EP3811064A1 - Testflaschen-protokoll-verfahren - Google Patents
Testflaschen-protokoll-verfahrenInfo
- Publication number
- EP3811064A1 EP3811064A1 EP19731250.7A EP19731250A EP3811064A1 EP 3811064 A1 EP3811064 A1 EP 3811064A1 EP 19731250 A EP19731250 A EP 19731250A EP 3811064 A1 EP3811064 A1 EP 3811064A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- container
- test
- marking
- inspection
- test container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000007689 inspection Methods 0.000 claims abstract description 64
- 238000001514 detection method Methods 0.000 claims abstract description 55
- 230000003287 optical effect Effects 0.000 claims description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 2
- 230000009466 transformation Effects 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/90—Investigating the presence of flaws or contamination in a container or its contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/3404—Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level
- B07C5/3408—Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level for bottles, jars or other glassware
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/93—Detection standards; Calibrating baseline adjustment, drift correction
Definitions
- the present application relates to a method for checking a container inspection system and a test container which is used in this method.
- test devices e.g. those for empty beverage bottles
- empty bottle inspectors are carried out in such a way that a number of test bottles are prepared, each of which has one or more defects or test features.
- the test bottles are then at certain time intervals, e.g. every half hour, or after a certain number of bottles, e.g. 50,000 bottles in the bottle stream. If all test bottles are identified as defective, the empty bottle inspector is expected to function properly.
- the bottles identified as defective are separated from the bottle flow using automatic rejection devices.
- the system must be able to recognize test bottles even if the empty bottle inspector is not working properly and should overlook a test feature of a test bottle.
- a method and a device are also known from DE 10 2012 204 277 A1, in which test bottles are provided with a special multidimensional code.
- the multidimensional code is optically read by a separate reader.
- the reading device can be a scanner or the like and is only intended to read out the multidimensional code of the test bottles.
- this additional reading device in turn complicates the construction of such bottle inspection systems.
- the object of the present invention is to provide a reliable method with which test containers can be reliably recognized by a container inspection system without the need for an additional recognition device or reading device which is used exclusively for reading out the test bottle marking.
- the container inspection system is supplied with a test container which has a test feature in a first area to be inspected and a marking in a second area to be inspected.
- the marking can be read out by one of the detection devices of the container inspection system and is designed so that the test container can be clearly identified as a test container.
- Container inspection systems have a large number of detection devices. These detection devices not only ensure that each container is completely detected and checked, but also enable a variety of different sources of error to be checked in one inspection process. Commonly used detection devices are, for example, outer sidewall inspection, inner sidewall inspection, floor inspection, liquid residue detection, in particular lye residue detection, muzzle inspection, thread inspection or rust ring detection. The sidewall inspection can be divided into several zones, which can then be viewed as independent detection devices.
- this invention Since a large number of detection devices are already used in container inspection systems, this invention has set itself the goal of providing a test container protocol method in which only existing detection devices are used. The method therefore does not require an additional detection device that would only be used for the detection of the test containers.
- test bottle marking becomes
- test bottle markings are, for example, RFID chips or bar codes, for the recognition of which separate reading devices are provided.
- a “reader” is a device that is only intended to recognize a test bottle marking, but is not used to inspect individual or multiple areas of the containers to be examined. The use of reading devices as provided in the prior art is avoided by means of the present invention.
- an error or test feature to be detected is applied in an area of a test container to be examined and a corresponding marking is applied in another area of a test container which is recognized by one of the detection devices as an indication of a test bottle.
- the marking can also contain information for the characterization of the test feature. For example, information about the position, size, value, or other properties of the test feature may be included in the marker.
- the detection devices are designed such that an error in a certain area only affects the detection devices in this area and has no influence on the error detection in other areas to be examined.
- the marking only has to be carried out in such a way that the recognition device reliably recognizes the marking. This ensures in any case that the test bottle is also discharged from the bottle flow if the container inspection system is working incorrectly and has not recognized the test feature itself. If a test feature is not recognized correctly, appropriate measures are immediately taken to report the faulty inspection behavior, or the inspection system is even stopped immediately.
- the marking must therefore be carried out so that it can be reliably recognized by the inspection system at any time.
- the marking can be an optically readable code, for example a dot code, a grid, a watermark or another suitable large-area pattern such as a “checkered flag pattern”. Since the marking is applied in an area of the test container that does not influence the error detection of the other areas, the marking can in principle be of any size - and thus easily recognizable.
- the marking is preferably a code which not only indicates that the container in question is a test container, but also additionally contains information relating to the fault characteristic.
- the code preferably identifies the test container in question in a unique manner. This means that it can be logged exactly which test container is currently being inspected. In addition, this can also be used to collect further information on the corresponding test container. For example how often the test container has already been examined, recognized or not recognized.
- the marking can be provided in several or all areas to be examined which are not provided with the error to be recognized. Ideally, all markings should be read correctly and provide the same information. If, however, one of the detection devices provides incorrect information or the marking is not recognized at all, the redundant marking in another area can ensure that the test container is nevertheless recognized as a test container.
- the marking preferably contains not only information on the type and location of the test feature, but also on the additional areas in which the marking is provided. If the information provided by the individual recognition devices deviates from one another, suitable measures must also be taken for checking. Regardless of this, the system ensures that none of the test containers are accidentally left in the product stream.
- a test container can also have several test features in different container areas. Again, container areas that do not have a test feature can then be provided with a marking, which is read out by the respectively assigned recognition device and with which the test container can be recognized.
- the fact that a test container has several error features means that several detection devices can be checked at the same time, and fewer test containers have to be used in total to test the inspection system. It is important here that the markings are attached in such a way that they are recognized by the detection devices of the inspection device which are already present and that the test container does not require any additional detection devices.
- the marking is provided as an optical watermark, this can be formed by fine dots, lines or structures that differ from contamination of the containers.
- the optical watermark can also be defined by the frequency spectrum present in the optical watermark and can be read out by means of Fourier transformation or another suitable orthogonal transformation.
- the present application is also directed to a test container for checking a container inspection system, the test container having a test feature in a first area to be inspected that can be detected by the first detection device, and the test container having a marking in a second area to be inspected , which is read out by the second detection device and with which the test container can be identified as a test container.
- the method for checking a container inspection system can also be used if the inspection system is only equipped with a detection device. This recognition device must then be designed to on the one hand recognize a test feature of the test container and on the other hand to read out a marking provided on the test container with which the test container can be identified.
- the marking being a large-area watermark or pattern that is recognized in parallel with the actual test feature.
- the detection of the test feature must of course not be influenced by the presence of the marking. If the marking is only a large-area pattern which is applied to the container, this pattern can be recognized, for example, with the aid of conventional image analysis methods, for example FFT transformation or addition of images.
- image analysis methods for example FFT transformation or addition of images.
- such patterns represent only a slight background variation for the primary error detection of the test feature, which can be neglected in the primary error detection.
- Fig. 1 test container with an error feature in the bottom area and marking on the side wall;
- Fig. 2 test container with an error feature in the bottom area and markings on the side wall and in the mouth area.
- test container 10 which is suitable for use in the test container protocol method according to the invention.
- the test container 10 is a bottle which has a defect in the bottom area 14 as the test feature 12.
- the test container 10 is placed in the bottle flow and guided on a conveyor 16 through a container inspection system (not shown).
- the test container 10 is prepared in such a way that a spherical foreign body, which must be recognized by the container inspection system, is adhered to the bottom area as a test feature 12.
- a marking 20 is provided on the side wall 18 of the test container 10, with which the test container 10 can be uniquely identified as a test container.
- the marking 20 additionally contains the information that the test feature 12 is a spherical foreign body which is arranged in the bottom region 14 of the test container 10.
- the marking 20 on the side wall 18 is a label which is stuck on and which is easily read by the cameras of the Sidewall inspection can be recognized and read out.
- Image evaluation software known to those skilled in the art can be used to read the information indicated on the label 20.
- the floor inspection will recognize the test feature 12, that is to say the fault in the floor area 14, and will sort out the bottle as faulty.
- the side wall inspection will recognize the marking 20 and identify the container as the test container 10. A corresponding entry is then added to the test bottle log so that the proper functioning of the container inspection system is documented.
- test container 10 is nevertheless recognized as a test container 10 on the basis of the marking 20 on the side wall 18 and is separated from the product stream. This ensures that no test container 10 remains in the product stream and possibly gets into the consumer circuit. In this case, too, a corresponding entry is made in the test log and suitable measures are taken to ensure the continued functioning of the inspection system. These measures can consist in ordering a review or even a temporary shutdown of the inspection system.
- FIG. 2 shows another embodiment of the present invention. Again, a test container 10 is guided on a conveyor through a container inspection system.
- the container inspection system has three detection devices, namely a mouth check 22, a side wall inspection 24 and a floor inspection 26.
- Each of these detection devices 22, 24, 26 is formed by a radiation source 22a, 24a, 26a and an associated detection device 22b, 24b, 26b.
- the test container 10 in turn has an error 12 in the base area 14 which must be recognized by the base inspection 26 a, b.
- a marking 20, 30 is provided which identifies the container as the test container 10 and contains the information about the type and location of the test feature 12.
- the mode of operation in this embodiment is essentially identical to the mode of operation described with reference to FIG. 1.
- the fact that the marking 20, 30 is provided in two areas in this case increases the operational reliability in this embodiment. If the unlikely event should occur that neither the floor inspection 26 a, b recognizes the test feature 12 nor the side wall inspection 24 a, b the test container marking 20 on the side wall 18 detected, the test container marking 30 is also provided in the mouth area 28 of the test container 10 as an additional redundant security measure, so that here a further detection device 22 a, b is provided to identify the test container 10 as such.
- test container 10 An inadvertent non-rejection of a test container 10 can be almost completely ruled out here, since it is extremely unlikely that all three detection devices 22 a, b, 24 a, b and 26 a, b will malfunction at the same time.
- the log can also be kept in such a way that not only is it entered whether all the test containers 10 have been correctly recognized, but it can also be logged whether all the detection devices 22 a, b, 24 a, b and 26 a, b have provided consistent results.
- the inspection of the inspection system can then be carried out immediately, or at a later time which may be more suitable.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018004917.6A DE102018004917A1 (de) | 2018-06-20 | 2018-06-20 | Testflaschen-Protokoll-Verfahren |
PCT/EP2019/065658 WO2019243183A1 (de) | 2018-06-20 | 2019-06-14 | Testflaschen-protokoll-verfahren |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3811064A1 true EP3811064A1 (de) | 2021-04-28 |
Family
ID=66912849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19731250.7A Pending EP3811064A1 (de) | 2018-06-20 | 2019-06-14 | Testflaschen-protokoll-verfahren |
Country Status (10)
Country | Link |
---|---|
US (1) | US11747285B2 (pt) |
EP (1) | EP3811064A1 (pt) |
JP (1) | JP7312199B2 (pt) |
KR (1) | KR20210029207A (pt) |
CN (1) | CN112513622A (pt) |
BR (1) | BR112020023476A2 (pt) |
CA (1) | CA3100578C (pt) |
DE (1) | DE102018004917A1 (pt) |
MX (1) | MX2020014100A (pt) |
WO (1) | WO2019243183A1 (pt) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017008383A1 (de) * | 2017-09-07 | 2019-03-07 | Heuft Systemtechnik Gmbh | Inspektionsvorrichtung mit optischem Wasserzeichen |
USD953166S1 (en) * | 2019-04-10 | 2022-05-31 | Alpla Werke Alwin Lehner Gmbh & Co. Kg | Bottle |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH676644A5 (pt) * | 1988-08-09 | 1991-02-15 | Elpatronic Ag | |
DE4302656C2 (de) * | 1993-01-30 | 1999-06-24 | Khs Masch & Anlagenbau Ag | Verfahren und Vorrichtung zum Überprüfen der Funktionsfähigkeit von Inspektionseinrichtungen an Flascheninspektionsmaschinen |
DE29803507U1 (de) * | 1998-02-28 | 1998-09-24 | Krones Ag Hermann Kronseder Maschinenfabrik, 93073 Neutraubling | Testflasche für Leerflascheninspektionsmaschinen |
DE29910452U1 (de) | 1999-06-15 | 1999-08-26 | KRONES AG, 93073 Neutraubling | Vorrichtung zum Überprüfen der Funktionsfähigkeit von Flascheninspektionsmaschinen sowie hierfür geeignete Testflasche |
DE202006020193U1 (de) * | 2006-05-13 | 2008-02-14 | Krones Ag | Testbehältnis und Testanordnung für eine Kontrollvorrichtung für Behältnisse |
DE102006053673A1 (de) * | 2006-11-13 | 2008-05-15 | Khs Ag | Verfahren zur Inspektion von Flaschen oder dergleichen Behälter sowie Messstation für eine Inspektions- oder Kontrollstrecke für Flaschen oder dergleichen Behälter |
DE102006054099A1 (de) | 2006-11-15 | 2008-05-21 | Khs Ag | Verfahren zur Inspektion oder Überwachung von Flaschen oder dergleichen Behälter sowie Vorrichtung zur Inspektion von Flaschen oder dergleichen Behälter |
WO2009021515A1 (en) | 2007-08-13 | 2009-02-19 | Anker Andersen A/S | Apparatus and method for counting, identifying and/or sorting objects |
FR2975987B1 (fr) * | 2011-06-06 | 2014-12-05 | Pochet Du Courval | Dispositif et procede de marquage interne d'un article en verre creux |
ES2735535T3 (es) | 2011-10-13 | 2019-12-19 | Krones Ag | Dispositivo y procedimiento para examinar unidades de inspección de contenedores |
DE102012204277B4 (de) * | 2012-03-19 | 2023-02-09 | Krones Ag | Vorrichtung und Verfahren zum Überprüfen von Behälterinspektionseinheiten |
JP5764093B2 (ja) | 2012-06-04 | 2015-08-12 | 株式会社日立パワーソリューションズ | 検査システムおよび検査方法 |
US9176154B2 (en) | 2012-12-12 | 2015-11-03 | Bio-Rad Laboratories, Inc. | Calibration process and system |
DE102013103992A1 (de) | 2013-04-19 | 2014-10-23 | Krones Ag | Testbehältnis zum Testen von Inspektionseinrichtungen |
DE102014102543A1 (de) * | 2014-02-26 | 2015-08-27 | Krones Ag | Vorrichtung und Verfahren zur Inspektion von Behältern |
DE102015203060B4 (de) * | 2015-02-20 | 2022-05-25 | Krones Ag | Inspektionsvorrichtung und Verfahren zum Inspizieren von Behältern |
-
2018
- 2018-06-20 DE DE102018004917.6A patent/DE102018004917A1/de active Pending
-
2019
- 2019-06-14 CN CN201980040222.7A patent/CN112513622A/zh active Pending
- 2019-06-14 WO PCT/EP2019/065658 patent/WO2019243183A1/de unknown
- 2019-06-14 BR BR112020023476-1A patent/BR112020023476A2/pt unknown
- 2019-06-14 US US17/252,819 patent/US11747285B2/en active Active
- 2019-06-14 CA CA3100578A patent/CA3100578C/en active Active
- 2019-06-14 EP EP19731250.7A patent/EP3811064A1/de active Pending
- 2019-06-14 KR KR1020217001586A patent/KR20210029207A/ko not_active IP Right Cessation
- 2019-06-14 MX MX2020014100A patent/MX2020014100A/es unknown
- 2019-06-14 JP JP2020566984A patent/JP7312199B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US11747285B2 (en) | 2023-09-05 |
DE102018004917A1 (de) | 2019-12-24 |
JP7312199B2 (ja) | 2023-07-20 |
KR20210029207A (ko) | 2021-03-15 |
WO2019243183A1 (de) | 2019-12-26 |
JP2021526212A (ja) | 2021-09-30 |
CA3100578A1 (en) | 2019-12-26 |
MX2020014100A (es) | 2021-03-09 |
CA3100578C (en) | 2023-09-05 |
BR112020023476A2 (pt) | 2021-03-30 |
CN112513622A (zh) | 2021-03-16 |
US20210278348A1 (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4302656C2 (de) | Verfahren und Vorrichtung zum Überprüfen der Funktionsfähigkeit von Inspektionseinrichtungen an Flascheninspektionsmaschinen | |
DE3885119T2 (de) | Verfahren und Einrichtung zur Inspektion von bewegten Werkstücken entlang einer Produktionslinie. | |
EP2850416B1 (de) | Verfahren und vorrichtung zur inspektion von leerflaschen | |
WO2019243183A1 (de) | Testflaschen-protokoll-verfahren | |
DE3324449C2 (pt) | ||
DE102008050249A1 (de) | Testverfahren für Inspektionseinrichtung, insbesondere für Etikettensitzkontrolleinrichtung | |
EP0938662B1 (de) | Verfahren zum testen der zuverlässigkeit eines prüfgerätes, insbesondere eines leerflascheninspektors | |
EP1826557B1 (de) | Optische Kontrolle von Produkten der Tabak verarbeitenden Industrie | |
DE102012204277A1 (de) | Vorrichtung und Verfahren zum Überprüfen von Behälterinspektionseinheiten | |
DE102022103998B3 (de) | Verfahren und Prüfsystem zum Prüfen von Behältern und Verwendung von mit einem derartigen Prüfsystem in einer Abfüllanlage | |
EP1758688B1 (de) | Verfahren zur automatischen ermittlung operativer leistungsdaten von lesesystemen | |
DE102015203060B4 (de) | Inspektionsvorrichtung und Verfahren zum Inspizieren von Behältern | |
WO1998021567A1 (de) | Verfahren zum testen der zuverlässigkeit eines prüfgerätes, insbesondere eines leerflascheninspektors | |
DE102011084453B4 (de) | Vorrichtung und Verfahren zum Überprüfen von Behälterinspektionseinheiten | |
DE102019129726B4 (de) | Prüfsystem zur prüfung von behältern und abfüllanlage mit einem derartigen prüfsystem | |
DE19645553C2 (de) | Verfahren und Vorrichtung zum automatischen Prüfen und Sortieren von Paletten | |
DE102019110619A1 (de) | Verfahren zum Verfolgen eines Bauteils in einer mehrere Prozessanlagen umfassenden Fertigungslinie sowie Recheneinrichtung | |
DE4302657C1 (de) | Verfahren zur Bestimmung von Kontaminaten in Behältern | |
DE19506388C1 (de) | Verfahren zum Erkennen von systematischen Fehlern, insbesondere zur automatischen Störungserkennung bei Qualitätskontrollen, mittels mit Meßsensoren ausgestatteten Meßgeräten | |
EP2395405A1 (de) | System und Verfahren zur Überwachung von Werkzeugen | |
EP3323517A1 (de) | Sortiersystem und verfahren zur verfolgung eines einsortierens eines sortierguts in ein sortierregister | |
DE102018008855A1 (de) | Verfahren zur Identifikation defekter Behälterbehandlungseinrichtungen | |
EP3708265B1 (de) | Sortierungserfassungssystem zum erfassen eines passierens eines objektes durch eine von mehreren öffnungen | |
DE3602395A1 (de) | Selbstkontrolle einer optoelektronischen risserkennungsvorrichtung | |
DE2727651A1 (de) | Verfahren und vorrichtung zur inspektion von abgefuellten flaschen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210119 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240321 |