EP3807534B1 - Hydraulikantriebssystem für eine baustoffpumpe und baustoffpumpe - Google Patents

Hydraulikantriebssystem für eine baustoffpumpe und baustoffpumpe Download PDF

Info

Publication number
EP3807534B1
EP3807534B1 EP19731183.0A EP19731183A EP3807534B1 EP 3807534 B1 EP3807534 B1 EP 3807534B1 EP 19731183 A EP19731183 A EP 19731183A EP 3807534 B1 EP3807534 B1 EP 3807534B1
Authority
EP
European Patent Office
Prior art keywords
pressure
drive
hydraulic
designed
hydraulic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19731183.0A
Other languages
English (en)
French (fr)
Other versions
EP3807534A1 (de
Inventor
Jan-Martin VEIT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putzmeister Engineering GmbH
Original Assignee
Putzmeister Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Putzmeister Engineering GmbH filed Critical Putzmeister Engineering GmbH
Publication of EP3807534A1 publication Critical patent/EP3807534A1/de
Application granted granted Critical
Publication of EP3807534B1 publication Critical patent/EP3807534B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1176Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor
    • F04B9/1178Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor the movement in the other direction being obtained by a hydraulic connection between the liquid motor cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • F04B15/023Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous supply of fluid to the pump by gravity through a hopper, e.g. without intake valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/007Installations or systems with two or more pumps or pump cylinders, wherein the flow-path through the stages can be changed, e.g. from series to parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible

Definitions

  • the invention relates to a hydraulic drive system for a building material pump and a building material pump having such a hydraulic drive system.
  • the DE 101 34 789 A1 discloses a travel drive with an internal combustion engine and with working hydraulics, which has a pump device actuated by the internal combustion engine, and with an electronic control unit that controls the speed of the internal combustion engine and the flow rate of the pump device.
  • the working hydraulics have a hydraulic load branch that can be switched on by means of a control element, and the control element can be activated by the electronic control unit as soon as a detected actual speed of the internal combustion engine exceeds a tolerance range of a set target speed. Use for tracked vehicles on snow slopes.
  • the object of the invention is to provide a hydraulic drive system for a building material pump and a building material pump having such a hydraulic drive system which has improved properties in each case.
  • the invention solves this problem by providing a hydraulic drive system with the features of claim 1 and a building material pump with the features of claim 14.
  • Advantageous developments and/or refinements of the invention are described in the dependent claims.
  • the hydraulic drive system according to the invention for a building material pump has a hydraulic circuit, in particular at least one feed pump, at least one, in particular electrically, controllable pressure relief valve unit and a, in particular electrical, control unit.
  • the hydraulic circuit is designed for hydraulic fluid, in particular oil.
  • the feed pump, in particular at least one is designed for feeding hydraulic fluid into the hydraulic circuit, in particular automatically.
  • the pressure-limiting valve unit is for, in particular, automatic, variable or changeable or controllable setting, in particular at least one limit pressure, in particular a limit pressure value or Limit pressure amount, formed by hydraulic fluid of at least one section of the hydraulic circuit within a pressure range, in particular a pressure value range, in particular in or during operation of the hydraulic drive system, in particular delivery operation of the building material pump.
  • the at least one pressure-limiting valve unit has, in particular, at least one, in particular electrically, controllable proportional pressure-limiting valve.
  • the proportional pressure-limiting valve is designed for the, in particular automatic, continuous setting of the limit pressure, in particular its value, of hydraulic fluid in at least one section of the hydraulic circuit within the pressure range.
  • the control unit is designed to actuate the pressure-limiting valve unit, in particular automatically, as a function of at least one, in particular user-desired, operating parameter, in particular an operating parameter value or operating parameter amount, of the hydraulic drive system and/or hydraulic fluid in such a way that the pressure-limiting valve unit exceeds the limit pressure of the section of the hydraulic circuit, in particular variable, adjusted.
  • the control unit is designed to actuate the proportional pressure relief valve, in particular automatically, as a function of the at least one operating parameter, such that the proportional pressure relief valve sets the limit pressure of the section of the hydraulic circuit, in particular continuously.
  • the feed pump can overcome the limit pressure or have to work against it. This thus enables energy or power consumption of the feed pump to meet requirements, in particular a reduction in the energy or power consumption of the feed pump. This enables energy or power to be saved.
  • the limit pressure or its value when there is a change in the at least one operating parameter or its value, the limit pressure or its value can be changed, in particular actively. Additionally or alternatively, if there is no change in the operating parameter or its value, the limit pressure or its value does not need to be changed. In other words: if there is no change in the operating parameter, the limit pressure or its value can be set constant or kept constant or left unchanged. In other words: the limit pressure or its value and the at least one operating parameter or its value can be linked to one another, in particular by means of a function.
  • the hydraulic circuit can have at least one hydraulic line, in particular a pipe and/or a hose.
  • the hydraulic drive system can have a container or tank, in particular a reservoir, for or with hydraulic fluid.
  • the feed pump can be designed to feed in hydraulic fluid from the container. Additionally or alternatively, the feed pump can be a fixed displacement pump. Furthermore, additionally or alternatively, the feed pump can be designed for direct and/or indirect feeding into the at least one section.
  • the pressure relief valve unit can be referred to as a pressure control unit.
  • the hydraulic drive system can have at least one, in particular electrical, pressure sensor.
  • the pressure sensor can be designed for, in particular automatic, measurement, in particular regulation, of the limit pressure, in particular the limit pressure value or limit pressure amount, of hydraulic fluid in the section of the hydraulic circuit.
  • the control unit and/or the pressure-limiting valve unit can be designed to set, in particular regulate, the limit pressure as a function of the measured limit pressure.
  • the control unit and/or the pressure-limiting valve unit in particular in each case, can have a signal connection, in particular an electrical signal connection, with the pressure sensor. Additionally or alternatively, this can be referred to as pressure regulation.
  • the pressure-limiting valve unit can be designed to set the limit pressure to at least three different limit pressure values.
  • the pressure-limiting valve unit can be designed to adjust the limit pressure in pressure value increments of a maximum of 5 bar, in particular a maximum of 4 bar, in particular a maximum of 3 bar, in particular a maximum of 2 bar, in particular a maximum of 1 bar, in particular for continuous adjustment.
  • the pressure range can have a minimum limit pressure value and a maximum limit pressure value or be defined by them.
  • the proportional pressure relief valve can be referred to as a proportional pressure control valve.
  • the operating parameter or its value can change in stages, in particular continuously.
  • the control unit can have a user-actuable control panel for operating the hydraulic drive system, in particular the building material pump, in particular an input device for user input or user selection of the at least one operating parameter or its value. Additionally or alternatively, the control unit can be designed to determine or determine, in particular automatically, in particular a calculation, of the limit pressure or its value as a function of the at least one operating parameter. In other words: the limit pressure can depend on the at least one operating parameter and/or must have a specific or required value in order to achieve the operating parameter, which is particularly desired by the user.
  • the control unit can have a processor and/or a memory.
  • the control unit can have a signal connection, in particular an electrical signal connection, with the pressure-limiting valve unit.
  • the hydraulic drive system has a drive motor.
  • the drive motor is designed to drive the feed pump, in particular automatically.
  • the needs-based setting of the limit pressure or its value enables a needs-based energy or power consumption of the drive motor.
  • the drive motor can be an internal combustion engine, in particular a diesel engine, or an electric motor.
  • the at least one operating parameter is a drive state, a drive flow, a drive pressure, a drive speed, a cooling flow, a temperature and/or a degree of contamination.
  • the drive state can be on or off or drive or non-drive, in particular of the building material pump.
  • the limit pressure can be lowered, in particular to the minimum limit pressure value.
  • the drive flow and/or the drive pressure can each have a value or absolute value, in particular a variable value, and/or be an operating parameter of the hydraulic fluid.
  • the drive speed can have an in particular variable value or amount and/or be an operating parameter of the feed pump and/or the drive motor, if present.
  • the cooling flow, the temperature and/or the degree of contamination can each have a, in particular variable, value or amount and/or be an operating parameter of the hydraulic fluid.
  • the pressure range is from a minimum of 2.5 bar to a maximum of 40 bar, in particular from a minimum of 5 bar to a maximum of 35 bar, in particular from a minimum of 10 bar to a maximum of 30 bar, in particular from a minimum of 15 bar to a maximum of 25 bar .
  • the at least one section of the hydraulic circuit has a feed pressure section for hydraulic fluid.
  • the at least one pressure-limiting valve unit has a feed pressure-limiting valve unit that can be actuated, in particular electrically.
  • the feed pressure limiting valve unit is designed for the, in particular automatic, variable setting of a feed limit pressure, in particular a feed limit pressure value or a feed limit pressure amount, of hydraulic fluid of the feed pressure section within the pressure range.
  • the control unit can be designed to actuate the feed pressure limiting valve unit, in particular automatically, depending on the at least one operating parameter, in such a way that the feed pressure limiting valve unit adjusts the feed limit pressure of the feed pressure section, in particular variably.
  • the supply limit pressure or its value can depend on the drive condition, the drive flow, the drive pressure, the drive speed, the cooling flow, the temperature and/or the degree of contamination, if any.
  • the boost pressure limiting valve unit can be referred to as a boost pressure control unit.
  • the feed pump can be designed for immediate or direct feeding into the feed pressure section.
  • the hydraulic drive system has, in particular, at least one variably adjustable drive pump and at least one, in particular electrically controllable, hydraulic pressure-based actuator.
  • the drive pump is for, in particular automatically, generating a, in particular, variable drive flow, in particular with a variable drive flow value or drive flow amount, with a, in particular, variable drive pressure, in particular with a variable drive pressure value or drive pressure amount, of hydraulic fluid in at least one drive pressure section of the hydraulic circuit educated.
  • the actuator is designed for the, in particular automatic, variable adjustment of the drive pump by means of a variable control pressure, in particular with a variable control pressure value or control pressure amount, of hydraulic fluid.
  • the at least one section, in particular the feed pressure section, if present, of the hydraulic circuit is designed for the, in particular automatic, hydraulic pressure supply of the at least one actuator with hydraulic fluid at the set limit pressure, in particular the set feed limit pressure, if present, for the control pressure.
  • the control unit is there designed to control the at least one actuator, in particular automatically, as a function of the at least one operating parameter, in such a way that the at least one actuator adjusts the drive pump, in particular variably, to generate the variable drive flow with the variable drive pressure of hydraulic fluid in the at least one drive pressure section.
  • the drive pressure section can be referred to as a high and/or low pressure section. Additionally or alternatively, the drive pressure section may be different from the feed pressure section, if any.
  • the feed pressure section can be designed to feed hydraulic fluid into the drive pressure section, in particular by means of at least one feed check valve of the hydraulic drive system. In other words: the feed pump can be designed for direct or indirect feeding into the drive pressure section.
  • the drive speed can be an operating parameter of the drive pump.
  • the drive motor can be designed to drive the drive pump, in particular automatically.
  • the actuating pressure can depend on the operating parameter, in particular on the drive state, the drive flow, the drive pressure and/or the drive speed, and/or must have a specific or required value in order to achieve the operating parameter, which is particularly desired by the user.
  • the control unit can be designed to determine or determine, in particular automatically, in particular a calculation, of the control pressure or its value as a function of the at least one operating parameter.
  • the limit pressure in particular the feed pressure, if present, can be dependent on the control pressure and/or must have a specific or required value in order to achieve the control pressure.
  • the control unit can be designed to determine or determine, in particular automatically, in particular a calculation, of the limit pressure or its value as a function of the control pressure.
  • the control unit can have a signal connection, in particular a hydraulic one, with the actuator.
  • the power pump in the power off state, if any, the power pump only needs to generate a relatively low power flow or even no power flow at all.
  • a relatively low control pressure or no control pressure can be required for the adjustment of the drive pump.
  • the limit pressure can be lowered, in particular to the minimum limit pressure value.
  • the minimum limit pressure value can make it possible to maintain a function of the drive pump or to avoid damage to the drive pump.
  • a relatively higher actuating pressure may be required, in particular as a function of the drive flow, the drive pressure and/or the drive speed.
  • a relatively higher confining pressure may be required.
  • the drive pump can be an axial piston pump with a variably adjustable displacement.
  • the at least one actuator can be designed for, in particular automatic, variable adjustment of the displacement.
  • the drive pump is an axial piston pump with a variably adjustable swash plate.
  • the at least one actuator is designed for, in particular automatic, variable adjustment of the swash plate.
  • a swivel angle of the swash plate can depend on the operating parameter, in particular on the drive state and/or the drive flow, and/or must have a specific or required value in order to achieve the operating parameter, which is particularly desired by the user.
  • the control unit can be designed to determine or determine, in particular automatically, in particular a calculation, of the swivel angle or its value as a function of the at least one operating parameter.
  • the hydraulic drive system has at least one drive cylinder and an associated drive piston, which is arranged in particular in the drive cylinder.
  • the drive pump is designed by generating the drive flow of hydraulic fluid for the, in particular automatic, variable movement of the at least one drive piston, in particular in the drive cylinder.
  • the hydraulic drive system can have at least one pump line.
  • the drive pump and the drive cylinder can be connected by means of the pump line for a flow of hydraulic fluid, in particular between the drive pump and the drive cylinder.
  • the drive piston can be designed to be pressurized with hydraulic fluid.
  • the control unit can be designed to control the movement of the drive piston, in particular automatically, as a function of the at least one operating parameter.
  • the hydraulic drive system has at least two drive cylinders and associated ones, in particular arranged in the respective drive cylinder Drive piston and a swing line for hydraulic fluid.
  • the drive pump and the two drive cylinders form a closed drive circuit for hydraulic fluid by means of the swing line.
  • the two drive pistons are coupled by means of the swing line, in particular in phase opposition.
  • the two drive cylinders can be connected by means of the swing line for a flow of hydraulic fluid, in particular between the drive cylinders.
  • the hydraulic drive system can have at least two pump lines.
  • the drive pump and the two drive cylinders can form the closed drive circuit for hydraulic fluid by means of the swing line and the two pump lines.
  • the drive pump and one of the two drive cylinders can be connected by means of one of the two pump lines for a flow of hydraulic fluid, in particular between the drive pump and the drive cylinder.
  • the drive pump and another of the two drive cylinders can be connected by means of another of the two pump lines for a flow of hydraulic fluid, in particular between the drive pump and the drive cylinder.
  • the drive pump or the closed drive circuit can have a high-pressure side and a low-pressure side, which in particular can be cyclically interchanged, in particular in or during operation of the hydraulic drive system, in particular delivery operation of the building material pump.
  • the drive pressure can be referred to as high pressure, in particular on the high pressure side.
  • a low pressure or low limit pressure, in particular on the low-pressure side can be produced or generated by the feed pump, in particular the feed limit pressure, if present.
  • the drive pressure or high pressure or its value can be higher than the low pressure or low limit pressure or its value.
  • a closed drive circuit can refer to a flow of hydraulic fluid from the drive pump, in particular its high-pressure side, through the one pump connection, the one drive cylinder, the swing connection, the other drive cylinder, the other pump connection to the drive pump, in particular its low-pressure side.
  • the at least one section of the hydraulic circuit has at least one low-pressure section for hydraulic fluid.
  • the at least one pressure relief valve unit has a low-pressure relief valve unit that can be actuated, in particular electrically.
  • the low-pressure limiting valve unit is designed for the, in particular automatic, variable setting of a low-limit pressure, in particular a low-limit pressure value or low-limit pressure amount, of hydraulic fluid in the at least one low-pressure section within the pressure region.
  • the control unit can be designed to, depending on the at least one operating parameter to control the low-pressure limiting valve unit, in particular automatically, in such a way that the low-pressure limiting valve unit sets the low-limit pressure of the at least one low-pressure section, in particular variably.
  • the low-limit pressure or its value can depend on the cooling flow, the temperature and/or the degree of contamination, if any.
  • the low-pressure relief valve unit can be referred to as a low-pressure control unit.
  • the low-pressure section can be referred to as the drive pressure section.
  • the low pressure section may be different from the boost pressure section, if any.
  • the feed pressure section can be designed to feed hydraulic fluid into the low-pressure section, in particular by means of at least one feed check valve of the hydraulic drive system.
  • the feed pump can be designed for direct or indirect feeding into the low-pressure section.
  • the low limit pressure or its value can be lower than the feed limit pressure or its value.
  • the hydraulic drive system can have an alternating scavenging valve.
  • the low-pressure section and the low-pressure relief valve unit can be connected by means of the shuttle flushing valve for a flow of hydraulic fluid, in particular from the low-pressure section to the low-pressure relief valve unit.
  • the hydraulic drive system has a cooler.
  • the cooler is designed for, in particular automatic, cooling of hydraulic fluid.
  • the at least one pressure-limiting valve unit is designed by setting the limit pressure for the, in particular automatic, variable setting of, in particular, the cooling flow of hydraulic fluid via or through the cooler.
  • the control unit is designed to actuate the pressure limiting valve unit, in particular automatically, as a function of the at least one operating parameter, in particular the temperature, if present, in such a way that the pressure limiting valve unit adjusts the cooling flow of hydraulic fluid via the cooler, in particular variably. This enables a needs-based or adaptive setting or adjustment, in particular a reduction, of the cooling flow.
  • the cooling flow or its value can be adjusted or defined via or by a pressure difference between the feed limit pressure and the low limit pressure, if any.
  • the low limit pressure can be in Depending on the cooling flow required, in particular, and the feed limit pressure required, in particular, be set.
  • the hydraulic drive system can be designed to flush out or discharge the cooling flow from the hydraulic circuit, in particular the section, in particular the low-pressure section, in particular the closed drive circuit, if present, via the cooler.
  • the at least one pressure-limiting valve unit is, in particular, automatically and/or variably flushed or discharged hydraulic fluid out of the hydraulic circuit, in particular the section, in particular to the feed pump and/or into the container, if present variable setting of the limit pressure formed.
  • the pressure-limiting valve unit can be designed as a throttle valve unit.
  • the hydraulic drive system has at least one, in particular electrical, measuring sensor.
  • the measuring sensor is designed for the, in particular automatic, measurement of at least one property, in particular a value or magnitude of the property and/or one, in particular the, temperature and/or one, in particular the, degree of contamination, of the hydraulic drive system and/or hydraulic fluid.
  • the control unit is designed to determine, in particular automatically, the at least one operating parameter as a function of the measured property.
  • the control unit can have a signal connection, in particular an electrical signal connection, to the measuring sensor. Additionally or alternatively, the operating parameter can correspond to or be the measured property.
  • the invention relates to a building material pump.
  • the building material pump according to the invention has a building material delivery unit and the hydraulic drive system.
  • the building material delivery unit is designed for, in particular automatic, delivery of building material.
  • the hydraulic drive system is designed to drive the building material conveyor unit, in particular automatically.
  • the building material pump can enable the same advantages as the previously described hydraulic drive system.
  • the building material pump or the building material delivery unit or the building material can have at least one, in particular variable or variable funding parameters, in particular with a value or amount.
  • the at least one delivery parameter can be a delivery condition, a delivery flow and/or a delivery pressure.
  • the at least one operating parameter can be dependent on the at least one delivery parameter and/or must have a specific or required value in order to achieve the delivery parameter, which is particularly desired by the user.
  • the drive status can depend on the delivery status
  • the drive flow can depend on the delivery flow and/or the drive pressure can depend on the delivery pressure, if present.
  • control unit can be designed to determine or determine, in particular automatically, in particular a calculation, of the at least one operating parameter or its value as a function of the at least one delivery parameter.
  • control unit can have a user-actuable control panel for operating the building material pump or the hydraulic drive system, in particular an input device for user input or user selection of the at least one delivery parameter or its value.
  • the building material pump can be referred to as a concrete pump or thick matter pump.
  • Thick material can refer to mortar, cement, screed, concrete, plaster and/or mud.
  • the device can be designed as a mobile device, in particular as a car building material pump.
  • the building material pump 200 has a building material delivery unit 210 and a hydraulic drive system 100 according to the invention.
  • the building material delivery unit 210 is designed to deliver building material BS.
  • the hydraulic drive system 100 is designed to drive the building material conveyor unit 210 .
  • the hydraulic drive system 100 has a hydraulic circuit 101, a feed pump 2, at least one controllable pressure relief valve unit 6, 24 and a control unit 27, as in FIG 1 shown.
  • the hydraulic circuit 101 is designed for hydraulic fluid HF.
  • the feed pump 2 is designed to feed hydraulic fluid HF into the hydraulic circuit 101 .
  • the pressure-limiting valve unit 6, 24 is designed to variably set a limit pressure p30, p31/32 of hydraulic fluid HF in at least one section 30, 31, 32 of the hydraulic circuit 101 within a pressure range pmin, pmax.
  • the control unit 27 is designed to control the pressure-limiting valve unit 6, 24 as a function of at least one operating parameter BP of the hydraulic drive system 100 and/or hydraulic fluid HF in such a way that the pressure-limiting valve unit 6, 24 exceeds the limit pressure p30, p31/32 of the section 30, 31, 32 of the hydraulic circuit 101 adjusts.
  • control unit 27 has an electrical signal connection with the pressure-limiting valve unit 6 , 24 .
  • the at least one operating parameter BP is a drive state, a drive flow, a drive pressure, a drive speed, a cooling flow, a temperature T and/or a degree of contamination.
  • the pressure range extends from a minimum of 10 bar pmin to a maximum of 35 bar pmax. In alternative exemplary embodiments, the pressure range can range from a minimum of 2.5 bar to a maximum of 40 bar.
  • the at least one pressure-limiting valve unit 6, 24 has a controllable proportional pressure-limiting valve.
  • the proportional pressure relief valve 6, 24 is designed to continuously adjust the limit pressure p30, p31/32 of hydraulic fluid HF in at least one section 30, 31, 32 of the hydraulic circuit 101 within the pressure range pmin, pmax.
  • the control unit 27 is designed to control the proportional pressure relief valve 6, 24 as a function of the at least one operating parameter BP in such a way that the proportional pressure relief valve 6, 24 sets the limit pressure p30, p31/32 of the section 30, 31, 32 of the hydraulic circuit 101.
  • the at least one pressure-limiting valve unit does not need to have a proportional pressure-limiting valve, or the at least one pressure-limiting valve unit can be configured differently.
  • the hydraulic drive system 100 has two controllable pressure-limiting valve units 6, 24.
  • the hydraulic drive system does not need to have two controllable pressure-limiting valve units or the hydraulic drive system can only have a single controllable pressure-limiting valve unit or at least three controllable pressure-limiting valve units.
  • the hydraulic drive system in particular instead of the pressure-limiting valve unit 6, can have a throttle valve unit, in particular a controllable one, in particular a proportional throttle valve.
  • the throttle valve unit can be designed to variably adjust a flow of hydraulic fluid.
  • the control unit can be designed to control the throttle valve unit depending on the at least one operating parameter of the hydraulic drive system and/or hydraulic fluid in such a way that the throttle valve unit can adjust the flow.
  • the at least one section of the hydraulic circuit 101 has a feed pressure section 30 for hydraulic fluid HF.
  • the pressure limiting valve unit 24 has a boost pressure limiting valve unit or is a boost pressure limiting valve unit.
  • the charge pressure limiting valve unit 24 is designed for the variable setting of a charge limit pressure p30 of hydraulic fluid HF of the charge pressure section 30 within the pressure range pmin, pmax.
  • the feed pump is designed for the direct feeding of hydraulic fluid HF from a container 50 of the hydraulic drive system 100 into the feed pressure section 30, as indicated by an arrow.
  • the at least one section of the hydraulic circuit 101 has at least one low-pressure section 31, 32 for hydraulic fluid HF.
  • the pressure relief valve unit 6 has a controllable low-pressure relief valve unit or is one Low pressure relief valve assembly.
  • the low-pressure limiting valve unit 6 is designed to variably set a low-limit pressure p31/32 of hydraulic fluid HF in the at least one low-pressure section 31, 32 within the pressure range pmin, pmax.
  • the hydraulic drive system can have a throttle valve unit, in particular the throttle valve unit, in particular instead of the low-pressure limiting valve unit.
  • the feed pressure section 30 is designed to feed hydraulic fluid HF into the low-pressure section 31, 32, as indicated by an arrow, in particular by means of at least one feed check valve 3, 4 of the hydraulic drive system 100.
  • the hydraulic circuit 101 has two low-pressure sections or high-pressure sections or drive pressure sections 31 , 32 .
  • the hydraulic drive system 100 has two feed check valves 3, 4.
  • the hydraulic drive system 100 has a variably adjustable drive pump 1 and at least one hydraulic pressure-based actuator 22, 23, in particular in the form of an actuating cylinder.
  • the drive pump 1 is designed to generate a variable drive flow with a variable drive pressure of hydraulic fluid HF in at least one, in particular the drive pressure section 31, 32 of the hydraulic circuit 101.
  • the actuator 22, 23 is designed for the variable adjustment of the drive pump 1 by a variable control pressure p28, p29 of hydraulic fluid HF.
  • the at least one section 30, in particular the feed pressure section 30, of the hydraulic circuit 101 is designed to supply hydraulic pressure to the at least one actuator 22, 23 with hydraulic fluid HF at the set limit pressure p30, in particular the set feed limit pressure p30, for the control pressure p28, p29.
  • the control unit 27 is designed to control the at least one actuator 22, 23 as a function of the at least one operating parameter BP in such a way that the at least one actuator 22, 23 uses the drive pump 1 to generate the variable drive flow with the variable drive pressure of hydraulic fluid HF in the at least one drive pressure section 31, 32 adjusted.
  • control unit 27 has a hydraulic signal connection with the at least one actuator 22, 23.
  • the hydraulic drive system 100 has two actuators 22, 23 based on hydraulic pressure.
  • the drive pump 1 is an axial piston pump with a variably adjustable swash plate.
  • the at least one actuator 22, 23 is designed for variable adjustment of the swash plate.
  • the hydraulic drive system 100 has at least one drive cylinder 7, 8 and an associated drive piston 97, 98.
  • the drive pump 1 is designed to move the at least one drive piston 97, 98 by generating the drive flow of hydraulic fluid HF.
  • the hydraulic drive system 100 has at least two, in particular exactly two, drive cylinders 7, 8 and associated drive pistons 97, 98 in each case.
  • the hydraulic drive system 100 has a swing line 19 for hydraulic fluid HF.
  • the drive pump 1 and the two drive cylinders 7, 8 form a closed drive circuit for hydraulic fluid HF by means of the swing line 19.
  • the two drive pistons 97, 98 are coupled by means of the swing line 19, in particular in phase opposition.
  • the two drive cylinders 7, 8 are connected by means of the swing line 19.
  • the hydraulic drive system 100 has two pump lines 17, 18 for hydraulic fluid HF.
  • the drive pump 1 and the drive cylinder 7 are connected by means of the pump line 17 .
  • the drive pump 1 and the drive cylinder 8 are connected by means of the pump line 18 .
  • the drive pump 1 and the two drive cylinders 7, 8 form the closed drive circuit for hydraulic fluid HF by means of the swing line 19 and the two pump lines 17, 18.
  • the drive state is on, a drive flow that is particularly required is relatively high and a drive pressure that is particularly required is relatively high.
  • the feed limit pressure p30 is therefore set to 32 bar, in particular constant.
  • the low-limit pressure p31 is set to 30 bar, in particular constant.
  • the drive pump 1 or the closed drive circuit has a high-pressure side HD and a low-pressure side ND, which are cyclically interchanged when the hydraulic drive system 100 or the building material delivery unit 210 is in operation.
  • the drive pressure or high pressure HD is higher than the low limit pressure p31 or low pressure ND.
  • Hydraulic fluid HF with the drive pressure or high pressure HD flows from the drive pump 1 through the pump line 18 to the drive cylinder 8, as indicated by an arrow.
  • the pump line 18 and the drive cylinder 8 form, in particular at least partially, the high-pressure section 32.
  • Hydraulic fluid HF particularly at a swing pressure, flows from the power cylinder 8 through the swing line 19 to the power cylinder 7 as indicated by an arrow.
  • the swing line 19 and the drive cylinder 7 form, in particular at least partially, a swing pressure section.
  • Hydraulic fluid HF with the low limit pressure p31 or low pressure ND flows from the drive cylinder 7 through the pump line 17 to the drive pump 1, as indicated by an arrow.
  • the pump line 17 and the drive cylinder 7 form, in particular at least partially, the low-pressure section 31.
  • the feed pressure section 30 feeds the low pressure section 31, as indicated by the arrow, in particular by means of the feed check valve 3.
  • the power state may be on, but power flow medium and power pressure medium.
  • the feed limit pressure can then be lowered to, for example, 22 bar and, in particular, set to be constant, and the low limit pressure can be lowered to, for example, 20 bar and, in particular, set to be constant.
  • the power state may be off.
  • the feed limit pressure can then be lowered to, for example, 12 bar and, in particular, set to be constant, and the low limit pressure can be lowered to, for example, 10 bar and, in particular, set to be constant.
  • the at least one pressure-limiting valve unit 6, 24 is designed to variably set the limit pressure p30, p31/32 by flushing hydraulic fluid HF out of the hydraulic circuit 101, in particular into the container 50.
  • the at least one pressure-limiting valve unit can be designed for variable adjustment of the limit pressure by flushing hydraulic fluid out of the hydraulic circuit, in particular through a filter and/or to the feed pump, in particular to a suction side of the feed pump.
  • the charge pressure limiting valve unit 24 is designed to variably adjust the charge limit pressure p30 by flushing hydraulic fluid HF out of the charge pressure section 30, as indicated by an arrow.
  • the low-pressure limiting valve unit 6 is designed to variably adjust the low-limit pressure p31/32 by flushing hydraulic fluid HF out of the low-pressure section 31, 32, as indicated by an arrow.
  • the hydraulic drive system can have a throttle valve unit, in particular the throttle valve unit, in particular instead of the low-pressure limiting valve unit.
  • the throttle valve unit can be designed to variably adjust a flow, in particular a flushing flow, of hydraulic fluid out of the low-pressure section.
  • the control unit can be designed to, depending on the at least one operating parameter of the hydraulic drive system and / or Hydraulic fluid to control the throttle valve unit in such a way that the throttle valve unit can adjust the flow of hydraulic fluid from the low-pressure section.
  • a part of the hydraulic fluid HF flows from the low-pressure section 31 to the drive pump 1. Another part of the hydraulic fluid HF is flushed out of the low-pressure section 31.
  • the hydraulic drive system 100 has an alternating scavenging valve 5 .
  • the low-pressure section 31, 32 and the low-pressure relief valve unit 6 are connected by means of the alternating scavenging valve 5 for a flow of hydraulic fluid HF.
  • Hydraulic fluid HF flows from the low pressure section 31 through the shuttle scavenging valve 5 to the low pressure relief valve unit 6 as indicated by an arrow.
  • the hydraulic drive system 100 has two, in particular hydraulic, control lines 25, 26 for, in particular automatic, control of the alternating scavenging valve 5.
  • the hydraulic drive system 100 has two flushing lines 20, 21 for hydraulic fluid HF.
  • the pump line 17 and the alternating flushing valve 5 are connected by means of the flushing line 21 .
  • the pump line 18 and the alternating flushing valve 5 are connected by means of the flushing line 20 .
  • the alternating scavenging valve 5 is designed to connect that scavenging line 20, 21 to the low-pressure limiting valve unit 6, in particular for a flow of hydraulic fluid HF from the respective scavenging line 20, 21 to the low-pressure limiting valve unit 6, which has a relatively lower pressure than the other scavenging line. in 1 the flushing line 21.
  • the hydraulic drive system 100 also has a cooler 60 .
  • the cooler 60 is designed to cool hydraulic fluid HF.
  • the at least one pressure-limiting valve unit 6, 24 is designed to variably adjust one, in particular the, cooling flow of hydraulic fluid HF via the cooler 60 by adjusting the limit pressure p30, p31/32.
  • the control unit 27 is designed to actuate the pressure limiting valve unit 6, 24 as a function of the at least one operating parameter BP, in particular the temperature T, in such a way that the pressure limiting valve unit 6, 24 adjusts the cooling flow of hydraulic fluid HF via the cooler 60.
  • the hydraulic drive system in particular instead of the pressure-limiting valve unit 6, can have a throttle valve unit, in particular the throttle valve unit.
  • the throttle valve unit can be designed for the variable adjustment of a cooling flow, in particular the cooling flow, of hydraulic fluid via the cooler.
  • the control unit can be designed to control the throttle valve unit as a function of the at least one operating parameter, in particular the temperature, in such a way that the throttle valve unit can adjust the cooling flow of hydraulic fluid via the cooler.
  • the cooling flow is adjusted by a pressure difference between the feed limit pressure p30 and the low limit pressure p 31/32.
  • the temperature T is medium.
  • the pressure difference is therefore set to 2 bar, in particular constant.
  • the temperature can be relatively high.
  • the pressure difference can then be increased to, for example, 3 bar and, in particular, set to be constant.
  • the low limit pressure in particular relative to the supply limit pressure, can be lowered and, in particular, set to be constant.
  • the temperature may be relatively low.
  • the pressure difference can then be lowered to, for example, 1 bar and, in particular, set to be constant.
  • the low limit pressure, in particular relative to the feed limit pressure can be increased and, in particular, set to be constant.
  • the hydraulic drive system 100 is designed to flush the cooling flow out of the hydraulic circuit 101, in particular the low-pressure section 31, 32, via the cooler 60.
  • the cooler 60 is arranged, in particular in the direction of flow, after or behind the low-pressure limiting valve unit 6 and in particular in front of the container 50 .
  • hydraulic fluid HF flows from the low-pressure relief valve unit 6 over or through the cooler 60 to the container 50, as indicated by an arrow.
  • the hydraulic drive system can be used to flush the cooling flow out of the hydraulic circuit, in particular the low-pressure section, via the cooler, in particular through a filter, in particular the filter, and/or to the feed pump, in particular to one, in particular the, suction side of the feed pump. be trained.
  • hydraulic fluid can flow from the low-pressure limiting valve unit via or through the cooler, and in particular one, in particular the filter, to the feed pump, in particular to one, in particular the, suction side of the feed pump.
  • Hydraulic drive system in particular instead of the low-pressure relief valve unit, one, in particular, have the throttle valve unit.
  • the hydraulic drive system 100 has at least one measuring sensor 80 .
  • Measuring sensor 80 is designed to measure at least one property of hydraulic drive system 100 and/or hydraulic fluid HF.
  • the control unit 27 is designed to determine the at least one operating parameter BP as a function of the measured property.
  • control unit 27 has an electrical signal connection with the measuring sensor 80 .
  • the hydraulic drive system 100 has only a single measurement sensor 80 .
  • the hydraulic drive system can have at least two measuring sensors.
  • measuring sensor 80 is designed to measure a temperature T of hydraulic fluid HF and thus of hydraulic drive system 100 .
  • the control unit 27 is designed to determine the at least one operating parameter BP as a function of the measured temperature T.
  • the measuring sensor 80 is designed to measure the temperature T of hydraulic fluid HF in the low-pressure section 31, 32.
  • the measuring sensor 80 is arranged, in particular in the direction of flow, in particular after the alternating scavenging valve 5 and before the low-pressure limiting valve unit 6 .
  • the measuring sensor can be arranged on or in the drive pump, in particular in the leakage oil of the drive pump.
  • the hydraulic drive system 100 has a drive motor 70 .
  • the drive motor 70 is designed to drive the feed pump 2 and, in particular, the drive pump 1 as well.
  • the building material conveying unit 210 has at least one, in particular two, conveying cylinders 34, 35 and one, in particular two, associated conveying pistons 38, 39, in particular arranged in the conveying cylinders 34, 35, as in FIG 2 shown.
  • the at least one delivery cylinder 34, 35 is designed for building material BS.
  • the at least one delivery cylinder 34, 35 is designed to pressurize building material BS.
  • the hydraulic drive system 100 has at least one, in particular two, piston rods 95, 96.
  • the at least one piston rod 95, 96 is designed to couple or transmit movement of the at least one drive piston 97, 98 to the at least one delivery piston 38, 39.
  • the at least one piston rod 95, 96 is attached to the at least one drive piston 97, 98 and/or to the at least one delivery piston 38, 39.
  • the building material conveying unit 210 has a diverter system 99 .
  • the invention provides an advantageous hydraulic drive system for a building material pump and an advantageous building material pump having such a hydraulic drive system that has improved properties, in particular enabling savings in energy or power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

    ANWENDUNGSGEBIET UND STAND DER TECHNIK
  • Die Erfindung bezieht sich auf ein Hydraulikantriebssystem für eine Baustoffpumpe und eine Baustoffpumpe aufweisend ein solches Hydraulikantriebssystem.
  • Die DE 101 34 789 A1 offenbart einen Fahrantrieb mit einem Verbrennungsmotor sowie mit einer Arbeitshydraulik, die eine durch den Verbrennungsmotor betätigte Pumpeinrichtung aufweist, und mit einer elektronischen Steuereinheit, die die Drehzahl des Verbrennungsmotors und den Förderstrom der Pumpeneinrichtung steuert. Die Arbeitshydraulik weist einen mittels eines Steuerglieds zuschaltbaren Hydrauliklastzweig auf, und das Steuerglied ist durch die elektronische Steuereinheit aktivierbar, sobald eine erfasste Ist-Drehzahl des Verbrennungsmotors über einen Toleranzbereich einer eingestellten Soll-Drehzahl hinausgeht. Einsatz für Kettenfahrzeuge auf Schneepisten.
  • AUFGABE UND LÖSUNG
  • Der Erfindung liegt als Aufgabe die Bereitstellung eines Hydraulikantriebssystems für eine Baustoffpumpe und eine Baustoffpumpe aufweisend ein solches Hydraulikantriebssystems zugrunde, das beziehungsweise die jeweils verbesserte Eigenschaften aufweist.
  • Die Erfindung löst diese Aufgabe durch die Bereitstellung eines Hydraulikantriebssystems mit den Merkmalen des Anspruchs 1 und einer Baustoffpumpe mit den Merkmalen des Anspruchs 14. Vorteilhafte Weiterbildungen und/oder Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Das erfindungsgemäße Hydraulikantriebssystem für eine Baustoffpumpe weist einen Hydraulikkreis, insbesondere mindestens, eine Speisepumpe, mindestens eine, insbesondere elektrisch, ansteuerbare Druckbegrenzungsventileinheit und eine, insbesondere elektrische, Steuereinheit auf. Der Hydraulikkreis ist für Hydraulikflüssigkeit, insbesondere von Öl, ausgebildet. Die, insbesondere mindestens eine, Speisepumpe ist zur, insbesondere automatischen, Einspeisung von Hydraulikflüssigkeit in den Hydraulikkreis hinein ausgebildet. Die Druckbegrenzungsventileinheit ist zur, insbesondere automatischen, variablen beziehungsweise veränderlichen beziehungsweise regelbaren Einstellung, insbesondere mindestens, eines Grenzdrucks, insbesondere eines Grenzdruckwerts beziehungsweise Grenzdruckbetrags, von Hydraulikflüssigkeit mindestens eines Abschnitts des Hydraulikkreises innerhalb eines Druckbereichs, insbesondere eines Druckwertebereichs, ausgebildet, insbesondere in beziehungsweise während eines Betriebs des Hydraulikantriebssystems, insbesondere eines Förderbetriebs der Baustoffpumpe. Die mindestens eine Druckbegrenzungsventileinheit weist, insbesondere mindestens, ein, insbesondere elektrisch, ansteuerbares Proportional-Druckbegrenzungsventil auf. Das Proportional-Druckbegrenzungsventil ist zur, insbesondere automatischen, kontinuierlichen Einstellung des Grenzdrucks, insbesondere seines Werts, von Hydraulikflüssigkeit des mindestens einen Abschnitts des Hydraulikkreises innerhalb des Druckbereichs ausgebildet. Die Steuereinheit ist dazu ausgebildet, in Abhängigkeit von mindestens einem, insbesondere benutzergewünschten, Betriebsparameter, insbesondere eines Betriebsparameterwerts beziehungsweise Betriebsparameterbetrags, des Hydraulikantriebssystems und/oder von Hydraulikflüssigkeit die Druckbegrenzungsventileinheit, insbesondere automatisch, derart anzusteuern, dass die Druckbegrenzungsventileinheit den Grenzdruck des Abschnitts des Hydraulikkreises, insbesondere variabel, einstellt. Die Steuereinheit ist dazu ausgebildet, in Abhängigkeit von dem mindestens einen Betriebsparameter das Proportional-Druckbegrenzungsventil, insbesondere automatisch, derart anzusteuern, dass das Proportional-Druckbegrenzungsventil den Grenzdruck des Abschnitts des Hydraulikkreises, insbesondere kontinuierlich, einstellt.
  • Dies ermöglicht eine bedarfsgerechte beziehungsweise adaptive Einstellung beziehungsweise Anpassung, insbesondere eine Absenkung, des Grenzdrucks. Die Speisepumpe kann den Grenzdruck zu überwinden beziehungsweise gegen diesen zu arbeiten haben. Somit ermöglicht dies einen bedarfsgerechten Energie- beziehungsweise Leistungsverbrauch der Speisepumpe, insbesondere eine Absenkung des Energie- beziehungsweise Leistungsverbrauchs der Speisepumpe. Somit ermöglicht dies eine Einsparung von Energie beziehungsweise Leistung.
  • Insbesondere bei einer Veränderung des mindestens einen Betriebsparameters beziehungsweise seines Werts kann der Grenzdruck beziehungsweise sein Wert, insbesondere aktiv, verändert werden. Zusätzlich oder alternativ braucht bei keiner Veränderung des Betriebsparameters beziehungsweise seines Werts der Grenzdruck beziehungsweise sein Wert nicht verändert werden. In anderen Worten: bei keiner Veränderung des Betriebsparameters kann der Grenzdruck beziehungsweise sein Wert konstant eingestellt sein beziehungsweise konstant gehalten beziehungsweise unverändert gelassen werden. Anders formuliert: der Grenzdruck beziehungsweise sein Wert und der mindestens eine Betriebsparameter beziehungsweise sein Wert können miteinander, insbesondere mittels einer Funktion, verknüpft sein.
  • Der Hydraulikkreis kann mindestens eine Hydraulikleitung, insbesondere ein Rohr und/oder einen Schlauch, aufweisen.
  • Das Hydraulikantriebssystem kann einen Behälter beziehungsweise Tank, insbesondere einen Vorratsbehälter, für beziehungsweise mit Hydraulikflüssigkeit aufweisen. Die Speisepumpe kann zur Einspeisung von Hydraulikflüssigkeit aus dem Behälter heraus ausgebildet sein. Zusätzlich oder alternativ kann die Speisepumpe eine Konstantpumpe sein. Weiter zusätzlich oder alternativ kann die Speisepumpe zur unmittelbaren und/oder mittelbaren Einspeisung in den mindestens einen Abschnitt hinein ausgebildet sein.
  • Die Druckbegrenzungsventileinheit kann als Druckregeleinheit bezeichnet werden. Insbesondere kann das Hydraulikantriebssystem mindestens einen, insbesondere elektrischen, Drucksensor aufweisen. Der Drucksensor kann zur, insbesondere automatischen, Messung, insbesondere Regelung, des Grenzdrucks, insbesondere des Grenzdruckwerts beziehungsweise Grenzdruckbetrags, von Hydraulikflüssigkeit in dem Abschnitt des Hydraulikkreises ausgebildet sein. Die Steuereinheit und/oder die Druckbegrenzungsventileinheit können/kann zur Einstellung, insbesondere Regelung, des Grenzdrucks in Abhängigkeit von dem gemessen Grenzdruck ausgebildet sein. Insbesondere können/kann die Steuereinheit und/oder die Druckbegrenzungsventileinheit, insbesondere jeweils, mit dem Drucksensor eine, insbesondere elektrische, Signalverbindung aufweisen. Zusätzlich oder alternativ kann dies als Druckregelung bezeichnet werden. Weiter zusätzlich oder alternativ kann die Druckbegrenzungsventileinheit zur Einstellung des Grenzdrucks auf mindestens drei verschiedene Grenzdruckwerte ausgebildet sein. Insbesondere kann die Druckbegrenzungsventileinheit zur Einstellung des Grenzdrucks in Druckwertschritten von maximal 5 bar, insbesondere von maximal 4 bar, insbesondere von maximal 3 bar, insbesondere von maximal 2 bar, insbesondere von maximal 1 bar, insbesondere zur kontinuierlichen Einstellung, ausgebildet sein. Weiter zusätzlich oder alternativ kann der Druckbereich einen minimalen Grenzdruckwert und einen maximalen Grenzdruckwert aufweisen beziehungsweise durch diese definiert sein.
  • Insbesondere kann das Proportional-Druckbegrenzungsventil als Proportional-Druckregelventil bezeichnet werden.
  • Der Betriebsparameter beziehungsweise sein Wert kann sich in Stufen, insbesondere kontinuierlich, verändern.
  • Die Steuereinheit kann ein benutzerbetätigbares Bedienfeld zur Bedienung des Hydraulikantriebssystems, insbesondere der Baustoffpumpe, aufweisen, insbesondere ein Eingabegerät zur Benutzereingabe beziehungsweise Benutzerauswahl des mindestens einen Betriebsparameters beziehungsweise seines Werts. Zusätzlich oder alternativ kann die Steuereinheit zu einer, insbesondere automatischen, Bestimmung beziehungsweise Ermittlung, insbesondere einer Berechnung, des Grenzdrucks beziehungsweise seines Werts in Abhängigkeit von dem mindestens einen Betriebsparameter ausgebildet sein. In anderen Worten: der Grenzdruck kann von dem mindestens einen Betriebsparameter abhängig sein und/oder muss zur Erreichung des, insbesondere benutzergewünschten, Betriebsparameters einen bestimmten beziehungsweise erforderlichen Wert aufweisen. Insbesondere kann die Steuereinheit einen Prozessor und/oder einen Speicher aufweisen. Weiter zusätzlich oder alternativ kann die Steuereinheit mit der Druckbegrenzungsventileinheit eine, insbesondere elektrische, Signalverbindung aufweisen.
  • In einer Weiterbildung der Erfindung weist das Hydraulikantriebssystem einen Antriebsmotor auf. Der Antriebsmotor ist zum, insbesondere automatischen, Antrieb der Speisepumpe ausgebildet. Die bedarfsgerechte Einstellung des Grenzdrucks beziehungsweise seines Werts ermöglicht einen bedarfsgerechten Energie- beziehungsweise Leistungsverbrauch des Antriebsmotors. Insbesondere kann der Antriebsmotor ein Verbrennungsmotor, insbesondere ein Dieselmotor, oder ein Elektromotor sein.
  • In einer Weiterbildung der Erfindung ist der mindestens eine Betriebsparameter ein Antriebszustand, ein Antriebsfluss, ein Antriebsdruck, eine Antriebsdrehzahl, ein Kühlfluss, eine Temperatur und/oder ein Verschmutzungsgrad. Insbesondere kann der Antriebszustand ein oder aus beziehungsweise Antrieb oder Nicht-Antrieb, insbesondere der Baustoffpumpe, sein. Bei Antriebszustand aus kann der Grenzdruck, insbesondere auf den minimalen Grenzdruckwert, abgesenkt werden. Zusätzlich oder alternativ können/kann der Antriebsfluss und/oder der Antriebsdruck jeweils einen, insbesondere veränderlichen, Wert beziehungsweise Betrag aufweisen und/oder ein Betriebsparameter der Hydraulikflüssigkeit sein. Weiter zusätzlich oder alternativ kann die Antriebsdrehzahl einen, insbesondere veränderlichen, Wert beziehungsweise Betrag aufweisen und/oder ein Betriebsparameter der Speisepumpe und/oder des Antriebsmotors, soweit vorhanden, sein. Weiter zusätzlich oder alternativ können/kann der Kühlfluss, die Temperatur und/oder der Verschmutzungsgrad jeweils einen, insbesondere veränderlichen, Wert beziehungsweise Betrag aufweisen und/oder ein Betriebsparameter der Hydraulikflüssigkeit sein.
  • In einer Weiterbildung der Erfindung reicht beziehungsweise ist der Druckbereich von minimal 2,5 bar bis maximal 40 bar, insbesondere von minimal 5 bar bis maximal 35 bar, insbesondere von minimal 10 bar bis maximal 30 bar, insbesondere von minimal 15 bar bis maximal 25 bar.
  • In einer Weiterbildung der Erfindung weist der mindestens eine Abschnitt des Hydraulikkreises einen Speisedruckabschnitt für Hydraulikflüssigkeit auf. Die mindestens eine Druckbegrenzungsventileinheit weist eine, insbesondere elektrisch, ansteuerbare Speisedruckbegrenzungsventileinheit auf. Die Speisedruckbegrenzungsventileinheit ist zur, insbesondere automatischen, variablen Einstellung eines Speisegrenzdrucks, insbesondere eines Speisegrenzdruckwerts beziehungsweise eines Speisegrenzdruckbetrags, von Hydraulikflüssigkeit des Speisedruckabschnitts innerhalb des Druckbereichs ausgebildet. Insbesondere kann die Steuereinheit dazu ausgebildet sein, in Abhängigkeit von dem mindestens einen Betriebsparameter die Speisedruckbegrenzungsventileinheit, insbesondere automatisch, derart anzusteuern, dass die Speisedruckbegrenzungsventileinheit den Speisegrenzdruck des Speisedruckabschnitts, insbesondere variabel, einstellt. Der Speisegrenzdruck beziehungsweise sein Wert kann von dem Antriebszustand, dem Antriebsfluss, dem Antriebsdruck, der Antriebsdrehzahl, dem Kühlfluss, der Temperatur und/oder dem Verschmutzungsgrad, soweit vorhanden, abhängig sein. Zusätzlich oder alternativ kann die Speisedruckbegrenzungsventileinheit als Speisedruckregeleinheit bezeichnet werden. Weiter zusätzlich oder alternativ kann die Speisepumpe zur unmittelbaren beziehungsweise direkten Einspeisung in den Speisedruckabschnitt hinein ausgebildet sein.
  • In einer Weiterbildung der Erfindung weist das Hydraulikantriebssystem, insbesondere mindestens, eine variabel verstellbare Antriebspumpe und mindestens ein, insbesondere elektrisch ansteuerbares, hydraulikdruckbasiertes Stellglied auf. Die Antriebspumpe ist zur, insbesondere automatischen, Erzeugung eines, insbesondere des, variablen Antriebsflusses, insbesondere mit einem variablen Antriebsflusswert beziehungsweise Antriebsflussbetrag, mit einem, insbesondere dem, variablen Antriebsdruck, insbesondere mit einem variablen Antriebsdruckwert beziehungsweise Antriebsdruckbetrag, von Hydraulikflüssigkeit in mindestens einem Antriebsdruckabschnitt des Hydraulikkreises ausgebildet. Das Stellglied ist zur, insbesondere automatischen, variablen Verstellung der Antriebspumpe durch einen variablen Stelldruck, insbesondere mit einem variablen Stelldruckwert beziehungsweise Stelldruckbetrag, von Hydraulikflüssigkeit ausgebildet. Der mindestens eine Abschnitt, insbesondere der Speisedruckabschnitt, soweit vorhanden, des Hydraulikkreises ist zur, insbesondere automatischen, Hydraulikdruckversorgung des mindestens einen Stellglieds mit Hydraulikflüssigkeit mit dem eingestellten Grenzdruck, insbesondere dem eingestellten Speisegrenzdruck, soweit vorhanden, für den Stelldruck ausgebildet. Die Steuereinheit ist dazu ausgebildet, in Abhängigkeit von dem mindestens einen Betriebsparameter das mindestens eine Stellglied, insbesondere automatisch, derart anzusteuern, dass das mindestens eine Stellglied die Antriebspumpe zur Erzeugung des variablen Antriebsflusses mit dem variablen Antriebsdruck von Hydraulikflüssigkeit in dem mindestens einen Antriebsdruckabschnitt, insbesondere variabel, verstellt.
  • Insbesondere kann der Antriebsdruckabschnitt als Hoch- und/oder Niederdruckabschnitt bezeichnet werden. Zusätzlich oder alternativ kann der Antriebsdruckabschnitt von dem Speisedruckabschnitt, soweit vorhanden, verschieden sein. Insbesondere kann der Speisedruckabschnitt zur Einspeisung von Hydraulikflüssigkeit in den Antriebsdruckabschnitt hinein ausgebildet sein, insbesondere mittels mindestens eines Einspeiserückschlagventils des Hydraulikantriebssystems. Anders formuliert: die Speisepumpe kann zur mittelbaren beziehungsweise indirekten Einspeisung in den Antriebsdruckabschnitt hinein ausgebildet sein.
  • Weiter zusätzlich oder alternativ kann die Antriebsdrehzahl, soweit vorhanden, ein Betriebsparameter der Antriebspumpe sein. Insbesondere kann der Antriebsmotor zum, insbesondere automatischen, Antrieb der Antriebspumpe ausgebildet sein.
  • Weiter zusätzlich oder alternativ kann der Stelldruck von dem Betriebsparameter abhängig sein, insbesondere von dem Antriebszustand, dem Antriebsfluss, dem Antriebsdruck und/oder der Antriebsdrehzahl, und/oder muss zur Erreichung des, insbesondere benutzergewünschten, Betriebsparameters einen bestimmten beziehungsweise erforderlichen Wert aufweisen. Insbesondere kann die Steuereinheit zu einer, insbesondere automatischen, Bestimmung beziehungsweise Ermittlung, insbesondere einer Berechnung, des Stelldrucks beziehungsweise seines Werts in Abhängigkeit von dem mindestens einen Betriebsparameter ausgebildet sein.
  • Weiter zusätzlich oder alternativ kann der Grenzdruck, insbesondere der Speisedruck, soweit vorhanden, von dem Stelldruck abhängig sein und/oder muss zur Erreichung des Stelldrucks einen bestimmten beziehungsweise erforderlichen Wert aufweisen. Insbesondere kann die Steuereinheit zu einer, insbesondere automatischen, Bestimmung beziehungsweise Ermittlung, insbesondere einer Berechnung, des Grenzdrucks beziehungsweise seines Werts in Abhängigkeit von dem Stelldruck ausgebildet sein. Weiter zusätzlich oder alternativ kann die Steuereinheit mit dem Stellglied eine, insbesondere hydraulische, Signalverbindung aufweisen.
  • Insbesondere braucht bei Antriebszustand aus, soweit vorhanden, die Antriebspumpe nur einen relativ niedrigen oder sogar keinen Antriebsfluss erzeugen. Somit kann für die Verstellung der Antriebspumpe nur ein relativ niedriger beziehungsweise kein Stelldruck erforderlich sein. Somit kann der Grenzdruck, insbesondere auf den minimalen Grenzdruckwert, abgesenkt werden. Der minimale Grenzdruckwert kann ermöglichen, eine Funktion der Antriebspumpe aufrecht zu erhalten beziehungsweise einen Schaden der Antriebspumpe zu vermeiden. Bei Antriebszustand ein, soweit vorhanden, kann ein relativ höherer Stelldruck, insbesondere in Abhängigkeit von dem Antriebsfluss, dem Antriebsdruck und/oder der Antriebsdrehzahl, erforderlich sein. Somit kann ein relativ höherer Grenzdruck erforderlich sein.
  • Weiter zusätzlich oder alternativ kann die Antriebspumpe eine Axialkolbenpumpe mit variabel verstellbarem Schluckvolumen sein. Das mindestens eine Stellglied kann zur, insbesondere automatischen, variablen Verstellung des Schluckvolumens ausgebildet sein.
  • In einer Ausgestaltung der Erfindung ist die Antriebspumpe eine Axialkolbenpumpe mit variabel verstellbarer Schrägscheibe. Das mindestens eine Stellglied ist zur, insbesondere automatischen, variablen Verstellung der Schrägscheibe ausgebildet. Insbesondere kann ein Schwenkwinkel der Schrägscheibe von dem Betriebsparameter abhängig sein, insbesondere von dem Antriebszustand und/oder dem Antriebsfluss, und/oder muss zur Erreichung des, insbesondere benutzergewünschten, Betriebsparameters einen bestimmten beziehungsweise erforderlichen Wert aufweisen. Insbesondere kann die Steuereinheit zu einer, insbesondere automatischen, Bestimmung beziehungsweise Ermittlung, insbesondere einer Berechnung, des Schwenkwinkels beziehungsweise seines Werts in Abhängigkeit von dem mindestens einen Betriebsparameter ausgebildet sein.
  • In einer Ausgestaltung der Erfindung weist das Hydraulikantriebssystem mindestens einen Antriebszylinder und einen zugeordneten, insbesondere in dem Antriebszylinder angeordneten, Antriebskolben auf. Die Antriebspumpe ist durch Erzeugung des Antriebsflusses von Hydraulikflüssigkeit zur, insbesondere automatischen, variablen Bewegung des mindestens einen Antriebskolbens, insbesondere in dem Antriebszylinder, ausgebildet. Insbesondere kann das Hydraulikantriebssystem mindestens eine Pumpenleitung aufweisen. Die Antriebspumpe und der Antriebszylinder können mittels der Pumpenleitung für einen Fluss von Hydraulikflüssigkeit, insbesondere zwischen der Antriebspumpe und dem Antriebszylinder, verbunden sein. Zusätzlich oder alternativ kann der Antriebskolben zur Druckbeaufschlagung mit Hydraulikflüssigkeit ausgebildet sein. Weiter zusätzlich oder alternativ kann die Steuereinheit dazu ausgebildet sein, in Abhängigkeit von dem mindestens einen Betriebsparameter die Bewegung des Antriebskolbens, insbesondere automatisch, zu steuern.
  • In einer Ausgestaltung weist das Hydraulikantriebssystem mindestens zwei Antriebszylinder und jeweils zugeordnete, insbesondere in dem jeweiligen Antriebszylinder angeordnete, Antriebskolben und eine Schaukelleitung für Hydraulikflüssigkeit auf. Die Antriebspumpe und die zwei Antriebszylinder bilden mittels der Schaukelleitung einen geschlossenen Antriebskreis für Hydraulikflüssigkeit. Die zwei Antriebskolben sind mittels der Schaukelleitung gekoppelt, insbesondere gegenphasig. Insbesondere können die zwei Antriebszylinder mittels der Schaukelleitung für einen Fluss von Hydraulikflüssigkeit, insbesondere zwischen den Antriebszylindern, verbunden sein. Zusätzlich oder alternativ kann das Hydraulikantriebssystem mindestens zwei Pumpenleitungen aufweisen. Die Antriebspumpe und die zwei Antriebszylinder können mittels der Schaukelleitung und der zwei Pumpenleitungen den geschlossenen Antriebskreis für Hydraulikflüssigkeit bilden. Insbesondere können die Antriebspumpe und einer der zwei Antriebszylinder mittels einer der zwei Pumpenleitungen für einen Fluss von Hydraulikflüssigkeit, insbesondere zwischen der Antriebspumpe und dem Antriebszylinder, verbunden sein. Die Antriebspumpe und ein anderer der zwei Antriebszylinder können mittels einer anderen der zwei Pumpenleitungen für einen Fluss von Hydraulikflüssigkeit, insbesondere zwischen der Antriebspumpe und dem Antriebszylinder, verbunden sein. Weiter zusätzlich oder alternativ kann die Antriebspumpe beziehungsweise der geschlossene Antriebskreis eine Hochdruckseite und eine Niederdruckseite aufweisen, insbesondere die zyklisch miteinander getauscht sein können, insbesondere in beziehungsweise während eines Betriebs des Hydraulikantriebssystems, insbesondere eines Förderbetriebs der Baustoffpumpe. Insbesondere kann der Antriebsdruck als Hochdruck, insbesondere der Hochdruckseite, bezeichnet werden. Ein Niederdruck beziehungsweise Niedergrenzdruck, insbesondere der Niederdruckseite, kann durch die Speisepumpe, insbesondere den Speisegrenzdruck, soweit vorhanden, erzeugt beziehungsweise generiert werden. Der Antriebsdruck beziehungsweise Hochdruck beziehungsweise sein Wert kann höher als der Niederdruck beziehungsweise Niedergrenzdruck beziehungsweise sein Wert sein. Insbesondere kann geschlossener Antriebskreis einen Fluss von Hydraulikflüssigkeit von der Antriebspumpe, insbesondere ihrer Hochdruckseite, durch die eine Pumpenverbindung, den einen Antriebszylinder, die Schaukelverbindung, den anderen Antriebszylinder, die andere Pumpenverbindung zu der Antriebspumpe, insbesondere ihrer Niederdruckseite, bezeichnen.
  • In einer Weiterbildung der Erfindung weist der mindestens eine Abschnitt des Hydraulikkreises mindestens einen Niederdruckabschnitt für Hydraulikflüssigkeit auf. Die mindestens eine Druckbegrenzungsventileinheit weist eine, insbesondere elektrisch, ansteuerbare Niederdruckbegrenzungsventileinheit auf. Die Niederdruckbegrenzungsventileinheit ist zur, insbesondere automatischen, variablen Einstellung eines Niedergrenzdrucks, insbesondere eines Niedergrenzdruckwerts beziehungsweise Niedergrenzdruckbetrags, von Hydraulikflüssigkeit des mindestens einen Niederdruckabschnitts innerhalb des Druckbereichs ausgebildet. Insbesondere kann die Steuereinheit dazu ausgebildet sein, in Abhängigkeit von dem mindestens einen Betriebsparameter die Niederdruckbegrenzungsventileinheit, insbesondere automatisch, derart anzusteuern, dass die Niederdruckbegrenzungsventileinheit den Niedergrenzdruck des mindestens einen Niederdruckabschnitts, insbesondere variabel, einstellt. Der Niedergrenzdruck beziehungsweise sein Wert kann von dem Kühlfluss, der Temperatur und/oder dem Verschmutzungsgrad, soweit vorhanden, abhängig sein. Zusätzlich oder alternativ kann die Niederdruckbegrenzungsventileinheit als Niederdruckregeleinheit bezeichnet werden. Weiter zusätzlich oder alternativ kann der Niederdruckabschnitt als Antriebsdruckabschnitt bezeichnet werden. Weiter zusätzlich oder alternativ kann der Niederdruckabschnitt von dem Speisedruckabschnitt, soweit vorhanden, verschieden sein. Insbesondere kann der Speisedruckabschnitt zur Einspeisung von Hydraulikflüssigkeit in den Niederdruckabschnitt hinein ausgebildet sein, insbesondere mittels mindestens eines Einspeiserückschlagventils des Hydraulikantriebssystems. In anderen Worten: die Speisepumpe kann zur mittelbaren beziehungsweise indirekten Einspeisung in den Niederdruckabschnitt hinein ausgebildet sein. Anders formuliert: der Niedergrenzdruck beziehungsweise sein Wert kann niedriger als der Speisegrenzdruck beziehungsweise sein Wert sein. Weiter zusätzlich oder alternativ kann das Hydraulikantriebssystem ein Wechselspülventil aufweisen. Der Niederdruckabschnitt und die Niederdruckbegrenzungsventileinheit können mittels des Wechselspülventils für einen Fluss von Hydraulikflüssigkeit, insbesondere von dem Niederdruckabschnitt zu der Niederdruckbegrenzungsventileinheit, verbunden sein.
  • In einer Weiterbildung der Erfindung weist das Hydraulikantriebssystem einen Kühler auf. Der Kühler ist zur, insbesondere automatischen, Kühlung von Hydraulikflüssigkeit ausgebildet. Die mindestens eine Druckbegrenzungsventileinheit ist durch Einstellung des Grenzdrucks zur, insbesondere automatischen, variablen Einstellung eines, insbesondere des, Kühlflusses von Hydraulikflüssigkeit über beziehungsweise durch den Kühler ausgebildet. Die Steuereinheit ist dazu ausgebildet, in Abhängigkeit von dem mindestens einen Betriebsparameter, insbesondere der Temperatur, soweit vorhanden, die Druckbegrenzungsventileinheit, insbesondere automatisch, derart anzusteuern, dass die Druckbegrenzungsventileinheit den Kühlfluss von Hydraulikflüssigkeit über den Kühler, insbesondere variabel, einstellt. Dies ermöglicht eine bedarfsgerechte beziehungsweise adaptive Einstellung beziehungsweise Anpassung, insbesondere eine Absenkung, des Kühlflusses. Somit ermöglicht dies einen bedarfsgerechten Energie- beziehungsweise Leistungsverbrauch der Speisepumpe, insbesondere eine Absenkung des Energie- beziehungsweise Leistungsverbrauchs der Speisepumpe. Insbesondere kann der Kühlfluss beziehungsweise sein Wert über beziehungsweise durch eine Druckdifferenz zwischen dem Speisegrenzdruck und dem Niedergrenzdruck, soweit vorhanden, eingestellt beziehungsweise definiert sein. In anderen Worten: der Niedergrenzdruck kann in Abhängigkeit von dem, insbesondere erforderlichen Kühlfluss, und dem, insbesondere erforderlichen, Speisegrenzdruck eingestellt sein. Zusätzlich oder alternativ kann das Hydraulikantriebssystem zur Ausspülung beziehungsweise Ausspeisung des Kühlflusses aus dem Hydraulikkreis, insbesondere dem Abschnitt, insbesondere dem Niederdruckabschnitt, insbesondere des geschlossenen Antriebskreises, soweit vorhanden, heraus über den Kühler ausgebildet sein.
  • In einer Weiterbildung der Erfindung ist die mindestens eine Druckbegrenzungsventileinheit durch, insbesondere automatische und/oder variable, Ausspülung beziehungsweise Ausspeisung von Hydraulikflüssigkeit aus dem Hydraulikkreis, insbesondere dem Abschnitt, heraus, insbesondere zu der Speisepumpe und/oder in den Behälter hinein, soweit vorhanden, zur variablen Einstellung des Grenzdrucks ausgebildet. Insbesondere kann die Druckbegrenzungsventileinheit als Drosselventileinheit ausgebildet sein.
  • In einer Weiterbildung der Erfindung weist das Hydraulikantriebssystem mindestens einen, insbesondere elektrischen, Messsensor auf. Der Messsensor ist zur, insbesondere automatischen, Messung mindestens einer Eigenschaft, insbesondere eines Werts beziehungsweise Betrags der Eigenschaft und/oder einer, insbesondere der, Temperatur und/oder eines, insbesondere des, Verschmutzungsgrads, des Hydraulikantriebssystems und/oder von Hydraulikflüssigkeit ausgebildet. Die Steuereinheit ist zur, insbesondere automatischen, Bestimmung des mindestens einen Betriebsparameters in Abhängigkeit von der gemessenen Eigenschaft ausgebildet. Insbesondere kann die Steuereinheit mit dem Messsensor eine, insbesondere elektrische, Signalverbindung aufweisen. Zusätzlich oder alternativ kann der Betriebsparameter der gemessenen Eigenschaft entsprechen beziehungsweise diese sein.
  • Des Weiteren bezieht sich die Erfindung auf eine Baustoffpumpe. Die erfindungsgemäße Baustoffpumpe weist eine Baustofffördereinheit und das Hydraulikantriebssystem auf. Die Baustofffördereinheit ist zur, insbesondere automatischen, Förderung von Baustoff ausgebildet. Das Hydraulikantriebssystem ist zum, insbesondere automatischen, Antrieb der Baustofffördereinheit ausgebildet.
  • Die Baustoffpumpe kann die gleichen Vorteile ermöglichen wie das zuvor beschriebene Hydraulikantriebssystem.
  • Insbesondere kann die Baustoffpumpe beziehungsweise die Baustofffördereinheit beziehungsweise der Baustoff mindestens einen, insbesondere variablen beziehungsweise veränderlichen, Förderparameter, insbesondere mit einem Wert beziehungsweise Betrag, aufweisen. Insbesondere kann der mindestens eine Förderparameter ein Förderzustand, ein Förderfluss und/oder ein Förderdruck sein. Zusätzlich oder alternativ kann der mindestens eine Betriebsparameter von dem mindestens einen Förderparameter abhängig sein und/oder muss zur Erreichung des, insbesondere benutzergewünschten, Förderparameters einen bestimmten beziehungsweise erforderlichen Wert aufweisen. Insbesondere kann der Antriebszustand von dem Förderzustand, der Antriebsfluss von dem Förderfluss und/oder der Antriebsdruck von dem Förderdruck, soweit vorhanden, abhängig sein. Anders formuliert: die Steuereinheit kann zu einer, insbesondere automatischen, Bestimmung beziehungsweise Ermittlung, insbesondere einer Berechnung, des mindestens einen Betriebsparameters beziehungsweise seines Werts in Abhängigkeit von dem mindestens einen Förderparameter ausgebildet sein. Weiter zusätzlich oder alternativ kann die Steuereinheit ein benutzerbetätigbares Bedienfeld zur Bedienung der Baustoffpumpe beziehungsweise des Hydraulikantriebssystems aufweisen, insbesondere ein Eingabegerät zur Benutzereingabe beziehungsweise Benutzerauswahl des mindestens einen Förderparameters beziehungsweise seines Werts.
  • Weiter zusätzlich oder alternativ kann die Baustoffpumpe als Betonpumpe oder Dickstoffpumpe bezeichnet werden. Dickstoff kann Mörtel, Zement, Estrich, Beton, Putz und/oder Schlamm bezeichnen.
  • Weiter zusätzlich oder alternativ kann die Vorrichtung als fahrbare Vorrichtung ausgebildet sein, insbesondere als Autobaustoffpumpe.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Weitere Vorteile und Aspekte der Erfindung ergeben sich aus den Ansprüchen und aus der nachfolgenden Beschreibung von bevorzugten Ausführungsbeispielen der Erfindung, die nachfolgend anhand der Figuren erläutert sind. Dabei zeigen:
  • Fig. 1
    einen schematischen Schaltplan eines erfindungsgemäßen Hydraulikantriebssystems einer erfindungsgemäßen Baustoffpumpe und
    Fig. 2
    einen schematischen Schaltplan eines Ausschnitts des Hydraulikantriebssystems der Fig. 1 und einer Baustofffördereinheit der erfindungsgemäßen Baustoffpumpe.
    DETAILLIERTE BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE
  • Die erfindungsgemäße Baustoffpumpe 200 weist eine Baustofffördereinheit 210 und ein erfindungsgemäßes Hydraulikantriebssystem 100 auf. Die Baustofffördereinheit 210 ist zur Förderung von Baustoff BS ausgebildet. Das Hydraulikantriebssystem 100 ist zum Antrieb der Baustofffördereinheit 210 ausgebildet.
  • Das Hydraulikantriebssystem 100 weist einen Hydraulikkreis 101, eine Speisepumpe 2, mindestens eine ansteuerbare Druckbegrenzungsventileinheit 6, 24 und eine Steuereinheit 27 auf, wie in Fig. 1 gezeigt. Der Hydraulikkreis 101 ist für Hydraulikflüssigkeit HF ausgebildet. Die Speisepumpe 2 ist zur Einspeisung von Hydraulikflüssigkeit HF in den Hydraulikkreis 101 hinein ausgebildet. Die Druckbegrenzungsventileinheit 6, 24 ist zur variablen Einstellung eines Grenzdrucks p30, p31/32 von Hydraulikflüssigkeit HF mindestens eines Abschnitts 30, 31, 32 des Hydraulikkreises 101 innerhalb eines Druckbereichs pmin, pmax ausgebildet. Die Steuereinheit 27 ist dazu ausgebildet, in Abhängigkeit von mindestens einem Betriebsparameter BP des Hydraulikantriebssystems 100 und/oder von Hydraulikflüssigkeit HF die Druckbegrenzungsventileinheit 6, 24 derart anzusteuern, dass die Druckbegrenzungsventileinheit 6, 24 den Grenzdruck p30, p31/32 des Abschnitts 30, 31, 32 des Hydraulikkreises 101 einstellt.
  • Insbesondere weist die Steuereinheit 27 mit der Druckbegrenzungsventileinheit 6, 24 eine elektrische Signalverbindung auf.
  • Im Detail ist der mindestens eine Betriebsparameter BP ein Antriebszustand, ein Antriebsfluss, ein Antriebsdruck, eine Antriebsdrehzahl, ein Kühlfluss, eine Temperatur T und/oder ein Verschmutzungsgrad.
  • Der Druckbereich reicht von minimal 10 bar pmin bis maximal 35 bar pmax. In alternativen Ausführungsbeispielen kann der Druckbereich von minimal 2,5 bar bis maximal 40 bar reichen.
  • Im gezeigten Ausführungsbeispiel weist die mindestens eine Druckbegrenzungsventileinheit 6, 24 ein ansteuerbares Proportional-Druckbegrenzungsventil auf. Das Proportional-Druckbegrenzungsventil 6, 24 ist zur kontinuierlichen Einstellung des Grenzdrucks p30, p31/32 von Hydraulikflüssigkeit HF des mindestens einen Abschnitts 30, 31, 32 des Hydraulikkreises 101 innerhalb des Druckbereichs pmin, pmax ausgebildet. Die Steuereinheit 27 ist dazu ausgebildet, in Abhängigkeit von dem mindestens einen Betriebsparameter BP das Proportional-Druckbegrenzungsventil 6, 24 derart anzusteuern, dass das Proportional-Druckbegrenzungsventil 6, 24 den Grenzdruck p30, p31/32 des Abschnitts 30, 31, 32 des Hydraulikkreises 101 einstellt.
  • In alternativen Ausführungsbeispielen braucht die mindestens eine Druckbegrenzungsventileinheit kein Proportional-Druckbegrenzungsventil aufweisen beziehungsweise die mindestens eine Druckbegrenzungsventileinheit kann anders ausgebildet sein.
  • Im gezeigten Ausführungsbeispiel weist das Hydraulikantriebssystem 100 zwei ansteuerbare Druckbegrenzungsventileinheiten 6, 24 auf. In alternativen Ausführungsbeispielen braucht das Hydraulikantriebssystem nicht zwei ansteuerbare Druckbegrenzungsventileinheiten aufweisen beziehungsweise das Hydraulikantriebssystem kann nur eine einzige ansteuerbare Druckbegrenzungsventileinheit oder mindestens drei ansteuerbare Druckbegrenzungsventileinheiten aufweisen.
  • Insbesondere kann das Hydraulikantriebsystem, insbesondere anstelle der Druckbegrenzungsventileinheit 6, eine, insbesondere ansteuerbare, Drosselventileinheit, insbesondere ein Proportional-Drosselventil, aufweisen. Die Drosselventileinheit kann zur variablen Einstellung eines Flusses von Hydraulikflüssigkeit ausgebildet sein. Die Steuereinheit kann dazu ausgebildet sein, in Abhängigkeit von dem mindestens einen Betriebsparameter des Hydraulikantriebssystems und/oder von Hydraulikflüssigkeit die Drosselventileinheit derart anzusteuern, dass die Drosselventileinheit den Fluss einstellen kann.
  • Im Detail weist der mindestens eine Abschnitt des Hydraulikkreises 101 einen Speisedruckabschnitt 30 für Hydraulikflüssigkeit HF auf. Die Druckbegrenzungsventileinheit 24 weist eine Speisedruckbegrenzungsventileinheit auf beziehungsweise ist eine Speisedruckbegrenzungsventileinheit. Die Speisedruckbegrenzungsventileinheit 24 ist zur variablen Einstellung eines Speisegrenzdrucks p30 von Hydraulikflüssigkeit HF des Speisedruckabschnitts 30 innerhalb des Druckbereichs pmin, pmax ausgebildet.
  • Im gezeigten Ausführungsbeispiel ist die Speisepumpe zur unmittelbaren Einspeisung von Hydraulikflüssigkeit HF aus einem Behälter 50 des Hydraulikantriebssystems 100 heraus in den Speisedruckabschnitt 30 hinein ausgebildet, wie durch einen Pfeil angezeigt.
  • Außerdem weist der mindestens eine Abschnitt des Hydraulikkreises 101 mindestens einen Niederdruckabschnitt 31, 32 für Hydraulikflüssigkeit HF auf. Die Druckbegrenzungsventileinheit 6 weist eine ansteuerbare Niederdruckbegrenzungsventileinheit auf beziehungsweise ist eine Niederdruckbegrenzungsventileinheit. Die Niederdruckbegrenzungsventileinheit 6 ist zur variablen Einstellung eines Niedergrenzdrucks p31/32 von Hydraulikflüssigkeit HF des mindestens einen Niederdruckabschnitts 31, 32 innerhalb des Druckbereichs pmin, pmax ausgebildet. In alternativen Ausführungsbeispielen kann das Hydraulikantriebsystem, insbesondere anstelle der Niederdruckbegrenzungsventileinheit, eine, insbesondere die, Drosselventileinheit aufweisen.
  • Im gezeigten Ausführungsbeispiel ist der Speisedruckabschnitt 30 zur Einspeisung von Hydraulikflüssigkeit HF in den Niederdruckabschnitt 31, 32 hinein ausgebildet, wie durch einen Pfeil angezeigt, insbesondere mittels mindestens eines Einspeiserückschlagventils 3, 4 des Hydraulikantriebssystems 100.
  • Weiter weist im gezeigten Ausführungsbeispiel der Hydraulikkreis 101 zwei Niederdruckabschnitte beziehungsweise Hochdruckabschnitte beziehungsweise Antriebsdruckabschnitte 31, 32 auf. Zudem weist das Hydraulikantriebssystem 100 zwei Einspeiserückschlagventile 3, 4 auf.
  • Des Weiteren weist das Hydraulikantriebssystem 100 eine variabel verstellbare Antriebspumpe 1 und mindestens ein hydraulikdruckbasiertes Stellglied 22, 23, insbesondere in Form eines Stellzylinders, auf. Die Antriebspumpe1 ist zur Erzeugung eines variablen Antriebsflusses mit einem variablen Antriebsdruck von Hydraulikflüssigkeit HF in mindestens einem, insbesondere dem, Antriebsdruckabschnitt 31, 32 des Hydraulikkreises 101 ausgebildet. Das Stellglied 22, 23 ist zur variablen Verstellung der Antriebspumpe 1 durch einen variablen Stelldruck p28, p29 von Hydraulikflüssigkeit HF ausgebildet. Der mindestens eine Abschnitt 30, insbesondere der Speisedruckabschnitt 30, des Hydraulikkreises 101 ist zur Hydraulikdruckversorgung des mindestens einen Stellglieds 22, 23 mit Hydraulikflüssigkeit HF mit dem eingestellten Grenzdruck p30, insbesondere dem eingestellten Speisegrenzdruck p30, für den Stelldruck p28, p29 ausgebildet. Die Steuereinheit 27 ist dazu ausgebildet, in Abhängigkeit von dem mindestens einen Betriebsparameter BP das mindestens eine Stellglied 22, 23 derart anzusteuern, dass das mindestens eine Stellglied 22, 23 die Antriebspumpe 1 zur Erzeugung des variablen Antriebsflusses mit dem variablen Antriebsdruck von Hydraulikflüssigkeit HF in dem mindestens einen Antriebsdruckabschnitt 31, 32 verstellt.
  • Insbesondere weist die Steuereinheit 27 mit dem mindestens einen Stellglied 22, 23 eine hydraulische Signalverbindung auf.
  • Im gezeigten Ausführungsbeispiel weist das Hydraulikantriebssystem 100 zwei hydraulikdruckbasierte Stellglieder 22, 23 auf.
  • Im Detail ist die Antriebspumpe 1 eine Axialkolbenpumpe mit variabel verstellbarer Schrägscheibe. Das mindestens eine Stellglied 22, 23 ist zur variablen Verstellung der Schrägscheibe ausgebildet.
  • Außerdem weist das Hydraulikantriebssystem 100 mindestens einen Antriebszylinder 7, 8 und einen zugeordneten Antriebskolben 97, 98 auf. Die Antriebspumpe 1 ist durch Erzeugung des Antriebsflusses von Hydraulikflüssigkeit HF zur Bewegung des mindestens einen Antriebskolbens 97, 98 ausgebildet.
  • Im gezeigten Ausführungsbeispiel weist das Hydraulikantriebssystem 100 mindestens zwei, insbesondere genau zwei, Antriebszylinder 7, 8 und jeweils zugeordnete Antriebskolben 97, 98 auf.
  • Zusätzlich weist das Hydraulikantriebssystem 100 eine Schaukelleitung 19 für Hydraulikflüssigkeit HF auf. Die Antriebspumpe 1 und die zwei Antriebszylinder 7, 8 bilden mittels der Schaukelleitung 19 einen geschlossenen Antriebskreis für Hydraulikflüssigkeit HF. Die zwei Antriebskolben 97, 98 sind mittels der Schaukelleitung 19 gekoppelt, insbesondere gegenphasig.
  • Im Detail sind die zwei Antriebszylinder 7, 8 mittels der Schaukelleitung 19 verbunden.
  • Zusätzlich weist das Hydraulikantriebssystem 100 zwei Pumpenleitungen 17, 18 für Hydraulikflüssigkeit HF auf. Die Antriebspumpe 1 und der Antriebszylinder 7 sind mittels der Pumpenleitung 17 verbunden. Die Antriebspumpe 1 und der Antriebszylinder 8 sind mittels der Pumpenleitung 18 verbunden.
  • Im Detail bilden die Antriebspumpe 1 und die zwei Antriebszylinder 7, 8 mittels der Schaukelleitung 19 und der zwei Pumpenleitungen 17, 18 den geschlossenen Antriebskreis für Hydraulikflüssigkeit HF.
  • Im gezeigten Ausführungsbeispiel ist der Antriebszustand ein, ein, insbesondere erforderlicher, Antriebsfluss ist relativ hoch und ein, insbesondere erforderlicher, Antriebsdruck ist relativ hoch. Daher ist der Speisegrenzdruck p30 auf 32 bar, insbesondere konstant, eingestellt. Der Niedergrenzdruck p31 ist auf 30 bar, insbesondere konstant, eingestellt.
  • Die Antriebspumpe 1 beziehungsweise der geschlossene Antriebskreis weist eine Hochdruckseite HD und eine Niederdruckseite ND auf, die zyklisch miteinander getauscht sind in einem Betrieb des Hydraulikantriebssystems 100 beziehungsweise der Baustofffördereinheit 210. Der Antriebsdruck beziehungsweise Hochdruck HD ist höher als der Niedergrenzdruck p31 beziehungsweise Niederdruck ND.
  • In Fig. 1 ist die Hochdruckseite HD unten und die Niederdruckseite ist oben.
  • Hydraulikflüssigkeit HF mit dem Antriebsdruck beziehungsweise Hochdruck HD fließt von der Antriebspumpe 1 durch die Pumpenleitung 18 zu dem Antriebszylinder 8, wie durch einen Pfeil angezeigt. Dabei bilden die Pumpenleitung 18 und der Antriebszylinder 8, insbesondere mindestens teilweise, den Hochdruckabschnitt 32.
  • Somit bewegt der Antriebskolben 98 sich in Fig. 1 nach rechts, wie durch einen Pfeil angedeutet.
  • Hydraulikflüssigkeit HF, insbesondere mit einem Schaukeldruck, fließt von dem Antriebszylinder 8 durch die Schaukelleitung 19 zu dem Antriebszylinder 7, wie durch einen Pfeil angezeigt. Dabei bilden die Schaukelleitung 19 und der Antriebszylinder 7, insbesondere mindestens teilweise, eine Schaukeldruckabschnitt.
  • Somit bewegt der Antriebskolben 97 sich in Fig. 1 nach links, wie durch einen Pfeil angedeutet.
  • Hydraulikflüssigkeit HF mit dem Niedergrenzdruck p31 beziehungsweise Niederdruck ND fließt von dem Antriebszylinder 7 durch die Pumpenleitung 17 zu der Antriebspumpe 1, wie durch einen Pfeil angezeigt. Dabei bilden die Pumpenleitung 17 und der Antriebszylinder 7, insbesondere mindestens teilweise, den Niederdruckabschnitt 31.
  • Dabei speist der Speisedruckabschnitt 30 den Niederdruckabschnitt 31, wie durch Pfeil angezeigt, insbesondere mittels des Einspeiserückschlagventils 3.
  • Wenn die Kolben 97, 98 ihre Endlagen erreicht haben, werden die Hochdruckseite HD und die Niederdruckseite ND getauscht. Dann ist die Hochdruckseite HD oben und die Niederdruckseite ND ist unten. Somit bewegt der Antriebskolben 98 sich nach links und der Antriebskolben 97 bewegt sich nach rechts.
  • In alternativen Ausführungsbeispielen kann der Antriebszustand ein sein, jedoch ein Antriebsfluss mittel und ein Antriebsdruck mittel sein. Dann kann der Speisegrenzdruck auf beispielsweise 22 bar abgesenkt und, insbesondere konstant, eingestellt sein und der Niedergrenzdruck kann auf beispielsweise 20 bar abgesenkt und, insbesondere konstant, eingestellt sein.
  • Weiter kann in alternativen Ausführungsbeispielen der Antriebszustand aus sein. Dann kann der Speisegrenzdruck auf beispielsweise 12 bar abgesenkt und, insbesondere konstant, eingestellt sein und der Niedergrenzdruck kann auf beispielsweise 10 bar abgesenkt und, insbesondere konstant, eingestellt sein.
  • Des Weiteren ist die mindestens eine Druckbegrenzungsventileinheit 6, 24 durch Ausspülung von Hydraulikflüssigkeit HF aus dem Hydraulikkreis 101 heraus, insbesondere in den Behälter 50 hinein, zur variablen Einstellung des Grenzdrucks p30, p31/32 ausgebildet. In alternativen Ausführungsbeispielen kann die mindestens eine Druckbegrenzungsventileinheit durch Ausspülung von Hydraulikflüssigkeit aus dem Hydraulikkreis heraus, insbesondere durch einen Filter hindurch und/oder zu der Speisepumpe, insbesondere zu einer Saugseite der Speisepumpe, zur variablen Einstellung des Grenzdrucks ausgebildet sein.
  • Im Detail ist die Speisedruckbegrenzungsventileinheit 24 durch Ausspülung von Hydraulikflüssigkeit HF aus dem Speisedruckabschnitt 30 heraus zur variablen Einstellung des Speisegrenzdrucks p30 ausgebildet, wie durch einen Pfeil angezeigt.
  • In Fig. 1 fließt ein Teil der Hydraulikflüssigkeit HF aus dem Speisedruckabschnitt 30 heraus in den Niederdruckabschnitt 31 hinein. Ein anderer Teil der Hydraulikflüssigkeit HF wird aus dem Speisedruckabschnitt 30 heraus ausgespült.
  • Die Niederdruckbegrenzungsventileinheit 6 ist durch Ausspülung von Hydraulikflüssigkeit HF aus dem Niederdruckabschnitt 31, 32 heraus zur variablen Einstellung des Niedergrenzdrucks p31/32 ausgebildet, wie durch einen Pfeil angezeigt.
  • In alternativen Ausführungsbeispielen kann das Hydraulikantriebsystem, insbesondere anstelle der Niederdruckbegrenzungsventileinheit, eine, insbesondere die, Drosselventileinheit aufweisen. Die Drosselventileinheit kann zur variablen Einstellung eines Flusses, insbesondere eines Ausspülflusses, von Hydraulikflüssigkeit aus dem Niederdruckabschnitt heraus ausgebildet sein. Die Steuereinheit kann dazu ausgebildet sein, in Abhängigkeit von dem mindestens einen Betriebsparameter des Hydraulikantriebssystems und/oder von Hydraulikflüssigkeit die Drosselventileinheit derart anzusteuern, dass die Drosselventileinheit den Fluss von Hydraulikflüssigkeit aus dem Niederdruckabschnitt heraus einstellen kann.
  • In Fig. 1 fließt ein Teil der Hydraulikflüssigkeit HF von dem Niederdruckabschnitt 31 zu der Antriebspumpe 1. Ein anderer Teil der Hydraulikflüssigkeit HF wird aus dem Niederdruckabschnitt 31 heraus ausgespült.
  • Im Detail weist das Hydraulikantriebssystem 100 ein Wechselspülventil 5 auf. Der Niederdruckabschnitt 31, 32 und die Niederdruckbegrenzungsventileinheit 6 sind mittels des Wechselspülventils 5 für einen Fluss von Hydraulikflüssigkeit HF verbunden. In anderen Worten: in Fig. 1 fließt Hydraulikflüssigkeit HF von dem Niederdruckabschnitt 31 durch das Wechselspülventil 5 zu der Niederdruckbegrenzungsventileinheit 6, wie durch einen Pfeil angezeigt.
  • Insbesondere weist das Hydraulikantriebssystem 100 zwei, insbesondere hydraulische, Steuerleitungen 25, 26 zur, insbesondere automatischen Steuerung, des Wechselspülventils 5 auf.
  • Im Detail weist das Hydraulikantriebssystem 100 zwei Ausspülleitungen 20, 21 für Hydraulikflüssigkeit HF auf. Die Pumpenleitung 17 und das Wechselspülventil 5 sind mittels der Ausspülleitung 21 verbunden. Die Pumpenleitung 18 und das Wechselspülventil 5 sind mittels der Ausspülleitung 20 verbunden. Außerdem ist das Wechselspülventil 5 dazu ausgebildet, diejenige Ausspülleitung 20, 21 mit der Niederdruckbegrenzungsventileinheit 6 zu verbinden, insbesondere für einen Fluss von Hydraulikflüssigkeit HF von der jeweiligen Ausspülleitung 20, 21 zu der Niederdruckbegrenzungsventileinheit 6, die einen zu der anderen Ausspülleitung relativ niedrigeren Druck aufweist, in Fig. 1 die Ausspülleitung 21.
  • Weiter weist das Hydraulikantriebssystem 100 einen Kühler 60 auf. Der Kühler 60 ist zur Kühlung von Hydraulikflüssigkeit HF ausgebildet. Die mindestens eine Druckbegrenzungsventileinheit 6, 24 ist durch Einstellung des Grenzdrucks p30, p31/32 zur variablen Einstellung eines, insbesondere des, Kühlflusses von Hydraulikflüssigkeit HF über den Kühler 60 ausgebildet. Die Steuereinheit 27 ist dazu ausgebildet, in Abhängigkeit von dem mindestens einen Betriebsparameter BP, insbesondere der Temperatur T, die Druckbegrenzungsventileinheit 6, 24 derart anzusteuern, dass die Druckbegrenzungsventileinheit 6, 24 den Kühlfluss von Hydraulikflüssigkeit HF über den Kühler 60 einstellt.
  • In alternativen Ausführungsbeispielen kann das Hydraulikantriebsystem, insbesondere anstelle der Druckbegrenzungsventileinheit 6, eine, insbesondere die, Drosselventileinheit aufweisen. Die Drosselventileinheit kann zur variablen Einstellung eines, insbesondere des, Kühlflusses von Hydraulikflüssigkeit über den Kühler ausgebildet sein. Die Steuereinheit kann dazu ausgebildet sein, in Abhängigkeit von dem mindestens einen Betriebsparameter, insbesondere der Temperatur die Drosselventileinheit derart anzusteuern, dass die Drosselventileinheit den Kühlfluss von Hydraulikflüssigkeit über den Kühler einstellen kann.
  • Im Detail ist der Kühlfluss durch eine Druckdifferenz zwischen dem Speisegrenzdruck p30 und dem Niedergrenzdruck p 31/32 eingestellt.
  • Im gezeigten Ausführungsbeispiel ist die Temperatur T mittel. Daher ist die Druckdifferenz auf 2 bar, insbesondere konstant, eingestellt. In alternativen Ausführungsbeispielen kann die Temperatur relativ hoch sein. Dann kann die Druckdifferenz auf beispielsweise 3 bar erhöht und, insbesondere konstant, eingestellt sein. Insbesondere kann der Niedergrenzdruck, insbesondere relativ zum Speisegrenzdruck, abgesenkt und, insbesondere konstant, eingestellt sein. Weiter kann in alternativen Ausführungsbeispielen die Temperatur relativ niedrig sein. Dann kann die Druckdifferenz auf beispielsweise 1 bar erniedrigt und, insbesondere konstant, eingestellt sein. Insbesondere kann der Niedergrenzdruck, insbesondere relativ zum Speisegrenzdruck, erhöht und, insbesondere konstant, eingestellt sein.
  • Im gezeigten Ausführungsbeispiel ist das Hydraulikantriebssystem 100 zur Ausspülung des Kühlflusses aus dem Hydraulikkreis 101, insbesondere dem Niederdruckabschnitt 31, 32, heraus über den Kühler 60 ausgebildet. Anders formuliert: der Kühler 60 ist, insbesondere in Flussrichtung, nach beziehungsweise hinter der Niederdruckbegrenzungsventileinheit 6, und insbesondere vor dem Behälter 50, angeordnet. In anderen Worten: Hydraulikflüssigkeit HF fließt von der Niederdruckbegrenzungsventileinheit 6 über beziehungsweise durch den Kühler 60 hindurch zu dem Behälter 50, wie durch einen Pfeil angezeigt. In alternativen Ausführungsbeispielen kann das Hydraulikantriebssystem zur Ausspülung des Kühlflusses aus dem Hydraulikkreis, insbesondere dem Niederdruckabschnitt, heraus über den Kühler, insbesondere durch einen, insbesondere den, Filter hindurch und/oder zu der Speisepumpe, insbesondere zu einer, insbesondere der, Saugseite der Speisepumpe, ausgebildet sein. In anderen Worten: Hydraulikflüssigkeit kann von der Niederdruckbegrenzungsventileinheit über beziehungsweise durch den Kühler, und insbesondere einen, insbesondere den, Filter, hindurch zu der Speisepumpe fließen, insbesondere zu einer, insbesondere der, Saugseite der Speisepumpe. Zusätzlich oder alternativ kann in alternativen Ausführungsbeispielen das Hydraulikantriebsystem, insbesondere anstelle der Niederdruckbegrenzungsventileinheit, eine, insbesondere die, Drosselventileinheit aufweisen.
  • Zudem weist das Hydraulikantriebssystem 100 mindestens einen Messsensor 80 auf. Der Messsensor 80 ist zur Messung mindestens einer Eigenschaft des Hydraulikantriebssystems 100 und/oder von Hydraulikflüssigkeit HF ausgebildet. Die Steuereinheit 27 ist zur Bestimmung des mindestens einen Betriebsparameters BP in Abhängigkeit von der gemessenen Eigenschaft ausgebildet.
  • Insbesondere weist die Steuereinheit 27 mit dem Messsensor 80 eine elektrische Signalverbindung auf.
  • Im gezeigten Ausführungsbeispiel weist das Hydraulikantriebssystem 100 nur einen einzigen Messsensor 80 auf. In alternativen Ausführungsbeispielen kann das das Hydraulikantriebssystem mindestens zwei Messsensoren aufweisen.
  • Des Weiteren ist im gezeigten Ausführungsbeispiel der Messsensor 80 zur Messung einer Temperatur T von Hydraulikflüssigkeit HF und somit des Hydraulikantriebssystems 100 ausgebildet. Die Steuereinheit 27 ist zur Bestimmung des mindestens einen Betriebsparameters BP in Abhängigkeit von der gemessenen Temperatur T ausgebildet.
  • Im Detail ist der Messsensor 80 zur Messung der Temperatur T von Hydraulikflüssigkeit HF im Niederdruckabschnitt 31, 32 ausgebildet. Anders formuliert: der Messsensor 80 ist, insbesondere in Flussrichtung, insbesondere nach dem Wechselspülventil 5 und, vor der Niederdruckbegrenzungsventileinheit 6 angeordnet. In alternativen Ausführungsbeispielen kann der Messsensor an beziehungsweise in der Antriebspumpe angeordnet sein, insbesondere im Lecköl der Antriebspumpe.
  • Außerdem weist das Hydraulikantriebssystem 100 einen Antriebsmotor 70 auf. Der Antriebsmotor 70 ist zum Antrieb der Speisepumpe 2, und insbesondere zusätzlich der Antriebspumpe 1, ausgebildet.
  • Weiter weist die Baustofffördereinheit 210 mindestens einen, insbesondere zwei, Förderzylinder 34, 35 und einen, insbesondere zwei, zugeordnete, insbesondere in dem Förderzylinder 34, 35 angeordnete, Förderkolben 38, 39 auf, wie in Fig. 2 gezeigt. Insbesondere ist der mindestens eine Förderzylinder 34, 35 für Baustoff BS ausgebildet. Der mindestens eine Förderzylinder 34, 35 ist zur Druckbeaufschlagung von Baustoff BS ausgebildet.
  • Zusätzlich weist das Hydraulikantriebssystem 100 mindestens eine, insbesondere zwei, Kolbenstangen 95, 96 auf. Die mindestens eine Kolbenstange 95, 96 ist zur Bewegungskopplung beziehungsweise Bewegungsübertragung des mindestens einen Antriebskolbens 97, 98 mit dem mindestens einen Förderkolben 38, 39 ausgebildet. Insbesondere ist die mindestens eine Kolbenstange 95, 96 an dem mindestens einen Antriebskolben 97, 98 und/oder an dem mindestens einen Förderkolben 38, 39 befestigt.
  • Zudem weist die Baustofffördereinheit 210 ein Rohrweichensystem 99 auf.
  • Wie die gezeigten und oben erläuterten Ausführungsbeispiele deutlich machen, stellt die Erfindung eine vorteilhaftes Hydraulikantriebssystem für eine Baustoffpumpe und eine vorteilhafte Baustoffpumpe aufweisend ein solches Hydraulikantriebssystems bereit, das beziehungsweise die jeweils verbesserte Eigenschaften aufweist, insbesondere eine Einsparung von Energie beziehungsweise Leistung ermöglicht.

Claims (14)

  1. Hydraulikantriebssystem (100) für eine Baustoffpumpe (200), das Hydraulikantriebssystem (100) aufweisend:
    - einen Hydraulikkreis (101) für Hydraulikflüssigkeit (HF),
    - eine Speisepumpe (2), die zur Einspeisung von Hydraulikflüssigkeit (HF) in den Hydraulikkreis (101) hinein ausgebildet ist,
    gekennzeichnet durch
    - mindestens eine ansteuerbare Druckbegrenzungsventileinheit (6, 24), die zur variablen Einstellung eines Grenzdrucks (p30, p31/32) von Hydraulikflüssigkeit (HF) mindestens eines Abschnitts (30, 31, 32) des Hydraulikkreises (101) innerhalb eines Druckbereichs (pmin, pmax) ausgebildet ist,
    - wobei die mindestens eine Druckbegrenzungsventileinheit (6, 24) ein ansteuerbares Proportional-Druckbegrenzungsventil aufweist, das zur kontinuierlichen Einstellung des Grenzdrucks (p30, p31/32) von Hydraulikflüssigkeit (HF) des mindestens einen Abschnitts (30, 31, 32) des Hydraulikkreises (101) innerhalb des Druckbereichs (pmin, pmax) ausgebildet ist, und
    - eine Steuereinheit (27), die dazu ausgebildet ist, in Abhängigkeit von mindestens einem Betriebsparameter (BP) des Hydraulikantriebssystems (100) und/oder von Hydraulikflüssigkeit (HF) die Druckbegrenzungsventileinheit (6, 24) derart anzusteuern, dass die Druckbegrenzungsventileinheit (6, 24) den Grenzdruck (p30, p31/32) des Abschnitts (30, 31, 32) des Hydraulikkreises (101) einstellt,
    - wobei die Steuereinheit (27) dazu ausgebildet ist, in Abhängigkeit von dem mindestens einen Betriebsparameter (BP) das Proportional-Druckbegrenzungsventil (6, 24) derart anzusteuern, dass das Proportional-Druckbegrenzungsventil den Grenzdruck (p30, p31/32) des Abschnitts (30, 31, 32) des Hydraulikkreises (101) einstellt.
  2. Hydraulikantriebssystem (100) nach Anspruch 1, aufweisend:
    - einen Antriebsmotor (70), der zum Antrieb der Speisepumpe (2) ausgebildet ist.
  3. Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche,
    - wobei der mindestens eine Betriebsparameter (BP) ein Antriebszustand, ein Antriebsfluss, ein Antriebsdruck, eine Antriebsdrehzahl, ein Kühlfluss, eine Temperatur (T) und/oder ein Verschmutzungsgrad ist.
  4. Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche,
    - wobei der Druckbereich von minimal 2,5 bar (pmin), insbesondere von minimal 5 bar, insbesondere von minimal 10 bar, insbesondere von minimal 15 bar, bis maximal 40 bar (pmax) reicht, insbesondere bis maximal 35 bar, insbesondere bis maximal 30 bar, insbesondere bis maximal 25 bar.
  5. Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche,
    - wobei der mindestens eine Abschnitt des Hydraulikkreises (101) einen Speisedruckabschnitt (30) für Hydraulikflüssigkeit (HF) aufweist, und
    - wobei die mindestens eine Druckbegrenzungsventileinheit eine ansteuerbare Speisedruckbegrenzungsventileinheit (24) aufweist, die zur variablen Einstellung eines Speisegrenzdrucks (p30) von Hydraulikflüssigkeit (HF) des Speisedruckabschnitts (30) innerhalb des Druckbereichs (pmin, pmax) ausgebildet ist.
  6. Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche, aufweisend:
    - eine variabel verstellbare Antriebspumpe (1), die zur Erzeugung eines variablen Antriebsflusses mit einem variablen Antriebsdruck von Hydraulikflüssigkeit (HF) in mindestens einem Antriebsdruckabschnitt (31, 32) des Hydraulikkreises (101) ausgebildet ist, und
    - mindestens ein hydraulikdruckbasiertes Stellglied (22, 23), das zur variablen Verstellung der Antriebspumpe (1) durch einen variablen Stelldruck (p28, p29) von Hydraulikflüssigkeit (HF) ausgebildet ist,
    - wobei der mindestens eine Abschnitt (30) des Hydraulikkreises (101) zur Hydraulikdruckversorgung des mindestens einen Stellglieds (22, 23) mit Hydraulikflüssigkeit (HF) mit dem eingestellten Grenzdruck (p30) für den Stelldruck (p28, p29) ausgebildet ist,
    - wobei die Steuereinheit (27) dazu ausgebildet ist, in Abhängigkeit von dem mindestens einen Betriebsparameter (BP) das mindestens eine Stellglied (22, 23) derart anzusteuern, dass das mindestens eine Stellglied (22, 23) die Antriebspumpe (1) zur Erzeugung des variablen Antriebsflusses mit dem variablen Antriebsdruck von Hydraulikflüssigkeit (HF) in dem mindestens einen Antriebsdruckabschnitt (31, 32) verstellt.
  7. Hydraulikantriebssystem (100) nach Anspruch 6,
    - wobei die Antriebspumpe (1) eine Axialkolbenpumpe mit variabel verstellbarer Schrägscheibe ist,
    - wobei das mindestens eine Stellglied (22, 23) zur variablen Verstellung der Schrägscheibe ausgebildet ist.
  8. Hydraulikantriebssystem (100) nach Anspruch 6 oder 7, aufweisend:
    - mindestens einen Antriebszylinder (7, 8) und einen zugeordneten Antriebskolben (97, 98),
    - wobei die Antriebspumpe (1) durch Erzeugung des Antriebsflusses von Hydraulikflüssigkeit (HF) zur variablen Bewegung des mindestens einen Antriebskolbens (97, 98) ausgebildet ist.
  9. Hydraulikantriebssystem (100) nach Anspruch 8, aufweisend:
    - mindestens zwei Antriebszylinder (7, 8) und jeweils zugeordnete Antriebskolben (97, 98), und
    - eine Schaukelleitung (19) für Hydraulikflüssigkeit (HF),
    - wobei die Antriebspumpe (1) und die zwei Antriebszylinder (7, 8) mittels der Schaukelleitung (19) einen geschlossenen Antriebskreis für Hydraulikflüssigkeit (HF) bilden, und
    - wobei die zwei Antriebskolben (97, 98) mittels der Schaukelleitung (19) gekoppelt sind.
  10. Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche,
    - wobei der mindestens eine Abschnitt des Hydraulikkreises (101) mindestens einen Niederdruckabschnitt (31, 32) für Hydraulikflüssigkeit (HF) aufweist, und
    - wobei die mindestens eine Druckbegrenzungsventileinheit eine ansteuerbare Niederdruckbegrenzungsventileinheit (6) aufweist, die zur variablen Einstellung eines Niedergrenzdrucks (p31/p32) von Hydraulikflüssigkeit (HF) des mindestens einen Niederdruckabschnitts (31, 32) innerhalb des Druckbereichs (pmin, pmax) ausgebildet ist.
  11. Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche, aufweisend:
    - einen Kühler (60), der zur Kühlung von Hydraulikflüssigkeit (HF) ausgebildet ist,
    - wobei die mindestens eine Druckbegrenzungsventileinheit (6, 24) durch Einstellung des Grenzdrucks (p30, p31/32) zur variablen Einstellung eines Kühlflusses von Hydraulikflüssigkeit (HF) über den Kühler (60) ausgebildet ist, und
    - wobei die Steuereinheit (27) dazu ausgebildet ist, in Abhängigkeit von dem mindestens einen Betriebsparameter (BP) die Druckbegrenzungsventileinheit (6, 24) derart anzusteuern, dass die Druckbegrenzungsventileinheit (6, 24) den Kühlfluss von Hydraulikflüssigkeit (HF) über den Kühler (60) einstellt.
  12. Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche,
    - wobei die mindestens eine Druckbegrenzungsventileinheit (6, 24) durch Ausspülung von Hydraulikflüssigkeit (HF) aus dem Hydraulikkreis (101) heraus zur variablen Einstellung des Grenzdrucks (p30, p31/32) ausgebildet ist.
  13. Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche, aufweisend:
    - mindestens einen Messsensor (80), der zur Messung mindestens einer Eigenschaft, insbesondere einer Temperatur (T) und/oder eines Verschmutzungsgrads, des Hydraulikantriebssystems (100) und/oder von Hydraulikflüssigkeit (HF) ausgebildet ist,
    - wobei die Steuereinheit (27) zur Bestimmung des mindestens einen Betriebsparameters (BP) in Abhängigkeit von der gemessenen Eigenschaft (T) ausgebildet ist.
  14. Baustoffpumpe (200), aufweisend:
    - eine Baustofffördereinheit (210), die zur Förderung von Baustoff (BS) ausgebildet ist,
    - ein Hydraulikantriebssystem (100) nach einem der vorhergehenden Ansprüche, das zum Antrieb der Baustofffördereinheit (210) ausgebildet ist.
EP19731183.0A 2018-06-14 2019-06-07 Hydraulikantriebssystem für eine baustoffpumpe und baustoffpumpe Active EP3807534B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018209513.2A DE102018209513B3 (de) 2018-06-14 2018-06-14 Hydraulikantriebssystem für eine Baustoffpumpe und Baustoffpumpe
PCT/EP2019/064944 WO2019238559A1 (de) 2018-06-14 2019-06-07 Hydraulikantriebssystem für eine baustoffpumpe und baustoffpumpe

Publications (2)

Publication Number Publication Date
EP3807534A1 EP3807534A1 (de) 2021-04-21
EP3807534B1 true EP3807534B1 (de) 2023-05-24

Family

ID=66912795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19731183.0A Active EP3807534B1 (de) 2018-06-14 2019-06-07 Hydraulikantriebssystem für eine baustoffpumpe und baustoffpumpe

Country Status (7)

Country Link
US (1) US11231054B2 (de)
EP (1) EP3807534B1 (de)
JP (1) JP7350788B2 (de)
KR (1) KR102673424B1 (de)
CN (1) CN112567132B (de)
DE (1) DE102018209513B3 (de)
WO (1) WO2019238559A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021212756B3 (de) 2021-11-12 2022-11-10 Putzmeister Engineering Gmbh Hydraulikantriebssystem für ein Bau- und/oder Dickstoffpumpensystem, Bau- und/oder Dickstoffpumpensystem und Verfahren zum Betreiben eines Hydraulikantriebssystems und/oder eines Bau- und/oder Dickstoffpumpensystems
CN115773291B (zh) * 2022-11-14 2023-06-02 中国船舶集团有限公司第七〇四研究所 一种带有冲洗回路的减摇鳍闭式液压系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226288A (ja) * 1983-06-06 1984-12-19 Kyokuto Kaihatsu Kogyo Co Ltd 流動体圧送用ピストンポンプの油圧作動装置
JP3038557B2 (ja) * 1990-04-11 2000-05-08 石川島建機株式会社 粘性流体ポンプの吐出量制御装置
ATE139824T1 (de) 1992-03-21 1996-07-15 Schwing Gmbh F Dickstoffpumpe
DE10036202A1 (de) * 2000-07-24 2002-02-07 Putzmeister Ag Dickstoffpumpe
DE10134789C2 (de) * 2001-06-15 2003-08-28 Kaessbohrer Gelaendefahrzeug Fahrantrieb für ein Kettenfahrzeug
DE10150467A1 (de) 2001-10-16 2003-04-17 Putzmeister Ag Dickstoffpumpe mit Fördermengenregelung
DE102005008217A1 (de) * 2005-02-22 2006-08-31 Putzmeister Ag Hydraulikantrieb, insbesondere für Zweizylinder-Dickstoffpumpen
US8042333B2 (en) 2007-03-14 2011-10-25 Hampton Hydraulics Oil cooling circuit for continuously reciprocating hydraulic cylinders
DE102009021833A1 (de) 2009-05-19 2010-11-25 Robert Bosch Gmbh Hydraulischer Antrieb und Drehschieberventil für einen hydraulischen Antrieb
DE102009047732A1 (de) 2009-12-09 2011-06-16 Zf Friedrichshafen Ag Hydrostatisches Getriebe
DE102010045541A1 (de) 2010-09-15 2012-03-15 Robert Bosch Gmbh Hydrostatisches Getriebe
DE102012101231A1 (de) * 2012-02-16 2013-08-22 Linde Material Handling Gmbh Hydrostatisches Antriebssystem
DE102012209142A1 (de) 2012-05-31 2013-12-05 Putzmeister Engineering Gmbh Hydrauliksystem
DE102012107933B4 (de) * 2012-08-28 2017-09-21 Götz Hudelmaier Dickstoffpumpe zur Erzeugung eines kontinuierlichen Dickstoffstroms sowie Verfahren zum Betrieb einer Dickstoffpumpe zur Erzeugung eines kontinuierlichen Dickstoffstroms
US10539130B2 (en) * 2016-04-26 2020-01-21 Robert Bosch Gmbh Pressure-maintaining valve arrangement for a purge circuit of a closed hydraulic circuit
JP6757238B2 (ja) 2016-11-24 2020-09-16 川崎重工業株式会社 油圧駆動システム

Also Published As

Publication number Publication date
US20210164497A1 (en) 2021-06-03
KR20210020016A (ko) 2021-02-23
JP2021528587A (ja) 2021-10-21
US11231054B2 (en) 2022-01-25
EP3807534A1 (de) 2021-04-21
CN112567132A (zh) 2021-03-26
WO2019238559A1 (de) 2019-12-19
JP7350788B2 (ja) 2023-09-26
KR102673424B1 (ko) 2024-06-07
CN112567132B (zh) 2023-05-26
DE102018209513B3 (de) 2019-10-17

Similar Documents

Publication Publication Date Title
DE10130475B4 (de) Rückkopplungssteuerverfahren und eine Vorrichtung zur Steuerung des Pumpenauslassdruckes einer Hydraulikpumpe mit variabler Verdrängung
DE19622267C1 (de) Steuer- und Regelsystem für verstellbare Hydraulikpumpen mit Maximaldruckbegrenzung
EP2553231B1 (de) Hydraulischer lüfterantrieb
DE112009003826B4 (de) Hydrauliksteuerungssystem mit Strömungskraftkompensation
EP2014919B1 (de) Verstellventil für die Verstellung des Fördervolumens einer Verdrängerpumpe
DE112013002784T5 (de) Elektrohydraulisches System zur Wiedergewinnung und Wiederverwendung potenzieller Energie
DE102005043110B4 (de) Verfahren und Einrichtung zur Regelung der Temperatur von Hydrauliköl
DE112012001028T5 (de) Hydrauliksteuerungssystem mit Pumpendrehmomentbegrenzung
DE112015001350T5 (de) Elektronische Drehmoment- und Drucksteuerung für lastabhängige Pumpen
DE10150467A1 (de) Dickstoffpumpe mit Fördermengenregelung
EP3807534B1 (de) Hydraulikantriebssystem für eine baustoffpumpe und baustoffpumpe
EP2799712B1 (de) Dickstoffpumpe
DE102008054880A1 (de) Hydrauliksystem
DE102008034301B4 (de) Hydraulisches System mit einem verstellbaren Schnellsenkventil
DE112012001450T5 (de) Hydrauliksystem für hydraulische Arbeitsmaschine
EP1181458B1 (de) Hydraulischer antrieb mit mehreren auch einen differentialzylinder umfassenden hydraulischen verbrauchern
EP4088027B1 (de) Verfahren zum betreiben einer dickstoffpumpe und dickstoffpumpe
EP2655895A1 (de) Hydraulischer antrieb
DE102017213118A1 (de) Ventilblockanordnung und Verfahren für eine Ventilblockanordnung
EP3517790B1 (de) Arbeitsmaschine mit hydraulik zur energierekuperation
DE102008054876A1 (de) Hydrauliksystem
DE102011108256A1 (de) Hydraulische Antriebsvorrichtung und Austauschvorrichtung für hydraulische Antriebe
WO2012038050A1 (de) Hydromaschine mit elektronisch gesteuerten ventilen
DE102008038381B4 (de) Hydrostatisches Antriebssystem
WO2020157046A1 (de) Mobile arbeitsmaschine und verfahren zum betreiben einer solchen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007776

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1569627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230925

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230824

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230924

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502019007776

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230607

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230607

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230607

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

26N No opposition filed

Effective date: 20240227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230724

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240529

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240628

Year of fee payment: 6