EP3855461B1 - Dispositif et procédé d'enroulement de noyaux toroïdaux - Google Patents

Dispositif et procédé d'enroulement de noyaux toroïdaux Download PDF

Info

Publication number
EP3855461B1
EP3855461B1 EP20152955.9A EP20152955A EP3855461B1 EP 3855461 B1 EP3855461 B1 EP 3855461B1 EP 20152955 A EP20152955 A EP 20152955A EP 3855461 B1 EP3855461 B1 EP 3855461B1
Authority
EP
European Patent Office
Prior art keywords
toroidal core
winding
wire
protective cover
guide plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20152955.9A
Other languages
German (de)
English (en)
Other versions
EP3855461C0 (fr
EP3855461A1 (fr
Inventor
Alois Hofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruff GmbH
Original Assignee
Ruff GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruff GmbH filed Critical Ruff GmbH
Priority to EP20152955.9A priority Critical patent/EP3855461B1/fr
Priority to BR112022014279A priority patent/BR112022014279A2/pt
Priority to PCT/EP2021/051216 priority patent/WO2021148476A1/fr
Priority to US17/794,560 priority patent/US20230108674A1/en
Priority to CN202180010790.XA priority patent/CN115023778A/zh
Publication of EP3855461A1 publication Critical patent/EP3855461A1/fr
Application granted granted Critical
Publication of EP3855461C0 publication Critical patent/EP3855461C0/fr
Publication of EP3855461B1 publication Critical patent/EP3855461B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/08Winding conductors onto closed formers or cores, e.g. threading conductors through toroidal cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/082Devices for guiding or positioning the winding material on the former
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/094Tensioning or braking devices

Definitions

  • the invention relates to a device and a method for winding toroidal cores arranged in a toroidal core plane with a wire arranged in a winding plane.
  • a toroidal core coil winding device with a toroidal core holder and an annular magazine guided through the toroidal core opening with elements used for wire guidance and wire magazine storage is, for example, from DE 101 53 896 A1 known.
  • the disadvantage of this known device is that the wire to be wound onto the toroidal core during operation exerts a high load on the toroidal core when producing a wire turn, since the wire is wound directly onto the toroidal core. This can lead to material failure of the toroidal core, particularly with toroidal cores with low material strength and when wound with a thick wire.
  • Another toroidal core winding device with a toroidal core holder and a magazine-free wire guide is, for example, from the EP 2 953 149 B1 known.
  • the disadvantage of this known device is that the wire to be wound onto the toroidal core during operation exerts a high load on the toroidal core when producing a wire turn, since the wire is wound directly onto the toroidal core. This can lead to material failure of the toroidal core, particularly with toroidal cores with low material strength and when wound with a thick wire.
  • document DE 24 46 713 A1 discloses a method for winding winding carriers, in particular coil cores and bobbins.
  • the present invention is therefore based on the object of creating a device for winding toroidal cores and a corresponding winding method, which enable automated winding of toroidal cores with, in particular, comparatively low material strength.
  • the device should be simple and robust and can be produced inexpensively.
  • the invention provides a device for winding toroidal cores arranged in a toroidal core plane with a wire arranged in a winding plane, the device comprising a protective cover, which is arranged essentially in the toroidal core plane and perpendicular to the winding plane and is mounted in a horizontally translationally movable manner in the toroidal core plane and is designed to be guided over the toroidal core in areas during operation and thereby to protect the toroidal core and to have an internal shape of at least one wire turn on which the wire is wound.
  • the device further comprises a slide, which is arranged essentially in the toroidal core plane and parallel to the protective cover and is slidably mounted around the protective cover and partially surrounds the protective cover and is designed to move the at least one wire turn wound onto the protective cover during operation by a translational movement from the protective cover onto the toroidal core.
  • a slide which is arranged essentially in the toroidal core plane and parallel to the protective cover and is slidably mounted around the protective cover and partially surrounds the protective cover and is designed to move the at least one wire turn wound onto the protective cover during operation by a translational movement from the protective cover onto the toroidal core.
  • a method for winding toroidal cores arranged in a toroidal core plane with a wire arranged in a winding plane includes winding the wire on a protective cover and further the following steps: advancing a slide and pushing the at least one wire turn from the protective cover onto the toroidal core; and pushing the slider back.
  • the method also includes a step preceding the above-mentioned step of positioning and braking the wire to be wound using guide plates.
  • a wire turn is generated on the protective cover that protects the toroidal core during operation, in that the protective cover creates an inner shape of at least one wire turn onto which the wire is wound. Furthermore, the at least one turn of wire wound on the protective cover is deposited during operation according to the invention by a translational movement of the slide against the turn of wire from the protective cover onto the toroidal core. This means that the load when producing the wire turn is absorbed by the protective cover. Since the toroidal core experiences essentially no load during the production of the wire winding, toroidal cores with, in particular, comparatively low material strength can also be wound or wires with a comparatively larger wire diameter can also be wound.
  • the device according to the invention is of simple construction, since further precautions that enable the winding of toroidal cores with low material strength can be dispensed with. Due to the relatively simple structure, the device is also robust and inexpensive to manufacture. The method according to the invention thus allows automated winding of toroidal cores with, in particular, comparatively low material strength, which cannot be wound with conventional toroidal core (coil) winding devices.
  • the invention is simple in structure, since further precautions that enable the winding of toroidal cores with low material strength can be dispensed with. Due to the relatively simple structure, the device is also robust and inexpensive to manufacture. The method according to the invention thus allows automated winding of toroidal cores with, in particular, comparatively low material strength, which cannot be wound with conventional toroidal core winding devices.
  • the protective cover comprises a receiving area in an area essentially opposite the end face of the toroidal core, which is designed to receive an area of the toroidal core that has already been wound with the wire.
  • the receiving area is formed by the geometry of the protective cover between the end face of the toroidal core and the protective cover in order to prevent a collision with the partially wound toroidal core during operation. This enables automated winding of the toroidal core. This allows the process time for winding the toroidal core to be reduced and the quality of the wound toroidal core to be increased.
  • the slider comprises a receiving area in an area essentially opposite the end face of the toroidal core, which is designed to receive an area of the toroidal core that has already been wound with the wire.
  • the receiving area is formed by the geometry of the slider between the end face of the toroidal core and the slider in order to prevent a collision with the partially wound toroidal core during operation.
  • the device comprises a first guide plate and a second guide plate, which are arranged substantially parallel to the winding plane and are designed to guide and brake the wire into a predetermined position in the winding plane before winding onto the protective cover.
  • the wire should preferably be guided in the winding plane.
  • the wire is guided on the protective cover between the first guide plate and the second guide plate in the winding plane.
  • the wire located between them is braked by friction due to a restoring force of the second guide plate in the direction of the first guide plate. This reduces the load on the protective cover when winding it with the wire and prevents the wire from breaking off. This also increases the quality of the wire winding produced.
  • the first guide plate is mounted in a stationary manner and the second guide plate is mounted in a horizontally translationally movable manner in the ring core plane.
  • the wire hits the first guide plate and the second guide plate and moves the second guide plate away from the first guide plate.
  • the wire is guided between the first guide plate and the second guide plate into a position in the winding plane that is advantageous for producing a wire turn. This allows the device to be used for wires of different wire thicknesses and to increase the quality of the wire winding produced.
  • the first guide plate and the second guide plate have an inclination in an upper region, which continuously increases the distance between the first guide plate and the second guide plate and forms a funnel-shaped wire guide area.
  • the wire hits the first guide plate and the second guide plate, the wire passes through the funnel-shaped wire guide area between the first guide plate and the second guide plate is guided into the winding level.
  • the wire is also guided from a position outside the winding plane into a position between the first guide plate and the second guide plate in the winding plane that is advantageous for producing a wire winding, and process reliability is thereby increased.
  • the second (or the first or both) guide plate(s) preferably has a surface with braking properties, which is designed to brake the wire before winding onto the protective cover when guiding the wire between the guide plates.
  • the braking property is achieved in that the second guide plate has a surface made of a material (e.g. felt) with a coefficient of friction that is higher than the coefficient of friction of the first guide plate.
  • the surface of one or both guide plates is correspondingly coated or processed in such a way that the desired coefficient of friction is achieved.
  • the first guide plate and the second guide plate include receiving areas which are designed to receive the toroidal core, the protective cover and the slider.
  • the receiving areas of the first guide plate and the second guide plate allow a compact and robust design of the device.
  • the device comprises at least two drive rollers, each with recesses arranged on the end face of the drive rollers, which are arranged essentially parallel and adjacent to the toroidal core and are designed to hold the wire turns on the toroidal core and drive the toroidal core rotationally. Due to the parallel and adjacent arrangement of the drive rollers, the toroidal core is stored in a stationary manner during operation. At least one of the drive rollers is rotationally driven and transmits the rotational movement to the toroidal core during operation. During operation, the recesses in the drive rollers accommodate wire turns that have already been wound on the toroidal core in order to avoid a collision and to ensure the transmission of the rotational movement even when the toroidal core has already been partially wound.
  • the protective cover and the slider are designed to be mirrored twice on the winding plane. This design allows toroidal cores to be wound in both directions of rotation and can therefore shorten the cycle time for winding.
  • the device 1000 for winding toroidal cores 2000 preferably has a protective cover 1100, which partially surrounds and protects the toroidal core 2000 during operation.
  • the protective cover 1100 is arranged essentially in the toroidal core plane and perpendicular to the winding plane. Furthermore, the protective cover 1100 is mounted so that it can move horizontally in a translational manner in the toroidal core plane and can be guided in certain areas over the toroidal core 2000.
  • the area of the protective cover 1100, which is guided over the toroidal core 2000 during operation has a U-shaped inner shape corresponding to the outer shape of the toroidal core 2000.
  • the outer shape of the protective cover 1100 corresponds to the inner shape of at least one wire turn 3100.
  • the protective covers 1100 surround the toroidal core 2000 in areas during operation in order to protect the toroidal core 2000 during winding with the wire 3000. During winding, the wire 3000 is wound onto the protective cover 1100.
  • the protective cover 1100 preferably consists of a material with a material strength that is higher than the material strength of the toroidal core 2000.
  • the device 1000 for winding toroidal cores 2000 further comprises a slider 1200, which during operation pushes the at least one wire turn 3100 wound on the protective cover 1100 from the protective cover 1100 onto the toroidal core 2000.
  • the slide 1200 is arranged essentially in the toroidal core plane and parallel to the protective cover 1100 and is slidably mounted around the protective cover 1100.
  • the internal shape of the slider 1200 which is arranged above the protective cover 1100 during operation, corresponds to the external shape of the protective cover 1100.
  • the slider 1200 is in a starting position during the winding of the protective cover 1100, as in Fig. 4a is shown.
  • the slider 1200 moves in the direction of the wire turn 3100 and pushes the wire turn 3100 from the protective cover 1100 onto the toroidal core 2000, as in Fig. 4b shown. After the slider 1200 has pushed the at least one wire turn 3100 from the protective cover 1100 onto the toroidal core 2000, the slider 1200 moves back into the starting position, which enables the wire 3000 to be further wound around the protective cover 1100.
  • the protective cover 1100 and the slider 1200 include receiving areas 1110, 1210, which are arranged in an area essentially opposite the end face of the toroidal core 2000, as in Fig. 2 shown.
  • the receiving areas 1110, 1210 are designed to accommodate an area of the toroidal core 2000 that has already been wrapped with the wire 3000 during operation. This prevents the already wound area of the toroidal core 2000 from colliding with the protective cover 1100 or the slider 1200 during operation.
  • First and second guide plates 1310, 1320 shown are arranged essentially parallel and adjacent to the winding plane.
  • the first guide plate 1310 is mounted in a stationary manner and the second guide plate 1320 is mounted so that it can move horizontally in translation in the ring core plane.
  • the guide plates 1310, 1320 guide the wire 3000 into a predetermined position in the winding plane and brake the wire 3000 before winding onto the protective cover 1100.
  • the first guide plate 1310 and the second guide plate 1320 have inclinations in an upper region 1330, which determine the distance between the first guide plate 1310 and the second guide plate 1320 continuously increase and form a funnel-shaped wire opening area 1340.
  • the wire 3000 When the wire 3000 hits the first guide plate 1310 and the second guide plate 1320, the wire 3000 is guided through the funnel-shaped wire opening area 1340 by moving the second guide plate 1320 between the first guide plate 1310 and the second guide plate 1320. The wire 3000 is thus also guided from a position outside the winding plane into a position in the winding plane that is advantageous for producing at least one wire turn 3100. The wire 3000 is guided between the first guide plate 1310 and the second guide plate 1320 into a position in the winding plane that is advantageous for producing the wire turn 3100.
  • the braking of the wire 3000 between the first guide plate 1310 and the second guide plate 1320 takes place on the one hand by a restoring force which acts from the second guide plate 1320 in the direction of the first guide plate 1310.
  • the wire 3000 located between them is pressed against the first guide plate 1310 by the second guide plate 1320 and is thereby braked when the wire 3000 is guided between the guide plates 1310, 1320.
  • the second guide plate 1320 has a surface 1322 with braking properties made of a material (eg, provided with a brake pad such as felt or the like) with a coefficient of friction that is higher than the coefficient of friction of the first guide plate 1310, as shown in Fig. 1 shown.
  • the wire 3000 is also braked by the increased friction between the wire 3000 and the second guide plate 1320 due to the surface 1322 with braking properties.
  • the first guide plate 1310 or both guide plates 1310, 1320 can also be mounted in a translationally movable manner.
  • the first guide plate 1310 or both guide plates 1310, 1320 can also have a surface 1322 with braking properties.
  • the device 1000 comprises at least two drive rollers 1410, 1420, each with recesses 1411, 1421 arranged on the end face of the drive rollers 1410, 1420.
  • the drive rollers 1410, 1420 are arranged on their end face adjacent to the toroidal core 2000 and drive the toroidal core 2000 rotates during winding.
  • the recesses 1411, 1421 of the drive rollers 1410, 1420 are designed to accommodate the wire turns 3100 already wound on the toroidal core 2000 during operation. This ensures that the drive rollers 1410, 1420 do not collide with the wire turns 3100 wound on the toroidal core 2000 and transmit the rotational movement to the toroidal core 2000 even if the toroidal core 2000 has already been partially wound.
  • the method 5000 for winding toroidal cores 2000 can be as follows with reference to Fig. 4a , 4b and 5 summarized as described.
  • the toroidal core 2000 is inserted into the device 1000 and rotates during winding.
  • the protective cover 1100 is guided over the toroidal core 2000 in areas, whereby the toroidal core 2000 is stored in a preferred position in the device 1000 in a stationary and rotationally movable manner by the drive rollers 1410, 1420 and the protective cover 1100.
  • a first turn of wire 3100 is wound onto the protective cover 1100, as in Fig. 4a shown.
  • the slide 1200 moves in the direction of the wire turn 3100 and pushes it from the protective cover 1100 onto the toroidal core 2000.
  • the slide 1200 then moves back to its original position. These steps are repeated until a predetermined desired number of wire turns 3100 is wound onto the toroidal core 2000.
  • the method 5000 for winding toroidal cores 2000 can, in addition to the steps described above, also include an upstream step of positioning and braking the wire 3000 to be wound by guide plates 1310, 1320.
  • the wire 3000 hits the first guide plate 1310 and the second guide plate 1320, the wire 3000 is guided through the funnel-shaped wire opening area 1340 between the first guide plate 1310 and the second guide plate 1320.
  • the guide plates 1310, 1320 guide the wire 3000 into a predetermined position in the winding plane and brake the wire 3000 before winding onto the protective cover 1100.
  • Fig. 5 shows a flowchart of an embodiment of a method 5000 for winding toroidal cores 2000 according to an embodiment of the present invention.
  • the toroidal core 2000 is inserted into the device 1000 before winding.
  • the protective cover 1100 is guided over the toroidal core 2000, whereby the toroidal core 2000 is supported in a stationary and rotationally movable manner by the drive rollers 1410, 1420 and the protective cover 1100.
  • the wire 3000 to be wound is positioned and braked in the winding plane by the guide plates 1310, 1320.
  • at least one turn of wire 3100 is wound onto the protective cover 1100.
  • the slider 1200 is wound in the direction of the protective cover 1100 Wire turn 3100 moves and thereby the slide 1200 pushes the at least one wire turn 3100 from the protective cover 1100 onto the toroidal core 2000.
  • the slide 1200 then moves back to its original position. If the toroidal core 2000 has a predetermined desired number of wire turns 3100 after step 5500, according to a further step 5600 the protective cover 1100 is returned from the toroidal core 2000 and the wound toroidal core 2000 is removed. If the toroidal core 2000 does not yet have the predetermined desired number of wire turns 3100 after step 5500, steps 5200, 5300, 5400, 5500 are repeated until the toroidal core 2000 has the predetermined desired number of wire turns 3100.
  • toroidal core also includes tubular cores or cores with a special opening geometry and refers in particular to toroidal cores with low material strength or cores with angled opening geometry as well as tubular cores which, due to their low material strength, cannot be wound with conventional toroidal core winding devices because the winding with a wire would lead to material failure of the toroidal core.
  • the embodiments described here are also suitable for winding other toroidal cores or cores with other openings and also those with high material strength and allow simple and comfortable winding.
  • wire also includes all other materials with which toroidal cores or similar objects can be wound according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Claims (15)

  1. Dispositif (1000) pour le bobinage d'un noyau toroïdal (2000) disposé dans un plan de noyau toroïdal avec un fil (3000) disposé dans un plan de bobinage, comprenant :
    un couvercle de protection (1100), qui est disposé essentiellement dans le plan du noyau toroïdal et perpendiculairement au plan de bobinage et qui est monté mobile en translation horizontale dans le plan du noyau toroïdal et qui est conçu pour, en fonctionnement, être guidé par zones sur le noyau toroïdal (2000) et pour protéger ainsi le noyau toroïdal (2000) et pour produire une forme intérieure d'au moins une spire de fil (3100) sur laquelle le fil (3000) est enroulé ;
    un poussoir (1200) qui est disposé essentiellement dans le plan du noyau toroïdal et parallèlement au couvercle de protection (1100) et qui est monté coulissant autour du couvercle de protection (1100) et qui entoure partiellement le couvercle de protection (1100) et qui est conçu pour, en fonctionnement, pousser ladite au moins une spire de fil (3100) enroulée sur le couvercle de protection (1100) par un mouvement de translation depuis le couvercle de protection (1100) sur le noyau toroïdal (2000).
  2. Dispositif (1000) pour le bobinage d'un noyau toroïdal (2000) selon la revendication 1,
    dans lequel le couvercle de protection (1100) comprend une zone de réception (1110) dans une zone sensiblement opposée à la face frontale du noyau toroïdal (2000), qui est adaptée pour recevoir une zone du noyau toroïdal (2000) déjà bobinée avec le fil (3000).
  3. Dispositif (1000) de bobinage d'un noyau toroïdal (2000) selon la revendication 2,
    dans lequel le poussoir (1200) comprend une zone de réception (1210) dans une zone sensiblement opposée à la face d'extrémité du noyau toroïdal (2000), adaptée pour recevoir une zone du noyau toroïdal (2000) déjà bobinée avec le fil (3000).
  4. Dispositif (1000) de bobinage d'un noyau toroïdal (2000) selon l'une des revendications précédentes,
    ledit dispositif (1000) comprenant une première plaque de guidage (1310) et une deuxième plaque de guidage (1320) disposées sensiblement parallèlement au plan de bobinage et adaptées pour guider et freiner le fil (3000) dans une position prédéterminée dans le plan de bobinage avant le bobinage sur le couvercle de protection (1100).
  5. Dispositif (1000) de bobinage d'un noyau toroïdal (2000) selon la revendication 4,
    dans lequel la première plaque de guidage (1310) est montée de manière fixe et la deuxième plaque de guidage (1320) est montée de manière mobile en translation horizontale dans le plan du noyau toroïdal.
  6. Dispositif (1000) pour le bobinage d'un noyau toroïdal (2000) selon la revendication 4 ou la revendication 5,
    dans lequel la première plaque de guidage (1310) et la deuxième plaque de guidage (1320) présentent, dans une zone supérieure (1330), une inclinaison qui augmente de façon continue la distance entre la première plaque de guidage (1310) et la deuxième plaque de guidage (1320) et forme une zone de guidage de fil (1340) en forme d'entonnoir.
  7. Dispositif (1000) de bobinage d'un noyau toroïdal (2000) selon l'une des revendications 4 à 6,
    dans lequel la deuxième plaque de guidage (1320) comprend une surface ayant des propriétés de freinage, ladite surface ayant un coefficient de frottement supérieur à un coefficient de frottement de la première plaque de guidage,
    ladite surface qui a des propriétés de freinage étant conçue pour freiner le fil (3000) avant de l'enrouler sur le couvercle de protection (1100).
  8. Dispositif (1000) de bobinage d'un noyau toroïdal (2000) selon l'une des revendications 4 à 7,
    dans lequel la première plaque de guidage (1310) et la deuxième plaque de guidage (1320) comprennent des zones de réception adaptées pour recevoir le noyau toroïdal (2000), le capot de protection (1100) et le poussoir (1200).
  9. Dispositif (1000) de bobinage d'un noyau toroïdal (2000) selon l'une des revendications précédentes,
    le dispositif (1000) comprenant au moins deux roues d'entraînement (1410, 1420) comportant chacune des évidements (1411, 1421) aménagés sur la face d'extrémité des roues d'entraînement (1410, 1420), qui sont agencés sensiblement parallèlement et de manière adjacente au noyau toroïdal (2000) et qui sont conçus pour recevoir les spires de fil (3100) sur le noyau toroïdal (2000) et pour entraîner en rotation le noyau toroïdal (2000).
  10. Dispositif (1000) pour le bobinage d'un noyau toroïdal (2000) selon l'une des revendications précédentes,
    dans lequel le couvercle de protection (1100) et le poussoir (1200) sont doublés en miroir sur le plan de bobinage.
  11. Procédé de bobinage d'un noyau toroïdal (2000) agencé dans un plan de noyau toroïdal avec un fil (3000) placé dans un plan de bobinage, utilisant le dispositif (1000) selon la revendication 1, le procédé comprenant les étapes suivantes :
    a. enroulement d'au moins une spire de fil (3100) sur le couvercle de protection (1100) ;
    b. avancée du poussoir (1200) et poussée de ladite au moins une spire de fil (3100) depuis le couvercle de protection (1100) sur le noyau toroïdal (2000) ; et
    c. repoussée du poussoir (1200).
  12. Procédé de bobinage d'un noyau toroïdal (2000) selon la revendication 11, dans lequel, en fonctionnement, le noyau toroïdal (2000) est entraîné en rotation par les au moins deux roues d'entraînement (1410, 1420) et tourne dans le plan du noyau toroïdal.
  13. Procédé de bobinage d'un noyau toroïdal (2000) selon l'une des revendications 11 ou 12, ledit procédé comprenant une étape, préalable à l'étape a, de positionnement et de freinage du fil à bobiner (3000) par des plaques de guidage (1310, 1320).
  14. Procédé de bobinage d'un noyau toroïdal (2000) selon l'une des revendications 11 à 13 précédentes, dans lequel, au début du procédé, le noyau toroïdal (2000) est placé dans le dispositif (1000) et le couvercle de protection (1100) est guidé par zones sur le noyau toroïdal (2000) ;
    et dans lequel les étapes a. à c. sont exécutées de manière répétée pour enrouler le nombre souhaité de spires de fil (3100) sur le noyau toroïdal (2000).
  15. Procédé de bobinage d'un noyau toroïdal (2000) selon l'une des revendications 11 à 14 précédentes,
    ledit procédé étant mis en oeuvre en utilisant le dispositif (1000) de bobinage de noyaux toroïdaux (2000) selon l'une des revendications 1 à 10.
EP20152955.9A 2020-01-21 2020-01-21 Dispositif et procédé d'enroulement de noyaux toroïdaux Active EP3855461B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20152955.9A EP3855461B1 (fr) 2020-01-21 2020-01-21 Dispositif et procédé d'enroulement de noyaux toroïdaux
BR112022014279A BR112022014279A2 (pt) 2020-01-21 2021-01-20 Dispositivo e método para enrolar núcleos toroidais
PCT/EP2021/051216 WO2021148476A1 (fr) 2020-01-21 2021-01-20 Dispositif et procédé d'enroulement de noyaux toroïdaux
US17/794,560 US20230108674A1 (en) 2020-01-21 2021-01-20 Device and Method for Winding Toroidal Cores
CN202180010790.XA CN115023778A (zh) 2020-01-21 2021-01-20 用于卷绕环形芯的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20152955.9A EP3855461B1 (fr) 2020-01-21 2020-01-21 Dispositif et procédé d'enroulement de noyaux toroïdaux

Publications (3)

Publication Number Publication Date
EP3855461A1 EP3855461A1 (fr) 2021-07-28
EP3855461C0 EP3855461C0 (fr) 2024-01-03
EP3855461B1 true EP3855461B1 (fr) 2024-01-03

Family

ID=69187565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20152955.9A Active EP3855461B1 (fr) 2020-01-21 2020-01-21 Dispositif et procédé d'enroulement de noyaux toroïdaux

Country Status (5)

Country Link
US (1) US20230108674A1 (fr)
EP (1) EP3855461B1 (fr)
CN (1) CN115023778A (fr)
BR (1) BR112022014279A2 (fr)
WO (1) WO2021148476A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2446713A1 (de) * 1974-09-30 1976-04-08 Siemens Ag Verfahren zum bewickeln von wicklungstraegern, insbesondere spulenkoerpern und spulenkernen und vorrichtung zur durchfuehrung des verfahrens
JPH07297069A (ja) * 1994-04-20 1995-11-10 Sony Corp 巻線方法及び巻線装置
DE10153896A1 (de) 2001-11-02 2003-05-28 Herbert Ruff Gmbh & Co Kg Direktwickelvorrichtung und -verfahren
EP2953149B1 (fr) 2014-06-06 2017-04-19 RUFF GmbH Dispositif et procédé d'enroulement de tores sans magasin
JP6085284B2 (ja) * 2014-11-25 2017-02-22 株式会社エス・エッチ・ティ 空芯コイル挿入装置

Also Published As

Publication number Publication date
EP3855461C0 (fr) 2024-01-03
US20230108674A1 (en) 2023-04-06
WO2021148476A1 (fr) 2021-07-29
CN115023778A (zh) 2022-09-06
EP3855461A1 (fr) 2021-07-28
BR112022014279A2 (pt) 2022-12-13

Similar Documents

Publication Publication Date Title
DE2921114C2 (fr)
DE69120597T2 (de) Verfahren zur Herstellung eines Stators
DE69500246T2 (de) Herstellungsverfahren für eine Spule auf einem toroidalen Magnetkreis
DE3347195C2 (de) Anker für eine elektrische Maschine und Verfahren zu seiner Bewicklung
DE112006002852T5 (de) Motor-Kernkomponente und Motorkomponente
EP2122807B1 (fr) Procede d'enroulement mecanique d'une bobine
DE10037239A1 (de) Verfahren zur Herstellung von Leitersegmenten eines Wechselstromgenerators
DE3781925T2 (de) Konisches aufwickeln von draht auf eine spule mit mindestens einem konischen flansch.
DE69029523T2 (de) Gerät und Verfahren zur Herstellung von Statoren elektrischer Motoren und desgleichen sowie Klemmbrett dafür
DE2243210A1 (de) Ankerwickelverfahren
EP1552593A1 (fr) Enrouleuse et procede pour produire un enroulement
DE2543367A1 (de) Verfahren und vorrichtung zum gleichzeitigen einsetzen ueberlappender spulen in staendernuten o.dgl.
DE3348055C2 (fr)
EP3855461B1 (fr) Dispositif et procédé d'enroulement de noyaux toroïdaux
DE1967337C2 (de) Verfahren und Vorrichtung zur Herstellung einer aus Spulen bestehenden Wicklung
DE2706719A1 (de) Verfahren zur herstellung einer orthozyklischen spule
DE1042684B (de) Verfahren zur Herstellung verseilter elektrischer Leiter
DE2321193A1 (de) Ringjoch
EP3096335A1 (fr) Procédé d'enroulement de bobine et bobineuse
AT394470B (de) Ablenkspulenanordnung und verfahren zu deren herstellung
DE2443313C3 (de) Einrichtung zum formschlüssigen Festlegen von Wickeldrähten an Anschlußelemente von Spulenkörpern
DE3334680A1 (de) Spulen-einsetzvorrichtung
EP1356481B1 (fr) Procede d'enroulement autour d'un tore
DE1564485C3 (de) Verfahren zum Wickeln orthozyklischer Spulen für einen Transformator geringer Leistung und Vorrichtung zur Durchführung des Verfahrens
DE102017124859A1 (de) Verfahren zum Herstellen einer elektrischen Spule und Wickelvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220128

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230714

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006566

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240205

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240213

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20240320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240220

Year of fee payment: 5

Ref country code: CH

Payment date: 20240327

Year of fee payment: 5