer Förder- und Mischstrecke in einer Entgasungseinrichtung ent- gast, wobei das Lösungsmittel verdampft.
Das Verfahren eignet sich aber nicht für mittel bis hochviskose Polymere, denn einer homogenen Durchmischung des Polymers mit dem Füllstoff steht die im Vergleich zur Trägerflüssigkeit hohe Viskosität der Schmelze entgegen. Trotz der Dispersion der Füllstoffe in einem flüssigen Lösungsmittel kann ein hoher Durchmischungs- und Verteilungsgrad nur durch Verwendung von besonderen mechanischen Rühr- und Mischvorrichtungen, also mit viel Antriebsleistung und Druck, erreicht werden.
Bei dem in DE 2 409 541 A beschriebenen Verfahren werden Füllstoffe in eine polymere, klebrige Grundsubstanz dadurch eingebracht, dass die Füllstoffe fein zerkleinert und in einem Verhältnis von 1 :7 zur Grundsubstanz in diese eingemischt werden. Das Einmischen erfolgt über mechanische Mischvorrich- tungen wie Rühr- und Knetmaschinen.
DE 10 2005 025 975 A1 beschreibt die Herstellung hochmolekularer Polymere durch Festphasenkondensation. Dieses Verfahren ist nicht im Durchlaufbetrieb in einem Extruder durchführbar. Ein Zusammenhang mit der Einmischung feinster Füllstoffe ist nicht beschrieben.
GB 1 373 155 A beschreibt die gezielte Depolymerisation von Gummi- und Kunststoffabfällen in einem Mehrschneckenextruder, wobei die Extruderschne- cken in einer Ebene nebeneinander angeordnet sind. Ein Zusammenhang mit der Einmischung feinster Füllstoffe ist auch hier nicht gegeben. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines gefüllten Polymers anzugeben, das mit feinst verteilten Füllstoffen mit Partikel- größen kleiner 10 gm wie z.B. Nanopartikel gefüllt ist, durch welches Verfahren die Füllstoffe schnell, mit geringem Energieaufwand und besonders gleichmä- ßig in eine mittel- bis hochviskose Polymer-Schmelzen eingemischt werden können, ohne eine Schädigung des Polymers zu verursachen.
Zur Lösung der Aufgabe wird das Verfahren m it den Merkmalen des Anspruchs 1 vorgeschlagen.
Während üblicherweise bei der Weiterverarbeitung darauf geachtet wird, ein einmal hergestelltes Polymer nicht nachteilig zu verändern, geht die Erfindung genau diesen Schritt: es wird ein durch eine Rückreaktion in Monomere spalt- bares Polymer verwendet, um die Füllstoffe aufzunehmen, und es wird als Trä- gerflüssigkeit für die Füllstoffe genau dasjenige niedermolekulare Spaltprodukt verwendet, das bei der Bildungsreaktion abgespalten wird. Somit wird nach der Erfindung bewusst die Rückreaktion eingeleitet, so dass vor und/oder während der Einmischung der Füllstoffe und der Homogenisierung der Suspension eine Depolymerisierung erfolgt, welche die Viskosität des Polymers reduziert.
Für die Erfindung können als Polymer alle Polykondensate verwendet werden, bei denen unter den bei einer Schmelzeextrusion einstellbaren Bedingungen, z. B. hinsichtlich Temperatur und Druck, die Rückreaktion zur Polykondensa- tion eingeleitet werden kann, sobald das Abspaltprodukt als Trägerflüssigkeit zugegeben wird. Als Kunststoffe kommen somit Polyester, Polyamide und Po- lycarbonate in Betracht und als Trägerflüssigkeit Wasser oder ein- oder mehr- wertige Alkohole.
Die meisten in der Kunststofftechnik wichtigen Polykondensate spalten bei ih- rer Synthese Wasser ab, so dass durch spätere Wasserzugabe die Hydrolyse als Rückreaktion eingeleitet wird. Dementsprechend wird die Erfindung nach- folgend unter Betrachtung von Wasser als Trägerflüssigkeit für die Suspension beschrieben, auch wenn andere geeignete Trägerflüssigkeiten ebenso von der Erfindung mit umfasst sind.
Wenn nun die Trägerflüssigkeit in das zuvor aufgeschmolzene Polymer injiziert wird, egal ob die Trägerflüssigkeit schon als Suspension mit den Füllstoffen injiziert wird oder zunächst noch in reiner Form, so setzt unter der Wirkung von Druck und Temperatur im Doppelschneckenextruder sofort eine Flydrolyse oder sonstige Rückreaktion ein. Lange Polymerketten werden geteilt, und die Viskosität sinkt massiv. In der Folge verwischen die Viskositätsunterschiede zwischen der einzuspritzenden Suspension und der inzwischen niedrig visko- sen Polymerschmelze. In diesem Stadium kann sehr gut und schnell und nur mit geringer zum Rühren und Mischen benötigten mechanischen Antriebsleis- tung eine homogene Verteilung erreicht werden. Zwar muss einerseits die am Ende auschlaggebende homogene Verteilung der Füllstoffe im Polymer er- reicht werden, aber auch eine homogene Verteilung der restlichen Trägerflüs- sigkeit muss erreicht werden, damit es bei der sich anschließenden Entfernung der Trägerflüssigkeit nicht zu lokalen Entmischungen kommt.
Dadurch, dass die Schmelze in dieser Verfahrensphase eine wesentlich nied- rigere Viskosität aufweist, lassen sich die Füllstoffe gut in die Schmelze einmi- schen, so dass schnell eine homogene Mischung der Füllstoffe, wie z.B. Na- nopartikel, mit der Schmelze entsteht. Die Füllstoffe verbleiben in der Suspen- sion, bis sie mit der Schmelze in Kontakt kommen, d.h. es erfolgt kein vorheri- ges Verdampfen des wässrigen Trägermediums. Die Füllstoffe agglomerieren während des injektions- und Mischprozesses nicht.
Die Bezeichnung„Schmelze“ im Zusammenhang mit der vorliegenden Erfin- dung bezeichnet nicht nur die noch verbleibenden polymeren Anteile in aufge- schmolzener Form, sondern auch die möglicherweise infolge der bereits durch- geführten Rückreaktion in der Mischung zunehmend enthaltenen aufgespalte- nen Polymermoleküle und monomeren Anteile. Die im nächsten Schritt durchzuführende Entfernung der Trägerflüssigkeit geht damit einher, dass die Viskosität der Polymerschmelze wieder deutlich erhöht wird. Denn indem beispielsweise Wasser, das die Trägerflüssigkeit für die Füll- stoffe bildet, der Mischung von Polymeren, Monomeren, Füllstoffen und eben Trägerflüssigkeit entzogen wird, wird deutlich mehr als nur eine mechanische Abscheidung der Trägerflüssigkeit bewirkt. Durch Entfernung des Wassers bei gleichzeitig fortwährendem Einfluss von Druck und Temperatur setzt vielmehr wieder eine Polykondensation als chemische Bildungsreaktion ein, wodurch Molekülketten wieder miteinander verbunden oder mit Monomeren verlängert werden , so dass die Viskosität ansteigt.
Der Grundgedanke der Erfindung liegt also darin, eine Flüssigkeit nicht nur als temporären Träger der Füllstoffe zu nutzen, sondern gleichzeitig zur vorüber- gehenden chemischen Veränderung desjenigen Polymers, in das die Füllstoffe eingemischt werden sollen. Dadurch ist temporär die feine Durchmischung leicht erreichbar, und am Ende kommt das Polymer mit den alten Eigenschaf- ten wie zuvor oder sogar mit einer für den jeweiligen Anwendungszweck an- gepassten und damit optimierten Viskosität wieder aus dem Prozess heraus.
Zur Durchführung des Verfahrens ist vorgesehen, Polymer-Eingangsmaterial über einen Eingangstrichter in einen Doppelschneckenextruder einzugeben und anschließend das Polymer-Eingangsmaterial im Doppelschneckenextru- der zu erschmelzen. Darauffolgend wird im Doppelschneckenextruder über eine Förder- und Mischstrecke ein Druck in der Schmelze aufgebaut. Nach Aufbau des Drucks wird in einer im Anfangsbereich der Förder- und Mischstre- cke angeordneten Zuspritzkammer eine aus den Füllstoffen und einer Träger- flüssigkeit bestehende Suspension in die Schmelze injiziert, wobei der Druck im Doppelschneckenextruder bzw. in der Zuspritzkammer in Abhängigkeit von Polymer-Eingangsmaterial und Suspension im Bereich 50 bar, bevorzugt 25 bar, und insbesondere auf etwa 5 bar oberhalb bis unterhalb der Phasenum- wandlungsgrenze der Trägerflüssigkeit eingestellt oder geregelt wird. Dadurch wird die Suspension mit dem Polymer-Eingangsmaterial unter Erniedrigung der Schmelze-Viskosität homogen vermischt, und die homogene Polymer-Mi- schung wird am Ende der Förder- und Mischstrecke in einen Entgasungsext- ruder überführt. Dabei wird in dem Entgasungsextruder durch Anlegen eines Vakuums die Trägerflüssigkeit unter Erhöhung der Schmelze-Viskosität aus der Polymer-Mischung verdampft und abgeführt, während die Füllstoffe in der Polymer-Mischung homogen verteilt bleiben, so dass eine feinst verteilte Füll- stoffe aufweisende Polymer-Schmelze entsteht, die anschließend aus dem Entgasungsextruder abgegeben wird.
Von Vorteil ist, wenn über eine Regelvorrichtung ein Anfahrprozess initiiert wird, bei dem in die Förder- und Mischstrecke zunächst nur Trägerflüssigkeit injiziert wird, so dass das Polymer-Eingangsmaterial niedrigviskoser wird, und dass nach anschließendem Umschalten durch die Regelvorrichtung von Trä- gerflüssigkeit-lnjektion auf Suspensions-Injektion die Suspension gleich in die niedrigviskose Schmelze eingemischt werden kann. Dadurch wird erreicht, dass entgegen der üblichen Ver- und Bearbeitungsweise von z.B. Polyester dieses durch Wasserinjektion niedrigviskos wird. Beim Umschalten von der Wasserinjektion auf die wässrige Suspension können somit die Füllstoffpartikel umgehend und ohne großen Kraftaufwand sehr gut in die niedrigviskose Schmelze eingemischt werden. Der wässrige Bestandteil der Suspension sorgt dafür, dass das nachgeschobene und frisch aufgeschmolzene Polymer-Mate- rial durch eine hier gewollte, üblicherweise jedoch möglichst vermiedene Hyd- rolyse ebenfalls niedrigviskoser wird, woraus sich der Vorteil des leichten und guten Einarbeitens der Füllstoffpartikel in die Polymer- Schmelze ergibt.
Es hat sich bewährt, dass der Druck in der Zuspritzkammer zwischen 20 bar und 200 bar geregelt wird, wobei ein Drucksensor in der Zuspritzkammer die Druck-Istwerte an die Regelvorrichtung gibt, welche den Soll-Druck durch Be- einflussung einer einstellbaren Schmelze-Drossel, die zwischen dem Doppel- schneckenextruder und dem Entgasungsextruder angeordnet ist, und/oder ei- ner Suspensionspumpe vorgibt. Von Vorteil ist, dass bei vorgegebener Durchflussmenge und Durchflussge- schwindigkeit die Regelvorrichtung durch Einstellung des Unterdrucks die Eva- kuierungsleistung im Entgasungsextruder regelt, wodurch die Viskosität der ausgetragenen Schmelze einstellbar ist.
Ein besonderer Vorzug ergibt sich, wenn die Zeit zwischen Suspensions-Injek- tion und Evakuierungsbeginn mehr als 1 Sekunde und weniger als 30 Sekun- den beträgt.
Der Umkehrung der Viskosität von niedrigviskos auf hochviskos durch Entzug des Wassers sind materialabhängig zeitliche Grenzen gesetzt. Wird die Zeit zwischen der Injektion des Wassers bzw. der wässrigen Suspension und dem Entgasungsvorgang zu groß, lässt sich die Viskosität nicht mehr im gewünsch- ten Maße reversieren, so dass das Zeitfenster größer 1 Sekunde und weniger als 30 Sekunden eingehalten werden sollte.
Bedeutsam ist, dass durch die Evakuierung mindestens 90 %, vorzugsweise mindestens 99 % der Trägerflüssigkeit innerhalb von 1 bis 10 Sekunden aus der Schmelze entzogen werden. Dieses schnelle Entziehen der Trägerflüssig- keit in einer Stufe ist notwendig, um zu verhindern, dass die Umkehrung der Viskosität von niedrigviskos auf hochviskos durchgeführt werden kann, ohne dass die Schmelze Schaden nimmt. So darf eine Addition des Zeitfensters zum Einmischen der wässrigen Suspension in die Schmelze und der Abschluss des anschließenden Evakuierens ca. 30 Sekunden nicht überschreiten, da ansons- ten je nach verwendetem Polymer Schäden an diesem zu verzeichnen sind.
Um ein derartig schnelles Entgasen der Schmelze zu erreichen, ist es zweck- mäßig, das Vakuum am Entgasungsextruder zwischen 40 mbar und 0,01 mbar einzustellen.
Es hat sich bewährt, dass die zugeführte Suspensionsmenge zwischen 0,02 und 25 Volumenprozent der Polymermenge beträgt. Dadurch lässt sich die nach der Erfindung bewusst hervorgerufene, üblicher- weise jedoch zu vermeidende Hydrolyse so steuern, dass am Ende die ge- wünschte Viskosität der Füllstoffpartikel aufweisenden Polymer-Schmelze er- halten werden kann.
Zur optimalen Aufrechterhaltung bzw. besseren Regelung des Drucks in dem Doppelschneckenextruder wird vorgeschlagen, dass im Bereich der Zuspritz- kammer inertes Gas zudosiert wird. Dabei kann es sich um Kohlendioxid, Stick- stoff oder aber auch um ein Edelgas handeln, wobei z.B. Kohlendioxid auf den Prozess der Homogenisierung positiv einwirkt, da sich Kohlendioxid sowohl im Wasser als Trägerflüssigkeit als auch in der Polymer-Schmelze in größeren Mengen löst, und - wie schon das Wasser - die Viskosität der Schmelze zu- sätzlich reduziert und den Phasenübergang des Wassers von flüssig zu gas- förmig wesentlich beeinflusst.
Vorrichtungsmäßig wird die Aufgabe insbesondere durch eine Kaskadenschal- tung eines Doppelschneckenextruders zum Erschmelzen von Polymer-Aus- gangsmaterial und zum Mischen mit einer Suspension mit einem einschächti- gen Entgasungsextruders gelöst, wobei der Kaskadenschaltung eine Regel- vorrichtung zugeordnet ist, die sowohl das Anfahren der Kaskadenschaltung als auch die eigentliche Produktion des feinst verteilte Füllstoffe aufweisenden Polymere regelt.
Durch die Kaskadenschaltung eines Doppelschneckenextruders zum Er- schmelzen und Mischen, der ohne Vakuumanschluss kostengünstig zu erstel- len und ohne Vakuum günstig zu betreiben ist, und eines Entgasungsextruders werden zwei getrennt voneinander antreibbare Extruder verwendet, die jeder für sich auf optimaler Drehzahl und Leistungsaufnahme geregelt werden kön- nen, so dass im Doppelschneckenextruder optimale Bedingungen für das Er- schmelzen des Eingangsmaterials, das Einbringen der Suspension sowie das Mischen im Entgasungsextruder die optimalen Eigenschaften für das Entzie- hen der Trägerflüssigkeit eingestellt werden können. Von Vorteil ist dabei, dass der Entgasungsextruder einen in einer Evakuie- rungstrommel angeordneten Mehrschneckenextruderteil aufweist, der im We- sentlichen aus einem drehbar angetriebenen, die mehreren Schnecken in zy- linderförmigen Ausnehmungen aufnehmenden Führungskörper besteht, wobei die zylinderförmigen Ausnehmungen des Führungskörpers die Schnecken in ihrer jeweiligen Längsausdehnung größer 180° und kleiner 360° umschließen, und die so entstehenden Öffnungsschlitze auf die Wandung der Evakuierungs- trommel ausgerichtet sind, und wobei die Schnecken in dem Führungskörper über Zahngetriebe drehangetrieben sind.
Der Einsatz eines Entgasungsextruders, wie er im Wesentlichen aus der EP 1 434 680 B1 bekannt ist, gewährleistet, dass die Schmelze während des Transports durch den Mehrschneckenextruderteil einen großen Oberflächen- austausch erfährt, wodurch das Vakuum großflächig mit der Schmelze in Kon- takt kommen kann, so dass in der Schmelze enthaltene Wasser sehr schnell verdampfen und der Schmelze effektiv entzogen werden kann.
Vorteilhaft ist, dem Doppelschneckenextruder im Bereich der Zuspritzkammer mindestens eine permanent offene Einspritzdüse zu zuordnen und die Ein- spritzdüse/n mit einer Trägerflüssigkeitszuführung und / oder mit einer Suspen- sionspumpe zu verbunden, wobei die Suspensionspumpe mit einem, ein Rühr- werk aufweisenden Suspensionssilo gekoppelt ist.
Damit die Füllstoffpartikel in der Suspension nicht ausfallen oder ggf. agglome- rieren, ist zunächst der Einsatz eines Rührwerks vorgesehen. Aber auch der Einsatz der offenen Einspritzdüse, die der Suspensionen kein weiteres Hinder- nis bietet, an dem es zur Agglomeration der Füllstoffpartikel kommen könnte, trägt dazu bei, dass tatsächlich Füllstoffe mit Partikelgrößen kleiner 10 pm vor- zugsweise Nanopartikel mit Partikelgrößen im Bereich 200 nm bis 300 nm und nicht Agglomerate von Füllstoffpartikeln in die Schmelze gelangen, so dass da- mit eine besonders schnelle Einmischung der Füllstoffpartikel, und eine gute homogene Mischung der Schmelze mit den Füllstoffpartikeln möglich ist. Vorteilhaft ist auch, die mindestens eine Einspritzdüse gegenüber der Zuspritz- kammer thermisch zu isolieren und / oder separat zu temperieren. Dadurch ist gewährleistet, dass die Trägerflüssigkeit der Suspension, z.B. Wasser, nicht eventuell doch schon zu verdampfen beginnt, bevor die Suspension den In- nenraum des Doppelschneckenextruders erreicht.
Die Erfindung wird anhand einer Zeichnung näher erläutert.
Die Figur 1 zeigt einen Doppelschneckenextruder 1 sowie einen Entgasungs- extruder 2, die beide in Kaskadenform hintereinandergeschaltet sind. Der Dop- pelschneckenextruder weist einen Eingangstrichter 3 auf, über den Polymer- Eingangsmaterial gravimetrisch dem Doppelschneckenextruder zugeführt wer- den kann. Im Doppelschneckenextruder 1 wird das Polymer-Eingangsmaterial plastifiziert und über eine Förder- und Mischstrecke 4 zum Ausgang 5‘ des Doppelschneckenextruders 1 transportiert. Der Ausgang 5‘ des Doppelschne- ckenextruders 1 geht über eine Drossel 5 direkt in den Eingang 6 des Entga- sungsextruders 2 über.
Im Bereich der Förder- und Mischstrecke 4 weist der Doppelschneckenextru- der 1 eine Zuspritzkammer 7 mit Einspritzdüse 7‘ auf, die von einer Wasserzu- führung 8 bzw. einer Suspensionspumpe 9 gespeist werden kann, wobei die Suspensionspumpe 9 die Suspension aus einem Suspensionssilo 10 abzuzie- hen vermag. Das Suspensionssilo 10 weist Rührwerke 1 1 auf, über welche die Füllstoffpartikel möglichst gleichmäßig in der Suspension verteilt bleiben, ohne dass es zur Agglomeration der Füllstoffpartikel in der Suspension kommt.
Der Entgasungsextruder 2 weist einen Vakuumanschluss 12 auf, d.h. in die- sem Fall nur einen Entgasungsschacht, über den im Bereich einer Evakuie- rungstrommel 13 die aus dem Doppelschneckenextruder 1 in den Entgasungs- extruder 2 geförderte Schmelze entgast werden kann.
Die Schmelze wird über einen Austrag 14, z. B. eine Schnecke oder Pumpe, einem Austragwerkzeug 15 zugeführt. Eine Regelvorrichtung 16 ist mit dem Antrieb 17 des Doppelschneckenextru- ders 1 sowie mit dem Antrieb 18 des Entgasungsextruders 2 gekoppelt. Damit lassen sich der Plastifizier- und Mischvorgang, sowie der Entgasungsvorgang getrennt voneinander und jeweils für sich optimal regeln. Über die Regelvor- richtung 16 werden, im Einzelnen nicht dargestellt, auch der Einzug des Ein- gangstrichter 3, die Suspensionspumpe 9, das Rührwerk 1 1 , die Wasserzufüh- rung 8, einstellbare Förder- und Scherelemente 19 des Entgasungsextruders 2, der Vakuumanschluss 12, oder der Austrag 14 geregelt. Aber auch weitere, nicht dargestellte Sensoren, wie z. B. die Druckerfassung 20 oder Druckmes- ser am Vakuumanschluss, Temperaturfühler, Drehzahlmesser usw. geben Sig- nale auf die Regelvorrichtung 16, über welche sowohl das Anfahren als auch die Produktion über die Kaskadenschaltung geregelt wird.
Im Doppelschneckenextruder 1 wird zunächst das Polymer-Eingangsmaterial plastifiziert und über die Förder- und Mischstrecke 4 zum Ausgang 5 transpor- tiert. Die Regelvorrichtung 16 regelt dabei den Antrieb 17 bezüglich Drehzahl und Leistung sowie in Abhängigkeit der Signale eines Drucksensors 21 die Drossel 5 bezüglich des Druckaufbaus in der Förder- und Mischstrecke 4.
Über einen ebenfalls von der Regelvorrichtung 16 regelbaren Gasanschluss 22 kann Inertgas in die Zuspritzkammer 7 unter entsprechend regelbarem Druck eingespeist werden, um die Viskosität der Schmelze noch besser beein- flussen zu können.
Für den Anfahrprozess wird über die Regelvorrichtung 16 zunächst die Was- serzuführung 8 eingeschaltet, während die Suspensionspumpe 9 noch nicht angetrieben wird. Nachdem auf der Förderstrecke ein entsprechender Druck aufgebaut ist, der durch den Drucksensor 21 ermittelt werden kann, und die Polymer-Schmelze durch die Wasserzufuhr eine gewünscht niedrige Viskosität aufweist, wird über die Regelvorrichtung 16 die Wasserzufuhr 8 abgeschaltet und die Suspensionspumpe 9 eingeschaltet, so dass anschließend durch die Suspensionspumpe 9 die Suspension aus dem Suspensionssilo 10 in den Doppelschneckenextruder 1 gefördert werden kann. Hier wird die Suspension unter Regelung der Drehzahl und der Leistung des Antriebs 17 möglichst opti- mal in die Polymer-Schmelze eingemischt. Nachdem die so gemischte Poly- mer-Schmelze den Doppelschneckenextruder 1 verlassen hat, wird die Schmelze über Förder- und Scherelemente 19 in die Evakuierungstrommel 13 des Entgasungsextruders 2 gegeben. Die Förder- und Scherelemente 19 und die Signale der Druckerfassung 20 dienen dabei dazu, die Schmelze vor dem Eintritt in die Evakuierungstrommel 13 so zu dosieren, dass in der Evakuie- rungstrommel eine optimale Menge an Schmelze vorliegt, die hier über Schne- cken umgewälzt und transportiert wird, wobei die Schmelze dem Vakuum eine möglichst große und sich ständig erneuernde Oberfläche bietet, so dass die Entgasung der Schmelze sehr schnell und effektiv erfolgen kann. Dadurch wird, obwohl über die Evakuierungstrommel auch Scherkräfte in die Schmelze eingebracht werden, die Kettenlänge der Polymermoleküle wieder länger. Die Polymer-Schmelze wird höher viskos. Über die Einstellung des Vakuums mit- tels der Regelvorrichtung 16 lässt sich bei voreingestellter Durchflussmenge und Durchflussgeschwindigkeit die gewünschte Viskosität der Polymer- Schmelze einstellen.
Am Ende der Evakuierungstrommel wird die Schmelze über den Austrag 14, dem Austragwerkzeug 15 zugeführt.
Bezugszeichenliste
1 Doppelschneckenextruder
2 Entgasungsextruder
3 Eingangstrichter
4 Förder- und Mischstrecke
5 Drossel
5‘ Ausgang
6 Eingang
7 Zuspritzkammer
7‘ Einspritzdüse
8 Wasserzuführung
9 Suspensionspumpe
10 Suspensionssilo
11 Rührwerk
12 Vakuumanschluss
13 Evakuierungstrommel
14 Austrag
15 Austragwerkzeug
16 Regelvorrichtung
17 Antrieb
18 Antrieb
19 Förder- und Scherelemente
20 Druckerfassung
21 Drucksensor
22 Gasanschluss

Claims

Patentansprüche:
1. Verfahren zur Herstellung von Polymeren, in welchen Füllstoffe eingear- beitet und homogen verteilt sind, wobei:
die Partikelgrößen der Füllstoffe kleiner 10 gm sind;
ein Polymer-Eingangsmaterial in einen Doppelschneckenextruder (1 ) eingegeben und dort zu einer Schmelze aufgeschmolzen wird, in einer Förder- und Mischstrecke (4) eine Suspension, die aus den Füllstoffen und einer Trägerflüssigkeit besteht, in die Schmelze inji- ziert wird dadurch gekennzeichnet,
dass die Schmelzeviskosität durch Einspritzen der Trägerflüssigkeit in der Förder- und Mischstrecke (4) erniedrigt wird, indem als Polymer ein spaltbares Polykondensat und als Trägerflüssigkeit das bei der Polykondensation anfallende niedermolekulare Abspaltprodukt ver- wendet werden, so dass das aufgeschmolzene Polymer innerhalb der Förder- und Mischstrecke (4) wenigstens teilweise depolymerisiert wird;
dass die Mischung, die aus der durch Aufspaltung in ihrer Viskosität reduzierten Schmelze, der restlichen Trägerflüssigkeit und den Füll- stoffen besteht, homogenisiert wird,
dass die Viskosität der Schmelze nach der Homogenisierung ab- schließend wieder erhöht wird, wozu ein Entgasungsextruder (2) ver- wendet wird, in welchem zur Viskositätserhöhung eine Polykondensa- tion durchgeführt wird, indem ein Vakuum angelegt und das Abspalt- produkt mittels des Vakuums aus dem Entgasungsextruder (2) abge- schieden wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zur Einlei- tung der Abspaltung Trägerflüssigkeit in die Schmelze injiziert wird, bevor die Suspension injiziert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,
dass als Polymer ein hydrolysierbares Polykondensat und als Träger- flüssigkeit Wasser verwendet werden, so dass die Schmelze inner- halb der Förder- und Mischstrecke (4) hydrolysiert wird;
dass die Mischung aus der durch Hydrolyse in ihrer Viskosität redu- zierten Schmelze, des restlichen Wassers und den Füllstoffen homo- genisiert wird, und
dass die Viskosität der Schmelze nach der Homogenisierung ab- schließend wieder erhöht wird, wozu ein Entgasungsextruder (2) ver- wendet wird, in welchem zur Viskositätserhöhung eine Polykondensa- tion durchgeführt wird, indem ein Vakuum angelegt und das Wasser mittels des Vakuums aus dem Entgasungsextruder (2) abgeschieden wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Polymer ein Polyester ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Polymer ein unter Abspaltung eines einwertigen oder mehrwer- tigen Alkohols hergestelltes Polykondensat ist und als Trägerflüssigkeit ein einwertiger oder ein mehrwertiger Alkohol verwendet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Regelvorrichtung (16) die einzelnen Verfahrensschritte re- gelt, über welche ein Anfahrprozess initiiert wird, bei dem zunächst nur Trägerflüssigkeit in die Förder- und Mischstrecke (4) injiziert wird, so dass das Polymer-Eingangsmaterial niedrigviskoser wird, und dass nach anschließendem Umschalten durch die Regelvorrichtung (16) von Trägerflüssigkeit-Injektion auf Suspension-Injektion die Sus- pension in die niedrigviskose Schmelze eingemischt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Druck in einer Zuspritzkammer (7) des Doppelschneckenextru- ders (1 ) zwischen 25 bar und 50 bar beträgt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Druck in der Zuspritzkammer (7) auf 5 bar oberhalb bis unterhalb der Phasenum- wandlungsgrenze der Trägerflüssigkeit eingestellt oder geregelt wird.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Druck in der Zuspritzkammer (7) zwischen 20 bar und 200 bar geregelt wird, wobei ein Drucksensor (21 ) in der Zuspritzkammer (7) die Druck-Ist- werte an die Regelvorrichtung (16) gibt, welche den Soll-Druck durch Be- einflussung einer einstellbaren Schmelze-Drossel (5), die zwischen dem Doppelschneckenextruder (1 ) und dem Entgasungsextruder (2) angeord- net ist und/oder einer Suspensionspumpe (9) vorgibt.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass im Bereich der Zuspritzkammer zur Aufrechterhaltung bzw. besse- ren Regelung des Drucks ein inertes Gas zudosiert wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Regelvorrichtung (16) die Evakuierungsleistung im Entgasungs- extruder (2) durch Einstellung des Unterdrucks bei vorgegebener Durch- flussmenge und Durchflussgeschwindigkeit regelt, wodurch die Viskosität der ausgetragenen Schmelze einstellbar ist.
EP19790125.9A 2018-10-04 2019-10-02 Verfahren zur herstellung von polymeren, in welchen füllstoffe eingearbeitet und homogen verteilt sind Pending EP3860822A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018124523.8A DE102018124523B4 (de) 2018-10-04 2018-10-04 Verfahren zur Herstellung von Polymeren, in welchen Füllstoffe mit Partikelgrößen kleiner 10 μm eingearbeitet und homogen verteilt sind.
PCT/DE2019/100865 WO2020069701A1 (de) 2018-10-04 2019-10-02 Verfahren zur herstellung von polymeren, in welchen füllstoffe eingearbeitet und homogen verteilt sind

Publications (1)

Publication Number Publication Date
EP3860822A1 true EP3860822A1 (de) 2021-08-11

Family

ID=68290135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19790125.9A Pending EP3860822A1 (de) 2018-10-04 2019-10-02 Verfahren zur herstellung von polymeren, in welchen füllstoffe eingearbeitet und homogen verteilt sind

Country Status (5)

Country Link
US (1) US20210221965A1 (de)
EP (1) EP3860822A1 (de)
CN (1) CN112823089B (de)
DE (1) DE102018124523B4 (de)
WO (1) WO2020069701A1 (de)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2049974B2 (de) * 1970-10-12 1977-05-18 Ficker, Stefan, 8000 München Vorrichtung zum kontinuierlichen, drucklosen und trockenen regenerieren von gummiabfaellen
US3824208A (en) * 1973-03-05 1974-07-16 Gen Electric Process for forming a free-flowing particulate polymer mixture from a viscous tacky polymer
CA2050612A1 (en) * 1990-09-21 1992-03-22 Keith Gannon Addition of additives to polymeric materials
US6590069B2 (en) * 2000-12-15 2003-07-08 Wellman, Inc. Methods of post-polymerization extruder injection in condensation polymer production
DE10150627A1 (de) * 2001-10-12 2003-05-15 Gneuss Kunststofftechnik Gmbh Extruder zur Gewinnung von Kunststoff-Schmelzen
DE102005025975A1 (de) * 2005-06-03 2006-12-07 Bühler AG Verfahren zur Herstellung eines hochmolekularen Poykondensates mit hoher Durchsatzleistung
DE102009013418A1 (de) * 2009-03-18 2010-09-23 Bayer Technology Services Gmbh Verfahren zur Dispersion von Nanopartikeln in fluiden Medien
ES2440766T3 (es) * 2009-11-18 2014-01-30 Bada Ag Procedimiento para la fabricación de materiales compuestos a base de polímeros y nanotubos de carbono (CNT) y materiales compuestos fabricados de esta manera así como su uso
DE102015226043B4 (de) * 2015-12-18 2019-12-24 Gneuss Gmbh Verfahren zur Einstellung vorgebbarer Viskositätswerte beim Recyceln von Polyesterabfällen

Also Published As

Publication number Publication date
WO2020069701A1 (de) 2020-04-09
CN112823089B (zh) 2023-05-23
CN112823089A (zh) 2021-05-18
US20210221965A1 (en) 2021-07-22
DE102018124523B4 (de) 2020-10-22
DE102018124523A1 (de) 2020-04-09

Similar Documents

Publication Publication Date Title
EP2057207B1 (de) Verfahren zum compoundieren von polymeren
EP1135245B1 (de) Verfahren zur aufbereitung eines thermoplastischen polykondensats
EP2525951B1 (de) Verfahren zur herstellung eines mit längeren fasern gefüllten polymeren materials
EP0560033B1 (de) Verfahren und Vorrichtung zur Herstellung eines Polymeren aus thermoplastischem Polykondensat
DE4417559A1 (de) Verfahren zum Entwässern einer wasserhaltigen Kunststoffschmelze in einem Doppelschneckenextruder
AT513443A1 (de) Verfahren und Vorrichtung zum Erhöhen der Grenzviskosität einer Polykondensatschmelze
DE2703461A1 (de) Verfahren und vorrichtung zum wiederaufschmelzen von polymerabfaellen
WO1993022119A1 (de) Verfahren und vorrichtung zum recycling von begastem kunststoffmaterial
DE202016101935U1 (de) Extrusionsanlage zur Herstellung von Formstücken aus Kunststoffen
EP1425145A1 (de) Elastomermischungen für die gummiherstellung
EP3363609B1 (de) Anlage sowie verfahren zur behandlung einer kunststoffschmelze
DE3610159C2 (de)
AT521534A2 (de) Verfahren zur Herstellung einer Polykondensatschmelze aus einem Primärmaterial und einem Sekundärmaterial
WO2022056566A1 (de) Verfahren zur aufbereitung von kunststoffabfällen aus einem polymeren basismaterial
DE60211177T2 (de) Misch- und knetvorrichtung für kunststoffe
DE102018124523B4 (de) Verfahren zur Herstellung von Polymeren, in welchen Füllstoffe mit Partikelgrößen kleiner 10 μm eingearbeitet und homogen verteilt sind.
EP3659773B1 (de) Verfahren und vorrichtung zur aufbereitung einer styrol-acrylnitril-schmelze
EP2129720A1 (de) Verfahren zur herstellung von polymermischungen
DE2910041A1 (de) Schneckenpresse zur verarbeitung von polymeren materialien
EP0316760A2 (de) Verfahren und Vorrichtung zur Herstellung von thermoplastischen Kunststoffen
EP3995278B1 (de) Verfahren und vorrichtung zur verarbeitung von polykondensaten
EP1313898A2 (de) Verfahren zum aufschmelzen von polymergranulat sowie abschmelzelement
DE2417792B2 (de) Verfahren und vorrichtung zum einmischen von zusatzstoffen in kunststoffe unter gleichzeitigem entfernen fluechtiger bestandteile
EP0821010A1 (de) Verfahren und Vorrichtung zum Entfernen von flüchtigen Bestandteilen aus hochviskosen Lösungen oder Suspensionen
EP3356101B1 (de) Verfahren und vorrichtung zur kontinuierlichen modifikation einer polymerschmelze aus unextrahiertem polyamid 6 mit einem oder mehreren additiven

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221122