EP3853387B1 - Tôle d'acier laminée à froid et revêtue et son procédé de fabrication - Google Patents

Tôle d'acier laminée à froid et revêtue et son procédé de fabrication Download PDF

Info

Publication number
EP3853387B1
EP3853387B1 EP19772880.1A EP19772880A EP3853387B1 EP 3853387 B1 EP3853387 B1 EP 3853387B1 EP 19772880 A EP19772880 A EP 19772880A EP 3853387 B1 EP3853387 B1 EP 3853387B1
Authority
EP
European Patent Office
Prior art keywords
steel sheet
rolled steel
cold rolled
temperature
anyone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19772880.1A
Other languages
German (de)
English (en)
Other versions
EP3853387A1 (fr
Inventor
Samaneh ALIBEIGI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of EP3853387A1 publication Critical patent/EP3853387A1/fr
Application granted granted Critical
Publication of EP3853387B1 publication Critical patent/EP3853387B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to cold rolled and coated steel sheets suitable for use as steel sheet for automobiles.
  • Automotive parts are required to satisfy two inconsistent necessities, viz. ease of forming and strength but in recent years a third requirement of improvement in fuel consumption is also bestowed upon automobiles in view of global environment concerns.
  • automotive parts must be made of material having high formability in order that to fit in the criteria of ease of fit in the intricate automobile assembly and at same time have to improve strength for vehicle crashworthiness and durability while reducing weight of vehicle to improve fuel efficiency.
  • the purpose of the present invention is to solve these problems by making available cold-rolled steel and coated sheets that simultaneously have:
  • the steel sheets according to the invention may also present a yield strength 320 MPa or more
  • the steel sheets according to the invention may also present a yield strength to tensile strength ratio of 0.6 or more
  • such steel can also have a good suitability for forming, in particular for rolling with good weldability and coatability.
  • Another object of the present invention is also to make available a method for the manufacturing of these sheets that is compatible with conventional industrial applications while being robust towards manufacturing parameters shifts.
  • the cold rolled and heat treated steel sheet of the present invention may optionally be coated with zinc or zinc alloys, or with aluminium or aluminium alloys to improve its corrosion resistance.
  • Carbon is present in the steel between 0.13% and 0.18%. Carbon is an element necessary for increasing the strength of the steel sheet by producing low-temperature transformation phases such as bainite, further Carbon also plays a pivotal role in Austenite stabilization hence a necessary element for securing Residual Austenite. Therefore, Carbon plays two pivotal roles one in increasing the strength and another in retaining austenite to impart ductility. But Carbon content less than 0.13% will not be able to stabilize Austenite in an adequate amount required by the steel of present invention. On the other hand, at a Carbon content exceeding 0.18%, the steel exhibits poor spot weldability which limits its application for the automotive parts.
  • Manganese content of the steel of present invention is between 1.1 % and 1.8%. This element is gammagenous.
  • the purpose of adding Manganese is essentially to obtain a structure that contains Austenite and impart strength to the steel. An amount of at least 1.1% by weight of Manganese has been found in order to provide the strength and hardenability of the steel sheet as well as to stabilize Austenite. But when Manganese content is more than 1.8% it produces adverse effects such as it retards transformation of Austenite to Bainite during the over-aging holding for Bainite transformation. In addition the Manganese content of above 1.8% also reduces the ductility and also deteriorates the weldability of the present steel hence the elongation targets may not be achieved.
  • a preferable content for the present invention may be kept between 1.2% and 1.8%, further more preferably 1.3% and 1.7%.
  • Silicon content of the steel of present invention is between 0.5% and 0.9%. Silicon is a constituent that can retard the precipitation of carbides during overageing, therefore, due to the presence of Silicon, carbon rich Austenite is stabilized at room temperature. Further, due to poor solubility of Silicon in carbide it effectively inhibits or retards the formation of carbides, hence also promotes the formation of Bainitic structure which is sought as per the present invention to impart steel with its essential features. However, disproportionate content of Silicon does not produce the mentioned effect and leads to a problem such as temper embrittlement. Therefore, the concentration is controlled within an upper limit of 0.9%. A preferable content for the present invention may be kept between 0.6% and 0.8%
  • Aluminum is an essential element and is present in the steel between 0.6% and 1%.
  • Aluminum is an alphagenous element and imparts total elongation to the steel of present invention.
  • a minimum of 0.6% of Aluminum is required to have a minimum Ferrite thereby imparting the elongation to the steel of present invention.
  • Aluminum is also used for removing oxygen from the molten state of the steel to clean steel of present invention by and it also prevents oxygen from forming a gas phase. But whenever the Aluminum is more than 1% it forms AIN which is detrimental for the steel of Present invention therefore preferable range for the presence of the Aluminum is between 0.6% and 0.8%.
  • Phosphorus constituent of the steel of present invention is between 0.002% and 0.02%. Phosphorus reduces the spot weldability and the hot ductility, particularly due to its tendency to segregate at the grain boundaries or co-segregate with manganese. For these reasons, its content is limited to 0.02 % and preferably lower than 0.014%.
  • Sulfur is not an essential element but may be contained as an impurity in steel and from point of view of the present invention the Sulfur content is preferably as low as possible, but is 0.003% or less from the viewpoint of manufacturing cost. Further if higher Sulfur is present in steel it combines to form Sulfides especially with Manganese and reduces its beneficial impact on the steel of present invention.
  • Nitrogen is limited to 0.007% in order to avoid ageing of material and to minimize the precipitation of nitrides during solidification which are detrimental for mechanical properties of the Steel.
  • Chromium is an optional element for the present invention. Chromium content may be present in the steel of present invention is between 0.05% and 1%. Chromium is an essential element that provides strength and hardening to the steel but when used above 1% it impairs surface finish of steel. Further Chromium contents under 1% coarsen the dispersion pattern of carbide in Bainitic structures, hence; keep the density of carbides low in Bainite.
  • Molybdenum is an optional element that constitutes 0.001% to 0.5% of the Steel of present invention; Molybdenum plays an effective role in determining hardenability and hardness, delays the appearance of Bainite and avoids carbides precipitation in Bainite. However, the addition of Molybdenum excessively increases the cost of the addition of alloy elements, so that for economic reasons its content is limited to 0.5%.
  • Niobium is an optional element for the present invention.
  • Niobium content may be present in the steel of present invention between 0.001 and 0.1% and is added in the Steel of present invention for forming carbo-nitrides to impart strength of the Steel of present invention by precipitation hardening.
  • Niobium will also impact the size of microstructural components through its precipitation as carbo-nitrides and by retarding the recrystallization during heating process. Thus finer microstructure formed at the end of the holding temperature and as a consequence after the completion of annealing that will lead to the hardening of the Steel of present invention.
  • Niobium content above 0.1% is not economically interesting as a saturation effect of its influence is observed this means that additional amount of Niobium does not result in any strength improvement of the product.
  • Titanium is an optional element and may be added to the Steel of present invention between 0.001% and 0.1%. As Niobium, it is involved in carbo-nitrides formation so plays a role in hardening of the Steel of present invention. In addition Titanium also forms Titanium-nitrides which appear during solidification of the cast product. The amount of Titanium is so limited to 0.1% to avoid formation of coarse Titanium-nitrides detrimental for formability. In case the Titanium content is below 0.001% it does not impart any effect on the steel of present invention.
  • Copper may be added as an optional element in an amount of 0.01% to 2% to increase the strength of the steel and to improve its corrosion resistance. A minimum of 0.01% of Copper is required to get such effect. However, when its content is above 2%, it can degrade the surface aspects.
  • Nickel may be added as an optional element in an amount of 0.01 to 3% to increase the strength of the steel and to improve its toughness. A minimum of 0.01% is required to produce such effects. However, when its content is above 3%, Nickel causes ductility deterioration.
  • Calcium content in the steel of present invention is between 0.0001% and 0.005%. Calcium is added to steel of present invention as an optional element especially during the inclusion treatment. Calcium contributes towards the refining of Steel by arresting the detrimental Sulfur content in globular form, thereby, retarding the harmful effects of Sulfur.
  • Vanadium is effective in enhancing the strength of steel by forming carbides or carbo-nitrides and the upper limit is 0.1% due to the economic reasons.
  • Other elements such as Cerium, Boron, Magnesium or Zirconium can be added individually or in combination in the following proportions by weight: Cerium ⁇ 0.1%, Boron ⁇ 0.003%, Magnesium ⁇ 0.010% and Zirconium ⁇ 0.010%. Up to the maximum content levels indicated, these elements make it possible to refine the grain during solidification. The remainder of the composition of the Steel consists of iron and inevitable impurities resulting from processing.
  • the microstructure of the Steel sheet comprises: Ferrite constitutes from 60% to 75% of microstructure by area fraction for the Steel of present invention. Ferrite constitutes the primary phase of the steel as a matrix. In the present invention, Ferrite cumulatively comprises of Polygonal ferrite and acicular ferrite Ferrite imparts high strength as well as elongation to the steel of present invention. To ensure an elongation of 31% and preferably 33% or more it is necessary to have 60% of Ferrite. Ferrite is formed during the cooling after annealing in steel of present invention. But whenever ferrite content is present above 75% in steel of present invention the strength is not achieved.
  • Bainite constitutes from 20% to 30% of microstructure by area fraction for the Steel of present invention.
  • Bainite cumulatively consists of Lath Bainite and Granular Bainite, To ensure tensile strength of 620 MPa and preferably 630 MPa or more it is necessary to have 20% of Bainite. Bainite is formed during over-aging holding.
  • Residual Austenite constitutes from 10% to 15% by area fraction of the Steel. Residual Austenite is known to have a higher solubility of Carbon than Bainite and, hence, acts as effective Carbon trap, therefore, retarding the formation of carbides in Bainite. Carbon percentage inside the Residual Austenite of present invention is preferably higher than 0.9% and preferably lower than 1.1%. Residual Austenite of the Steel according to the invention imparts an enhanced ductility.
  • Martensite is an optional constituent and may be present between 0% and 5 % of microstructure by area fraction and found in traces.
  • Martensite for present invention includes both fresh martensite and tempered martensite.
  • Present invention form martensite due to the cooling after annealing and get tempered during overaging holding.
  • Fresh Martensite also form during cooling after the coating of cold rolled steel sheet.
  • Martensite imparts ductility and strength to the Steel of present invention when it is below 5%. When Martensite is in excess of 5 % it imparts excess strength but diminishes the elongation beyond acceptable limit.
  • the preferable limit for martensite is between 0% and 3%.
  • a total amount of Ferrite and Residual Austenite must always be between 70% and 80% to have total elongation of 31% and a minimum of 70% is required to ensure the total elongation above 31% while having a tensile strength of 600MPa.
  • Ferrite and residual austenite are soft phase in comparison to martensite and bainite therefore imparts for elongation and ductility but whenever the cumulative presence is more than 80% the strength drops beyond the acceptable limits.
  • the microstructure of the cold rolled and heat treated steel sheet is free from microstructural components, such as pearlite and cementite without impairing the mechanical properties of the steel sheets.
  • a steel sheet according to the invention can be produced by any suitable method.
  • a preferred method consists in providing a semi-finished casting of steel with a chemical composition according to the invention. The casting can be done either into ingots or continuously in form of thin slabs or thin strips, i.e. with a thickness ranging from approximately 220mm for slabs up to several tens of millimeters for thin strip.
  • a slab having the above-described chemical composition is manufactured by continuous casting wherein the slab optionally underwent the direct soft reduction during the continuous casting process to avoid central segregation and to ensure a ratio of local Carbon to nominal Carbon kept below 1.10.
  • the slab provided by continuous casting process can be used directly at a high temperature after the continuous casting or may be first cooled to room temperature and then reheated for hot rolling.
  • the temperature of the slab which is subjected to hot rolling, isat least 1150° C and must be below 1280°C.
  • the temperature of the slab is preferably sufficiently high so that hot rolling can be completed in the temperature range of Ac1 +50°C to Ac1+250°C and preferably between Ac1+50°C and Ac1+200°C while always having final rolling temperature remains above Ac1+50°C. Reheating at temperatures above 1280°C must be avoided because they are industrially expensive.
  • a final rolling temperature range between Ac1 +50°C to Ac1+250°C is preferred to have a structure that is favorable to recrystallization and rolling. It is necessary to have final rolling pass to be performed at a temperature greater than Ac1 +50°C, because below this temperature the steel sheet exhibits a significant drop in rollability.
  • the sheet obtained in this manner is then cooled at a cooling rate above 30°C/s to the coiling temperature which must be below 625°C. Preferably, the cooling rate will be less than or equal to 200° C/s.
  • the hot rolled steel sheet is then coiled at a coiling temperature below 625°C to avoid ovalization and preferably below 600°C to avoid scale formation.
  • the preferred range for such coiling temperature is between 350° C and 600° C.
  • the coiled hot rolled steel sheet may be cooled down to room temperature before subjecting it to optional hot band annealing.
  • the hot rolled steel sheet may be subjected to an optional scale removal step to remove the scale formed during the hot rolling before optional hot band annealing.
  • the hot rolled sheet may then subjected to an optional Hot Band Annealing at temperatures between 400°C and 750°C for at least 12 hours and not more than 96 hours, the temperature remaining below 750°C to avoid transforming partially the hot-rolled microstructure and, therefore, losing the microstructure homogeneity.
  • an optional scale removal step of this hot rolled steel sheet may performed through, for example, pickling of such sheet.
  • This hot rolled steel sheet is subjected to cold rolling to obtain a cold rolled steel sheet with a thickness reduction between 35 to 90%.
  • the cold rolled steel sheet obtained from cold rolling process is then subjected to annealing to impart the steel of present invention with microstructure and mechanical properties.
  • step one cold rolled steel sheet is heated at a heating rate between 10°C/s and 40°C/s to a temperature range between 550°C and 650°C. Thereafter in subsequent second step of heating the cold rolled steel sheet is heated at a heating rate between 1°C/s and 5°C/s to the soaking temperature of annealing.
  • the cold rolled steel sheet is preferably held at the soaking temperature during 10 to 500 seconds to ensure at least 30% transformation to Austenite microstructure of the strongly work-hardened initial structure. Then the cold rolled steel sheet is then cooled in two step cooling to an over-aging holding temperature. In step one of cooling the cold rolled steel sheet is cooled at cooling rate less than 5°C/s and preferably less than 3°C/s to a temperature range between 600°C and 720°C and preferably between 625°C and 720°C. During this step one of cooling ferrite matrix of the present invention is formed.
  • the cold rolled steel sheet is cooled to an overaging temperature range between 250°C and 470°C at a cooling rate between 10°C/s and 100°C/s. Then the cold rolled steel sheet is held in the over-aging temperature range during 5 to 500 seconds. The cold rolled steel sheet is then brought to the temperature to a coating bath temperature range of 400°C and 480°C to facilitate coating of the cold rolled steel sheet. Then the cold rolled steel sheet is coated by any of the known industrial processes such as Electro-galvanization, JVD, PVD, Hot dip(GI) etc.
  • Table 1 Steel sheets made of steels with different compositions are gathered in Table 1, where the steel sheets are produced according to process parameters as stipulated in Table 2, respectively. Thereafter Table 3 gathers the microstructures of the steel sheets obtained during the trials and table 4 gathers the result of evaluations of obtained properties.
  • Table 1 Sample Steels C Mn Si Al P S N Other elements present A 0.155 1.54 0.696 0.728 0.014 0.002 0.003 - B 0.157 1.54 0.690 0.721 0.014 0.002 0.003 - C 0.148 1.54 0.698 0 0.013 0.0027 0.0044 - D 0.114 1.62 0.293 0.031 0.027 0.0028 0.005 -Ni:0.025, Cr: 0.345 underlined values: not according to the invention.
  • Table 2 gathers the annealing process parameters implemented on steels of Table 1.
  • the Steel compositions A and B serve for the manufacture of sheets according to the invention.
  • This table also specifies the reference steels which are designated in table as C and D .
  • Table 2 also shows tabulation of Ac1 and Ac3.
  • the table 2 is as follows :
  • Table 3 exemplifies the results of the tests conducted in accordance with the standards on different microscopes such as Scanning Electron Microscope for determining the microstructures of both the inventive and reference steels.
  • Table 4 exemplifies the mechanical properties of both the inventive steel and reference steels.
  • tensile tests are conducted in accordance of JIS Z2241 standards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Claims (20)

  1. Tôle d'acier laminée à froid dont la composition comprend les éléments suivants, exprimés en pourcentage en poids :
    0,13 % ≤ Carbone ≤0,18 %
    1,1 % ≤ Manganèse ≤ 1,8 %
    0,5 % ≤ Silicium ≤ 0,9 %
    0,6 % ≤ Aluminium ≤ 1 %
    0,002 % ≤ Phosphore ≤ 0,02 %
    0 % ≤ Soufre ≤ 0,003 %.
    0 % ≤ Azote ≤ 0,007 %
    et pouvant contenir un ou plusieurs des éléments facultatifs suivants
    0,05 % ≤ Chrome ≤ 1 %
    0,001 % ≤ Molybdène ≤ 0, 5 %
    0,001 % ≤ Niobium ≤ 0,1 %
    0,001 % ≤ Titane ≤ 0,1 %
    0,01 % ≤ Cuivre ≤ 2 %
    0,01 % ≤ Nickel ≤3 %
    0,0001 % ≤ Calcium ≤ 0,005 %
    0 % ≤ Vanadium < 0,1 %
    0 % ≤ Bore ≤ 0,003 %
    0 % ≤ Cérium ≤ 0,1 %
    0 % ≤ Magnésium 0,010 %
    0 % ≤ Zirconium ≦ 0,010 %
    la composition restante étant composée de fer et d'impuretés inévitables causées par le traitement, la microstructure de ladite tôle d'acier comprenant, en fraction surfacique, 60 à 75 % de ferrite, 20 à 30 % de bainite, 10 à 15 % d'austénite résiduelle et 0 à 5 % de martensite, dans laquelle les quantités cumulées d'austénite résiduelle et de ferrite se situent entre 70 % et 80 %.
  2. Tôle d'acier laminée à froid selon la revendication 1, dans laquelle la composition comprend de 0,6 % à 0,8 % de silicium.
  3. Tôle d'acier laminée à froid selon la revendication 1 ou 2, dans laquelle la composition comprend de 0,14 % à 0,18 % de carbone.
  4. Tôle d'acier laminée à froid selon la revendication 3, dans laquelle la composition comprend de 0,6 % à 0,8 % d'aluminium.
  5. Tôle d'acier laminée à froid selon l'une quelconque des revendications 1 à 4, dans laquelle la composition comprend de 1,2 % à 1,8 % de manganèse.
  6. Tôle d'acier laminée à froid selon la revendication 5, dans laquelle la composition comprend de 1,3 % à 1,7 % de manganèse.
  7. Tôle d'acier laminée à froid selon l'une des revendications 1 à 6, dans laquelle les quantités cumulées de ferrite et d'austénite résiduelle sont comprises entre 73 % et 80 % et le pourcentage d'austénite résiduelle est inférieur à 13 %.
  8. Tôle d'acier laminée à froid selon l'une quelconque des revendications 1 à 7, dans laquelle la quantité de martensite est comprise entre 0 % et 3 %.
  9. Tôle d'acier laminée à froid selon l'une quelconque des revendications 1 à 8, dans laquelle la teneur en carbone de l'austénite résiduelle est comprise entre 0,9 % et 1,1 %.
  10. Tôle d'acier laminée à froid selon l'une quelconque des revendications 1 à 9, dans laquelle ladite tôle d'acier a une résistance à la traction de 600 MPa ou plus, et un allongement total de 31 % ou plus.
  11. Tôle laminée à froid selon la revendication 10, dans laquelle ladite tôle d'acier a une limite d'élasticité de 320 MPa ou plus et un allongement total de 33 % ou plus.
  12. Tôle d'acier laminée à froid selon l'une quelconque des revendications 1 à 11, dans laquelle la tôle d'acier est revêtue.
  13. Procédé de production d'une tôle d'acier laminée à froid comprenant les étapes successives suivantes :
    - fournir une composition d'acier selon l'une quelconque des revendications 1 à 6 ;
    - réchauffer ledit produit semi-fini à une température comprise entre 1150 °C et 1280 °C ;
    - laminer ledit produit semi-fini dans le domaine austénitique, dans lequel la température de finition du laminage à chaud devant être comprise entre Ac1 +50 °C et Ac1 +250 °C, afin d'obtenir une tôle d'acier laminée à chaud ;
    - refroidir la tôle à une vitesse de refroidissement supérieure à 30 °C/s jusqu'à une température de bobinage inférieure à 625 °C ; et bobiner ladite tôle laminée à chaud ;
    - refroidir ladite tôle laminée à chaud jusqu'à la température ambiante ;
    - effectuer facultativement un processus d'élimination de la calamine sur ladite tôle d'acier laminée à chaud ;
    - effectuer facultativement un recuit sur la tôle d'acier laminée à chaud à une température comprise entre 400 °C et 750 °C ;
    - effectuer facultativement un processus d'élimination de la calamine sur ladite tôle d'acier laminée à chaud ;
    - laminer à froid ladite tôle d'acier laminée à chaud avec un taux de réduction compris entre 35 et 90 %, de manière à obtenir une tôle d'acier laminée à froid,
    - effectuer ensuite un recuit à une température de trempage comprise entre Ac1 +30 °C et Ac3 pendant une durée comprise entre 10 et 500 secondes en chauffant ladite tôle d'acier laminée à froid par un chauffage en deux étapes dans lequel :
    ∘ au cours de la première étape du chauffage, la tôle d'acier laminée à froid est chauffée à une vitesse de chauffage comprise entre 10 °C/s et 40 °C/s jusqu'à une plage de températures comprise entre 550 °C et 650 °C ;
    ∘ ensuite, au cours de la seconde étape, la tôle d'acier laminée à froid est chauffée à une vitesse de chauffage comprise entre 1 °C/s et 5 °C/s depuis une plage de températures comprise entre 550 °C et 650 °C jusqu'à la température de trempage de recuit à laquelle elle est maintenue,
    - puis, refroidir la tôle d'acier laminée à froid lors d'un refroidissement en deux étapes dans lequel :
    ∘ dans la première étape du refroidissement, la tôle d'acier laminée à froid est refroidie à une vitesse de refroidissement inférieure à 5 °C/s jusqu'à une plage de températures comprise entre 600 °C et 720 °C
    ∘ ensuite, au cours de la seconde étape, la tôle est refroidie à une vitesse de refroidissement comprise entre 10 °C/s et 100 °C/s à partir d'une plage de températures comprise entre 600 °C et 720 °C jusqu'à une température de survieillissement
    - puis, ladite tôle d'acier laminée à froid est ensuite soumise à un survieillissement à une plage de températures comprise entre 250 °C et 470 °C pendant 5 à 500 secondes et
    - ensuite refroidie à température ambiante pour obtenir une tôle d'acier laminée à froid.
  14. Procédé selon la revendication 13, dans lequel la température d'enroulement est inférieure à 600 °C.
  15. Procédé selon la revendication 13 ou 14, dans lequel la première température de laminage de finition est comprise entre Ac1 +50 °C et Ac1 +200 °C.
  16. Procédé selon l'une des revendications 13 à 15, dans lequel la vitesse de refroidissement après le recuit est inférieure à 3 °C/s dans la plage de températures comprise entre 625 °C et 720 °C.
  17. Procédé de production d'une tôle d'acier laminée à froid selon l'une quelconque des revendications 13 à 16, dans lequel la tôle d'acier laminée à froid est recuite entre Ac1 +30 °C et Ac3 et la température de recuit est choisie de manière à assurer la présence d'au moins 30 % d'austénite à la fin du trempage.
  18. Procédé de production d'une tôle d'acier laminée à froid selon l'une des revendications 13 à 17, dans lequel la tôle d'acier laminée à froid peut être revêtue dans une plage de températures comprise entre 400 °C et 480 °C.
  19. Utilisation d'une tôle d'acier selon l'une quelconque des revendications 1 à 12 ou d'une tôle d'acier produite selon le procédé des revendications 13 à 18, pour la fabrication de pièces structurelles ou de pièces de sécurité d'un véhicule.
  20. Véhicule comprenant une pièce obtenue selon la revendication 19.
EP19772880.1A 2018-09-20 2019-09-17 Tôle d'acier laminée à froid et revêtue et son procédé de fabrication Active EP3853387B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2018/057253 WO2020058748A1 (fr) 2018-09-20 2018-09-20 Tôle d'acier laminée à froid et revêtue et son procédé de fabrication
PCT/IB2019/057795 WO2020058829A1 (fr) 2018-09-20 2019-09-17 Tôle d'acier laminée à froid et revêtue et son procédé de fabrication

Publications (2)

Publication Number Publication Date
EP3853387A1 EP3853387A1 (fr) 2021-07-28
EP3853387B1 true EP3853387B1 (fr) 2023-05-10

Family

ID=63794567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19772880.1A Active EP3853387B1 (fr) 2018-09-20 2019-09-17 Tôle d'acier laminée à froid et revêtue et son procédé de fabrication

Country Status (16)

Country Link
US (1) US20220033925A1 (fr)
EP (1) EP3853387B1 (fr)
JP (1) JP7422143B2 (fr)
KR (1) KR102647462B1 (fr)
CN (1) CN112689684B (fr)
BR (1) BR112021003583A2 (fr)
CA (1) CA3110629C (fr)
ES (1) ES2946086T3 (fr)
FI (1) FI3853387T3 (fr)
HU (1) HUE062231T2 (fr)
MA (1) MA53640B1 (fr)
MX (1) MX2021003290A (fr)
PL (1) PL3853387T3 (fr)
UA (1) UA126725C2 (fr)
WO (2) WO2020058748A1 (fr)
ZA (1) ZA202101225B (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181898B (zh) * 2021-04-02 2023-10-13 宝山钢铁股份有限公司 一种1280MPa级别低碳低合金Q&P钢及其快速热处理制造方法
BR112023024874A2 (pt) * 2021-06-16 2024-02-15 Arcelormittal Método para produzir uma peça de aço e peça de aço
CN115323275B (zh) * 2022-09-05 2023-07-04 东北大学 一种高强高韧的稀土温轧低碳低锰trip钢及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601581B2 (ja) * 1991-09-03 1997-04-16 新日本製鐵株式会社 加工性に優れた高強度複合組織冷延鋼板の製造方法
JP2860438B2 (ja) * 1991-10-28 1999-02-24 新日本製鐵株式会社 加工性の極めて優れた高強度薄鋼板の製造方法
JP3569307B2 (ja) * 1994-01-12 2004-09-22 新日本製鐵株式会社 加工性に優れた引張強さ45〜65kgf/mm2 の高強度複合組織冷延鋼板とその製造方法
JP3596316B2 (ja) * 1997-12-17 2004-12-02 住友金属工業株式会社 高張力高延性亜鉛めっき鋼板の製造方法
JP2002317249A (ja) * 2001-04-18 2002-10-31 Nippon Steel Corp 延性の優れた低降伏比型高強度鋼板およびその製造方法
CA2462260C (fr) * 2001-10-04 2012-02-07 Nippon Steel Corporation Tole d'acier mince hautement resistante pouvant etre emboutie et presentant d'excellentes proprietes de memoire de forme et procede de production associe
EP1767659A1 (fr) * 2005-09-21 2007-03-28 ARCELOR France Procédé de fabrication d'une pièce en acier de microstructure multi-phasée
JP5124865B2 (ja) * 2007-07-24 2013-01-23 新日鐵住金株式会社 高張力冷延鋼板およびその製造方法
JP2009185370A (ja) * 2008-02-08 2009-08-20 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板およびその製造方法
JP4894863B2 (ja) 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5549238B2 (ja) * 2010-01-22 2014-07-16 新日鐵住金株式会社 冷延鋼板およびその製造方法
WO2012168564A1 (fr) * 2011-06-07 2012-12-13 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procédé de fabrication et utilisation d'une telle tôle
JP5177261B2 (ja) * 2011-08-01 2013-04-03 新日鐵住金株式会社 強度と低温靱性に優れた継目無鋼管の制御圧延方法
CA2850044C (fr) 2011-09-30 2016-08-23 Nippon Steel & Sumitomo Metal Corporation Tole d'acier galvanisee par immersion a chaud et son procede de production
WO2017051998A1 (fr) * 2015-09-22 2017-03-30 현대제철 주식회사 Tôle d'acier plaquée et procédé de fabrication associé
BR112018011831B1 (pt) * 2015-12-15 2022-11-29 Tata Steel Ijmuiden Bv Tira de aço galvanizada por imersão a quente de alta resistência e método de produção
WO2017109540A1 (fr) * 2015-12-21 2017-06-29 Arcelormittal Procédé de fabrication d'une tôle d'acier à haute résistance ayant une ductilité et une aptitude au formage améliorées et tôle d'acier ainsi obtenue
WO2017109538A1 (fr) * 2015-12-21 2017-06-29 Arcelormittal Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées
WO2017125773A1 (fr) * 2016-01-18 2017-07-27 Arcelormittal Tôle d'acier à haute résistance présentant une excellente aptitude au formage et procédé de fabrication de celle-ci
WO2018115936A1 (fr) * 2016-12-21 2018-06-28 Arcelormittal Tôle d'acier revêtue et revenue présentant une excellente formabilité et son procédé de fabrication
WO2018115935A1 (fr) * 2016-12-21 2018-06-28 Arcelormittal Tôle d'acier revêtue et revenue présentant une excellente formabilité et son procédé de fabrication

Also Published As

Publication number Publication date
CA3110629C (fr) 2023-03-14
MA53640A (fr) 2022-03-30
JP7422143B2 (ja) 2024-01-25
CA3110629A1 (fr) 2020-03-26
HUE062231T2 (hu) 2023-10-28
CN112689684B (zh) 2022-12-09
MA53640B1 (fr) 2023-05-31
US20220033925A1 (en) 2022-02-03
JP2022501504A (ja) 2022-01-06
ES2946086T3 (es) 2023-07-12
ZA202101225B (en) 2022-01-26
WO2020058829A1 (fr) 2020-03-26
CN112689684A (zh) 2021-04-20
BR112021003583A2 (pt) 2021-05-18
UA126725C2 (uk) 2023-01-11
WO2020058748A1 (fr) 2020-03-26
KR20210061382A (ko) 2021-05-27
MX2021003290A (es) 2021-05-13
KR102647462B1 (ko) 2024-03-13
EP3853387A1 (fr) 2021-07-28
FI3853387T3 (fi) 2023-06-15
PL3853387T3 (pl) 2023-07-10

Similar Documents

Publication Publication Date Title
CA3080680C (fr) Tole d&#39;acier laminee a froid et son procede de fabrication
US11572599B2 (en) Cold rolled heat treated steel sheet and a method of manufacturing thereof
EP3707289B1 (fr) Tôle d&#39;acier laminée à froid et traitée thermiquement et son procédé de fabrication
CA3081941C (fr) Tole d&#39;acier laminee a froid et revetue et son procede de fabrication
EP3853387B1 (fr) Tôle d&#39;acier laminée à froid et revêtue et son procédé de fabrication
CA3141566C (fr) Tole d&#39;acier laminee a froid et revetue et son procede de fabrication
CA3138625C (fr) Tole d&#39;acier laminee a froid et revetue et son procede de fabrication

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20210420

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220225

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1566725

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019028805

Country of ref document: DE

REG Reference to a national code

Ref country code: MA

Ref legal event code: VAGR

Ref document number: 53640

Country of ref document: MA

Kind code of ref document: B1

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2946086

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230712

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 41754

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230822

Year of fee payment: 5

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E062231

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230823

Year of fee payment: 5

Ref country code: RO

Payment date: 20230901

Year of fee payment: 5

Ref country code: IT

Payment date: 20230822

Year of fee payment: 5

Ref country code: GB

Payment date: 20230823

Year of fee payment: 5

Ref country code: FI

Payment date: 20230823

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230825

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230910

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230830

Year of fee payment: 5

Ref country code: SE

Payment date: 20230822

Year of fee payment: 5

Ref country code: PL

Payment date: 20230823

Year of fee payment: 5

Ref country code: HU

Payment date: 20230829

Year of fee payment: 5

Ref country code: FR

Payment date: 20230822

Year of fee payment: 5

Ref country code: DE

Payment date: 20230822

Year of fee payment: 5

Ref country code: BE

Payment date: 20230822

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231002

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019028805

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1566725

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230917

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510