EP3821176B1 - Verfahren und system zur fehlererkennung in einem hlk-system - Google Patents

Verfahren und system zur fehlererkennung in einem hlk-system Download PDF

Info

Publication number
EP3821176B1
EP3821176B1 EP19745011.7A EP19745011A EP3821176B1 EP 3821176 B1 EP3821176 B1 EP 3821176B1 EP 19745011 A EP19745011 A EP 19745011A EP 3821176 B1 EP3821176 B1 EP 3821176B1
Authority
EP
European Patent Office
Prior art keywords
room air
value
hvac system
rate
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19745011.7A
Other languages
English (en)
French (fr)
Other versions
EP3821176A1 (de
Inventor
Xinyu Wu
Sheng Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of EP3821176A1 publication Critical patent/EP3821176A1/de
Application granted granted Critical
Publication of EP3821176B1 publication Critical patent/EP3821176B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present invention relates to the field of detection and control, and more especially to a method and a system for detecting a fault of a HVAC system.
  • HVAC Heating, Ventilation and Air Conditioning
  • CN 103090504 discloses a method of the type defined in the pre-amble of claim 1.
  • the present invention provides a method and a system for detecting a fault of a HVAC system, in order to address or at least relieve one or more of the above-described problems existing in prior arts and problems in other aspects.
  • the present invention provides a method for detecting a fault of a HVAC system, comprising the steps of:
  • the room air temperatures are obtained from a temperature controller for controlling the HVAC system.
  • operation data of each compression stage of the HVAC system is obtained from the HVAC system, and the compressor equivalent runtime is obtained by making a calculation based on a capacity ratio of each compression stage.
  • the method further comprises the step of: outputting report information after the fault is determined to have occurred in the HVAC system.
  • the report information is transmitted to a cloud server via a wireless network, the wireless network comprising Wi-Fi, 4G, BT or ZigBee network.
  • the rate of change per unit time of the room air temperatures is determined as an abnormal value when the value property of the rate of change per unit time of the room air temperatures in the cooling mode or the heating mode is contrary to a set value property, or a difference value between the rate of change per unit time of the room air temperatures and zero is less than a preset value; and/or wherein the step of the processing of the values comprises calculating a sum of the values, calculating a arithmetic mean value of the values, or calculating a weighted mean value of the values.
  • the present invention provides a system for detecting a fault of a HVAC system, comprising a processor configured to perform the steps of:
  • the room air temperatures are obtained by the processor from a temperature controller for controlling the HVAC system.
  • operation data of each compression stage of the HVAC system is obtained by the processor from the HVAC system, and the compressor equivalent runtime is obtained by the processor by making a calculation based on a capacity ratio of each compression stage.
  • the processor is further configured to: output report information after the fault is determined to have occurred in the HVAC system.
  • the report information is transmitted to a cloud server via a wireless network, the wireless network comprising Wi-Fi, 4G, BT or ZigBee network.
  • the rate of change per unit time of the room air temperatures is determined as an abnormal value when the value property of the rate of change per unit time of the room air temperatures in the cooling mode or the heating mode is contrary to a set value property, or a difference value between the rate of change per unit time of the room air temperatures and zero is less than a preset value; and/or wherein the step of processing the values comprises calculating a sum of the values, calculating an arithmetic mean value of the values, or calculating a weighted mean value of the values.
  • the method, system and storage for detecting a fault of a HVAC system have significant technical advantages and can be used for on-line fault detection of a HVAC system in order to effectively detect a series of faults such as faults of fast occurrence and faults involving slow degeneration of system performance, and output information such as alerts.
  • This will help relevant staff to find and identify HVAC system terminals possibly having problems more easily, so as to carry out an examination and repair as early as possible, and thereby increase the security and user satisfaction of the HVAC system.
  • Fig. 1 exemplarily shows a basic flow of an embodiment of a method for detecting a fault of a HVAC system, which may be employed to on-line detect a fault of a HVAC system conveniently.
  • the method may comprise the steps of: Firstly, in Step S11, obtaining room air temperatures during the operation of the HVAC system, and obtaining the equivalent runtime of the compressor during the operation of the HVAC system. The data will be used to calculate a rate of change per unit time of the room air temperature discussed hereinafter.
  • the temperature data may be obtained in various ways.
  • the temperature data may be acquired by one or more temperature measuring elements, devices, instruments or the like disposed in the HVAC system, and may also be obtained conveniently from a temperature controller configured to control the HVAC system.
  • Fig. 3 illustrates six room air temperature data A, B, C, D, E and F during the operation of HVAC system, which schematically shows room air temperature fluctuations during the operation of HVAC system.
  • Fig. 2 exemplarily shows a HVAC system provided with two compression stages, i.e. compression stage 1 and compression stage 2.
  • Fig. 3 it schematically shows a compressor equivalent runtime line 3 of one HVAC system after translation
  • operation data of each of the compression stages can be obtained from a HVAC system, and then compressor equivalent runtime is obtained by making a calculation based on respective capacity ratios of these compressor stages. That is to say, by multiplying the runtime of each compression stage and its capacity ratio to obtain a product of each compression stage, and then adding such products of the compression stages, the compressor equivalent runtime can be obtained.
  • an equivalent translation table may be provided based on data from the producer or supplier of the HVAC system or the compressor(s) therein or from professional institutions, or data from a test of a HVAC system or the compressor(s) therein. Therefore, the corresponding compressor equivalent runtime can be obtained by directly by consulting the table.
  • Step S12 making a calculation based on the obtained room air temperatures and compressor equivalent runtime, to obtain a rate of change per unit time of the room air temperature within the compressor equivalent runtime, and distributing the obtained rate of change per unit time of the room air temperatures along a time axis.
  • a change rate per hour of room air temperature may be calculated by using one hour as a unit time.
  • the method of the present invention also allows to select other proper time intervals (e.g., 15 minutes, 30 minutes, 1.5 hours, 2 hours, 5 hours, etc.) as the unit time to calculate the rate of change per unit time of the room air temperature.
  • Step S13 after the rate of change per unit time of the room air temperature are calculated, determining whether a fault occurs in the HVAC system based on changes of the data. This is because the rate of change per unit time of the room air temperature roughly indicates the fluctuation of room air temperature in a set unit time. That is to say, the data may reflect the operation condition of the HVAC system.
  • the HVAC system fails to continuously operate stably, which is embodied as that abnormal fluctuations occur to the rate of change per unit time of the room air temperature. As such, it can be effectively detected and determined that a fault has happened to the HVAC system.
  • the obtained a rate of change per unit time of the room air temperature may be further differentiated based on an operation mode of the HVAC system, to facilitate a fault analysis of the HVAC system based on corresponding changes in the rate of change per unit time of the room air temperature.
  • the obtained rate of change per unit time of the room air temperature are distributed along a time axis.
  • the unit time (such as one hour) employed in the calculation of a rate of change per unit time of the room air temperature is taken as the internal unit of the time axis.
  • the value properties of the rate of change per unit time of the room air temperatures when the HVAC system operates in a cooling mode and a heating mode may be defined as follows: in the cooling mode, the rate of change per unit time of the room air temperature with a normal property of room air temperature is set as a negative value, which is below the zero axis indicated by the dotted line shown in Fig. 4 , while the rate of change per unit time of the room air temperature with an abnormal property of room air temperature is set as a positive value, which is above the zero axis indicated by the dotted line shown in Fig.
  • the rate of change per unit time of the room air temperature with a normal property of room air temperature is set as a positive value, which is above the zero axis indicated by the dotted line shown in Fig. 4
  • the rate of change per unit time of the room air temperature with an abnormal property of room air temperature is set as a negative value, which is below the zero axis indicated by the dotted line shown in Fig. 4 .
  • a data dot 4 of a positive value will be determined as an abnormal value
  • a data dot 5 of a negative value will be determined as an abnormal value.
  • the above-described abnormal values mean the values being deviated from a normal value.
  • the value property of the rate of change per unit time of the room air temperature in the cooling mode or a heating mode being absolutely contrary to a set value property (that is, the value property of a normal value should be a negative value in the cooling mode, while an abnormal value is indicated by a positive value in the cooling mode, whereas the value property of a normal value should be a positive value in the heating mode, while the abnormal value is indicated by a negative value in the heating mode).
  • a set value property that is, the value property of a normal value should be a negative value in the cooling mode, while an abnormal value is indicated by a positive value in the cooling mode, whereas the value property of a normal value should be a positive value in the heating mode, while the abnormal value is indicated by a negative value in the heating mode.
  • the rate of change per unit time of the room air temperature may be determined as an abnormal value.
  • a time window 6 (which may be a runtime window or a calendar time window, and which may be chosen and configured based on specific application requirements) is set, and the number of the rate of change per unit time of the room air temperature with positive values (the number is two in the embodiment of Fig. 4 ) or the number of the rate of change per unit time of the room air temperature with negative values (the number is eight in the embodiment of Fig. 4 ) within the time window 6 is counted.
  • a preset value T which can be chosen and set according to specific application requirements, i.e., the circumstance illustrated by Fig. 5 , in which if a dot P has already exceeded the preset value T, it can be determined that a fault has been occurred in the HVAC system, wherein the fault is likely to be a fault of fast occurrence in the HVAC system (e.g., an operation abnormality occurs to a compressor capacitor), or a fault caused by slow performance degeneration of the HVAC system (e.g., a refrigerant leak, or pipe blocking of a heat exchanger) or others alike.
  • a preset value T which can be chosen and set according to specific application requirements
  • the method allows using various other approaches to determine a HVAC system default based on the above-described rate of change per unit time of the room air temperature.
  • the values of the rate of change per unit time of the room air temperature i.e., the values of abnormal dots
  • appearing within the time window 6 may be processed to obtain a processed value, and then it is determined whether a fault occurs in the HVAC system based on whether the obtained processed value exceeds a set value (which can be chosen and set according to specific application requirements). That is, if the processed value exceeds the set value, it can be determined that a fault has occurred in the HVAC system.
  • Fig 5 illustrates such a determination circumstance as well.
  • various calculation ways may be employed for processing the values of abnormal dots, and they may include, but not be limited to: calculating a sum of the values of these abnormal dots, calculating an arithmetic mean value of the values of these abnormal dots, and calculating a weighted mean value of the values of these abnormal dots. It should be understood that, the method of the present invention completely allows using more other possible calculating ways to process values of abnormal dots. Such a value processing result can reflect serious circumstances of these abnormal dots deviating from a normal value or a normal range. Further, the result may be compared with a set value to determine the possibility of fault occurrence in a HVAC system.
  • report information may be output, which may include, but not be limited to, alerting in the forms such as text, images, sound and/or light so as to urge relevant staff be aware of the fault of the HVAC system and thus can go for fixing the fault as early as possible.
  • the above-described information may be uploaded to a cloud server via a wireless network (such as Wi-Fi, 4G, BT or ZigBee network). In this manner, staff may conveniently and quickly identify, from a cloud server, the HVAC system terminal that has outputted the report information and possibly has a problem.
  • the HVAC system terminal possibly having a problem can be inspected and repaired as soon as possible, and at this time, the owner of the HVAC system might know nothing about that a problem has occurred to the HVAC system (such as refrigerant leaks and damages to compressor capacitor) and that adverse influences might be caused by it momentarily. Therefore, this will extremely increase user satisfaction and can increase security and reliability of the HVAC system.
  • the present invention further provides a system for detecting a fault of a HVAC system.
  • a system for detecting a fault of a HVAC system.
  • a processor which is configured to perform the steps of:
  • the above-described processor may also be configured to perform the steps of:
  • the above-described processor may be further configured to: output report information after the fault is determined to have occurred in the HVAC system.
  • the report information may be uploaded to a cloud server via a wireless network (such as Wi-Fi, 4G, BT or ZigBee network) such that relevant staff can be informed in time and then inspection, repair and the like can be carried out.
  • a wireless network such as Wi-Fi, 4G, BT or ZigBee network

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Claims (12)

  1. Verfahren zum Erkennen eines Fehlers eines HLK-Systems, das die folgenden Schritte umfasst:
    Erlangen von Raumlufttemperaturen und Verdichteräquivalentlaufzeiten während des Betriebs des HLK-Systems;
    Berechnen einer Änderungsrate pro Zeiteinheit der Raumlufttemperaturen innerhalb der Verdichteräquivalentlaufzeit; und
    Bestimmen, ob ein Fehler in dem HLK-System auftritt, basierend auf einer Änderung der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen,
    gekennzeichnet durch die folgenden Schritte:
    Einstellen von Werteigenschaften der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen, wenn das HLK-System in einem Kühlmodus und einem Heizmodus arbeitet, damit sie gegensätzlich sind, und Verteilen der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen, die als anormale Werte bestimmt werden, entlang einer Zeitachse, wobei die Werteigenschaften einen positiven Wert oder einen negativen Wert angeben;
    Zählen der Anzahl der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen, die auf der Zeitachse innerhalb eines Zeitfensters verteilt sind, oder Verarbeiten der Werte der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen innerhalb des Zeitfensters, um einen verarbeiteten Wert zu erlangen; und
    Bestimmen, dass ein Fehler in dem HLK-System aufgetreten ist, wenn die Anzahl einen vorbestimmten Wert überschreitet oder der verarbeitete Wert einen vorab festgelegten Wert überschreitet.
  2. Verfahren nach Anspruch 1, wobei die Raumlufttemperaturen von einer Temperatursteuerung zum Steuern des HLK-Systems erlangt werden.
  3. Verfahren nach Anspruch 1, wobei Betriebsdaten jeder Verdichtungsstufe des HLK-Systems von dem HLK-System erlangt werden und die Verdichteräquivalentlaufzeit durch Vornehmen einer Berechnung basierend auf einem Kapazitätsverhältnis jeder Verdichtungsstufe erlangt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, das ferner den folgenden Schritt umfasst:
    Ausgeben von Berichtsinformationen, nachdem bestimmt wurde, dass der Fehler in dem HLK-System aufgetreten ist.
  5. Verfahren nach Anspruch 4, wobei die Berichtsinformationen über ein drahtloses Netzwerk an einen Cloud-Server übertragen werden, wobei das drahtlose Netzwerk ein Wi-Fi-, 4G-, BT- oder ZigBee-Netz umfasst.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Änderungsrate pro Zeiteinheit der Raumlufttemperaturen als ein anormaler Wert bestimmt wird, wenn die Werteigenschaft der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen in dem Kühlmodus oder dem Heizmodus gegensätzlich zu einer Sollwerteigenschaft ist oder ein Differenzwert zwischen der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen und Null kleiner als ein vorab festgelegter Wert ist; und/oder wobei der Schritt des Verarbeitens der Werte Berechnen einer Summe der Werte, Berechnen eines arithmetischen Mittelwerts der Werte oder Berechnen eines gewichteten Mittelwerts der Werte umfasst.
  7. System zum Erkennen eines Fehlers eines HLK-Systems, umfassend einen Prozessor, der dazu konfiguriert ist, die folgenden Schritte durchzuführen:
    Erlangen von Raumlufttemperaturen und Verdichteräquivalentlaufzeiten während des Betriebs des HLK-Systems;
    Berechnen einer Änderungsrate pro Zeiteinheit der Raumlufttemperaturen innerhalb der Verdichteräquivalentlaufzeit; und
    Bestimmen, ob ein Fehler in dem HLK-System auftritt, basierend auf einer Änderung der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen;
    dadurch gekennzeichnet, dass der Prozessor ferner dazu konfiguriert ist, die folgenden Schritte durchzuführen:
    Einstellen von Werteigenschaften der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen, wenn das HLK-System in einem Kühlmodus und einem Heizmodus arbeitet, damit sie gegensätzlich sind, und Verteilen der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen, die als anormale Werte bestimmt werden, entlang einer Zeitachse, wobei die Werteigenschaften einen positiven Wert oder einen negativen Wert angeben;
    Zählen der Anzahl der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen, die auf der Zeitachse innerhalb eines Zeitfensters verteilt sind, oder Verarbeiten der Werte der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen innerhalb des Zeitfensters, um einen verarbeiteten Wert zu erlangen; und
    Bestimmen, dass ein Fehler in dem HLK-System aufgetreten ist, wenn die Anzahl einen vorbestimmten Wert überschreitet oder der verarbeitete Wert einen vorab festgelegten Wert überschreitet.
  8. System nach Anspruch 7, wobei die Raumlufttemperaturen durch den Prozessor von einer Temperatursteuerung zum Steuern des HLK-Systems erlangt werden.
  9. System nach Anspruch 7, wobei Betriebsdaten jeder Verdichtungsstufe durch den Prozessor von dem HLK-System erlangt werden und die Verdichteräquivalentlaufzeit durch den Prozessor durch Vornehmen einer Berechnung basierend auf einem Kapazitätsverhältnis jeder Verdichtungsstufe erlangt wird.
  10. System nach einem der Ansprüche 7 bis 9, wobei der Prozessor ferner zu Folgendem konfiguriert ist:
    Ausgeben von Berichtsinformationen, nachdem bestimmt wurde, dass der Fehler in dem HLK-System aufgetreten ist.
  11. System nach Anspruch 10, wobei die Berichtsinformationen über ein drahtloses Netzwerk an einen Cloud-Server übertragen werden, wobei das drahtlose Netzwerk ein Wi-Fi-, 4G-, BT- oder ZigBee-Netz umfasst.
  12. System nach einem der Ansprüche 7 bis 11, wobei die Änderungsrate pro Zeiteinheit der Raumlufttemperaturen als ein anormaler Wert bestimmt wird, wenn die Werteigenschaft der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen in dem Kühlmodus oder dem Heizmodus gegensätzlich zu einer Sollwerteigenschaft ist oder ein Differenzwert zwischen der Änderungsrate pro Zeiteinheit der Raumlufttemperaturen und Null kleiner als ein vorab festgelegter Wert ist; und/oder wobei der Schritt des Verarbeitens der Werte Berechnen einer Summe der Werte, Berechnen eines arithmetischen Mittelwerts der Werte oder Berechnen eines gewichteten Mittelwerts der Werte umfasst.
EP19745011.7A 2018-07-09 2019-07-02 Verfahren und system zur fehlererkennung in einem hlk-system Active EP3821176B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810744283.9A CN110701727B (zh) 2018-07-09 2018-07-09 用于检测hvac系统中故障的方法和系统以及存储器
PCT/US2019/040217 WO2020014033A1 (en) 2018-07-09 2019-07-02 Method and system for detecting a failure in hvac system, and memorizer

Publications (2)

Publication Number Publication Date
EP3821176A1 EP3821176A1 (de) 2021-05-19
EP3821176B1 true EP3821176B1 (de) 2024-05-08

Family

ID=67439422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19745011.7A Active EP3821176B1 (de) 2018-07-09 2019-07-02 Verfahren und system zur fehlererkennung in einem hlk-system

Country Status (4)

Country Link
US (1) US20210199325A1 (de)
EP (1) EP3821176B1 (de)
CN (1) CN110701727B (de)
WO (1) WO2020014033A1 (de)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124848A (en) * 1980-03-05 1981-09-30 Mitsubishi Electric Corp Air conditioner
CN100501720C (zh) * 2004-01-20 2009-06-17 开利公司 供暖、通风与空调系统的故障模式
US8280556B2 (en) * 2009-12-22 2012-10-02 General Electric Company Energy management of HVAC system
US11828678B2 (en) * 2010-03-15 2023-11-28 Klatu Networks, Inc. Managing the effectiveness of repairs in refrigeration assets
CN103090504B (zh) * 2011-11-04 2015-07-01 珠海格力电器股份有限公司 空调器及其检测方法和装置
AU2013225926B2 (en) * 2012-02-28 2016-01-07 Emerson Electric Co. HVAC system remote monitoring and diagnosis
EP2913601A4 (de) * 2012-10-25 2016-07-06 Mitsubishi Electric Corp Überwachungssystem
CN103486695B (zh) * 2013-09-29 2015-12-09 宜春市脉恩多能科技有限公司 一种基于理论模型的空调器故障诊断方法
KR102336642B1 (ko) * 2014-08-21 2021-12-07 삼성전자 주식회사 온도 조절 방법 및 장치
CN105485856B (zh) * 2015-12-31 2019-04-02 广东美的制冷设备有限公司 空调系统及空调系统制热状态下的异常检测方法
CN106150999B (zh) * 2016-07-04 2018-02-16 珠海格力电器股份有限公司 压缩机过载保护检测、控制的方法及装置
CN107621059A (zh) * 2017-07-14 2018-01-23 深圳达实智能股份有限公司 医院组合式风柜故障自动诊断装置、系统和方法
CN107975907A (zh) * 2017-07-14 2018-05-01 深圳达实智能股份有限公司 医院预冷空调箱自诊方法、装置、计算机装置及存储介质
CN107575996A (zh) * 2017-09-14 2018-01-12 深圳达实智能股份有限公司 医院机房空调机组自检方法及装置
US10670296B2 (en) * 2017-11-02 2020-06-02 Emerson Climate Technologies, Inc. System and method of adjusting compressor modulation range based on balance point detection of the conditioned space

Also Published As

Publication number Publication date
US20210199325A1 (en) 2021-07-01
CN110701727A (zh) 2020-01-17
CN110701727B (zh) 2023-03-17
WO2020014033A1 (en) 2020-01-16
EP3821176A1 (de) 2021-05-19

Similar Documents

Publication Publication Date Title
US7729882B2 (en) Method and system for assessing performance of control systems
EP2499435B1 (de) System und verfahren zur kühlmittelleckerkennung
US7031880B1 (en) Method and apparatus for assessing performance of an environmental control system
Yuill et al. Evaluating the performance of fault detection and diagnostics protocols applied to air-cooled unitary air-conditioning equipment
US20130197698A1 (en) HVAC System Fault Root Cause Self-Determination
CN111425989B (zh) 管路连接异常检测方法、装置及多联机空调器
CN106642584A (zh) 一种空调运行的控制方法及装置
JP2020008204A (ja) センサ状態判定装置、センサ状態判定方法およびプログラム
JP6862130B2 (ja) 異常検知装置、異常検知方法、およびプログラム
US12000604B2 (en) Failure diagnosis system configured to diagnose a state of an air-conditioning apparatus having a refrigerant circuit
CN114593776A (zh) 空调室外机全息参数商检方法及系统
JP4341779B2 (ja) 空調機の異常検知装置及び異常検知方法
EP3821176B1 (de) Verfahren und system zur fehlererkennung in einem hlk-system
CN115111703B (zh) 用于水冷空调脏堵检测的方法、终端及存储介质
CN112033581A (zh) 一种冷热量表在线故障诊断方法及装置
JP5350684B2 (ja) 冷凍サイクル機器に用いられる故障診断装置
US11906185B2 (en) State analyzer system and state analysis device
Haves et al. Model-based performance monitoring: Review of diagnostic methods and chiller case study
CN114838968B (zh) 一种基于冷水水冷测试的空调故障检测方法及系统
CN105628351A (zh) 一种电子膨胀阀检测方法及装置
WO2011155519A1 (ja) エネルギー管理装置
JPH0493567A (ja) 冷凍機の性能診断装置
JP2010025474A (ja) 冷凍サイクル機器に用いられる故障診断装置
TWI751502B (zh) 冰水主機的性能評估方法
JP2006266609A (ja) 空調機の異常診断システム

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230804

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019051933

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D