EP3807920B1 - Vakuumschaltröhre und hochspannungsschaltanordnung - Google Patents

Vakuumschaltröhre und hochspannungsschaltanordnung Download PDF

Info

Publication number
EP3807920B1
EP3807920B1 EP19752936.5A EP19752936A EP3807920B1 EP 3807920 B1 EP3807920 B1 EP 3807920B1 EP 19752936 A EP19752936 A EP 19752936A EP 3807920 B1 EP3807920 B1 EP 3807920B1
Authority
EP
European Patent Office
Prior art keywords
vacuum interrupter
insulating element
electrodes
dielectric material
interrupter according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19752936.5A
Other languages
English (en)
French (fr)
Other versions
EP3807920A1 (de
Inventor
Katrin Benkert
Paul Gregor Nikolic
Martin Koletzko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3807920A1 publication Critical patent/EP3807920A1/de
Application granted granted Critical
Publication of EP3807920B1 publication Critical patent/EP3807920B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66284Details relating to the electrical field properties of screens in vacuum switches

Definitions

  • the invention relates to a vacuum interrupter according to the preamble of patent claim 1 and a high-voltage switching arrangement according to claim 14.
  • gas or vacuum circuit-breakers are used to interrupt operating and residual currents.
  • circuit breaker chambers are connected in series in order to comply with the performance data prescribed by the standard.
  • the voltage distribution must be controlled.
  • the voltages are distributed 50% across the individual parts of the circuit-breaker chambers.
  • control elements are connected in parallel to the individual power switching chambers. Such a control element is usually a capacitor or a capacitor and a resistor connected in series. Control elements of this type require additional installation space and must be installed in an isolated manner, which leads to high technical and therefore cost-intensive expenditure overall.
  • a vacuum interrupter known from the prior art is used in DE-C-4447391 disclosed.
  • the object of the invention is to provide a vacuum interrupter for high-voltage applications and a high-voltage switching arrangement which, compared to the prior art, requires less technical effort to provide control elements.
  • the vacuum interrupter according to the invention as claimed in claim 1 comprises a housing with at least one annular ceramic insulator element which forms a vacuum space. Furthermore, the vacuum interrupter comprises a contact system with two contacts arranged to be movable in relation to one another.
  • the vacuum interrupter is characterized in that a capacitive element is provided with two electrodes and a dielectric material arranged between the electrodes, the capacitive element being attached to the insulator element in a form-fitting manner and having a capacitance of between 400 pF and 4000 pF.
  • the vacuum interrupter according to the invention has the advantage over the prior art that the necessary control element for distributing the voltage to the individual power switching chambers is integrated in the vacuum interrupter, specifically on the surface of the insulator element. This leads to savings in manufacturing costs and to lower technical outlay when providing the vacuum interrupter and to avoiding assembly costs.
  • a resistive element in addition to the capacitive element, ie the capacitor, there is also a resistive element, ie a resistor, also integrated in at least one insulator element. This can be applied in particular to a series connection of resistive element and capacitive element and to a series connection of these two elements.
  • the dielectric material of the capacitive element is applied in the form of a layer on a surface of the insulator element.
  • both the inner and the outer surface of the insulator element is suitable, but attaching the resistive element to the outer surface has the advantage that a greater selection of materials, eg a ferroelectric material embedded in an epoxy resin matrix, are available, since very special requirements are required for the inner surface be placed on the outgassing behavior of the materials.
  • the resistance of the resistive element preferably has a value between 100 ohms and 1500 ohms or between 10 8 and 10 15 ohms.
  • the dielectric material is preferably applied as a layer on the surface of the insulator element and the layer has a thickness of 5 ⁇ m to 150 ⁇ m or 1 mm to 5 mm.
  • the associated electrodes are arranged on an upper and a lower end face with respect to an extension of the insulator element along a switching axis. It is expedient here if the electrodes are integrated in solder points between insulator elements. Electrodes can easily be attached to these end faces and between them the dielectric material can be attached to the outer surface of the insulator element and thus be contacted. The integration of the electrodes in the solder points is useful but not necessary. The solder point itself can also serve as an electrode.
  • the electrodes are arranged in the form of a layer or a wrapping on the outer surface of the insulator element, so that the dielectric material is arranged on this in turn in a second layer or second winding and that one in one alternating layer sequence of electrodes and dielectric material on the outer surface of the insulator material, the capacitive element is produced.
  • a material with a high dielectric constant in particular a ferroelectric material, is suitable as the dielectric material; a titanate is particularly suitable, barium titanate being particularly preferred here.
  • a further embodiment of the invention is a high-voltage switching arrangement which comprises a vacuum interrupter according to one of the preceding claims and which also has a further interrupter unit connected in series therewith.
  • This is a high-voltage switching arrangement that is basically known from the prior art, but includes at least one vacuum interrupter according to the invention as a series-connected interrupter unit, so that the corresponding control elements, in particular capacitively acting capacitors, can be dispensed with in the high-voltage switching arrangement described.
  • one of the two interrupter units is preferably the described vacuum interrupter and a second interrupter unit is a gas-insulated switch. If a gas-insulated switch is used, conventional control elements must be connected in parallel to the gas-insulated switch.
  • FIG 1 a series connection of two interrupter units 32 according to the prior art is shown. These interrupter units 32 can be gas-insulated switches, but they can also be vacuum interrupters. Control elements 34 are connected in parallel with the series-connected interrupter units 32 in order to protect the individual interrupter units 32 in this series connection from overload. For this purpose, resistors or capacitors are used in parallel or in series connection. The voltages are thereby divided between the individual interrupter units 32 and overloading is prevented.
  • FIG 2 an embodiment is shown in which an interrupter unit 32 in the form of a vacuum interrupter 2 is connected in series with a further interrupter unit 32 .
  • the vacuum interrupter 2 has control elements 34, which are designed in the form of capacitive elements 12 and are integrated into the vacuum interrupter 2, as shown in FIG figure 3 is explained in more detail.
  • figure 3 shows a cross-section through a vacuum interrupter 2, which has a housing 3, the housing 3 having a plurality of insulator elements 4 and a metal screen 5 attached centrally.
  • the metal shield 5 is arranged in the housing 3 in such a way that it is stored in the position in which the contacts 9 and 10, which together form a contact system 8, are movably mounted along a switching axis 24.
  • the insulator elements 4 are of essentially cylindrical design, wherein they are also stacked on top of one another along the switching axis 24 and form a cylinder along this switching axis 24, which also form the cylinder axis.
  • the individual insulator elements 4 are connected to one another in a form-fitting manner, with a solder connection predominating in most cases.
  • the housing 3, which encloses the contact system 8, forms a vacuum space 8, which is vacuum-tight as a whole from the atmosphere.
  • control elements 34 are arranged on surfaces 20 , 21 of the insulator elements 4 , with at least one capacitive element 12 being applied to a surface 20 , 21 of the insulator element 4 .
  • control elements 34 are arranged on surfaces 20 , 21 of the insulator elements 4 , with at least one capacitive element 12 being applied to a surface 20 , 21 of the insulator element 4 .
  • electrodes 14 are provided, which are preferably arranged between end faces 25 and 26 of the insulator elements 4 along the switching axis 24 .
  • the electrodes 14 can be extensions of solder surfaces 27 which are used to connect the individual insulator elements 4 .
  • the electrodes 14 protrude a little way beyond the end faces 25 or 26 of the insulator elements 4, viewed radially to the axis 24, so that a dielectric material 16 is arranged on the outer surface 20 of the insulator element 4 between these protruding projections of the electrodes 14 is contacted by the electrodes 14.
  • the electrodes 14 contacting the dielectric material 16 together form the capacitive element 12.
  • a resistive material 19 is also arranged between electrodes 14 of basically the same construction and is contacted by them. Together with the electrodes, this results in the resistive element 18.
  • a capacitive element is arranged on the uppermost insulator element 4 on the outer surface 20, which is connected via the same electrodes 14 as the resistive one Element on the inside of the insulator element 4. This results in a parallel connection of the two control elements 34. Together with a further resistive element 18 on the adjacent insulator element 4 in figure 3 the equivalent circuit diagram results according to figure 4 .
  • the material used for the capacitive element 12, ie the dielectric material 16, is preferably a material with a high ⁇ r , ie a high dielectric constant, in order to set the desired capacitance.
  • the dielectric material can contain the barium titanate in concentrations which, given a predetermined layer thickness of the dielectric material 16 on the insulator element 4, lead to the desired capacitance.
  • a dielectric material is advantageous in which the barium titanate is embedded in an epoxy resin matrix.
  • the thickness of the layer of the dielectric material 16 of the capacitive element 12 is generally between 5 ⁇ m and 150 ⁇ m or between 1 mm and 5 mm.
  • figure 5 12 is an illustration of the vacuum interrupter 2 according to FIG figure 1 given, in which case the arrangement of the control elements 32 is distributed symmetrically on the housing 3 or on the insulator elements 4 with respect to the housing 3 . This enables a targeted voltage distribution along the housing 3 to different insulator elements 4. This is a series connection between a capacitive element 12 and a resistive element 18, as shown as an equivalent circuit diagram in FIG figure 6 is reproduced.
  • FIG 7 is also a vacuum interrupter 2 according to figure 1 shown, wherein on the outer surface 20 of the Insulator element 4 both a capacitive element 12 and a resistive element 18 are attached.
  • the dielectrically acting material 16 is on the inside, followed by insulation (not described in detail here) and then the resistive material 19. Both the dielectric material 16 and the resistive material 19 are formed with the electrodes 14 in accordance with the equivalent circuit diagram figure 8 connected in parallel.
  • a further resistive element 18, as already described, is applied to the subsequent insulator element 4, so that a further resistive element 18 is connected in series with the parallel connection of the resistive element 18 and the capacitive element 12, as is shown in FIG figure 8 shown as an equivalent circuit diagram.
  • This circuit can also be analogous to that figure 5 symmetrically repeated on the lower portion of the case 3.
  • the representation and the arrangement of the resistive or capacitive elements 12, 18 are exemplary embodiments. They could also be arranged on all other insulator elements 4. You can, and that applies to them Figures 3 , 5 , 7 and 9 likewise, all control elements 34 can be attached both to an inner surface 21 and to an outer surface 20 of the isolator elements 4.
  • FIG 9 An alternative embodiment of the capacitive element 12 is shown.
  • alternating layers of electrode 14 and dielectric material 16 are wrapped radially around the outer surface 20 of the insulator element 4 .
  • An enlarged view of section X in figure 9 is in figure 10 shown.
  • the layer sequence on the outer surface 20 with the electrode 14 and the dielectric material 16 can be seen here.
  • a dielectric material 16 is sandwiched by a layer of conductive electrode material in the form of electrode 14, respectively.
  • the corresponding desired capacitances of the control element 34 can be set more precisely by the number of individual layers.
  • the corresponding equivalent circuit diagram is in figure 11 given.
  • a capacitance or a capacitive element 12 is shown here merely as an example.
  • the vacuum interrupter shown can be used with additional controls, as shown in the Figures 3 , 5 and 7 are described, can be provided in any combination as required, both inside and outside.

Description

  • Die Erfindung betrifft eine Vakuumschaltröhre nach dem Oberbegriff des Patentanspruchs 1 sowie eine Hochspannungsschaltanordnung nach Anspruch 14.
  • In Hochspannungs- oder Höchstspannungsübertragungsnetzen werden Gas- oder Vakuumleistungsschalter zur Unterbrechung von Betriebs- und Fehlerströmen eingesetzt. Zur Erfüllung der Spannungsanforderungen, insbesondere in Übertragungsnetzen, die eine Nennspannung von mehr als 380 kV aufweisen, werden Leistungsschaltkammern in Serie geschaltet, um die von der Norm vorgeschriebenen Leistungsdaten einzuhalten. Um die Überlastung einer einzelnen Leistungsschaltkammer in dieser Reihenschaltung zu vermeiden, ist eine Steuerung der Spannungsaufteilung notwendig. In der Regel werden die Spannungen über die einzelnen Teile der Leistungsschaltkammern zu jeweils 50 % verteilt. Hierzu werden gemäß dem Stand der Technik zu den einzelnen Leistungsschaltkammern Steuerelemente parallel geschaltet. Ein derartiges Steuerelement ist in der Regel ein Kondensator bzw. ein Kondensator und ein Widerstand in Reihe geschaltet. Derartige Steuerelemente erfordern einen zusätzlichen Bauraum und sind dabei isoliert anzubringen, was insgesamt zu einem hohen technischen und somit kostenintensiven Aufwand führt. Eine aus dem Stand der Technik bekannte Vakuumschaltröhre wird in DE-C-4447391 offenbart.
  • Dabei stellt sich die Aufgabe der Erfindung, eine Vakuumschaltröhre für Hochspannungsanwendungen sowie eine Hochspannungsschaltanordnung bereitzustellen, die gegenüber dem Stand der Technik einen niedrigeren technischen Aufwand zur Bereitstellung von Steuerelementen aufweist.
  • Die Lösung der Aufgabe besteht in einer Vakuumschaltröhre mit den Merkmalen des Patentanspruchs 1 sowie in einer Hochspannungsschaltanordnung mit den Merkmalen des Anspruchs 14.
  • Die erfindungsgemäße Vakuumschaltröhre gemäß Patentanspruch 1 umfasst ein Gehäuse mit mindestens einem ringförmigen keramischen Isolatorelement, das einen Vakuumraum ausbildet. Ferner umfasst die Vakuumschaltröhre ein Kontaktsystem mit zwei zueinander beweglich angeordneten Kontakten. Die Vakuumschaltröhre zeichnet sich dadurch aus, dass ein kapazitives Element mit zwei Elektroden und einen zwischen den Elektroden angeordneten dielektrischen Material vorgesehen ist, wobei das kapazitive Element formschlüssig an dem Isolatorelement angebracht ist und eine Kapazität aufweist, die zwischen 400 pF und 4000 pF aufweist.
  • Die erfindungsgemäße Vakuumschaltröhre weist dabei gegenüber dem Stand der Technik den Vorteil auf, dass das notwendige Steuerelement zur Aufteilung der Spannung auf die einzelnen Leistungsschaltkammern in die Vakuumschaltröhre und zwar auf der Oberfläche des Isolatorelements integriert ist. Dies führt zu einer Einsparung von Herstellungskosten und zu geringeren technischen Aufwand bei der Bereitstellung der Vakuumschaltröhre und zur Vermeidung von Montagekosten.
  • In einer Ausgestaltungsform der Erfindung ist neben dem kapazitiven Element, also dem Kondensator, noch ein resistives Element, also ein Widerstand und ebenfalls integriert in mindestens einem Isolatorelement, vorgesehen. Dies kann insbesondere zu einer Reihenschaltung von resistiven Element und kapazitiven Element sowie zu einer Serienschaltung dieser beiden Elemente angewandt sein.
  • Dabei ist insbesondere das dielektrische Material des kapazitiven Elementes schichtförmig auf einer Oberfläche des Isolatorelements aufgebracht. Grundsätzlich sind hierfür sowohl die innere als auch die äußere Oberfläche des Isolatorelementes geeignet, das Anbringen des resistiven Elementes auf der äußeren Oberfläche hat jedoch den Vorteil, dass eine höhere Auswahl an Materialien, z.B. ein ferroelektrisches Material, eingebettet in eine Epoxidharzmatrix, zur Verfügung stehen, da für die innere Oberfläche ganz besondere Anforderungen an das Ausgasverhalten der Materialien gestellt werden.
  • Der Widerstand des resistiven Elementes weist bevorzugt einen Wert auf, der zwischen 100 Ohm und 1500 Ohm liegt oder zwischen 108 und 1015 Ohm liegt.
  • Das dielektrische Material ist dabei bevorzugt als Schicht auf der Oberfläche des Isolatorelementes aufgebracht und die Schicht weist dabei eine Dicke von 5 um bis 150 µm oder von 1 mm bis 5 mm auf. Die dazugehörigen Elektroden sind dabei bezüglich einer Erstreckung des Isolatorelementes entlang einer Schaltachse an einem oberen und an einer unteren Stirnfläche angeordnet. Dabei ist es zweckmäßig, wenn die Elektroden in Lotstellen zwischen Isolatorelementen integriert sind. An diesen Stirnflächen lassen sich Elektroden leicht anbringen und zwischen ihnen kann das dielektrische Material an der äußeren Oberfläche des Isolatorelementes angebracht sein und somit kontaktiert werden. Die Integration der Elektroden in die Lotstellen ist zweckmäßig aber nicht notwendig. Die Lotstelle selbst kann auch als Elektrode dienen.
  • Alternativ bzw. zusätzlich ist es auch zweckmäßig, dass die Elektroden in Form einer Schicht oder einer Umwicklung auf der äußeren Oberfläche des Isolatorelementes angeordnet sind, so dass auf diese wiederum in einer zweiten Schicht oder zweiten Wicklung das dielektrische Material angeordnet ist und dass ein in einer alternierenden Schichtfolge von Elektroden und dielektrischen Material auf der äußeren Oberfläche des Isolatormaterials das kapazitive Element erzeugt ist.
  • Als dielektrisches Material ist grundsätzlich ein Material mit einer hohen Dielektrizitätskonstante, insbesondere ein ferroelektrisches Material, geeignet, insbesondere eignet sich ein Titanat, besonders bevorzugt hierbei das Bariumtitanat.
  • Eine weitere Ausgestaltungsform der Erfindung ist eine Hochspannungsschaltanordnung, die eine Vakuumschaltröhre nach einem der vorhergehenden Ansprüche umfasst und die zudem eine hierzu in Reihe geschaltete weitere Unterbrechereinheit aufweist. Hierbei handelt es sich um eine Hochspannungsschaltanordnung, die grundsätzlich aus dem Stand der Technik bekannt ist, jedoch mindestens eine erfindungsgemäße Vakuumschaltröhre als in Reihe geschaltete Unterbrechereinheit umfasst, so dass bei der beschriebenen Hochspannungsschaltanordnung auf die entsprechenden Steuerungselemente, insbesondere kapazitiv wirkende Kondensatoren verzichtet werden kann. Dabei ist bevorzugt eine der beiden Unterbrechereinheiten die beschriebene Vakuumschaltröhre und eine zweite Unterbrechereinheit ein gasisolierter Schalter. Falls ein gasisolierter Schalter verwendet wird, ist eine Parallelschaltung herkömmlicher Steuerelemente zum gasisolierten Schalter erforderlich.
  • Weitere Ausgestaltungsformen und weitere Merkmale der Erfindung ergeben sich aus der folgenden Figurenbeschreibung. Merkmale mir derselben Bezeichnung aber in unterschiedlichen Ausgestaltungsformen werden dabei mit demselben Bezugszeichen versehen. Es handelt sich dabei um reine schematische Ausgestaltungsformen, die exemplarischen Charakter haben und die keine Einschränkung des Schutzbereiches darstellen. Dabei zeigen:
  • Figur 1
    ein Ersatzschaltbild einer Hochspannungsschaltanordnung aus dem Stand der Technik mit parallel geschalteten Steuerelementen,
    Figur 2
    eine Hochspannungsschaltanlage mit zwei in Reihe geschalteten Unterbrechereinheiten, die integrierte Steuerelemente aufweisen,
    Figur 3
    einen Querschnitt durch eine Vakuumschaltröhre mit auf den Oberflächen von Isolatorelementen integrierten resistiven und kapazitiven Steuerelementen,
    Figur 4
    ein Ersatzschaltbild der Anordnung der kapazitiven und resistiven Elemente zur Vakuumschaltröhre gemäß Figur 3,
    Figur 5
    einen Querschnitt durch eine Vakuumschaltröhre gemäß Figur 1 mit Steuerelementen im unteren und oberen Bereich der Vakuumschaltröhre,
    Figur 6
    ein Ersatzschaltbild der Steuerelemente zur Vakuumschaltröhre gemäß Figur 5,
    Figur 7
    eine Vakuumschaltröhre gemäß Figur 1 mit Steuerelementen gemäß Ersatzschaltbild aus Figur 8,
    Figur 8
    ein Ersatzschaltbild der Steuerelemente zur Vakuumschaltröhre gemäß Figur 7,
    Figur 9
    eine Vakuumschaltröhre gemäß Figur 1, wobei das kapazitive Element in Form von einer alternierenden Schicht auf ein Isolatorelement aufgebracht ist,
    Figur 10
    ein vergrößerter Ausschnitt der Schichtfolge aus dem Ausschnitt X in Figur 9 und
    Figur 11
    ein Ersatzschaltbild für das Steuerelement gemäß der Vakuumschaltröhre aus Figur 9.
  • In Figur 1 ist eine Reihenschaltung von zwei Unterbrechereinheiten 32 gemäß dem Stand der Technik gezeigt. Diese Unterbrechereinheiten 32 können gasisolierte Schalter sein, es können allerdings auch Vakuumschaltröhren sein. Parallel zu den in Reihe geschalteten Unterbrechereinheiten 32 sind Steuerelemente 34 verschaltet, um die einzelnen Unterbrechereinheiten 32 in dieser Reihenschaltung vor Überlastung zu schützen. Hierzu werden Widerstände oder Kondensatoren in Parallel- oder aber auch in Serieschaltung verwendet. Die Spannungen werden zwischen den einzelnen Unterbrechereinheiten 32 hierdurch aufgeteilt und eine Überlastung wird verhindert.
  • In Figur 2 ist eine Ausgestaltung dargestellt, wobei eine Unterbrechereinheit 32 in Form einer Vakuumschaltröhre 2 mit einer weiteren Unterbrechereinheit 32 in Reihe geschaltet ist. Die Vakuumschaltröhre 2 weist dabei Steuerelemente 34 auf, die in Form von kapazitiven Elementen 12 ausgestaltet sind und die in die Vakuumschaltröhre 2 integriert sind, wie dies gemäß Figur 3 näher erläutert wird.
  • Figur 3 zeigt einen Querschnitt durch eine Vakuumschaltröhre 2, die ein Gehäuse 3 aufweist, wobei das Gehäuse 3 mehrere Isolatorelemente 4 und einen zentral angebrachten Metallschirm 5 aufweist. Der Metallschirm 5 ist im Gehäuse 3 so angeordnet, dass er in der Position gelagert ist, in der sich Kontakte 9 und 10, die zusammen ein Kontaktsystem 8 bilden, beweglich entlang einer Schaltachse 24 gelagert sind.
  • Die Isolatorelemente 4 sind im Wesentlichen zylindrisch ausgestaltet, wobei sie dabei ebenfalls entlang der Schaltachse 24 übereinandergestapelt sind und entlang dieser Schaltachse 24, die auch die Zylinderachse bilden, einen Zylinder ausbilden. Die einzelnen Isolatorelemente 4 sind dabei miteinander formschlüssig verbunden, wobei in den meisten Fällen eine Lotverbindung vorherrscht. Das Gehäuse 3, das das Kontaktsystem 8 umschließt, bildet dabei einen Vakuumraum 8, der insgesamt vakuumdicht gegenüber der Atmosphäre abgeschlossen ist.
  • Soweit handelt es sich schematisch gesehen um eine herkömmliche Vakuumschaltröhre 2 gemäß dem Stand der Technik. Von diesem unterscheidet sich die vorliegende Vakuumschaltröhre 2 darin, dass an Oberflächen 20, 21 der Isolatorelemente 4 Steuerelemente 34 angeordnet sind, wobei mindestens ein kapazitives Element 12 an einer Oberfläche 20, 21 des Isolatorelementes 4 aufgebracht ist. Dabei muss nicht explizit zwischen einer inneren 21 und äußeren Oberfläche 20 des Isolatorelementes unterschieden werden, wobei es in vielen Fällen zweckmäßig ist, das kapazitive Element 12 an der äußeren Oberfläche 20 des Isolatorelementes 4 aufzubringen.
  • Dabei sind Elektroden 14 vorgesehen, die bevorzugt zwischen Stirnflächen 25 und 26 der Isolatorelemente 4 entlang der Schaltachse 24 angeordnet sind. Dabei können die Elektroden 14 Verlängerungen von Lotflächen 27 sein, die zum Verbinden der einzelnen Isolatorelemente 4 dienen. Die Elektroden 14 ragen dabei radial zur Achse 24 gesehen ein Stück weit über die Stirnflächen 25 bzw. 26 der Isolatorelemente 4 heraus, so dass zwischen diesen herausragenden Überständen der Elektroden 14 ein dielektrisches Material 16 auf der äußeren Oberfläche 20 des Isolatorelementes 4 angeordnet ist, das durch die Elektroden 14 kontaktiert ist. Die Elektroden 14, die das dielektrische Material 16 kontaktieren, bilden zusammen mit diesem das kapazitive Element 12.
  • Im Weiteren ist es zweckmäßig, dass zwischen grundsätzlich baugleichen Elektroden 14 ebenfalls ein resistives Material 19 angeordnet ist und durch diese kontaktiert wird. Hieraus ergibt sich zusammen mit den Elektroden das resistive Element 18. In der Darstellung gemäß Figur 3 sind am obersten Isolatorelement 4 an der äußeren Oberfläche 20 ein kapazitives Element angeordnet, das über dieselben Elektroden 14 verbunden ist, wie das resistive Element an der Innenseite des Isolatorelementes 4. Hiermit ergibt sich eine Parallelschaltung der beiden Steuerelemente 34. Gemeinsam mit einem weiteren resistiven Element 18 am angrenzenden Isolatorelement 4 in Figur 3 ergibt sich das Ersatzschaltbild gemäß Figur 4.
  • Als Material für das kapazitive Element 12, also das dielektrische Material 16 wird bevorzugt zur Einstellung der gewünschten Kapazität ein Material mit einem hohen εr also einer hohen dielektrischen Konstante verwendet. Hierfür eignen sich ferroelektrische Materialien insbesondere ein Titanat, bevorzugt wird das Bariumtitanat (εr = 1000) eingesetzt. Um eine entsprechende Kapazität von 400 pF bis 4000 pF zu erzielen, kann das dielektrische Material das Bariumtitanat in Konzentrationen erhalten, die bei einer vorgegebenen Schichtdicke des dielektrischen Materials 16 auf den Isolatorelement 4 zu der gewünschten Kapazität führt. Insbesondere ist ein dielektrisches Material von Vorteil, bei dem das Bariumtitanat in eine Epoxidharzmatrix eingebettet ist. Die Dicke der Schicht des dielektrischen Materials 16 des kapazitiven Elements 12 beträgt dabei in der Regel mehr zwischen 5 um bis 150 um der zwischen 1 mm bis 5 mm.
  • In Figur 5 ist eine Darstellung der Vakuumschaltröhre 2 gemäß Figur 1 gegeben, wobei dabei die Anordnung der Steuerelemente 32 symmetrisch auf das Gehäuse 3 bzw. auf die Isolatorelemente 4 bezüglich des Gehäuses 3 verteilt ist. Dies ermöglicht eine gezielte Spannungsaufteilung entlang des Gehäuses 3 auf verschiedene Isolatorelemente 4. Hierbei handelt es sich um eine Reihenschaltung zwischen einem kapazitiven Element 12 und einem resistiven Element 18, wie sie als Ersatzschaltbild in der Figur 6 wiedergegeben ist.
  • In Figur 7 ist ebenfalls eine Vakuumschaltröhre 2 gemäß Figur 1 dargestellt, wobei auf der äußeren Oberfläche 20 des Isolatorelementes 4 sowohl ein kapazitives Element 12 als auch ein resistives Element 18 angebracht sind. Dabei befindet sich das dielektrisch wirkende Material 16 radial gesehen innen, darauf folgt eine hier nicht näher beschriebene Isolierung und anschließend das resistive Material 19. Sowohl das dielektrische Material 16 als auch das resistive Material 19 werden mit den Elektroden 14 entsprechend des Ersatzschaltbildes aus Figur 8 zu einer Parallelschaltung verbunden. Auf dem darauffolgenden Isolatorelement 4 ist ein weiteres resistives Element 18, wie bereits beschrieben, aufgebracht, so dass zu der Parallelschaltung des resistiven Elements 18 und des kapazitiven Elements 12 noch ein weiteres resistives Element 18 in Serie geschaltet ist, wie dies in Figur 8 als Ersatzschaltbild abgebildet ist. Auch diese Schaltung kann analog der Figur 5 symmetrisch auf dem unteren Bereich des Gehäuses 3 wiederholt werden. Grundsätzlich handelt es sich bei der Darstellung und der Anordnung der resistiven bzw. kapazitiven Elemente 12, 18 um exemplarische Ausgestaltungsformen. Sie könnten ebenfalls auf allen anderen Isolatorelementen 4 angeordnet sein. Dabei können, und das gilt für die Figuren 3, 5, 7 und 9 gleichermaßen, alle Steuerelemente 34 sowohl an einer inneren Oberfläche 21 als auch an einer äußeren Oberfläche 20 der Isolatorelemente 4 angebracht sein.
  • In Figur 9 ist eine alternative Ausgestaltung des kapazitiven Elementes 12 dargestellt. Hierbei werden alternierende Schichten von Elektrode 14 und dielektrischen Material 16 radial um die äußere Oberfläche 20 des Isolatorelementes 4 gewickelt. Eine vergrößerte Darstellung des Ausschnittes X in Figur 9 ist in Figur 10 dargestellt. Hier ist die Schichtfolge auf der äußeren Oberfläche 20 mit Elektrode 14, und dielektrischem Material 16 zu erkennen. Somit wird ein dielektrisches Material 16 jeweils von einer Schicht leitenden Elektrodenmaterials in Form der Elektrode 14 eingebettet. Auf diese Weise können die entsprechenden gewünschten Kapazitäten des Steuerelementes 34 durch die Anzahl der einzelnen Schichten genauer eingestellt werden. Das entsprechende Ersatzschaltbild ist in Figur 11 gegeben. Hier ist lediglich exemplarisch eine Kapazität bzw. ein kapazitives Element 12 dargestellt. Auch die in Figur 9 dargestellte Vakuumschaltröhre kann mit weiteren Steuerelementen, wie sie in den Figuren 3, 5 und 7 beschrieben sind, in jeglicher Kombination je nach Bedarf sowohl innen als auch außen versehen werden.

Claims (15)

  1. Vakuumschaltröhre (2) umfassend
    - ein Gehäuse (3) mit mindestens einem ringförmigen keramischen Isolatorelement (4), das einen Vakuumraum (6) ausbildet,
    - ein Kontaktsystem (8) mit zwei zueinander beweglich angeordneten Kontakten (9, 10),
    wobei ein kapazitives Element (12) mit zwei Elektroden (14) und einem zwischen den Elektroden (14) angeordneten dielektrischen Material (16) vorgesehen ist, dadurch gekennzeichnet, dass das kapazitive Element (12) an einer Oberfläche des Isolatorelementes formschlüssig an dem Isolatorelement (4) angebracht ist, wobei Elektroden (14) vorgesehen sind, die zwischen Stirnflächen (25, 26) des mindestens einen Isolatorelement (4) entlang der Schaltachse (24) angeordnet sind und das kapazitive Element eine Kapazität zwischen 400 pF und 4000 pF aufweist.
  2. Vakuumschaltröhre nach Anspruch 1, dadurch gekennzeichnet, dass neben dem kapazitiven Element (12) ein resistives Element (18) an mindestens einem Isolatorelement (4) vorgesehen ist.
  3. Vakuumschaltröhre nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest das dielektrische Material (16) des kapazitiven Elements (12) schichtförmig auf eine Oberfläche (20) des Isolatorelementes (4) aufgebracht ist.
  4. Vakuumschaltröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das kapazitive Element (12) an einer äußeren Oberfläche (20, 21 des Isolatorelementes (4) angeordnet ist.
  5. Vakuumschaltröhre nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das kapazitive Element (12) und das resistive Element (18) in Reihe geschaltet sind.
  6. Vakuumschaltröhre nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das resistive Element (18) formschlüssig mit dem Isolatorelement (4) verbunden ist.
  7. Vakuumschaltröhre nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass das resistive Element einen Widerstand aufweist, der zwischen 100 Ohm und 1500 Ohm oder zwischen 108 Ohm und 1015 Ohm liegt.
  8. Vakuumschaltröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das dielektrische Material (16) als Schicht (22) auf der Oberfläche (20, 21) des Isolatorelementes (4) aufgebracht ist und die Schicht (22) eine Dicke von 5 um bis 150 um oder 1 mm bis 5 mm aufweist.
  9. Vakuumschaltröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektroden (14) so an dem Isolatorelement (4) angeordnet sind, so dass sie sich bezüglich einer Erstreckung des Isolatorelementes entlang einer Schaltachse (24) an einer oberen und an einer unteren Stirnfläche befinden.
  10. Vakuumschaltröhre nach Anspruch 9 dadurch gekennzeichnet, dass die Elektroden (14) in Lotstellen zwischen den Isolatorelementen integriert sind.
  11. Vakuumschaltröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrode (14) als Schicht auf die äußere Oberfläche (20, 21) des Isolatorelementes (4) aufgebracht ist.
  12. Vakuumschaltröhre nach Anspruch 11, dadurch gekennzeichnet, dass das kapazitive Element (12) als alternierende Schichtfolge von Elektrode (14), dielektrischem Material (16) und Elektrode (14) auf der äußeren Oberfläche (20, 2) des Isolatorelementes (4) angeordnet ist.
  13. Vakuumschaltröhre nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass das dielektrische Material (16) ein ferroelektrisches Material, insbesondere ein Titanat, besonders bevorzugt Bariumtitanat enthält.
  14. Hochspannungsschaltanordnung (28) umfassend eine Vakuumschaltröhre (2) nach einem der Ansprüche 1 bis 13 und eine weitere, hierzu in Reihe geschaltete Unterbrechereinheit (32).
  15. Hochspannungsschaltanordnung nach Anspruch 14, dadurch gekennzeichnet, dass die Unterbrechereinheit (32) eine Vakuumschaltröhre (2) oder ein gasisolierter Schalter ist.
EP19752936.5A 2018-08-01 2019-07-24 Vakuumschaltröhre und hochspannungsschaltanordnung Active EP3807920B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018212853.7A DE102018212853A1 (de) 2018-08-01 2018-08-01 Vakuumschaltröhre und Hochspannungsschaltanordnung
PCT/EP2019/069868 WO2020025407A1 (de) 2018-08-01 2019-07-24 Vakuumschaltröhre und hochspannungsschaltanordnung

Publications (2)

Publication Number Publication Date
EP3807920A1 EP3807920A1 (de) 2021-04-21
EP3807920B1 true EP3807920B1 (de) 2023-06-28

Family

ID=67620380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19752936.5A Active EP3807920B1 (de) 2018-08-01 2019-07-24 Vakuumschaltröhre und hochspannungsschaltanordnung

Country Status (7)

Country Link
US (1) US11456133B2 (de)
EP (1) EP3807920B1 (de)
JP (1) JP7187670B2 (de)
KR (1) KR102568806B1 (de)
CN (1) CN112514020A (de)
DE (1) DE102018212853A1 (de)
WO (1) WO2020025407A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021201781A1 (de) * 2021-02-25 2022-08-25 Siemens Aktiengesellschaft Elektrische Schaltvorrichtung für Mittel- und/oder Hochspannungsanwendungen
DE102021207960A1 (de) * 2021-07-23 2023-01-26 Siemens Energy Global GmbH & Co. KG Vakuumschaltröhre und Anordnung mit Vakuumschaltröhren sowie Verfahren zum Absteuern von Vakuumschaltröhren
DE102021207962A1 (de) 2021-07-23 2023-01-26 Siemens Energy Global GmbH & Co. KG Vakuumschaltröhre und Anordnung mit Vakuumschaltröhren sowie Verfahren zum Absteuern von Vakuumschaltröhren
DE102021207964A1 (de) * 2021-07-23 2023-01-26 Siemens Energy Global GmbH & Co. KG Vakuumschalteinheit und Vakuumschalter
DE102021207963A1 (de) 2021-07-23 2023-01-26 Siemens Energy Global GmbH & Co. KG Vakuumschaltröhre zum Schalten von Spannungen
DE102022201174A1 (de) 2022-02-04 2023-08-10 Siemens Energy Global GmbH & Co. KG Steuerbare Vakuumschaltröhre und Anordnung sowie Verfahren zum Absteuern von Vakuumschaltröhren
DE102022207958A1 (de) * 2022-08-02 2024-02-08 Siemens Energy Global GmbH & Co. KG RC-Anordnungen zum Schalten von induktiven Strömen mit Hochspannungs-Vakuumschaltern

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411038A (en) * 1966-07-22 1968-11-12 Gen Electric Vacuum-type circuit interrupter
GB1322973A (en) * 1970-07-08 1973-07-11 Ass Elect Ind High-voltage insulators
CH566070A5 (de) * 1974-06-13 1975-08-29 Sprecher & Schuh Ag
US4027123A (en) * 1975-03-11 1977-05-31 General Electric Company Vacuum circuit breaker comprising series connected vacuum interrupters and capacitive voltage-distribution means
JPS52142658U (de) 1976-04-23 1977-10-28
JPS5736733A (de) * 1980-08-14 1982-02-27 Tokyo Shibaura Electric Co
DE4447391C1 (de) * 1994-12-23 1996-06-05 Siemens Ag Vakuumschalter
DE10048838B4 (de) * 2000-09-30 2008-09-18 Abb Ag Kapazitive Steuerung mindestens einer Vakuum-Schaltkammer
JP4481808B2 (ja) * 2004-12-15 2010-06-16 株式会社東芝 真空開閉装置
EP1858044B1 (de) * 2006-05-15 2014-04-02 Hitachi, Ltd. Schaltanlage
CN101393818A (zh) * 2008-10-10 2009-03-25 国网武汉高压研究院 高压真空断路器
DE102009031598B4 (de) * 2009-07-06 2011-06-01 Siemens Aktiengesellschaft Vakuumschaltröhre
FR2968827B1 (fr) * 2010-12-09 2012-12-21 Schneider Electric Ind Sas Dispositif de detection de la perte de vide dans un appareil de coupure a vide et appareil de coupure a vide comportant un tel dispositif
US8497446B1 (en) * 2011-01-24 2013-07-30 Michael David Glaser Encapsulated vacuum interrupter with grounded end cup and drive rod
FR2971884B1 (fr) * 2011-02-17 2014-01-17 Alstom Grid Sas Chambre de coupure d'un courant electrique pour disjoncteur a haute ou moyenne tension et disjoncteur comprenant une telle chambre
CN103325609B (zh) * 2013-05-31 2016-04-13 陈波 中压投切电容器组用真空开关
FR3023650B1 (fr) * 2014-07-10 2016-08-19 Alstom Technology Ltd Interrupteur isole par du vide autorisant un test du vide, ensemble d'interrupteur et procede de test
EP2996131B1 (de) * 2014-09-12 2020-08-05 ABB Schweiz AG Vakuumschalterpol für eine Hochdruckumgebungsanwendung
CN106611680B (zh) 2015-10-23 2019-08-23 北京瑞恒新源投资有限公司 带真空灭弧室的多功能电容型套管
JP2017157453A (ja) * 2016-03-03 2017-09-07 株式会社明電舎 分圧コンデンサ及び多点切り遮断器
JP6156535B1 (ja) * 2016-03-17 2017-07-05 株式会社明電舎 分圧コンデンサ
DE102016214752A1 (de) * 2016-08-09 2018-02-15 Siemens Aktiengesellschaft Verfahren zur Herstellung eines keramischen Isolators

Also Published As

Publication number Publication date
CN112514020A (zh) 2021-03-16
JP2021533540A (ja) 2021-12-02
EP3807920A1 (de) 2021-04-21
DE102018212853A1 (de) 2020-02-06
US20210327666A1 (en) 2021-10-21
US11456133B2 (en) 2022-09-27
KR102568806B1 (ko) 2023-08-21
JP7187670B2 (ja) 2022-12-12
WO2020025407A1 (de) 2020-02-06
KR20210033525A (ko) 2021-03-26

Similar Documents

Publication Publication Date Title
EP3807920B1 (de) Vakuumschaltröhre und hochspannungsschaltanordnung
EP1577904B1 (de) Hochspannungsdurchführung mit Feldsteuermaterial
EP2702597B1 (de) Überspannungsableiter
WO2002097839A1 (de) Steuerung mindestens einer vakuumschaltstrecke
EP2869313A1 (de) Trockentransformatorspule und Trockentransformator
DE19500849A1 (de) Elektrisches Bauteil
WO2007085510A1 (de) Elektrisches schaltgerät mit potentialsteuerung
EP0980003B1 (de) RC-Spannungsteiler
EP2927923B1 (de) Trockentransformatorlastschalter
DE2843120C2 (de) Gekapselte Blitzschutzvorrichtung
EP1603141A1 (de) Gasisolierter Überspannungsableiter
WO2017012740A1 (de) Energietechnische komponente, insbesondere vakuumschaltröhre
EP3469617B1 (de) Keramikisolator für vakuumschaltröhren
EP2392057B1 (de) Überspannungsableiter
WO2019063421A1 (de) Anordnung mit einer gasisolierten schaltanlage
DE10157140A1 (de) Hybridschalter
DE102014210516C5 (de) Funkenstrecke
EP3991194B1 (de) Schaltgeräte mit zwei in reihe geschalteten unterbrechereinheiten
DE3827102C2 (de)
EP4007924B1 (de) Messanordnung zum messen eines spannungspotentials an einem leiter in einer leistungsschaltvorrichtung und entsprechende leistungsschaltvorrichtung
EP1833130B1 (de) Gekapselter Überspannungsableiter
EP4244879A1 (de) Elektrische schaltvorrichtung für mittel- und/oder hochspannungsanwendungen
EP4270688A1 (de) Mehrfachfunkenstrecke
WO2023001505A1 (de) Vakuumschaltröhre und anordnung mit vakuumschaltröhren sowie verfahren zum absteuern von vakuumschaltröhren
DD241809A1 (de) Isoliergehaeuse fuer eine vakuumschaltkammer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1583485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008345

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230801

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 5

Ref country code: DE

Payment date: 20230726

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230724