EP3832218B1 - Control unit for opening and closing windows and building comprising such a control unit - Google Patents

Control unit for opening and closing windows and building comprising such a control unit Download PDF

Info

Publication number
EP3832218B1
EP3832218B1 EP19213119.1A EP19213119A EP3832218B1 EP 3832218 B1 EP3832218 B1 EP 3832218B1 EP 19213119 A EP19213119 A EP 19213119A EP 3832218 B1 EP3832218 B1 EP 3832218B1
Authority
EP
European Patent Office
Prior art keywords
building
control unit
window
windows
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19213119.1A
Other languages
German (de)
French (fr)
Other versions
EP3832218A1 (en
EP3832218C0 (en
Inventor
Ernst Kainmüller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP19213119.1A priority Critical patent/EP3832218B1/en
Publication of EP3832218A1 publication Critical patent/EP3832218A1/en
Application granted granted Critical
Publication of EP3832218B1 publication Critical patent/EP3832218B1/en
Publication of EP3832218C0 publication Critical patent/EP3832218C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/02Special arrangements or measures in connection with doors or windows for providing ventilation, e.g. through double windows; Arrangement of ventilation roses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/75Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for maintaining constant air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F2007/0025Ventilation using vent ports in a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F2007/004Natural ventilation using convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air

Definitions

  • the present invention relates to a building according to the preamble of claim 1.
  • the temperature, wind, rain and humidity can be measured as actuating signals for a control unit which controls the opening and closing of windows.
  • the desired internal temperature is usually used as the control variable.
  • CN 107575119A describes a control that enables windows to be opened and closed depending on the volume, humidity and wind speed, so that on the one hand the window is closed when there is heavy rain or strong wind or loud noise, so that no damage occurs and undisturbed sleep is possible, and on the other hand the window is/remains open when there are no adverse effects from the environment.
  • EP 1225399 A1 describes the equipment of each window with its own measuring unit to determine the local weather conditions.
  • the weather conditions can be used to decide whether or not to ventilate, for example depending on whether opening a window causes local damage or not.
  • EP 3457041 A1 describes a system for ventilating a building, in which the opening of one damper is controlled as a function of another damper. Temperatures from different rooms can also be taken into account.
  • Air exchange describes how often the entire air in a room was exchanged per unit of time, usually one hour. Although possible CN 107575119A The fact that the air exchange can take place under good environmental conditions does not control the extent of the air exchange.
  • a building with a control unit according to the preamble of claim 1 is off WO 00/39506 A known.
  • a school is mentioned in this document (last paragraph on page 13), but one or more control units 33 are provided in several separate rooms (as is always the case in schools). This means that each room can be ventilated individually.
  • each classroom only has the windows on one side of the room; on the opposite side is the door to the corridor, as shown in the attached 1 is shown.
  • the aim of the invention is to provide a building with a control unit that provides a required air exchange by means of natural convection in a well reproducible manner.
  • the rooms are fluidically connected to one another in such a way that, when the windows are open, air can be transported from one side of the building to the opposite side of the building (possibly also to another side of the building).
  • the pressure difference between opposite sides of a building can be determined relatively accurately on the basis of wind speed and wind direction, and this pressure difference also changes only slightly if the wind speed or wind direction changes slightly.
  • the proposed measures thus make it possible to achieve a constant exchange of air by varying the opening angle to reach. This enables a pleasant room and learning climate, especially in schools, but also in other buildings.
  • control unit receives the wind direction and the wind speed as input variables and uses them to determine the differential pressure between the two sides of the building.
  • the measuring device for determining the wind direction and the wind speed is provided at a minimum distance of 10 m, preferably 20 m, from the building, there is the additional advantage that gusts of wind can be detected before they hit the building. This means that the windows can be closed further before the pressure difference in the building increases and drafts occur. Conversely, if the measuring device used to determine the wind direction and wind speed detects a drop in the wind, you will have to wait a few seconds before opening the window further, because the outside pressure at the window also drops with a time lag.
  • a radiator is provided under at least one window, with a grille with a skirt provided above the radiator but below the window as a resistance to reducing the flow of warm air in front of the window is.
  • the radiator prevents the cold air flowing in through the window Air sinks downwards, which would be uncomfortable for people sitting near the window.
  • the grille with apron prevents an excessive heat curtain from forming in front of the window, which would reduce the desired air exchange.
  • Figure 1 shows the floor plan of a highly simplified building to which the present invention can be applied; and 2 shows a tilting window with an arrangement to keep unpleasant cold air inside to avoid winter.
  • the building 11 consists of only two rooms 12, 13, between which a corridor 14 is located.
  • the corridor 14 can be entered via an entrance door 41; from corridor 14 you can reach rooms 12 and 13 via doors 42 and 43 respectively.
  • the doors 41, 42 and 43 are normally closed so that they do not affect the air exchange.
  • Both the space 12 and the space 13 are fluidically connected to the corridor 14 through overflow openings 42 and 43, respectively.
  • These overflow openings 42 and 43 are preferably provided in a suspended ceiling; however, all other known overflow openings can also be used.
  • narrow windows 22 and 32 or 23 and 33 are provided, the opening angle of which can be adjusted by the control device according to the invention. Of course, further windows (in particular for sufficient daylight) can be provided.
  • the present invention is intended in particular for schools where classrooms are provided on both sides of a corridor.
  • a skylight window is controlled to Constantly supplying the classroom with fresh air.
  • An air change of 1.5 h -1 is aimed for.
  • the skylight has a length of 1.5 m and a height of 0.5 m, ie an area of 0.75 m 2 .
  • the spatial geometry of the class is 9 mx 9 mx 3 m, so the class has a volume of 243 m 3 . This means: the volume flow should be 364.5 m 3 /h.
  • the window manufacturers usually measure the air flow through their windows very precisely depending on the opening angle and the pressure difference (or calculate it using simulation calculations).
  • the window given in the example has 0.75 m 2 , ie 7500 cm 2 . This area is divided into 7500 parts T i , each with a side area of 1 cm ⁇ 1 cm, and the flow velocity v i (more precisely, its component in the spatial direction) is determined in this field.
  • the total airflow is then:
  • the result for the window given in the example is: ⁇ b>Table 1 ⁇ /b> 2 pa 4 pa 6 pa 8 pa 10 Pa 12 Pa 3° 165m3 /h 231 m3 /hr 280m3 /h 327 m3 /h 366 m3 /h 403 m3 /h 5° 252 m3 /h 289 m3 /hr 374 m3 /h 413 m3 /h 462 m3 /h 514 m3 /h 10° 304 m3 /h 334 m3 /hr 415 m3 /h 458 m3 /h 521 m3 /h 563 m3 /h 15° 312 m3 /h 347 m3 /h 431 m3 /h 483 m3 /h 541 m3 /h 597 m3 /h 20° 275m3 /h 349 m3 /h 437
  • a heater 4 under the window 22, as is generally the case with many windows anyway. Without further measures, however, the warm air rising from the radiator 4 would form a heat curtain that would not completely prevent the desired air exchange, but would greatly reduce it, which of course is undesirable. For this reason, a grille 3 with an apron is provided over the radiator 4 as a resistance to reducing the flow of warm air in front of the window. It is ideal when the reduced flow of hot air just prevents the cold air 2 from sinking down.
  • the radiator 4 is preferably guided by the outside temperature.
  • the heating output is determined by the flow of cold air 2 so that there are no drafts and the room is not overheated, e.g. at 0°C outside temperature the radiator temperature is kept at 35°C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)
  • Building Environments (AREA)

Description

Technisches Gebiettechnical field

Die vorliegende Erfindung betrifft ein Gebäude gemäß dem Oberbegriff von Anspruch 1.The present invention relates to a building according to the preamble of claim 1.

Stand der TechnikState of the art

Nach derzeitigem Stand der Technik ist es bekannt, dass für eine Steuereinheit, die das Öffnen und Schließen von Fenstern steuert, als Stellsignale die Temperatur, Wind, Regen und Feuchtigkeit gemessen werden können. Als Steuergröße wird meistens die gewünschte Innentemperatur herangezogen.According to the current state of the art, it is known that the temperature, wind, rain and humidity can be measured as actuating signals for a control unit which controls the opening and closing of windows. The desired internal temperature is usually used as the control variable.

CN 107575119 A beschreibt eine Steuerung, die das Öffnen und Schließen von Fenstern in Abhängigkeit von Lautstärke, Feuchtigkeit und Windstärke ermöglicht, damit einerseits das Fenster geschlossen wird, wenn starker Regen oder starker Wind oder starker Lärm auftreten, damit keine Schäden entstehen bzw. ungestörter Schlaf möglich ist, und andererseits das Fenster geöffnet wird/bleibt, wenn keine Beeinträchtigungen durch die Umwelt auftreten. CN 107575119A describes a control that enables windows to be opened and closed depending on the volume, humidity and wind speed, so that on the one hand the window is closed when there is heavy rain or strong wind or loud noise, so that no damage occurs and undisturbed sleep is possible, and on the other hand the window is/remains open when there are no adverse effects from the environment.

EP 1225399 A1 beschreibt die Ausstattung jeden Fensters mit einer eigenen Messeinheit, um die lokalen Witterungsverhältnisse festzustellen. Anhand der Witterungsverhältnisse kann entschieden werden, ob gelüftet werden soll oder nicht, beispielsweise abhängig davon, ob das Öffnen eines Fensters einen lokalen Schaden verursacht oder nicht. EP 1225399 A1 describes the equipment of each window with its own measuring unit to determine the local weather conditions. The weather conditions can be used to decide whether or not to ventilate, for example depending on whether opening a window causes local damage or not.

EP 3457041 A1 beschreibt ein System zum Lüften eines Gebäudes, wobei die Öffnung einer Klappe in Abhängigkeit einer anderen Klappe gesteuert wird. Hierbei können auch Temperaturen von verschiedenen Räumen berücksichtigt werden. EP 3457041 A1 describes a system for ventilating a building, in which the opening of one damper is controlled as a function of another damper. Temperatures from different rooms can also be taken into account.

Dieses Vorgehen berücksichtigt aber nicht, dass in Räumen auch bei widrigen Umweltbedingungen ein gewisser Luftaustausch gewünscht wird. Luftaustausch bezeichnet, wie oft pro Zeiteinheit, meistens einer Stunde, die gesamte Luft in einem Raum getauscht wurde. Zwar ermöglicht CN 107575119 A , dass der Luftaustausch bei guten Umweltbedingungen stattfinden kann, steuert aber nicht das Ausmaß des Luftaustauschs.However, this procedure does not take into account that a certain air exchange is desired in rooms even under adverse environmental conditions. Air exchange describes how often the entire air in a room was exchanged per unit of time, usually one hour. Although possible CN 107575119A The fact that the air exchange can take place under good environmental conditions does not control the extent of the air exchange.

Ein Gebäude mit einer Regeleinheit gemäß dem Oberbegriff von Patentanspruch 1 ist aus WO 00/39506 A bekannt. Es ist in dieser Schrift eine Schule erwähnt (letzter Absatz auf Seite 13), aber es sind in mehreren getrennten Räumen (wie dies bei Schulen immer der Fall ist) jeweils eine oder mehrere Steuereinheiten 33 vorgesehen. Das bedeutet, dass jeder Raum individuell gelüftet werden kann.A building with a control unit according to the preamble of claim 1 is off WO 00/39506 A known. A school is mentioned in this document (last paragraph on page 13), but one or more control units 33 are provided in several separate rooms (as is always the case in schools). This means that each room can be ventilated individually.

In großen Gebäuden (wie Schulen) gibt es üblicher Weise einen Gang in der Mitte, und zu beiden Seiten des Gangs sind die Klassenzimmer angeordnet. Somit hat jedes Klassenzimmer die Fenster immer nur an einer Seite des Raums; an der gegenüberliegenden Seite befindet sich die Türe zum Gang, wie dies in der beiliegenden Fig. 1 dargestellt ist.In large buildings (such as schools) there is usually a central aisle with classrooms on either side of the aisle. Thus, each classroom only has the windows on one side of the room; on the opposite side is the door to the corridor, as shown in the attached 1 is shown.

Normalerweise sind die einzelnen Räume nicht strömungstechnisch miteinander verbunden (außer, man ließe die Türen zum Gang offen), und die WO 00/39506 A bildet hier keine Ausnahme. Nun ist bei solch einer Anordnung aber das Problem, dass man kaum ausreichend lüften kann, ohne störende Zugluft zu erzeugen: denn wenn die Luft vom Fenster bis zur gegenüberliegenden Raumseite strömen soll (auch dort soll der notwendige Luftwechsel stattfinden), muss man die Fenster relativ weit öffnen, und dann gibt es in der Nähe der Fenster immer wieder starke, störende Zugluft.Normally, the individual rooms are not fluidly connected (unless the doors to the corridor are left open), and the WO 00/39506 A is no exception here. The problem with such an arrangement is that you can hardly ventilate sufficiently without creating annoying drafts: because if the air is to flow from the window to the opposite side of the room (the necessary air exchange should also take place there), you have to close the window relatively open wide, and then again and again there are strong, disturbing drafts near the windows.

Es gibt Untersuchungen darüber, wie stark der Luftwechsel bei solch einer Raumanordnung abhängig vom Öffnungswinkel der Fenster, der Temperaturdifferenz zwischen Raumluft und Außenluft, dem Wind u.dgl. ist, mit dem Ergebnis, dass der Luftwechsel nur sehr schlecht vorhersagbar ist.There are investigations into how strong the air exchange in such a room arrangement depends on the opening angle of the windows, the temperature difference between the indoor air and the outside air, the wind, etc., with the result that the air exchange is very difficult to predict.

Das ist auch anschaulich plausibel. Nehmen wir an, in einem Klassenzimmer ist das vorderste und das hinterste Fenster geöffnet. Wenn nun der Wind relativ genau rechtwinkelig auf die Fassade gerichtet ist, wird sich lediglich der Druck im Klassenzimmer erhöhen (Staudruck), es wird aber fast keine Luftströmung bewirkt werden. Ändert sich nun die Windrichtung (auch nur wenig) so, dass der Wind (zumindest ein bisschen) von hinten kommt, dann wird sich im Klassenzimmer relativ rasch eine Luftströmung von hinten nach vorne aufbauen ("es zieht"). Das ist regeltechnisch kaum zu beherrschen.This is also visually plausible. Suppose the front and rear windows are open in a classroom. If the wind is directed relatively exactly at right angles to the facade, only the pressure in the classroom will increase (dynamic pressure), but almost no air flow will be caused. If the wind direction changes (even just a little) so that the wind comes (at least a little) from behind, then the classroom becomes relative rapidly build up airflow from back to front ("it pulls"). Technically, this is almost impossible to control.

Am besten reproduzierbar sind die Ergebnisse noch, wenn man an kalten Tagen zwei übereinander angeordnete Kippfenster öffnet, denn dann strömt die Luft (auch ohne Wind) beim unteren Kippfenster herein und beim oberen Kippfenster hinaus (Kaminwirkung). Das hat aber den Nachteil, dass die Schulkinder, die vor dem geöffneten unteren Kippfenster sitzen, direkt von der kalten Außenluft angeströmt werden, was nicht akzeptabel ist.The results are best reproducible if you open two tilting windows arranged one above the other on cold days, because then the air (even without wind) flows in through the bottom tilting window and out through the top tilting window (chimney effect). However, this has the disadvantage that the schoolchildren sitting in front of the open bottom tilting window are directly exposed to the cold outside air, which is unacceptable.

Kurzbeschreibung der ErfindungBrief description of the invention

Ziel der Erfindung ist es, eine Gebäude mit einer Regeleinheit bereitzustellen, die einen geforderten Luftaustausch mittels natürlicher Konvektion in gut reproduzierbarer Weise bereitstellt.The aim of the invention is to provide a building with a control unit that provides a required air exchange by means of natural convection in a well reproducible manner.

Erfindungsgemäß wird dies durch ein Gebäude mit einer Regeleinheit mit den Merkmalen von Anspruch 1 erreicht.According to the invention, this is achieved by a building with a control unit having the features of claim 1.

Erfindungsgemäß sind die Räume strömungstechnisch so miteinander verbunden, dass bei geöffneten Fenstern ein Lufttransport von einer Seite des Gebäudes zur gegenüberliegenden Seite des Gebäudes (eventuell auch zu einer anderen Seite des Gebäudes) möglich ist. Es wurde nämlich im Rahmen der vorliegenden Erfindung gefunden, dass der Druckunterschied zwischen gegenüberliegenden Gebäudeseiten relativ genau auf Grund von Windgeschwindigkeit und Windrichtung bestimmt werden kann, und dieser Druckunterschied ändert sich auch nur wenig, wenn sich die Windgeschwindigkeit oder die Windrichtung ein wenig ändern.According to the invention, the rooms are fluidically connected to one another in such a way that, when the windows are open, air can be transported from one side of the building to the opposite side of the building (possibly also to another side of the building). Namely, it was found within the scope of the present invention that the pressure difference between opposite sides of a building can be determined relatively accurately on the basis of wind speed and wind direction, and this pressure difference also changes only slightly if the wind speed or wind direction changes slightly.

Dieser Druckunterschied wirkt sich wiederum sehr gut reproduzierbar auf den Luftwechsel (d.h. die Geschwindigkeit der Luftströmung im Gebäude) aus. Somit kann man mit relativ wenig Regelaufwand die Fenster so ansteuern, dass ein gewünschter Luftwechsel erreicht wird, ohne Zugluft zu riskieren.This pressure difference in turn has a very reproducible effect on the air exchange (i.e. the speed of the air flow in the building). With relatively little control effort, the windows can thus be controlled in such a way that the desired air exchange is achieved without risking draughts.

Durch die vorgeschlagenen Maßnahmen ist es somit möglich, einen konstanten Luftaustausch durch Variation des Öffnungswinkels zu erreichen. Das ermöglicht besonders in Schulen, aber auch in anderen Gebäuden, ein angenehmes Raum- und Lernklima.The proposed measures thus make it possible to achieve a constant exchange of air by varying the opening angle to reach. This enables a pleasant room and learning climate, especially in schools, but also in other buildings.

Eine genaue Messung des Differenzdrucks zwischen zwei Seiten eines Gebäudes ist relativ aufwändig. Daher ist nach einer Ausgestaltung der Erfindung vorgesehen, dass die Regeleinheit als Eingangsgrößen die Windrichtung und die Windgeschwindigkeit erhält und daraus den Differenzdruck zwischen den beiden Seiten des Gebäudes ermittelt.An accurate measurement of the differential pressure between two sides of a building is relatively complex. Therefore, according to one embodiment of the invention, it is provided that the control unit receives the wind direction and the wind speed as input variables and uses them to determine the differential pressure between the two sides of the building.

Es ist nämlich mit heutigen Simulationsmethoden relativ einfach möglich, den Differenzdruck zwischen zwei Seiten eines Gebäudes in Abhängigkeit von der Windrichtung und der Windgeschwindigkeit zu berechnen. Diese Berechnung braucht nur einmal für einige Windrichtungen und Windgeschwindigkeiten durchgeführt und das Ergebnis in der Steuereinheit abgespeichert werden; wenn Zwischenwerte auftreten, kann die Steuereinheit zwischen den abgespeicherten Werten interpolieren oder auch einfach den nächstliegenden Wert nehmen. Zur Messung der Windrichtung und der Windstärke ist lediglich ein Messgerät, in Form eines Rotations-Anemometer oder eines Ultraschall-Anemometers außerhalb des Gebäudes notwendig.With today's simulation methods, it is relatively easy to calculate the differential pressure between two sides of a building depending on the wind direction and wind speed. This calculation only needs to be carried out once for a few wind directions and wind speeds and the result stored in the control unit; if intermediate values occur, the control unit can interpolate between the stored values or simply take the closest value. To measure the wind direction and wind speed, only a measuring device is required outside the building in the form of a rotation anemometer or an ultrasonic anemometer.

Wenn das Messgerät zur Bestimmung der Windrichtung und der Windgeschwindigkeit in einem Mindestabstand von 10 m, vorzugsweise 20 m, vom Gebäude vorgesehen ist, ergibt sich der zusätzliche Vorteil, dass Windböen erkannt werden können, bevor sie auf das Gebäude auftreffen. Das heißt die Fenster können bereits weiter geschlossen werden, bevor die Druckdifferenz am Gebäude ansteigt und Zugluft auftritt. Umgekehrt wird man - wenn das Messgerät zur Bestimmung der Windrichtung und der Windgeschwindigkeit ein Abflauen des Windes erkennt - noch einige Sekunden zuwarten, bis man die Fenster weiter öffnet, weil der Außendruck am Fenster auch zeitversetzt absinkt.If the measuring device for determining the wind direction and the wind speed is provided at a minimum distance of 10 m, preferably 20 m, from the building, there is the additional advantage that gusts of wind can be detected before they hit the building. This means that the windows can be closed further before the pressure difference in the building increases and drafts occur. Conversely, if the measuring device used to determine the wind direction and wind speed detects a drop in the wind, you will have to wait a few seconds before opening the window further, because the outside pressure at the window also drops with a time lag.

Bei einem solchen Gebäude, das durch solch eine Regeleinheit geregelt ist, ist es zweckmäßig, wenn unter mindestens einem Fenster ein Heizkörper vorgesehen ist, wobei über dem Heizkörper, aber unter dem Fenster ein Gitter mit Schürze als Widerstand zur Reduzierung des Warmluftstromes vor dem Fenster vorgesehen ist. Durch den Heizkörper wird im Winter verhindert, dass die durch das Fenster einströmende kalte Luft nach unten sinkt, was von Personen, die in der Nähe des Fensters sitzen, als unangenehm empfunden würde. Durch das Gitter mit Schürze wird andererseits verhindert, dass sich vor dem Fenster ein zu starker Wärmevorhang ausbildet, der den angestrebten Luftwechsel reduzieren würde.In such a building, which is regulated by such a control unit, it is expedient if a radiator is provided under at least one window, with a grille with a skirt provided above the radiator but below the window as a resistance to reducing the flow of warm air in front of the window is. In winter, the radiator prevents the cold air flowing in through the window Air sinks downwards, which would be uncomfortable for people sitting near the window. On the other hand, the grille with apron prevents an excessive heat curtain from forming in front of the window, which would reduce the desired air exchange.

Kurze Beschreibung der ZeichnungsfigurenBrief description of the drawing figures

An Hand des folgenden Ausführungsbeispiels wird die Erfindung näher erläutert. Fig. 1 zeigt den Grundriss eines stark vereinfachten Gebäudes, bei dem die vorliegende Erfindung angewendet werden kann; und Fig. 2 zeigt ein Kippfenster mit einer Anordnung, um unangenehme Kaltluft im Winter zu vermeiden.The invention is explained in more detail on the basis of the following exemplary embodiment. 1 Figure 1 shows the floor plan of a highly simplified building to which the present invention can be applied; and 2 shows a tilting window with an arrangement to keep unpleasant cold air inside to avoid winter.

Beschreibung der AusführungsartenDescription of execution types

Das Gebäude 11 besteht lediglich aus zwei Räumen 12, 13, zwischen denen ein Gang 14 liegt. Der Gang 14 kann über eine Eingangstür 41 betreten werden; vom Gang 14 kann man über Türen 42 bzw. 43 in die Räume 12 und 13 gelangen. Die Türen 41, 42 und 43 sind im Normalfall geschlossen, sodass sie sich auf den Luftaustausch nicht auswirken.The building 11 consists of only two rooms 12, 13, between which a corridor 14 is located. The corridor 14 can be entered via an entrance door 41; from corridor 14 you can reach rooms 12 and 13 via doors 42 and 43 respectively. The doors 41, 42 and 43 are normally closed so that they do not affect the air exchange.

Sowohl der Raum 12 als auch der Raum 13 sind mit dem Gang 14 strömungstechnisch durch Überströmöffnungen 42 bzw. 43 verbunden. Diese Überströmöffnungen 42 und 43 sind vorzugsweise in einer abgehängten Decke vorgesehen; es sind aber auch alle anderen bekannten Überströmöffnungen gleichermaßen anwendbar. In den Räumen 12 und 13 sind jeweils schmale Fenster 22 und 32 bzw. 23 und 33 vorgesehen, deren Öffnungswinkel durch die erfindungsgemäße Steuereinrichtung eingestellt werden kann. Selbstverständlich können weitere Fenster (insbesondere für ausreichendes Tageslicht) vorgesehen sein.Both the space 12 and the space 13 are fluidically connected to the corridor 14 through overflow openings 42 and 43, respectively. These overflow openings 42 and 43 are preferably provided in a suspended ceiling; however, all other known overflow openings can also be used. In the rooms 12 and 13 narrow windows 22 and 32 or 23 and 33 are provided, the opening angle of which can be adjusted by the control device according to the invention. Of course, further windows (in particular for sufficient daylight) can be provided.

Gedacht ist die vorliegende Erfindung insbesondere für Schulen, wo zu beiden Seiten eines Ganges Klassenzimmer vorgesehen sind.The present invention is intended in particular for schools where classrooms are provided on both sides of a corridor.

Das folgende Beispiel soll die Berechnung verdeutlichen.The following example should clarify the calculation.

Die Bestimmung, wie groß der Druckabfall bei den Fenstern eines Klassenzimmers ist, wenn der Druckunterschied zwischen Luv- und Leeseite des Gebäudes bekannt ist, ist relativ einfach. Nehmen wir an, der Druckunterschied beträgt 7 Pa. Da man üblicherweise einen bestimmten Volumenstrom erreichen möchte und die Überströmöffnungen eine unveränderliche Größe haben, kann man den Druckabfall an diesen Überströmöffnungen durch eine einmalige Messung feststellen. Nehmen wir an, der Druckabfall an den Überströmöffnungen ist jeweils 1,5 Pa, dann ist der Druckabfall an den Fenstern der beiden Klassenzimmer insgesamt 7 Pa-2·1,5 Pa = 4 Pa, und wenn die Fenster gleich weit geöffnet sind, dann gibt es an den Fenstern der beiden Klassenzimmer jeweils einen Druckabfall von 2 Pa.Determining how large the pressure drop across a classroom's windows is when the pressure differential between the windward and leeward sides of the building is known is relatively straightforward. Let's assume the pressure difference is 7 Pa. Since one usually wants to achieve a specific volume flow and the overflow openings have a constant size, the pressure drop at these overflow openings can be determined by a single measurement. Suppose the pressure drop across the overflow openings is 1.5 Pa each, then the total pressure drop across the windows of the two classrooms is 7 Pa-2*1.5 Pa = 4 Pa, and if the windows are opened equally, then there is a pressure drop of 2 Pa at the windows of each of the two classrooms.

Nehmen wir an, es wird ein Oberlichtfenster gesteuert, um den Klassenraum konstant mit Frischluft zu versorgen. Es wird ein Luftwechsel von 1,5 h-1 angestrebt. Das Oberlichtfenster hat eine Länge von 1,5 m und eine Höhe von 0,5 m, also eine Fläche von 0,75 m2. Die Raumgeometrie der Klasse beträgt 9 m x 9 m x 3 m, die Klasse hat also ein Volumen von 243 m3. Das bedeutet: der Volumenstrom soll 364,5 m3/h betragen.Suppose a skylight window is controlled to Constantly supplying the classroom with fresh air. An air change of 1.5 h -1 is aimed for. The skylight has a length of 1.5 m and a height of 0.5 m, ie an area of 0.75 m 2 . The spatial geometry of the class is 9 mx 9 mx 3 m, so the class has a volume of 243 m 3 . This means: the volume flow should be 364.5 m 3 /h.

Die Fensterhersteller vermessen üblicherweise den Luftstrom durch ihre Fenster abhängig vom Öffnungswinkel und der Druckdifferenz sehr genau (bzw. errechnen ihn über Simulationsrechnungen). Das im Beispiel angeführte Fenster hat 0,75 m2, also 7500 cm2. Man unterteilt diese Fläche in 7500 Teile Ti mit jeweils 1 cm · 1 cm Seitenfläche und bestimmt die Strömungsgeschwindigkeit vi (genauer gesagt deren Komponente in Raumrichtung) in diesem Feld. Der gesamte Luftstrom ist dann:

Figure imgb0001
The window manufacturers usually measure the air flow through their windows very precisely depending on the opening angle and the pressure difference (or calculate it using simulation calculations). The window given in the example has 0.75 m 2 , ie 7500 cm 2 . This area is divided into 7500 parts T i , each with a side area of 1 cm×1 cm, and the flow velocity v i (more precisely, its component in the spatial direction) is determined in this field. The total airflow is then:
Figure imgb0001

Für das im Beispiel angeführte Fenster ergibt sich: Tabelle 1 2 Pa 4 Pa 6 Pa 8 Pa 10 Pa 12 Pa 165 m3/h 231 m3/h 280 m3/h 327 m3/h 366 m3/h 403 m3/h 252 m3/h 289 m3/h 374 m3/h 413 m3/h 462 m3/h 514 m3/h 10° 304 m3/h 334 m3/h 415 m3/h 458 m3/h 521 m3/h 563 m3/h 15° 312 m3/h 347 m3/h 431 m3/h 483 m3/h 541 m3/h 597 m3/h 20° 275 m3/h 349 m3/h 437 m3/h 483 m3/h 544 m3/h 601 m3/h The result for the window given in the example is: <b>Table 1</b> 2 pa 4 pa 6 pa 8 pa 10 Pa 12 Pa 165m3 /h 231 m3 /hr 280m3 /h 327 m3 /h 366 m3 /h 403 m3 /h 252 m3 /h 289 m3 /hr 374 m3 /h 413 m3 /h 462 m3 /h 514 m3 /h 10° 304 m3 /h 334 m3 /hr 415 m3 /h 458 m3 /h 521 m3 /h 563 m3 /h 15° 312 m3 /h 347 m3 /h 431 m3 /h 483 m3 /h 541 m3 /h 597 m3 /h 20° 275m3 /h 349 m3 /h 437 m3 /h 483 m3 /h 544 m3 /h 601 m3 /h

Man sieht, dass zwischen 10°, 15° und 20° Öffnungswinkel sich der Luftwechsel nur relativ wenig ändert; zwischen 3° und 10° ist die Änderung hingegen relativ stark.You can see that the air exchange changes relatively little between 10°, 15° and 20° opening angle; between 3° and 10°, however, the change is relatively strong.

Man kann die Werte in dieser Tabelle durch folgende empirische Formel nähern:

Figure imgb0002
The values in this table can be approximated by the following empirical formula:
Figure imgb0002

Dabei bedeutet qv den Luftstrom, α den Öffnungswinkel des Fensters und Δp die Druckdifferenz am Fenster. Durch Umformung kann man α ausdrücken:

Figure imgb0003
Here q v means the air flow, α the opening angle of the window and Δp is the pressure difference across the window. By rearranging one can express α:
Figure imgb0003

Strebt man also einen Volumenstrom von 364,5 m3/h an, so ergibt sich bei 6 Pa Druckdifferenz ein Öffnungswinkel von rund 4° und bei 10 Pa Druckdifferenz ein Öffnungswinkel von 3°. Bei einer Druckdifferenz von 4 Pa ist ein derartiges Fenster nicht ausreichend. Man wird in der Praxis daher mehrere derartige Kippfenster vorsehen.So if you aim for a volume flow of 364.5 m 3 /h, a pressure difference of 6 Pa results in an opening angle of around 4° and a pressure difference of 10 Pa results in an opening angle of 3°. With a pressure difference of 4 Pa, such a window is not sufficient. In practice, therefore, several tilting windows of this type will be provided.

Nehmen wir an, dass in jedem Klassenzimmer zwei derartige Kippfenster vorgesehen sind. Dann muss durch jedes Fenster nur noch 364,5 m3 /h / 2, also rund 182 m3/h strömen. Bei einer Druckdifferenz von 2 Pa ergibt sich dann ein Öffnungswinkel von 3,5° für jedes der beiden Fenster.Let's assume that there are two such bottom-hung windows in each classroom. Then only 364.5 m 3 /h / 2, i.e. around 182 m 3 /h, has to flow through each window. A pressure difference of 2 Pa results in an opening angle of 3.5° for each of the two windows.

Diese Berechnungen stimmen für ein normales Kippfenster recht gut, wenn die Innentemperatur und die Außentemperatur relativ ähnlich sind, wie dies im Sommer meist der Fall ist. Im Winter kann aber die Temperaturdifferenz erheblich sein, Temperaturunterschiede von mehr als 30° sind durchaus nicht selten. An solchen Tagen kommt zu dem oben berechneten Luftwechsel noch ein weiterer Luftwechsel hinzu, der thermisch bedingt ist, wie dies in Fig. 2 angedeutet ist: Warme Luft 1 strömt über das Fenster 22 (ein schmales Oberlichte-Kippfenster) nach außen und kalte Luft 2 strömt nach innen und sinkt (wegen der höheren Dichte) nach unten. Diesen Effekt kann man natürlich berücksichtigen und das Fenster 22 weiter schließen als sich dies auf Grund der obigen Berechnung ergibt; dennoch sinkt die kalte Luft herunter, was für eine Person, die knapp neben der Wand mit dem Fenster 22 und unter diesem Fenster 22 sitzt, unangenehm ist. Aus diesem Grund kann man unter dem Fenster 22 einen Heizkörper 4 anbringen, wie dies ohnehin ganz allgemein bei vielen Fenstern der Fall ist. Ohne weitere Maßnahmen würde aber die vom Heizkörper 4 aufsteigende Warmluft einen Wärmevorhang bilden, der den gewünschten Luftwechsel zwar nicht vollständig unterbinden, aber doch stark reduzieren würde, was natürlich unerwünscht ist. Aus diesem Grund ist über dem Heizkörper 4 ein Gitter 3 mit Schürze als Widerstand zur Reduzierung des Warmluftstromes vor dem Fenster vorgesehen. Es ist ideal, wenn der reduzierte Warmluftstrom gerade verhindert, dass die kalte Luft 2 nach unten sinkt.These calculations are quite correct for a normal bottom hung window if the inside temperature and the outside temperature are relatively similar, as is usually the case in summer. In winter, however, the temperature difference can be significant, temperature differences of more than 30° are not uncommon. On such days, in addition to the air change calculated above, there is another air change that is thermally conditioned, as is shown in 2 is indicated: Warm air 1 flows through the window 22 (a narrow skylight tilting window) to the outside and cold air 2 flows inwards and sinks (because of the higher density) downwards. Of course, this effect can be taken into account and the window 22 can be closed further than is the result of the above calculation; nevertheless, the cold air sinks down, which is uncomfortable for a person sitting close to the wall with the window 22 and under this window 22. For this reason, one can attach a heater 4 under the window 22, as is generally the case with many windows anyway. Without further measures, however, the warm air rising from the radiator 4 would form a heat curtain that would not completely prevent the desired air exchange, but would greatly reduce it, which of course is undesirable. For this reason, a grille 3 with an apron is provided over the radiator 4 as a resistance to reducing the flow of warm air in front of the window. It is ideal when the reduced flow of hot air just prevents the cold air 2 from sinking down.

Der Heizkörper 4 ist vorzugsweise außentemperaturgeführt. Die Heizleistung wird durch den Strom kalter Luft 2 bestimmt, damit es zu keinen Zugerscheinungen kommt und der Raum nicht überwärmt, z.B. wird bei 0°C Außentemperatur die Heizkörpertemperatur auf 35°C gehalten.The radiator 4 is preferably guided by the outside temperature. The heating output is determined by the flow of cold air 2 so that there are no drafts and the room is not overheated, e.g. at 0°C outside temperature the radiator temperature is kept at 35°C.

Claims (4)

  1. Building (11) with at least two rooms and a control unit for opening and closing of at least two windows (22, 23; 32, 33) in a building (11), for example in a school, wherein the control unit ensures the opening and closing of the windows (22, 23; 32, 33) depending on the weather conditions; wherein the control unit, taking into account the geometry of the windows (22, 23; 32, 33) and the size of the rooms (12, 13), calculates an opening angle of at least one window (22, 23; 32, 33) in each of the at least two rooms, which ensures that a selected air exchange is achieved, characterized in that the rooms (12, 13) and the corridors (14) of the building, respectively, are fluidically connected to each other, such that when the windows (22, 23; 32, 33) are opened, an air transport from one side of the building (11) to another side, in particular to the opposite side of the building (11) is made possible, and that said control unit also takes into account the differential pressure between these sides of the building (11).
  2. Building (11) according to claim 1, characterized in that the control unit obtains the wind direction and the wind speed as input variables, and determines therefrom the differential pressure between the two sides of the building (11).
  3. Building (11) according to claim 1 or 2, characterized in that a heating element (4) is provided beneath at least one window (22), wherein above the heating element (4), but below the window (22) a grid (3) having an apron as a resistance for reducing the flow of warm air in front of the window (22) is provided.
  4. Arrangement of a building (11) having a control unit according to one of the claims 1 to 3 and at least one measuring device, characterized in that the at least one measuring device for determining the wind direction and the wind speed is provided at a minimum distance of 10 m, preferably 20 m, from the building (11).
EP19213119.1A 2019-12-03 2019-12-03 Control unit for opening and closing windows and building comprising such a control unit Active EP3832218B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19213119.1A EP3832218B1 (en) 2019-12-03 2019-12-03 Control unit for opening and closing windows and building comprising such a control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19213119.1A EP3832218B1 (en) 2019-12-03 2019-12-03 Control unit for opening and closing windows and building comprising such a control unit

Publications (3)

Publication Number Publication Date
EP3832218A1 EP3832218A1 (en) 2021-06-09
EP3832218B1 true EP3832218B1 (en) 2023-08-30
EP3832218C0 EP3832218C0 (en) 2023-08-30

Family

ID=68766583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19213119.1A Active EP3832218B1 (en) 2019-12-03 2019-12-03 Control unit for opening and closing windows and building comprising such a control unit

Country Status (1)

Country Link
EP (1) EP3832218B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895066B (en) * 2022-04-24 2024-08-23 沈阳工程学院 Wind power detection device of wind turbine

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2643299A1 (en) 1976-09-25 1978-03-30 Wolfgang Mueller Air conditioning air flow monitoring arrangement - uses sensors outside building to measure wind pressure, direction, speed and temp.
DE3519947A1 (en) 1984-06-30 1986-01-09 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Device for regulating the air supply to living and working rooms
EP0877209A2 (en) 1997-05-07 1998-11-11 Gerd Dipl.-Ing. Mann Ventilation device for a building
DE19854016A1 (en) 1998-11-12 2000-05-25 Schoettler Lunos Lueftung Ventilation system for building has control element influenced by regulator or controller and mounted at window in exterior wall to position window in at least open and closed positions
WO2000039506A1 (en) 1998-12-23 2000-07-06 Vkr Holding A/S Computer controlled method and system for controlled natural ventilation of a building
EP1225399A1 (en) 2001-01-18 2002-07-24 Holding Aktiengesellschaft Belimo Arrangement for monitoring and controlling the natural ventilation of rooms and use of said arrangement
EP1553357A1 (en) 2004-01-08 2005-07-13 Aldes Aeraulique Ventilation control device of one room of a building
CN201874254U (en) 2010-10-15 2011-06-22 重庆工程职业技术学院 Room structure with easy ventilation
DE202011000035U1 (en) 2011-01-07 2012-01-25 Trox Gmbh Pressure ventilation system for pressure ventilation of a stairwell in a building
WO2012025122A1 (en) 2010-08-23 2012-03-01 Inventilate Aps A method for controlling a ventilation system for the ventilation of an enclosure and a ventilation system
EP2716985A2 (en) 2012-10-05 2014-04-09 Mitsubishi Electric Corporation Ventilation system, ventilation method, ventilation control, device, and program
JP2015152201A (en) 2014-02-13 2015-08-24 大和ハウス工業株式会社 Window opening or closing system
AT521800A1 (en) 2018-11-06 2020-05-15 Dipl Ing Ernst Kainmueller Control unit for opening and closing windows and buildings with such a control unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575119A (en) 2016-07-01 2018-01-12 台山市云鼎网络技术开发有限公司 A kind of intelligent window control method and system
FR3071309B1 (en) * 2017-09-19 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives VENTILATION SYSTEM OF A BUILDING

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2643299A1 (en) 1976-09-25 1978-03-30 Wolfgang Mueller Air conditioning air flow monitoring arrangement - uses sensors outside building to measure wind pressure, direction, speed and temp.
DE3519947A1 (en) 1984-06-30 1986-01-09 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Device for regulating the air supply to living and working rooms
EP0877209A2 (en) 1997-05-07 1998-11-11 Gerd Dipl.-Ing. Mann Ventilation device for a building
DE19854016A1 (en) 1998-11-12 2000-05-25 Schoettler Lunos Lueftung Ventilation system for building has control element influenced by regulator or controller and mounted at window in exterior wall to position window in at least open and closed positions
WO2000039506A1 (en) 1998-12-23 2000-07-06 Vkr Holding A/S Computer controlled method and system for controlled natural ventilation of a building
EP1225399A1 (en) 2001-01-18 2002-07-24 Holding Aktiengesellschaft Belimo Arrangement for monitoring and controlling the natural ventilation of rooms and use of said arrangement
EP1553357A1 (en) 2004-01-08 2005-07-13 Aldes Aeraulique Ventilation control device of one room of a building
WO2012025122A1 (en) 2010-08-23 2012-03-01 Inventilate Aps A method for controlling a ventilation system for the ventilation of an enclosure and a ventilation system
CN201874254U (en) 2010-10-15 2011-06-22 重庆工程职业技术学院 Room structure with easy ventilation
DE202011000035U1 (en) 2011-01-07 2012-01-25 Trox Gmbh Pressure ventilation system for pressure ventilation of a stairwell in a building
EP2716985A2 (en) 2012-10-05 2014-04-09 Mitsubishi Electric Corporation Ventilation system, ventilation method, ventilation control, device, and program
JP2015152201A (en) 2014-02-13 2015-08-24 大和ハウス工業株式会社 Window opening or closing system
AT521800A1 (en) 2018-11-06 2020-05-15 Dipl Ing Ernst Kainmueller Control unit for opening and closing windows and buildings with such a control unit

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Code of practice for Ventilation principles and designing for natural ventilation ", BRITISH STANDARD BS 5925:1991, 1 December 1995 (1995-12-01), pages 1 - 42, XP093190375
ANONYMOUS: "Aluminium Lüftungsgitter Stegblech Heizungsdeckel 100mm x 1200mm in Weiß RAL9010 ", 4 July 2016 (2016-07-04), XP093190403, Retrieved from the Internet <URL:https://www.amazon.de/gp/aw/d/B01HZTP2QK/?_encoding=UTF8&pd_rd_plhdr=t&aaxitk=42ab0d92b9d8ee0bd5d0ca26a3d60ab5&hsa_cr_id=0%25E2%2580%25A6&th=1>
ANONYMOUS: "Jack Stonehouse Moderne Heizkörperverkleidung aus MDF mit horizontalem Lamellenrost (Eiche, Mini), Holzwerkstoff", 24 January 2018 (2018-01-24), XP093190399, Retrieved from the Internet <URL:https://www.amazon.de/Jack-Stonehouse-Heizungsabdeckung-Horizontalen-Gestrichen/dp/B0793RLTZB/ref=sr_1_1?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=KKP7N3MQEHV5&dib=eyJ2IjoiMSJ9.mSg_-zqLxMaWf1jVItl8i1QHjKMZKqQP2PFAGr0-SJv9MoMd84kLrcaTS6tcZagS2qDHgW0KMRDqADAPWX9SXL5Bur4QO5mnMUodPPrtVIlGZTft09mqueSNTX-zUd6fH21powivEOVp3n938TJ6lSNcDmB4Jv0ajaN9lbJGpdsi5EsSCFv_GxTm5kkMEek2oYI61z4PM3ez0eOZ_pAsUCTFWMno2VNqaUVEFFpDVJpgMpz62VhubEdFQpDkTRL2_kes3ShWsbhum2NzZ-M_UQeXZ8ingVHKMpKXkTAHxTU.br_tyRbmrlvIf61gABBQtIFh4oKN5i3RPkCfXSwdjbA&dib_tag=se&keywords=ack%2BStonehouse%2BModerne%2BHeizk%C3%B6rperverkleidung%2Baus%2BMDF%2Bmit%2Bhorizontalem%2BLamellenrost%2B(Eiche%2C%2BMini)%2C%2BHolzwerkstoff&qid=1722241545&sprefix=ack%2Bstonehouse%2Bmoderne%2Bheizk%C3%B6rperverkleidung%2Baus%2Bmdf%2Bmit%2Bhorizont
AXLEY JAMES W.: "Application of Natural Ventilation for U.S. Commercial Buildings - Climate Suitability Design Strategies & Methods Modeling Studies", REPORT GCR-01-820, 1 December 2001 (2001-12-01), pages 1 - 146, XP093190389
EICKER URSULA, ERHART TOBIAS, GURLICH DANIEL, HAAG MAXMILIAN, SCHULZE TOBIAS: "KonLuft – Energieeffizienz von Gebäuden durch kontrollierte natürliche Lüftung", ABSCHLUSSBERICHT HOCHSCHULE FUR TECHNIK STUTTGART, 31 October 2016 (2016-10-31), pages 213pp, XP093190372
SCHULZE TOBIAS: "NATURAL VENTILATION OF HIGH-RISE BUILDINGS A METHODOLOGY FOR PLANNING WITH DIFFERENT ANALYSIS TOOLS AND CASE-STUDY INTEGRATION ", PH.D. THESIS, 1 November 2015 (2015-11-01), pages 1 - 295, XP093190381

Also Published As

Publication number Publication date
EP3832218A1 (en) 2021-06-09
EP3832218C0 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
EP0044560A2 (en) Ventilation system for forced circulation ventilation of a space
EP1918650B1 (en) Air-conditioning method for a room and air-conditioning device
EP3832218B1 (en) Control unit for opening and closing windows and building comprising such a control unit
EP0164111B1 (en) Sound absorbing and heat insulating compound window with a ventilating device
DE3036661C2 (en) Central hot water heating system
DE2725457A1 (en) Heating and ventilating regulator for occupied rooms - measures air humidity related to occupation density for energy saving
EP1522799B1 (en) Method and device for air conditioning of a room
AT521800A1 (en) Control unit for opening and closing windows and buildings with such a control unit
DE3804232C2 (en) Method and device for cooling rooms
DE8417444U1 (en) Device for installation on windows and doors to improve the climate in common rooms
DE3419001A1 (en) Ventilation device with air preheating
DE102012018666A1 (en) Method for air exchange in rooms of buildings, involves controlling flow volume of exhaust air fan or of supply air fan or of flow cross section of air flow, so that inner air pressure in building is equal to outer air pressure
DE9217896U1 (en) Ventilation system
EP2180269B1 (en) Hybrid room ventilation device
DE3507594C2 (en)
CH672833A5 (en)
DE4232278C1 (en) Ventilating and air-conditioning stables - involves gutter-side input aperture and at least one ridge-side output air aperture
DE29616812U1 (en) Ventilation window or door
DE2636052A1 (en) Cattle stall ventilator and air distributor - has air inlet adjustment regulator plate with push pull activator
DE29615791U1 (en) Double-skinned building facade
AT16812U1 (en) Sensor shield
DE102015215485A1 (en) Method and control device for controlling an actual temperature of a building part
DE202022100213U1 (en) Air-to-air heat exchanger in combination with a window sash
DE1604178B1 (en) Device for temperature control of a building room
DE10020535A1 (en) Method for air-conditioning involves feeding fresh air through radiator into room to be air conditioned, whenever carbon dioxide concentration in room air is too high

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210916

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009127

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230925

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230929

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502019009127

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: GEZE GMBH

Effective date: 20240527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830