EP3837280A1 - Hémoglobines recombinantes et leurs procédés de préparation et d'utilisation - Google Patents
Hémoglobines recombinantes et leurs procédés de préparation et d'utilisationInfo
- Publication number
- EP3837280A1 EP3837280A1 EP20747899.1A EP20747899A EP3837280A1 EP 3837280 A1 EP3837280 A1 EP 3837280A1 EP 20747899 A EP20747899 A EP 20747899A EP 3837280 A1 EP3837280 A1 EP 3837280A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- seq
- sequence
- amino acid
- polynucleotide encoding
- recombinant hemoglobin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108010054147 Hemoglobins Proteins 0.000 title claims abstract description 134
- 102000001554 Hemoglobins Human genes 0.000 title claims abstract description 134
- 238000000034 method Methods 0.000 title claims abstract description 57
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 title abstract description 60
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 208000005764 Peripheral Arterial Disease Diseases 0.000 claims abstract description 19
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 claims abstract description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 19
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 17
- 201000010099 disease Diseases 0.000 claims abstract description 15
- 208000034388 Mountain sickness acute Diseases 0.000 claims abstract description 14
- 208000018315 acute mountain sickness Diseases 0.000 claims abstract description 14
- 206010021143 Hypoxia Diseases 0.000 claims abstract description 13
- 208000018737 Parkinson disease Diseases 0.000 claims abstract description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 12
- 208000006011 Stroke Diseases 0.000 claims abstract description 10
- 208000032456 Hemorrhagic Shock Diseases 0.000 claims abstract description 9
- 206010049771 Shock haemorrhagic Diseases 0.000 claims abstract description 9
- 201000011510 cancer Diseases 0.000 claims abstract description 9
- 108091033319 polynucleotide Proteins 0.000 claims description 141
- 102000040430 polynucleotide Human genes 0.000 claims description 141
- 239000002157 polynucleotide Substances 0.000 claims description 141
- 235000001014 amino acid Nutrition 0.000 claims description 129
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 115
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 114
- 229920001184 polypeptide Polymers 0.000 claims description 112
- 150000001413 amino acids Chemical group 0.000 claims description 98
- 241000588724 Escherichia coli Species 0.000 claims description 44
- 230000001580 bacterial effect Effects 0.000 claims description 33
- 108091007581 Heme transporters Proteins 0.000 claims description 32
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 32
- 229930182817 methionine Natural products 0.000 claims description 32
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 28
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 15
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 13
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 13
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 11
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 11
- 239000004472 Lysine Substances 0.000 claims description 10
- 235000003704 aspartic acid Nutrition 0.000 claims description 10
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 10
- 230000001939 inductive effect Effects 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 42
- 239000001301 oxygen Substances 0.000 abstract description 42
- 229910052760 oxygen Inorganic materials 0.000 abstract description 42
- 229940024606 amino acid Drugs 0.000 description 106
- 239000013612 plasmid Substances 0.000 description 99
- 210000004027 cell Anatomy 0.000 description 67
- 108090000623 proteins and genes Proteins 0.000 description 65
- 102000004169 proteins and genes Human genes 0.000 description 51
- 235000018102 proteins Nutrition 0.000 description 39
- 125000003275 alpha amino acid group Chemical group 0.000 description 33
- 238000012986 modification Methods 0.000 description 26
- 230000004048 modification Effects 0.000 description 26
- 239000013598 vector Substances 0.000 description 26
- KSFOVUSSGSKXFI-GAQDCDSVSA-N CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O Chemical compound CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O KSFOVUSSGSKXFI-GAQDCDSVSA-N 0.000 description 25
- 229950003776 protoporphyrin Drugs 0.000 description 25
- 150000003278 haem Chemical class 0.000 description 24
- 108091033409 CRISPR Proteins 0.000 description 22
- 241000699670 Mus sp. Species 0.000 description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 238000010354 CRISPR gene editing Methods 0.000 description 11
- 210000004185 liver Anatomy 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 241000700159 Rattus Species 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- XOHUEYCVLUUEJJ-UHFFFAOYSA-N 2,3-Bisphosphoglyceric acid Chemical compound OP(=O)(O)OC(C(=O)O)COP(O)(O)=O XOHUEYCVLUUEJJ-UHFFFAOYSA-N 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 102000003875 Ferrochelatase Human genes 0.000 description 7
- 108010057394 Ferrochelatase Proteins 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 239000013613 expression plasmid Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 102100026502 Mucolipin-1 Human genes 0.000 description 6
- 102100021867 Natural resistance-associated macrophage protein 2 Human genes 0.000 description 6
- 101710171645 Natural resistance-associated macrophage protein 2 Proteins 0.000 description 6
- 102100024267 Proton-coupled folate transporter Human genes 0.000 description 6
- 108091007566 SLC46A1 Proteins 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 206010006187 Breast cancer Diseases 0.000 description 5
- 208000026310 Breast neoplasm Diseases 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 108091029865 Exogenous DNA Proteins 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 208000028867 ischemia Diseases 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 238000010172 mouse model Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 206010034576 Peripheral ischaemia Diseases 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 210000004507 artificial chromosome Anatomy 0.000 description 4
- 230000009702 cancer cell proliferation Effects 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- 210000001105 femoral artery Anatomy 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 238000006213 oxygenation reaction Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 208000032064 Chronic Limb-Threatening Ischemia Diseases 0.000 description 3
- 102100027618 Heme transporter HRG1 Human genes 0.000 description 3
- 102000013271 Hemopexin Human genes 0.000 description 3
- 108010026027 Hemopexin Proteins 0.000 description 3
- 101001081412 Homo sapiens Heme transporter HRG1 Proteins 0.000 description 3
- 206010022680 Intestinal ischaemia Diseases 0.000 description 3
- 101150091161 MCOLN1 gene Proteins 0.000 description 3
- 238000000134 MTT assay Methods 0.000 description 3
- 231100000002 MTT assay Toxicity 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 101001081402 Rattus norvegicus Histidine-rich glycoprotein Proteins 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 150000001540 azides Chemical class 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 230000008081 blood perfusion Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229960005091 chloramphenicol Drugs 0.000 description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000003414 extremity Anatomy 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 108010036302 hemoglobin AS Proteins 0.000 description 3
- 230000007954 hypoxia Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000000302 ischemic effect Effects 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 208000031225 myocardial ischemia Diseases 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- -1 Asp or Glu) Chemical class 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 201000006474 Brain Ischemia Diseases 0.000 description 2
- 208000031229 Cardiomyopathies Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical compound NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 206010056328 Hepatic ischaemia Diseases 0.000 description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 108010061951 Methemoglobin Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 101710116435 Outer membrane protein Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 206010063837 Reperfusion injury Diseases 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 239000008351 acetate buffer Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 208000007502 anemia Diseases 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012149 elution buffer Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 description 2
- 229940025294 hemin Drugs 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 201000002818 limb ischemia Diseases 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 208000030613 peripheral artery disease Diseases 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000011218 seed culture Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- QIQCZROILFZKAT-UHFFFAOYSA-N tetracarbon dioxide Chemical group O=C=C=C=C=O QIQCZROILFZKAT-UHFFFAOYSA-N 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- HKZAAJSTFUZYTO-LURJTMIESA-N (2s)-2-[[2-[[2-[[2-[(2-aminoacetyl)amino]acetyl]amino]acetyl]amino]acetyl]amino]-3-hydroxypropanoic acid Chemical compound NCC(=O)NCC(=O)NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O HKZAAJSTFUZYTO-LURJTMIESA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 238000011729 BALB/c nude mouse Methods 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 235000019750 Crude protein Nutrition 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 238000012366 Fed-batch cultivation Methods 0.000 description 1
- 210000000712 G cell Anatomy 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- YWAQATDNEKZFFK-BYPYZUCNSA-N Gly-Gly-Ser Chemical compound NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O YWAQATDNEKZFFK-BYPYZUCNSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000016988 Hemorrhagic Stroke Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108091006975 Iron transporters Proteins 0.000 description 1
- 206010048858 Ischaemic cardiomyopathy Diseases 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- 208000004535 Mesenteric Ischemia Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 208000003782 Raynaud disease Diseases 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 206010063897 Renal ischaemia Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Chemical group OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 206010040943 Skin Ulcer Diseases 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 208000032109 Transient ischaemic attack Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 208000022531 anorexia Diseases 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- 238000002869 basic local alignment search tool Methods 0.000 description 1
- 238000012365 batch cultivation Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 239000003633 blood substitute Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000002767 hepatic artery Anatomy 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 210000003090 iliac artery Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 208000020658 intracerebral hemorrhage Diseases 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 208000023589 ischemic disease Diseases 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- PVTHJAPFENJVNC-MHRBZPPQSA-N kasugamycin Chemical compound N[C@H]1C[C@H](NC(=N)C(O)=O)[C@@H](C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H]1O PVTHJAPFENJVNC-MHRBZPPQSA-N 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001706 oxygenating effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 210000003137 popliteal artery Anatomy 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000015670 renal artery disease Diseases 0.000 description 1
- 230000013878 renal filtration Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 210000005163 right hepatic lobe Anatomy 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000011537 solubilization buffer Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000009424 thromboembolic effect Effects 0.000 description 1
- 230000000287 tissue oxygenation Effects 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 201000010875 transient cerebral ischemia Diseases 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/795—Porphyrin- or corrin-ring-containing peptides
- C07K14/805—Haemoglobins; Myoglobins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/41—Porphyrin- or corrin-ring-containing peptides
- A61K38/42—Haemoglobins; Myoglobins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
Definitions
- the present disclosure generally relates to recombinant hemoglobins and methods preparation, purification, and use thereof.
- the present disclosure further relates to pharmaceutical compositions comprising the recombinant hemoglobins and methods of using the recombinant hemoglobin-based pharmaceutical composition to treat oxygen deficiency related diseases, such stroke, hemorrhagic shock, peripheral arterial disease (PAD) and acute mountain sickness (AMS) , and other diseases or conditions, such as cancer and Parkinson’s disease (PD) .
- oxygen deficiency related diseases such stroke, hemorrhagic shock, peripheral arterial disease (PAD) and acute mountain sickness (AMS)
- AMS acute mountain sickness
- PD Parkinson’s disease
- Hemoglobin is an oxygen-carrying protein enriched in red blood cells (erythrocytes) that delivers oxygen to body tissues via blood flow through the circulatory system.
- the oxygen-carrying protein comprises four associated polypeptide chains (two alpha chains and two beta chains) , and bears a group known as heme whose iron atom temporarily binds to oxygen in the lungs and releases it throughout the body.
- Hemoglobin can also bind carbon monoxide (CO) to form (carbonmonoxy) hemoglobin (HbCO) , which can reduce the total amount of Hb that is available to deliver oxygen to the body.
- CO carbon monoxide
- HbCO carbon monoxide
- Hypoxia is common in cancers and can lead to ionizing radiation and chemotherapy resistance by depriving tumor cells of the oxygen essential for the cytotoxic activities of these agents. Hypoxia may also reduce tumor sensitivity to radiation therapy and chemotherapy through one or more indirect mechanisms that include proteomic and genomic changes.
- Hemoglobin extracted from red blood cells has been used as a blood substitute for oxygen delivery to hypoxic tissues.
- the use of unmodified cell-free Hb purified from red blood cells can suffer from several limitations, such as contamination, supply limitations, an increase in oxygen affinity due to loss of the cofactor 2, 3-disphosphoglycerate (2, 3-DPG) , and dissociation of Hb tetramers into ⁇ dimers, which are cleared by renal filtration and can cause long-term kidney damage.
- Existing methods for preparing recombinant hemoglobins generally include a heat treatment step to remove impurities, such as PPIX.
- a heat treatment step to remove impurities, such as PPIX.
- the incorporation of a heat treatment step into the preparation method can increase cost and reduce yield of the protein product.
- CO is required for the recombinant hemoglobins.
- a CO removal step is usually required for existing preparation methods, which also makes the existing methods costly and time-consuming.
- the present disclosure generally relates to recombinant hemoglobins and methods of use and preparation thereof.
- the recombinant hemoglobins described herein can have improved oxygen-carrying capacity.
- the disclosed recombinant hemoglobins are useful for treating diseases, such as cancer, stroke, hemorrhagic shock, acute mountain sickness (AMS) , peripheral arterial disease (PAD) and Parkinson’s disease (PD) .
- diseases such as cancer, stroke, hemorrhagic shock, acute mountain sickness (AMS) , peripheral arterial disease (PAD) and Parkinson’s disease (PD) .
- the present disclosure also generally relates to methods of preparing the recombinant hemoglobins described herein.
- the recombinant hemoglobins prepared using the methods described herein can have reduced amounts of PPIX, little or no HbCO, and an optimal heme/protein ratio and tetramer/dimer distribution.
- a recombinant hemoglobin comprising a di-alpha chain and two beta chains, wherein the di-alpha chain comprises a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine.
- the di-alpha chain comprises a polypeptide sequence having at least 99.29%sequence homology with SEQ ID NO: 1.
- the di-alpha chain comprises a polypeptide having at least 99.64%sequence homology with SEQ ID NO: 1.
- the di-alpha chain is a polypeptide sequence having SEQ ID NO: 1.
- each of the two beta chains comprises a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 2, wherein the amino acid at position 1 must be methionine.
- each of the two beta chains is a polypeptide sequence having SEQ ID NO: 2.
- each of the two beta chains comprises a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 3, wherein the amino acid at position 1 must be methionine, the amino acid at position 82 must be aspartic acid, and the amino acid at position 108 must be lysine.
- each of the two beta chains comprises a polypeptide sequence having at least 98.63%sequence homology with SEQ ID NO: 3.
- each of the two beta chains comprises a polypeptide sequence having at least 99.31%sequence homology with SEQ ID NO: 3.
- each of the two beta chains comprises a polypeptide sequence of SEQ ID NO: 3.
- a pharmaceutical composition comprising the above-mentioned recombinant hemoglobin and at least one pharmaceutically acceptable carrier.
- a method of treating an oxygen deficiency related disease in a subject in need thereof comprising the step of administering a therapeutically effective amount of the pharmaceutical composition to the subject.
- the oxygen deficiency related disease comprises cancer, stroke, hemorrhagic shock, acute mountain sickness (AMS) , peripheral arterial disease (PAD) or Parkinson’s disease (PD) .
- a method of producing the recombinant hemoglobin comprising the steps of:
- the polynucleotide encoding the di-alpha chain and the polynucleotide encoding the beta chain comprise a polynucleotide sequence of SEQ ID NO: 4 and a polynucleotide sequence of SEQ ID NO: 5, respectively.
- the polynucleotide encoding the di-alpha chain and the polynucleotide encoding the beta chain comprises a polynucleotide sequence of SEQ ID NO: 4 and a polynucleotide sequence of SEQ ID NO: 6, respectively.
- the host cell is selected from the group consisting of JM109 E. coli bacterial strain with lambda DE3, BL21-AI E. coli bacterial strain without lambda DE3, and SHuffle E. coli bacterial strain without lambda DE3.
- the host cell further comprises a polynucleotide encoding HemH.
- the host cell further comprises a polynucleotide encoding a Heme-transporter.
- the method further comprises the steps of:
- a system for producing the recombinant hemoglobin of the first aspect of the present disclosure comprising: an Escherichia coli or non-Escherichia coli host cell comprising: a polynucleotide encoding HemH; a polynucleotide encoding a Heme-transporter; a polynucleotide encoding a di-alpha chain; and a polynucleotide encoding a beta chain, wherein the di-alpha chain comprises a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine; and the beta chain
- FIG. 1 shows the polypeptide sequences for di-alpha chain SEQ ID NO: 1 and SEQ ID NO: 11 and beta chain SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 12 according to certain embodiments described herein.
- FIG. 2A shows the plasmid maps, where pACYCDuet-CT is the vector carrying the ChuA gene and the gene for expressing TonB, and pET-HemHm1-TB is a general plasmid that carries the sequence for expressing HemH mutant and TB, where TB can be the sequence for expressing TBN, TBM1, or TBM9.
- FIG. 2B shows the SDS-PAGE analysis of TBN, TBM1 and TBM9 expression in different cell strains by the plasmid in FIG. 2A, wherein #83 is the result for TBM1 expressed in SHuffle E. coli bacterial strain without lambda DE3, #84 is the result for TBM9 expressed in SHuffle E. coli bacterial strain without lambda DE3, #85 is the result for TBM1 expressed in JM109 T7CT CRISPR/Cas9 E. coli bacterial strain without lambda DE3, #86 is the result for TBM9 expressed in JM109 T7CT CRISPR/Cas9 E. coli bacterial strain without lambda DE3, and #43 is the result for TBN expressed in JM109 E. coli bacterial strain with lambda DE3.
- FIG. 2C shows the SDS-PAGE analysis of TBN, TBM1 and TBM9 expression in different cell strains by the plasmid in FIG. 2A, wherein #83 is the result for TBM1 expressed in SHuffle E. coli bacterial strain without lambda DE3, #84 is the result for TBM9 expressed in SHuffle E. coli bacterial strain without lambda DE3, #85 is the result for TBM1 expressed in JM109 T7CT CRISPR/Cas9 E. coli bacterial strain without lambda DE3, #86 is the result for TBM9 expressed in JM109 T7CT CRISPR/Cas9 E. coli bacterial strain without lambda DE3, and #43 is the result for TBN expressed in JM109 E. coli bacterial strain with lambda DE3.
- FIG. 3A shows the illustration of the liver oxygen level measurement in a mouse model.
- FIG. 3B shows the change of the liver oxygen level of the mouse model over 180 min after the administration of TBN, TBM1, TBM9, YQ (bovine fumaryl crosslinked Hb) , and RA-buffer as a control.
- FIG. 4A shows a ultra-high performance liquid chromatography (UPLC) chromatogram showing the heme and PPIX levels of purified protein expressed using the previous plasmid comprising the nucleotide sequences of TBN (FIG. 4A) .
- UPLC ultra-high performance liquid chromatography
- FIG. 4B shows a UPLC chromatogram showing the heme and PPIX level of purified protein expressed using the new improved plasmid comprising nucleotide sequences of HemH mutant, Heme transporter system (ChuA and TonB) , and TBN (FIG. 4B) .
- FIG. 5A shows the oxygen equilibrium curve for different recombinant human hemoglobins (TBN, TBM1, and TBM9) according to certain embodiments described herein.
- FIG. 5B shows a table of the p50 value of different recombinant human hemoglobins (TBN, TBM1, and TBM9) with and without 2, 3-DPG according to certain embodiments described herein.
- FIG. 5C shows an oxygen equilibrium curve of TBM1 with and without 2,3-DPG according to certain embodiments described herein.
- FIG. 6 shows a purification flow-chart according to certain embodiments described herein.
- FIG. 7 shows the HemH mutant polynucleotide SEQ ID NO: 8 (top) and HemH mutant protein SEQ ID NO: 13 (bottom) according to certain embodiments described herein.
- FIG. 8 shows the ChuA polynucleotide SEQ ID NO: 9 (top) and ChuA protein SEQ ID NO: 14 (bottom) according to certain embodiments described herein.
- FIG. 9 shows the TonB polynucleotide SEQ ID NO: 10 (top) and TonB protein SEQ ID NO: 15 (bottom) according to certain embodiments described herein.
- FIG. 10 shows a graph (top) and table (bottom) showing the azide-induced oxidation rates (k az ) values of TBN, TBM1, and TBM9.
- FIG. 11 shows MTT assay results for recombinant human hemoglobins TBM1 and TBM9 inhibiting 4T1 breast cancer cell proliferation in vitro.
- FIG. 12A show the recombinant human hemoglobins (TBM1) suppressing 4T1 breast cancer cell growth in vivo.
- FIG. 12B shows a bar graph showing the recombinant human hemoglobins (TBM1) suppressing 4T1 breast cancer cell growth in vivo.
- FIG. 13 shows the results of a murine PAD model results using saline and recombinant human hemoglobin (TBM1) .
- FIG. 14 shows body weight results after treating with recombinant human hemoglobin (TBM1) in Balb/c and ICR mice.
- the present disclosure relates to recombinant hemoglobins having high oxygen carrying capacity.
- the recombinant hemoglobins described herein comprise a di-alpha chain and two beta chains.
- recombinant hemoglobin (s) indicates a hemoglobin molecule and/or its variant with a molecular size of at least approximately 65 kDa and is synthesized by any standard molecular biology techniques rather than being isolated or purified from any animal or human source.
- protein or “polypeptide” as used herein indicates an organic polymer composed of two or more amino acid monomers and/or analogs thereof.
- polypeptide includes amino acid polymers of any length including full length proteins and peptides, as well as analogs and fragments thereof. A polypeptide of three or more amino acids is also called an oligopeptide.
- amino acid amino acid monomer
- amino acid residue refers to any of the twenty naturally occurring amino acids including synthetic amino acids with unnatural side chains and including both D and L optical isomers.
- amino acid analog and “analog” that are used interchangeably refer to an amino acid in which one or more individual atoms have been replaced, either with a different atom, isotope, or with a different functional group but is otherwise identical to its natural amino acid analog and have similar chemical and/or physical properties to its natural amino acid analog.
- variant refers to a polypeptide or polynucleotide sequence differing from a reference polypeptide or polynucleotide sequence, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the reference polypeptide or polynucleotide sequence.
- a variant can, for example, comprise the amino acid sequence of the parent polypeptide sequence with at least one conservative amino acid substitution.
- the variant can comprise the amino acid sequence of the parent polypeptide sequence with at least one non-conservative amino acid substitution.
- the non-conservative amino acid substitution may enhance the biological activity of the variant, such that the biological activity of the variant is increased as compared to the parent polypeptide.
- amino acid modification indicates amino acid insertion, substitution, or deletion, etc.
- Amino acid substitutions of the described polypeptides can be conservative amino acid substitutions.
- Conservative amino acid substitutions are known in the art, and include amino acid substitutions in which one amino acid having certain physical and/or chemical properties is exchanged for another amino acid that has the same or similar chemical or physical properties.
- the conservative amino acid substitution can be an acidic/negatively charged polar amino acid substituted for another acidic/negatively charged polar amino acid (e.g., Asp or Glu) , an amino acid with a nonpolar side chain substituted for another amino acid with a nonpolar side chain (e.g., Ala, Gly, Val, Ile, Leu, Met, Phe, Pro, Trp, Cys, Val, etc. ) , a basic/positively charged polar amino acid substituted for another basic/positively charged polar amino acid (e.g. Lys, His, Arg, etc.
- an amino acid with a nonpolar side chain substituted for another amino acid with a nonpolar side chain e.g., Ala, Gly, Val, Ile, Leu, Met, Phe, Pro, Trp, Cys, Val, etc.
- a basic/positively charged polar amino acid substituted for another basic/positively charged polar amino acid e.g. Lys, His, Arg, etc.
- an uncharged amino acid with a polar side chain substituted for another uncharged amino acid with a polar side chain e.g., Asn, Gln, Ser, Thr, Tyr, etc.
- an amino acid with a beta-branched side-chain substituted for another amino acid with a beta-branched side-chain e.g., Ile, Thr, and Val
- an amino acid with an aromatic side-chain substituted for another amino acid with an aromatic side chain e.g., His, Phe, Trp, and Tyr
- nucleotide modifications refers to nucleotide insertion, substitution, deletion, etc.
- percentage sequence homology when used in reference to a polypeptide or polynucleotide sequence, refers to comparisons among polynucleotides and polypeptides, and are determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
- the percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions for the longer sequence in the window of comparison and multiplying the result by 100 to yield the percentage of sequence homology.
- Homology is evaluated using any of the variety of sequence comparison algorithms and programs known in the art. Such algorithms and programs include, but are by no means limited to, TBLASTN, BLASTP, FASTA, TFASTA, and CLUSTALW (Pearson and Lipman, 1988, Proc. Natl. Acad. Sci. USA 85 (8) : 2444-2448; Altschul et al., 1990, J. Mol. Biol.
- BLAST Basic Local Alignment Search Tool
- treat refers to reducing or ameliorating a disorder and/or symptoms associated therewith. It will be appreciated, although not precluded, treating a disorder or condition does not require that the disorder, condition, or symptoms associated therewith be completely eliminated. In certain embodiments, treatment includes prevention of a disorder or condition, and/or symptoms associated therewith.
- stroke indicates a medical condition in which poor blood flow to the brain results in cell death. It includes but not limited to ischemic stroke and hemorrhagic stroke.
- hemorhagic shock refers to a condition of reduced tissue perfusion, resulting in the inadequate delivery of oxygen and nutrients that are necessary for cellular function.
- acute mountain sickness refers to a condition developed when exposed to high altitudes having low levels of oxygen and decreased air pressure.
- ischemic disease refers to diseases and/or conditions characterized by reduced oxygenation to any tissue in the body such as, but not limited to, ischemic heart disease, transient ischemic attack, cardiac ischemia, stroke, reperfusion injury, bowel ischemia, intestinal ischemia, peripheral artery disease, critical limb ischemia, mesenteric ischemia, brain ischemia, leg ischemia, myocardial infarction, peripheral vascular disease, coronary artery disease, angina, wound healing, renal artery disease, diabetic ulcer healing, congestive heart failure, and hepatic ischemia.
- Ischemia can be caused by a number of conditions including, but not limited to, anemia, stroke and atherosclerosis. Multiple diseases result from ischemia including, for example, cerebrovascular ischemia, renal ischemia, pulmonary ischemia, limb ischemia, myocardial ischemia, and ischemic cardiomyopathy.
- peripheral artery disease refers to a condition of narrowing of the peripheral arteries, such as those serving the legs, stomach, arms and/or head.
- PAD includes a wide range of vascular diseases caused by atherosclerotic, thromboembolic, and inflammatory processes that alter the structure and function of the arteries. The most common cause of PAD is atherosclerosis.
- p50 value indicates the oxygen tension at which hemoglobin is 50%saturated. Values of p50 are negatively correlated with substrate affinity; lower values correspond to higher affinity and vice versa.
- oxygen carrying capacity indicates the capability of a composition to carry oxygen.
- the capability to carry oxygen comprises but not limited to two aspects: compositions containing recombinant hemoglobins with lower oxygen affinity are used when rapid oxygenation is desired in cases of tissue hypoxia resulting from extensive blood loss (e.g., hemorrhagic shock) .
- Lower oxygen affinity means that the material can “offload” oxygen to a target more easily than a material with a higher oxygen affinity.
- Compositions with higher oxygen affinity are useful as oxygenation adjunct therapies in cancer treatment where a slower delivery rate of oxygen is desired in that case.
- “Improved oxygen carrying capacity” means the level of oxygen carried by a composition is increased regardless of rapid oxygenation or low delivery of oxygen.
- co-transform refers to a process that transfers more than one plasmids or vectors bearing exogenous DNA into the host cell at the same time.
- the host cells generally include but are not limited to bacterial, yeast, insect, mammalian, and plant cells. Any other reasonable host cells for accepting plasmids or vectors bearing exogenous DNA are also within the contemplation of the present disclosure.
- the methods for transformation of a DNA construct into a host cell include but not limited to chemical transformation, electroporation or particle bombardment. Any other reasonable methods for transforming a DNA construct into a host cell are also within the contemplation of the present disclosure.
- plasmid As used herein, the terms “plasmid” , “expression plasmid” , “vector” , “DNA construct” and the like are used interchangeably herein to refer to a genetic structure that carries one or more exogenous DNA sequences of interest, as well as other functional DNA segments and/or sites, such as promoter segment, restriction site, 5’ primer site, 3’ primer site, origin of replication segment, antibiotic resistance gene segment, selectable marker segment, etc. These genetic structures are typically, but not always, circular DNA molecules, which are physically separated from a chromosomal DNA and can replicate independently.
- exogenous DNA refers to deoxyribonucleic acid that originates outside of the host cells, including but not limited to the genes encoding particular proteins of interest or subunits thereof.
- recombinant hemoglobin expression plasmid as used herein can refer to a plasmid that carries a polynucleotide sequence encoding one di-alpha chain, a plasmid that carries a polynucleotide sequence encoding one or two beta chains, or a plasmid that carries a polynucleotide sequence encoding a di-alpha chain and a beta chain.
- HemH refers to any enzyme, such as ferrochelatase, that catalyzes the production of heme.
- Heme-transporter refer proteins that facilitate the uptake of heme and/or iron, and such proteins include, but are not limited to, ChuA, TonB, heme carrier protein 1 (HCP1) , divalent metal transporter 1 (DMT1) , mucolipin-1 (also known as TRPML1) , HRG1, and hemopexin.
- HemH plasmid refers to a plasmid that carries a polynucleotide sequence encoding any enzyme, such as ferrochelatase, that catalyzes the production of heme, and the polynucleotide may include one or more nucleotide modifications.
- Heme-transporter plasmid (s) refer to one or more plasmids that carry one or more polynucleotide sequences encoding one or more proteins that facilitate the uptake of heme and/or iron, and such proteins include, but are not limited to, ChuA, TonB, heme carrier protein 1 (HCP1) , divalent metal transporter 1 (DMT1) , mucolipin-1 (also known as TRPML1) , HRG1, and hemopexin.
- the di-alpha chain can comprise a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1.
- Polypeptides having at least 98.93%sequence homology to SEQ ID NO: 1 can refer to polypeptides having at most three amino acid modifications, i.e. zero, one, two, or three amino acid modifications with respect to the SEQ ID NO: 1.
- the di-alpha chain comprises a polypeptide sequence having at least 99.29%sequence homology with the SEQ ID NO: 1.
- Polypeptides having at least 99.29%sequence homology can have at most two amino acid modifications, i.e. zero, one, or two amino acid modifications with respect to the SEQ ID NO: 1.
- the di-alpha chain comprises a polypeptide sequence having at least 99.64%sequence homology with the SEQ ID NO: 1.
- Polypeptides having at least 99.64%sequence homology can have at most one amino acid modifications, i.e. zero or one amino acid modification with respect to the SEQ ID NO: 1.
- the di-alpha chain comprises a polypeptide sequence of SEQ ID NO: 1.
- the di-alpha chain consists of a polypeptide sequence of SEQ ID NO: 1.
- the one, two, or three amino acid modifications can occur at any amino acid present in SEQ ID NO: 1, except the positions 1, 29, 58, 143, 171, and 200 of SEQ ID NO: 1, in which position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine.
- the polypeptide sequence of the di-alpha chain can contain a linker that connects the N-terminal of a first alpha subunit with the C-terminal of a second alpha subunit or the N-terminal of a first alpha subunit is directly connected to the C-terminal of a second alpha subunit.
- the linker can be one or more amino acid residues selected from the group consisting of glycine and serine.
- the linker is (Gly-Ser) n , (Gly-Gly-Gly-Ser) n , (Gly-Gly-Ser-Gly) n , (Gly-Gly-Gly-Gly-Ser) n , (Gly-Gly-Ser) n or Gly n , wherein n is 1-10.
- the linker is Gly n linker, wherein n is 1-4. In certain embodiments, the linker is Gly.
- Each of the two beta chains can comprise a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 2.
- Polypeptides having at least 97.94%sequence homology can have at most three amino acid modifications, i.e. zero, one, two, or three amino acid modifications with respect to the SEQ ID NO: 2.
- each of the two beta chains comprises a polypeptide sequence having at least 98.63%sequence homology with the SEQ ID NO: 2.
- Polypeptides having at least 98.63%sequence homology can have at most two amino acid modifications, i.e. zero, one, or two amino acid modifications with respect to the SEQ ID NO: 2.
- each of the two beta chains comprises a polypeptide sequence having at least 99.31%sequence homology with the SEQ ID NO: 2.
- Polypeptides having at least 99.31%sequence homology can have at most one amino acid modifications, i.e. zero or one amino acid modification with respect to the SEQ ID NO: 2.
- each of the two beta chains comprises a polypeptide sequence of SEQ ID NO: 2.
- the one, two, or three amino acid modifications can occur at any amino acid present in SEQ ID NO: 2, except the position 1 of the SEQ ID NO: 2, which must be methionine.
- each of the two beta chains can comprise a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 3.
- Polypeptides having at least 97.94%sequence homology can refer to polypeptides having at most three amino acid modifications, i.e. zero, one, two, or three amino acid modifications with respect to the SEQ ID NO: 3.
- each of the two beta chains comprises a polypeptide sequence having at least 98.63%sequence homology with the SEQ ID NO: 3.
- Polypeptides having at least 98.63%sequence homology can have at most two amino acid modifications, i.e. zero, one, or two amino acid modifications with respect to the SEQ ID NO: 3.
- each of the two beta chains comprises a polypeptide sequence having at least 99.31%sequence homology with the SEQ ID NO: 3.
- Polypeptides having at least 99.31%sequence homology can have at most one amino acid modifications, i.e. zero or one amino acid modification with respect to the SEQ ID NO: 3.
- each of the two beta chains comprises a polypeptide sequence of SEQ ID NO: 3.
- the one, two, or three amino acid modifications can occur at any amino acid present in SEQ ID NO: 3, except the positions 1, 82, and 108 of the SEQ ID NO: 3, in which position 1 of the SEQ ID NO: 3 must be methionine, the position 82 of the SEQ ID NO: 3 must be aspartic acid, and the position 108 of the SEQ ID NO: 3 must be lysine.
- Di-alpha chain having a polypeptide sequence of SEQ ID NO: 11 and two of the beta chains having a polypeptide sequence of SEQ ID NO: 12 form the recombinant hemoglobin TBN.
- Di-alpha chain having a polypeptide sequence of SEQ ID NO: 1 and two of the beta chains having a polypeptide sequence of SEQ ID NO: 2 form the recombinant hemoglobin TBM1.
- Di-alpha chain having a polypeptide sequence of SEQ ID NO: 1 and two of the beta chains having a polypeptide sequence of SEQ ID NO: 3 form the recombinant hemoglobin TBM9.
- PPIX concentrations of TBN, TBM1, and TBM9 prepared under identical conditions are listed in Table 1.
- the p50 level, tetramer purity, met-hemoglobin (Met-Hb) %and heme/protein ratio are shown in Table 2.
- the methods for preparing the recombinant hemoglobins described herein are simplified and cost effective. Without wishing to be bound by theory, it is believed that the mutations of the di-alpha chain and beta chain lead to structural changes of the recombinant hemoglobins, which affects the kinetics of the incorporation of heme and PPIX, and ultimately changes the percentage of PPIX in the purified recombinant hemoglobins.
- the present disclosure also relates to methods for expressing, fermenting, and purifying the recombinant hemoglobins described herein.
- the method comprises co-expressing the plasmids encoding the recombinant hemoglobins described herein, a ferrochelatase (HemH) plasmid, and a Heme-transporter plasmid in the host cells.
- Different host cells listed in Table 3 were tested, and among the host cells, JM109 (DE3) (with lambda DE3) (i.e. JM109 E. coli bacterial strain with lambda DE3) , BL21-T7 or AI E. coli bacterial strain (without lambda DE3) and T7 Competent E.
- the HemH plasmid can be wildtype or contain certain mutations.
- the Heme-transporter plasmid can be constructed by inserting the E. coli heme-utilization gene (ChuA) into a vector.
- the ChuA gene encodes a 69 kDa outer membrane protein, which facilitates the uptake of heme in E. coli.
- the uptake of heme by ChuA is dependent on an inner membrane protein named TonB.
- the methods described herein preferably comprise a step of co-transforming the recombinant hemoglobin plasmids, the HemH plasmid, the ChuA plasmid, and the TonB plasmid into the selected host cells, i.e. JM109 E. coli bacterial strain with lambda DE3, BL21-T7 or AI E. coli bacterial strain without lambda DE3 and SHuffle E. coli bacterial strain without lambda DE3.
- the method can also co-transform the ChuA plasmid alone together with the recombinant hemoglobin plasmids and the HemH plasmid into the selected host cells.
- the gene encoding the ferrochelatase (HemH) and the Heme-transporter can also be inserted into genome of E. coli bacterial strain by CRISPR/Cas9 genome editing method to endogenously express ferrochelatase (HemH) and the Heme-transporter.
- CRISPR/Cas9 genome editing method to endogenously express ferrochelatase (HemH) and the Heme-transporter.
- BL21-T7 and Jm109-T7 E. coli bacterial strain were modified to BL21-T7-CT (CRISPR/Cas9) and Jm109-T7-CT (CRISPR/Cas9) bacterial strains to express recombinant hemoglobin proteins.
- the method further comprises a purification step that advantageously does not require a heat step, and does not use carbon monoxide.
- the steps for purification are shown in FIG 6.
- the recombinant hemoglobins prepared using the methods described herein can have reduced amounts of protoporphyrin-IX (PPIX) , e.g., less than 1% (by weight) , shown in Table 1.
- the recombinant hemoglobins prepared using the methods described herein have between 0.08%and 1%, 0.11%and 1%, 0.08%and 0.20%, 0.08%and 0.15%, or 0.08%and 0.11% (by weight) of PPIX.
- the methods described herein are simpler as compared with existing methods for recombinant hemoglobin preparation, and can result in higher yield of soluble recombinant hemoglobin with reduced levels of impurities.
- the present disclosure further relates to pharmaceutical compositions comprising the recombinant hemoglobins described herein and at least one pharmaceutically acceptable carrier.
- the pharmaceutical composition comprises other excipients, such as amino acids and sugar.
- the present disclosure further relates to a polynucleotide sequence encoding a di-alpha chain as described herein.
- the polynucleotide sequence encodes a di-alpha chain comprising a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine.
- the polynucleotide sequence encodes a di-alpha chain comprising a polypeptide sequence having at least 99.29%sequence homology with the SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine.
- the polynucleotide sequence encodes a di-alpha chain comprising a polypeptide sequence having at least 99.64%sequence homology with the SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine.
- the polynucleotide sequence encodes a di-alpha chain comprising a polypeptide sequence of SEQ ID NO: 1.
- the polynucleotide sequence encodes a di-alpha chain consisting of a polypeptide sequence of SEQ ID NO: 1.
- the present disclosure further relates to a polynucleotide sequence encoding a beta chain as described herein.
- the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 2.
- the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence having at least 98.63%sequence homology with the SEQ ID NO: 2.
- the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence having at least 99.31%sequence homology with the SEQ ID NO: 2.
- the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence comprising a polypeptide sequence of SEQ ID NO: 2. In certain embodiments, the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence consisting of a polypeptide sequence of SEQ ID NO: 2.
- the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 3 In certain embodiments, the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence having at least 98.63%sequence homology with the SEQ ID NO: 3. In certain embodiments, the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence having at least 99.31%sequence homology with the SEQ ID NO: 3. In certain embodiments, the polynucleotide sequence encodes a beta chain comprising a polypeptide sequence comprising a polypeptide sequence of SEQ ID NO: 3.
- the acid modifications can occur at any amino acid present in SEQ ID NO: 3, except the positions 1, 82, and 108 of the SEQ ID NO: 3, in which position 1 of the SEQ ID NO: 3 must be methionine, the position 82 of the SEQ ID NO: 3 must be aspartic acid, and the position 108 of the SEQ ID NO: 3 must be lysine.
- the polynucleotide sequence encodes a di-alpha chain as described herein and a beta chain as described herein.
- the di-alpha chain comprises a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine; and the two beta chains comprises a polypeptide sequence having at least 99.31%sequence homology with SEQ ID NO: 2, wherein the amino acid at position 1 must be methionine; or a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 3, wherein the amino acid at position 1 must be methionine, the amino acid at position 82 must be aspartic acid,
- a vector is a typically includes additional sequences, including sequences that direct propagation of the vector in the cell or insertion of part of the vector into the cell's genome, and a gene which allows an individual to screen for the presence of the vector.
- vectors include plasmids, artificial chromosomes, viruses, and linear polynucleotide fragments which are designed to insert into a cell's genome.
- Vectors are well known tools to a person of ordinary skill in the art, and a person of ordinary skill in the art can easily find appropriate vectors for a particular organism in the literature or in biobanks, such as ATCC.
- a vector comprising a polynucleotide sequence encoding at least one of a di-alpha chain described herein and a beta chain as described herein.
- the vector is a plasmid, artificial chromosomes, viruses, or a linear polynucleotide fragment, which is designed to insert into a cell's genome.
- the present disclosure further relates to a system for producing a recombinant hemoglobin as described herein, the system comprising: an Escherichia coli or non-Escherichia coli host cell comprising: a polynucleotide encoding HemH; a polynucleotide encoding Heme-transporter; a polynucleotide encoding a di-alpha chain; and a polynucleotide encoding a beta chain; wherein the di-alpha chain comprises a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine; and the beta chain comprises a polypeptide sequence having at least 99.
- the polynucleotide encoding HemH; the polynucleotide encoding Heme-transporter; the polynucleotide encoding the di-alpha chain; and the polynucleotide encoding the beta chain are present in one or more vectors selected from the group consisting of a plasmid, artificial chromosomes, viruses, and linear polynucleotide fragments which are designed to insert into a cell's genome.
- the polynucleotide encoding HemH; the polynucleotide encoding Heme-transporter; the polynucleotide encoding the di-alpha chain; and the polynucleotide encoding the beta chain are inserted into the host cell’s genome using CRISPR/CAS 9.
- the polynucleotide encoding HemH; the polynucleotide encoding Heme-transporter; the polynucleotide encoding the di-alpha chain; and the polynucleotide encoding the beta chain are present in the host cell in one or more plasmids.
- the system for producing the recombinant hemoglobin as described herein comprises: an Escherichia coli or non-Escherichia coli host cell comprising: a first plasmid comprising a polynucleotide encoding HemH, a di-alpha chain, and two beta chains, wherein the di-alpha chain comprises a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine; and the two beta chains comprises a polypeptide sequence having at least 99.31%sequence homology with SEQ ID NO: 2, wherein the amino acid at position 1 must be methionine; or a polypeptide sequence having at least 97
- the vectors described herein can further comprise one or more polynucleotides encoding a promoter, an operator, and a selectable marker.
- Any promoter can be used in the vectors described herein.
- the selection of the appropriate promoter is well within the skill of a person of ordinary skill in the art.
- Exemplary promoters include, but are not limited to, lac, trp, tac, trc, ara, araB, T5, T7, and T7lac.
- Operators can include the lac operator, the ⁇ operator, the trp operator, the gal operator, the ara operator, and the Arg operator. If desired, the corresponding promoter may be functionally associated with its operator.
- a selectable marker can be a polynucleotide sequence that allows selection for or against a molecule or a cell that contains it, often under particular conditions. These markers can encode an activity, such as, but not limited to, production of RNA, peptide, or protein, or can provide a binding site for RNA, peptides, proteins, inorganic and organic compounds or compositions and the like. Any selectable marker in the art can be used in connection with the expression systems and methods described herein.
- Exemplary selectable markers include, but are not limited to, polynucleotide sequences that encode products which provide resistance against otherwise toxic compounds, such as antibiotics; polynucleotide sequences that encode a product which is otherwise lacking in the recipient cell, such as tRNA genes, auxotrophic markers) ; polynucleotide sequences that encode a product which suppresses the activity of a gene product; polynucleotide sequences that encode products which can be readily identified (e.g., phenotypic markers, such as ⁇ -galactosidase, green fluorescent protein (GFP) , and cell surface proteins) ; and the like.
- phenotypic markers such as ⁇ -galactosidase, green fluorescent protein (GFP) , and cell surface proteins
- the selectable marker is a polynucleotide sequence that confers resistance against an antibacterial agent, such as ampicillin, kanamycin, erythromycin, chloramphenicol, gentamycin, kasugamycin, rifampicin, spectinomycin, D-Cycloserine, nalidixic acid, streptomycin, tetracycline, and the like.
- an antibacterial agent such as ampicillin, kanamycin, erythromycin, chloramphenicol, gentamycin, kasugamycin, rifampicin, spectinomycin, D-Cycloserine, nalidixic acid, streptomycin, tetracycline, and the like.
- the present disclosure further relates to a method of producing the recombinant hemoglobin as described herein, comprising the steps of: (a) providing a host cell comprising a polynucleotide encoding the di-alpha chain and a polynucleotide encoding the two beta chains; and (b) inducing the host cell containing the polynucleotide encoding the di-alpha chain and the polynucleotide encoding the two beta chains to express recombinant hemoglobin thereby producing the recombinant hemoglobin.
- the polynucleotide encoding HemH; the polynucleotide encoding Heme-transporter; the polynucleotide encoding the di-alpha chain; and the polynucleotide encoding the two beta chains are present in one or more vectors selected from the group consisting of a plasmid, artificial chromosomes, viruses, and linear polynucleotide fragments which are designed to insert into a cell's genome.
- the polynucleotide encoding HemH; the polynucleotide encoding Heme-transporter; the polynucleotide encoding the di-alpha chain; and the polynucleotide encoding the two beta chains are inserted into the host cell’s genome using CRISPR/CAS 9.
- the polynucleotide encoding HemH; the polynucleotide encoding Heme-transporter; the polynucleotide encoding the di-alpha chain; and the polynucleotide encoding the two beta chains are present in the host cell in one or more plasmids.
- the method of producing the recombinant hemoglobin described herein comprises: (a) providing a host cell comprising one or more recombinant hemoglobin expression plasmids encoding the di-alpha chain and the two beta chains; and (b) inducing the host cell containing the one or more recombinant hemoglobin expression plasmids encoding the di-alpha chain and the two beta chains to express recombinant hemoglobin thereby producing the recombinant hemoglobin.
- the one or more recombinant hemoglobin expression plasmids encoding the di-alpha chain and the two beta chains comprise a polynucleotide sequence of SEQ ID NO: 4 and a polynucleotide sequence of SEQ ID NO: 5.
- the one or more recombinant hemoglobin expression plasmids encoding the di-alpha chain and the two beta chains comprises a polynucleotide sequence of SEQ ID NO: 4 and a polynucleotide sequence of SEQ ID NO: 6.
- the host cell is selected from the group consisting of JM109 E. coli bacterial strain with lambda DE3, BL21-AI E. coli bacterial strain without lambda DE3, and SHuffle E. coli bacterial strain without lambda DE3.
- the host cell further comprises a plasmid encoding HemH.
- the host cell further comprises one or two plasmids encoding a Heme-transporter.
- a host cell comprising at least one vector described herein encoding at least one polypeptide selected from a di-alpha chain as described herein and two beta chains as described herein.
- the at least one vector is a plasmid.
- the host cell comprises one or more plasmids.
- Recombinant hemoglobins can be formed by expressing one di-alpha chain and two beta chains inside a host cell in the presence of heme.
- Different host cells are tested and shown in Table 3.
- the host cell is JM109 E. coli bacterial strain with lambda DE3, BL21-T7 or AI E. coli bacterial strain without lambda DE3, or SHuffle E. coli bacterial strain without lambda DE3 as they have the best yield, or BL21-T7-CT (CRISPR/Cas9) and Jm109-T7-CT (CRISPR/Cas9) as they have the best quality and easy manipulation.
- the expression of the di-alpha chain and beta chains can be realized by co-transforming a plasmid carrying the polynucleotide sequence that encodes one di-alpha polypeptide chain, and a plasmid carrying the polynucleotide sequence that encodes two beta polypeptide chains together into the host cell, wherein the ratio of the plasmid for di-alpha polypeptide chain and the plasmid for two beta polypeptide chains is approximately 1: 1.
- the expression of the di-alpha chain and beta chains can also be realized by co-transforming a plasmid carrying the polynucleotide sequence that encodes one di-alpha polypeptide chain, and a plasmid carrying the polynucleotide sequence that encodes one beta polypeptide chain together into the host cell, wherein the ratio of the plasmid for di-alpha polypeptide chain and the plasmid for one beta polypeptide chain is approximately 1: 2.
- the expression of the di-alpha chain and beta chain can also be realized by transforming a plasmid carrying both the polynucleotide sequence that encodes one di-alpha polypeptide chain and the polynucleotide sequence that encodes two beta chains into the host cells.
- the plasmid for expressing the recombinant hemoglobins described herein comprise a polynucleotide encoding a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine; and two beta chains, each of which comprises a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 2, wherein position 1 of SEQ ID NO: 2 must be methionine.
- the plasmid for expressing the recombinant hemoglobin comprises a polynucleotide sequence of SEQ ID NO: 4 (di-alpha chain for TBM1 and TBM9) and a polynucleotide sequence of SEQ ID NO: 5 (beta chain for TBM1) .
- the plasmid maps are shown in FIG. 2A.
- the host cell is K12 strain ( T7 Competent E. coli) .
- the plasmid for expressing the recombinant hemoglobin comprises a polynucleotide sequence of SEQ ID NO: 4 (di-alpha chain for TBM1 and TBM9) and a polynucleotide sequence of SEQ ID NO: 5 (beta chain for TBM1) and the host cell is K12 strain (NEB#C3026) .
- the plasmid for expressing the recombinant hemoglobins described herein comprise a polynucleotide encoding a polypeptide sequence having at least 98.93%sequence homology with SEQ ID NO: 1, wherein the amino acids at position 1 and position 143 of SEQ ID NO: 1 must be methionine, the amino acids at position 29 and position 171 of SEQ ID NO: 1 must be phenylalanine, and the amino acids at position 58 and position 200 of SEQ ID NO: 1 must be glutamine; and two beta chains, each of which comprises a polypeptide sequence having at least 97.94%sequence homology with SEQ ID NO: 3, wherein position 1 of SEQ ID NO: 3 must be methionine, position 82 of SEQ ID NO: 3 must be aspartic acid, and position 108 of SEQ ID NO: 3 must be lysine.
- the plasmid for expressing the recombinant hemoglobin comprises a polynucleotide sequence of SEQ ID NO: 4 (di-alpha chain for TBM1 and TBM9) and a polynucleotide sequence of SEQ ID NO: 6 (beta chain for TBM9) (the plasmid maps are shown in FIG. 2A) and the host cell is K12 strain ( T7 Competent E. coli) .
- the plasmids for expressing di-alpha chain, beta chains and/or a combination thereof are co-transformed with the plasmid for expressing ferrochelatase or any other enzyme that catalyzes the production of heme.
- the plasmid for expressing ferrochelatase or any other enzyme that catalyzes the production of heme is a HemH plasmid, wherein the HemH plasmid can contain any HemH nucleotide.
- An exemplary HemH mutant polynucleotide is listed in FIG. 7.
- the HemH plasmid has a polynucleotide sequence of SEQ ID NO: 7 (wildtype) or SEQ ID NO: 8 (mutant) .
- hemin is added into the solution containing host cells that have been transformed with the plasmids expressing di-alpha chain, beta chains and/or a combination thereof.
- a plasmid for expressing a heme transporter is also co-tranformed together with the plasmid for expressing the recombinant hemoglobin and/or the plasmid for expressing heme production enzymes.
- the heme transporter can be any protein that can facilitate the uptake of heme, including but not limited to a 69 kDa outer membrane protein encoded by the ChuA gene, and an inner membrane protein named TonB, on which the uptake of heme by ChuA is dependent.
- HCP1 heme carrier protein 1
- DMT1 divalent metal transporter 1
- TRPML1 mucolipin-1
- HRG1 hemopexin, and the like are also within the contemplation of the present disclosure.
- the Heme-transporter plasmid comprises a polynucleotide sequence having 98%sequence homology with SEQ ID NO: 9.
- the DNA sequence of ChuA is shown in FIG. 8.
- the Heme-transporter plasmid comprises a polynucleotide sequence having 99%sequence homology with SEQ ID NO: 9.
- the Heme-transporter plasmid comprises a polynucleotide sequence of SEQ ID NO: 9.
- the Heme-transporter plasmid comprises a polynucleotide sequence having 98%sequence homology with SEQ ID NO: 10.
- the DNA sequence encoding TonB is shown in FIG. 9.
- the Heme-transporter plasmid comprises a polynucleotide sequence having 99%sequence homology with SEQ ID NO: 10.
- the Heme-transporter plasmid comprises a polynucleotide sequence of SEQ ID NO: 10.
- only the Heme-transporter plasmid bearing the ChuA is co-transformed with the plasmids for expressing di-alpha chain, beta chains and/or a combination thereof.
- only the Heme-transporter plasmid bearing the ChuA is co-transformed with the plasmids for expressing di-alpha chain, beta chains and/or a combination thereof, and the plasmid for expressing heme production enzymes.
- both the plasmid bearing the ChuA gene and the plasmid for expressing TonB are co-transformed with the plasmids for expressing di-alpha chain, beta chains and/or a combination thereof.
- both the plasmid bearing the ChuA gene and the plasmid for expressing TonB are co-transformed with the plasmids for expressing di-alpha chain, beta chains and/or a combination thereof, and the plasmid for expressing heme production enzymes.
- the pETDuet-1 vector has two T7 promoters.
- the first T7 promoter is T1 and the second T7 promoter is T2.
- the proteins can be expressed under the control of either T1 or T2 of the pETDuet-1 vector.
- the pRSFDuet-1 vector has two T7 promoters, and the first T7 promoter is R1 and the second T7 promoter is R2.
- the proteins can be expressed under the control of either T1 or T2 of the pRSFDuet-1 vector.
- the components for the expression system contain (1) T7 promoter/lac operator and (2) sequence for protein expression including start codon and stop codon.
- Each of Duet plasmid has two T7 promoter/lac operator (T1 and T2) .
- T1 and T2 T7 promoter/lac operator
- the antibiotic resistance and replicons of plasmid were shown in Table 4. Clone no. 12 and 19 show the best yield and quality of recombinant hemoglobin.
- st plasmid 1 st plasmid is pETDuet-1 (ampicillin) which expressed di-alpha and beta chain under T1 and HemH under T2; 2 nd plasmid is pRSFDuet-1 (kanamycin) which expressed ChuA and TonB under R2.
- 1 st plasmid is pETDuet-1-Kana (kanamycin) which expressed di-alpha and beta chain under T1 and HemH under T2; 2 nd plasmid is pACYCDuet-1 (chloramphenicol) which expressed ChuA and TonB under A2.
- the host cells containing one or more of the above-mentioned plasmids can be incubated and fermented using any method known to those of skill in the art.
- the recombinant hemoglobins produced by the bacterial cells can then be purified using a simplified procedure, which does not require a heat step, and does not require the use of carbon monoxide (FIG. 6) .
- the recombinant hemoglobins can be purified using the purification procedure described herein and can yield purified hemoglobin containing little or no HbCO, and having low amounts of PPIX, e.g., less than 1%.
- the UPLC results indicate that the heme: protein ratio is higher for TBM1 and TBM9, and highest for TBM9 (Table 2) .
- the High Performance Liquid Chromatography (HPLC) results indicate the octamer: tetramer: dimer distribution of TBN, TBM1 and TBM9, as shown in Table 5 below.
- Purification of the recombinant hemoglobins described herein can yield the protein product in high purity even without the step of heat treatment, as shown in FIG. 4 and Tables 1 and 2.
- Such unexpected technical effect solves one or more problems of the existing methods for preparing recombinant hemoglobins.
- the stability of the recombinant hemoglobins described herein during the purification will not be affected and thus CO will not be required to maintain the stability of recombinant hemoglobins during heat treatment. Accordingly, an additional step to remove the undesired CO is not required.
- the purification process for the recombinant hemoglobins described herein do not require heat treatment and CO removal, hence making the process simpler, less costly, and more industrially applicable.
- the recombinant hemoglobins prepared using the methods described herein were injected in a mouse model to measure the liver oxygen level for 180 min (FIG. 3) .
- Results showed that the recombinant hemoglobin TBM1, wherein the di-alpha chain has SEQ ID NO: 1 and the two beta chains have SEQ ID NO: 2, significantly increased the liver oxygen pressure at 30 min after being administered, as compared to the control group where buffer was administered and the YQ (bovine crossed-linked hemoglobin, batch no. ER007) was administered (FIG. 3B) .
- liver oxygen pressure reaches a plateau at 20-30 min after administering TBM9 and reaches a plateau at about 70 min after administering TBM1, both of which are higher than the plateaus reached by administering YQ, buffer, or TBN (wherein the di-alpha chain has SEQ ID NO: 11, and the two beta chains have SEQ ID NO: 12, as shown in FIG. 1) .
- TBN di-alpha chain has SEQ ID NO: 11, and the two beta chains have SEQ ID NO: 12, as shown in FIG. 1 .
- the p50 values of TBN, TBM1, and TBM9 are summarized in Table 6.
- the recombinant hemoglobins described herein may be prepared as a pharmaceutical composition comprising at least one pharmaceutically acceptable carrier.
- Pharmaceutically acceptable carriers can comprise diluents, adjuvants, excipients, vehicles, or a combination thereof with which the active compound is administered.
- Such vehicles can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. For example, 0.4%saline and 0.3%glycine can be used.
- such vehicle is sucrose or trehalose. These solutions are sterile and generally free of particulate matter. They may be sterilized by conventional, well-known sterilization techniques (e.g., filtration) .
- compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, stabilizing, thickening, lubricating and coloring agents, etc.
- concentration of the protein in such pharmaceutical formulation can vary widely, e.g., from less than about 0.5%, usually at or at least about 1%to as much as 15 or 20%by weight and will be selected primarily based on required dose, fluid volumes, viscosities, etc., according to the particular mode of administration selected.
- Suitable vehicles and formulations comprise sucrose, trehalose, amino acid, phosphate buffer.
- the recombinant hemoglobins described herein can be used as an agent for oxygenating in vivo or ex vivo tissues. Such agents are useful in the treatment of any disease or condition in which oxygen deficiency is the cause of the disease and/or condition, or oxygen deficiency is related to the treatment efficacy of the disease and/or condition.
- These diseases or conditions include, but not limited to, cancer, stroke, hemorrhagic shock, AMS, PAD, PD and, chronic obstructive pulmonary disease (COPD) , emphysema, bronchitis, pneumonia, pulmonary edema, anemia, asthma, heart disease, diabetes, cystic fibrosis, epilepsy and seizures, inflammatory bowel disease (IBD) , and Raynaud’s disease.
- COPD chronic obstructive pulmonary disease
- the present disclosure also provides expression clones that can, e.g., improve the purity of recombinant hemoglobins described herein.
- the purified protein expressed using the previous expression clone bearing nucleotide sequences of HemH and TBN, TBM1, or TBM9 has a peak for PPIX in the UPLC-PDA analysis, whereas such peak disappeared for the purified protein expressed using the new improved expression clone bearing nucleotide sequences of HemH mutant, Heme transporter system (ChuA and TonB) , and TBN, TBM1, or TBM9.
- the 2, 3-DPG is added to the recombinant hemoglobin solution.
- the p50 value of human recombinant hemoglobin in the presence of 2, 3-DPG increased as compared to the human recombinant without 2,3-DPG (FIG. 5B) .
- the plasmids were constructed in a conventional cloning method and the vectors and restriction enzyme cute sites used for each of the plasmids are indicated in the Table 8 below.
- the desired plasmids were transformed into the desired strains. From a fresh culture plate, colonies were picked and placed in a 15 ml tube containing 2 ml LB medium and appropriate antibiotic (Kanamycin 50 ⁇ g/ml; Chloramphenicol 34 ⁇ g/ml) and grown at 32°C overnight, 250 rpm. The resulting cultures were diluted 1: 100 into 10 ml TB medium with appropriate antibiotics in 50 ml falcon. When OD 600 reached 0.6, target proteins were induced by 0.4 mM IPTG at 25°C. After 20 h induction, the bacteria were harvest by centrifugation at 4000 x g for 15 min.
- E. coli clones transformed with desired plasmids were inoculated into 200 ml of seed culture medium (6%yeast extract and 1%NaCl) and cultivated at 32°C with shaking at 250 rpm for overnight. The fermentation was performed in 10-L bioreactor (Sartorius C plus) .
- the flask of seed culture was inoculated into 6.5 L of medium (1%yeast extract, 1.6%tryptone, 15 mM K 2 HPO 4 , 37 mM KH 2 PO 4 , 15 mM NaCl, 15 mM (NH 4 ) 2 SO 4 , 2 mM L-proline, 2%glycerol) in a 10-L bioreactor with a final OD 600 at 0.05 and cultivated at 32°C and pH 7.0 with airflow of 6 L/min and initial stir rate at 400 rpm, in which dissolved oxygen was maintained above 20%.
- medium 1%yeast extract, 1.6%tryptone, 15 mM K 2 HPO 4 , 37 mM KH 2 PO 4 , 15 mM NaCl, 15 mM (NH 4 ) 2 SO 4 , 2 mM L-proline, 2%glycerol
- the fed-batch process of recombinant protein production in 10-L bioreactor was divided into two phases.
- the 1 st phase was aerobic batch cultivation at 32°C for 7 h.
- the 2 nd Phase was an induction process at 25°C for 18 h using isopropyl- ⁇ -d-thiogalactoside (IPTG) at a final concentration of 0.4 mM with OD 600 of bacteria at 4.0 to induce the expression of recombinant protein.
- IPTG isopropyl- ⁇ -d-thiogalactoside
- a fed-batch cultivation at 25°C for 18 h in which 80 g/L glycerol and 100 mg/L Hemin was fed continuously to maintain the required specific growth rate of bacteria with airflow of 8 L/min and stir rate at 600-800 rpm, in which dissolved oxygen was maintained ⁇ 4%.
- the bacteria at final OD 600 of 30-40 were harvested by centrifugation and stored in -80 °C for future use.
- Cell pellet from 10 ml TB medium was suspended in a phosphate buffer (pH 7.4) and disrupted by 0.1 mm glass beads.
- the soluble protein was harvested by centrifugation at 15000 x g for 15 min at 4°C.
- the target protein bound to nickel charged beads and eluted by 0.4 M Imidazole.
- the cell pellet from fermentation was resuspended in a solubilization buffer (20 mM Tris-HCl, 150 mM NaCl, pH 8.5) in 1 g cell to 7 ml buffer ratio.
- the suspension was processed through a high-pressure homogenizer at 800 bar (two cycles) .
- the cell lysate was clarified by hollow fiber system.
- the soluble fraction was passed through a series of chromatographic columns to isolate the TBN, TBM1, or TBM9 proteins.
- the supernatant was loaded onto zinc affinity column. After sufficient column wash with buffer (20 mM Tris, 30 mM NaCl, pH 8.5) , the target proteins were eluted by elution buffer (20 mM Tris, 100 mM imidazole, pH 8.3) .
- the recovered fraction was loaded onto DEAE anion-exchange column.
- the target proteins were eluted by elution buffer (20 mM NaPi, pH 6.0) .
- the purified TBN/TBM1/TBM9 samples were concentrated to 50 mg/ml.
- the protein samples were lyophilized with appropriate excipients in a glass vial.
- the protein concentrations of the samples were measured by Bradford protein assay. Samples were diluted to protein concentration of about 10 mg/ml. A 50 ⁇ l of purified protein was mixed with 400 ⁇ l acidic acetone. After vigorous stirring, the mixture was separated by centrifugation. Acetonitrile (ACN, 400 ⁇ l, sample to organic solvent equals 1: 8) was added into the solution, followed by centrifugation at 14,000 rpm for 5 min. Samples were then applied to UPLC analysis (Acquity H-class UPLC system; Waters, Milford, MA, USA) .
- UPLC analysis Acquity H-class UPLC system
- PPIX was separated by Waters Acquity BEH C18 1.7 ⁇ m, 2.1 ⁇ 50mm Column at 0.40 ml/min at 25°C for 15 min (Eluent: A: H 2 O; B: ACN [0.1%TFA] ) Gradient: 30%B to 50%B in 6 min, 50%B to 80%B in 12 min, 80%B to 30%B in 13 min, 30%B in 15 min. (Detection wavelength at 400 nm) . Commercially obtained PPIX (Sigma-Aldrich, St. Louis, MO, USA) was used as the standard. The peak of PPIX was identified and the peak area in the calibration standards and samples was recorded. The peak area of calibration standards was plotted against the PPIX concentration of working standards. Thus, the relative amount of PPIX was obtained using the calibration curve and associated equation.
- Proteins were separated by Yarra 3 ⁇ m, SEC-2000, 7.8 ⁇ 300 mm Column at 0.50 ml/min at 25°C for 20 min (Mobile phase: 0.75 M Magnesium Chloride, 0.2 M Tris, 116 ⁇ M EDTA) . (Detection wavelength at 410 nm) .
- p50 value was determined by HEMOX-analyzer. 1.5 mg of purified protein were diluted in 3.5 ml of buffer (HEPES 100 mM, KCl 100 mM, pH7.3) with or without 2, 3-DPG (4 mM) . The sample buffer is drawn into a cuvette and the temperature of the mixture is equilibrated and brought to 37°C; the sample is then oxygenated to 100%with air. After adjustment of the pO 2 value, the sample is deoxygenated with nitrogen. During the deoxygenation process, the curve is recorded. The p50 value is extrapolated on the x-axis as the point at which O 2 saturation is 50%.
- Liver tissue oxygenation was directly monitored by the in vivo monitoring system (Oxford Optronix, UK) during the ischemia and reperfusion procedures in Buffalo rats. Briefly, a largearea-surface (LAS) oxygen sensor (Oxford Optronix, UK) was placed between the right hepatic lobe and triangle lobe of the rat livers. The branch of hepatic artery and portal vein to right and triangle lobes were clamped. YQ (bovine fumaryl cross-linked hemoglobin –positive control group) (0.2 g/kg) , TBM1/TBM9 (0.2 g/kg) , or ringer’s acetate buffer (control group) were administered intravenously. Liver oxygen tension was continuously measured during hepatic ischemia reperfusion injury: (1) baseline; (2) after infusion of YQ, TBM1/TBM9, or ringer’s acetate buffer.
- LAS largearea-surface oxygen sensor
- Recombinant hemoglobins were diluted to 1 mg/ml with 0.1 M sodium phosphate plus 1 mM EDTA at pH 7.0 at room temperature.
- Sample solution was oxygenated with compressed air by Hemox Analyzer (TCS scientific) for 20 min at room temperature. Azide-induced oxidation was started by adding 55.6 ⁇ l of 2 M sodium azide to 1 ml of oxygenated sample solution. The sample solution was then transferred without delay into cuvettes, sealing with parafilm to prevent evaporation. Visible spectra from 400 nm to 800 nm were recorded by Multiskan GO with AuDROP plate (thermos scientific) under room temperature in fast mode at 0, 1, 2, 3, 4, 5, 6, 24 and 48 h. Readings at 578 nm, 630 nm, and 700 nm were used to calculate the concentration of oxy-Hb with the equation below:
- the initial rate of oxidation was calculated by an exponential fitting of the first 6 h of data.
- Tumor volume was calculated according to the following standard formula: (the longest diameter) ⁇ 0.5 ⁇ (the shortest diameter) 2 .
- the tumor volume was monitored twice per week.
- FIG. 12A tumors grew rapidly in mice treated with PBS (control group) in about 14 days after the treatment. Tumor growth was slowed down significantly in mice in TBM1 group compared with control groups (p ⁇ 0.05) .
- FIG. 12B showed tumor volume after 14 days treatments of TBM1.
- tumor reached a volume of 800 mm 3 which was substantially higher than that of the TBM1 treatment group (377 mm 3 ) .
- mice were anesthetized by intraperitoneal injection of xylazine (20 mg/kg) and ketamine (100 mg/kg) .
- the left femoral artery was excised and ligated from its proximal origin as a branch of the external iliac artery to the distal point where it bifurcates into the saphenous and popliteal arteries.
- Tissue perfusion of the hind limbs were assessed serially at baseline, immediate after femoral artery ligation, and on Day 7 after administration of the allocated treatments by using laser Doppler imaging system (Moor instruments, Devon, UK) . Mice were anesthetized during the measurement procedure. The digital color-coded images were captured and analyzed to quantify blood flow in the region from the knee joint to the toes.
- single intravenous TBM1 injection at 800 mg/kg results in an improvement of tissue perfusion in a murine model of critical limb ischemia.
- TBM1 100, 200 mg/kg or PBS as a control mice
- mice As shown in the FIG. 14, no significant differences in weights were seen between the TBM1 treatment groups and control group (both for Balb/C mice and ICR mice) .
- jugular catheter was surgically implanted into the right jugular vein of the rats at least 4 days before the dosing day.
- animals were weighted and assigned into 6 per groups with half numbers of male and female.
- TBM1 was drawn into syringe and connected to an extension tube with a 0.22 um filter for injection. The infusion was given at a constant rate by motorized syringe pump.
- the rats were sacrificed and the hearts were harvested, fixed in formalin and processed for histological evaluation (H&E staining) . There was no evidence of drug induced cardiomyopathy in total six rats.
- the present disclosure provides recombinant hemoglobins useful for treating oxygen deficiency related diseases or conditions, such as cancer, stroke, hemorrhagic shock, acute mountain sickness (AMS) , peripheral arterial disease (PAD) and Parkinson’s disease (PD) .
- the recombinant hemoglobins described herein can have increased oxygen carrying capacity.
- the therapeutic use of the pharmaceutical compositions comprising the recombinant hemoglobins described herein can require a reduced clinical dosage, which increases the safety of such therapeutic use in a subject in need thereof.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Heart & Thoracic Surgery (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Cardiology (AREA)
- Plant Pathology (AREA)
- Vascular Medicine (AREA)
- Psychology (AREA)
- Urology & Nephrology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962799829P | 2019-02-01 | 2019-02-01 | |
PCT/CN2020/074173 WO2020156556A1 (fr) | 2019-02-01 | 2020-02-03 | Hémoglobines recombinantes et leurs procédés de préparation et d'utilisation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3837280A1 true EP3837280A1 (fr) | 2021-06-23 |
EP3837280A4 EP3837280A4 (fr) | 2022-05-18 |
Family
ID=71837799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20747899.1A Withdrawn EP3837280A4 (fr) | 2019-02-01 | 2020-02-03 | Hémoglobines recombinantes et leurs procédés de préparation et d'utilisation |
Country Status (9)
Country | Link |
---|---|
US (1) | US10752672B1 (fr) |
EP (1) | EP3837280A4 (fr) |
JP (1) | JP7066067B2 (fr) |
KR (1) | KR102436043B1 (fr) |
CN (1) | CN113166230A (fr) |
AU (1) | AU2020214952B2 (fr) |
CA (1) | CA3113147C (fr) |
NZ (1) | NZ774144A (fr) |
WO (1) | WO2020156556A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021110127A1 (fr) * | 2019-12-06 | 2021-06-10 | Cheer Global Limited | Méthode de traitement d'une maladie intestinale inflammatoire |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6022849A (en) * | 1987-05-16 | 2000-02-08 | Baxter Biotech Technology Saarl | Mutant recombinant hemoglobins containing heme pocket mutations |
US5599907A (en) * | 1989-05-10 | 1997-02-04 | Somatogen, Inc. | Production and use of multimeric hemoglobins |
ATE246246T1 (de) * | 1989-05-10 | 2003-08-15 | Baxter Biotech Tech Sarl | Herstellung von hämoglobin und analogen davon in nicht-erythrozytzellen |
US5545727A (en) * | 1989-05-10 | 1996-08-13 | Somatogen, Inc. | DNA encoding fused di-alpha globins and production of pseudotetrameric hemoglobin |
WO1998050430A2 (fr) | 1997-05-02 | 1998-11-12 | Somatogen, Inc. | Mutants d'hemoglobine avec expression soluble accrue et/ou evacuation reduite d'oxyde nitrique |
EP1950298A3 (fr) * | 1997-05-02 | 2008-12-24 | Baxter Biotech Technology S.A.R.L. | Mutants d'hémoglobine dotés d'une expression soluble accrue et/ou d'une évacuation réduite de l'oxyde nitrique |
AU784195B2 (en) | 1999-11-12 | 2006-02-16 | Baxter Biotech Technology S.A.R.L. | Reduced side-effect hemoglobin compositions |
US9814759B2 (en) * | 2014-07-02 | 2017-11-14 | Cheer Global Ltd. | Pharmaceutical composition comprising recombinant hemoglobin protein or subunit-based therapeutic agent for cancer targeting treatment |
WO2019003155A1 (fr) * | 2017-06-27 | 2019-01-03 | Vision Global Holdings Limited | Compositions pour thérapie photodynamique et diagnostic par fluorescence de cancers et d'autres maladies |
-
2020
- 2020-01-31 US US16/777,932 patent/US10752672B1/en active Active
- 2020-02-03 JP JP2021544764A patent/JP7066067B2/ja active Active
- 2020-02-03 EP EP20747899.1A patent/EP3837280A4/fr not_active Withdrawn
- 2020-02-03 CA CA3113147A patent/CA3113147C/fr active Active
- 2020-02-03 NZ NZ774144A patent/NZ774144A/en not_active IP Right Cessation
- 2020-02-03 WO PCT/CN2020/074173 patent/WO2020156556A1/fr unknown
- 2020-02-03 AU AU2020214952A patent/AU2020214952B2/en not_active Ceased
- 2020-02-03 KR KR1020217024807A patent/KR102436043B1/ko active IP Right Grant
- 2020-02-03 CN CN202080006276.4A patent/CN113166230A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2020156556A1 (fr) | 2020-08-06 |
CN113166230A (zh) | 2021-07-23 |
KR20210130712A (ko) | 2021-11-01 |
JP7066067B2 (ja) | 2022-05-12 |
US10752672B1 (en) | 2020-08-25 |
JP2022515560A (ja) | 2022-02-18 |
EP3837280A4 (fr) | 2022-05-18 |
CA3113147C (fr) | 2022-03-08 |
AU2020214952A1 (en) | 2021-08-19 |
KR102436043B1 (ko) | 2022-08-23 |
US20200247877A1 (en) | 2020-08-06 |
AU2020214952B2 (en) | 2022-03-03 |
NZ774144A (en) | 2022-02-25 |
CA3113147A1 (fr) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007181465A (ja) | マクロファージ炎症蛋白変種をコードするポリヌクレオチド | |
JPH05255392A (ja) | A−c−bプロインスリン、その製造法および使用法、およびインスリン生産の中間体 | |
AU2015283394B2 (en) | Pharmaceutical composition comprising recombinant hemoglobin protein or subunit-based therapeutic agent for cancer targeting treatment | |
US20160213760A1 (en) | Aprotinin-derived polypeptide-antibody conjugates | |
KR102304114B1 (ko) | Ny-eso에 대한 고친화력 tcr | |
US20200062811A1 (en) | Yap protein inhibiting polypeptide and application thereof | |
EP4159758A1 (fr) | Protéine de fusion rhfgf21, polynucléotide codant pour la protéine de fusion rhfgf21, composition contenant la protéine de fusion rhfgf21, et utilisation de la protéine de fusion rhfgf21 | |
US10441628B2 (en) | High activity tumour inhibitor and preparation method and use thereof | |
JPH0229317B2 (fr) | ||
AU2020214952B2 (en) | Recombinant hemoglobins and methods of preparation and use thereof | |
EP0362259A1 (fr) | Procede de production de cystatine c ou modifications de la cystatine et sequence d'adn destinee a etre utilisee lors de la realisation dudit procede. | |
KR20210108941A (ko) | Afp 항원 인식을 위한 고친화력 t 세포 수용체 | |
CN105884876B (zh) | 一种蚯蚓多肽、其编码序列及其应用 | |
CN107987144B (zh) | 一种蜈蚣多肽SLP_SsTx及其编码基因和应用 | |
CN113501862A (zh) | 一种多肽及其在制备免疫调节药物中的应用 | |
JPS60260522A (ja) | 遺伝子組換体が生産する生理活性物質の安定化法 | |
CN113773400B (zh) | 一种门冬胰岛素衍生物及其应用 | |
CN113773391B (zh) | 一种门冬胰岛素的制备方法 | |
WO2024037263A1 (fr) | Peptide synthétique ayant une faible toxicité in vivo pour inhiber la génération de toxines de staphylococcus aureus et son utilisation | |
KR20210047143A (ko) | 위치특이적으로 비천연아미노산이 도입된 요산산화효소 생산방법, 그의 알부민 복합체 생산 공정 및 그의 약학조성물 | |
WO1995009871A1 (fr) | Nouveau peptide antitumoral | |
JPH03133381A (ja) | 血小板ファクター4の発現ベクター、血小板ファクター4融合蛋白、形質転換微生物及び血小板ファクター4の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210319 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20220419 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61P 7/08 20060101ALI20220411BHEP Ipc: A61K 38/42 20060101ALI20220411BHEP Ipc: C07K 14/805 20060101AFI20220411BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230213 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240229 |