EP3807237A1 - Procede de production de 2,3,3,3-tetrafluoropropene et installation pour la mise en oeuvre de celui-ci - Google Patents

Procede de production de 2,3,3,3-tetrafluoropropene et installation pour la mise en oeuvre de celui-ci

Info

Publication number
EP3807237A1
EP3807237A1 EP19742080.5A EP19742080A EP3807237A1 EP 3807237 A1 EP3807237 A1 EP 3807237A1 EP 19742080 A EP19742080 A EP 19742080A EP 3807237 A1 EP3807237 A1 EP 3807237A1
Authority
EP
European Patent Office
Prior art keywords
reactor
fixed bed
weight
less
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19742080.5A
Other languages
German (de)
English (en)
Inventor
Bertrand Collier
Dominique Deur-Bert
Anne Pigamo
Audrey Riehl
Laurent Wendlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3807237A1 publication Critical patent/EP3807237A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/269Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/04Chloro-alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00522Controlling the temperature using inert heat absorbing solids outside the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories

Definitions

  • the present invention relates to the production of hydrofluoroolefins, in particular the present invention relates to the production of 2,3,3,3-tetrafluoropropene.
  • Halogenated hydrocarbons in particular fluorinated hydrocarbons such as hydrofluoroolefins, are compounds which have a useful structure as functional materials, solvents, refrigerants, blowing agents and monomers for functional polymers or starting materials for such monomers.
  • Hydrofluorolefins like 2,3,3,3-tetrafluoropropene (HFO-1234yf) attract attention because they offer promising behavior as refrigerants with low global warming potential.
  • the processes for producing fluoroolefins are usually carried out in the presence of a starting material such as an alkane containing chlorine or an alkene containing chlorine, and in the presence of a fluorinating agent such as hydrogen fluoride. These processes can be carried out in the gas phase or in the liquid phase, without or without the catalyst.
  • a starting material such as an alkane containing chlorine or an alkene containing chlorine
  • a fluorinating agent such as hydrogen fluoride.
  • HCFO-1233xf 2-chloro-3,3,3-trifluoropropene
  • HCC- 240db 1,1,1,2,3- pentachloropropane
  • a process for the preparation of 2,3,3,3-tetrafluoropropene from 1,1,1,2,3-pentachloropropane and / or 1, 1,2, 2,3- pentachloropropane comprising the stages: (a) catalytic reaction of 1,1,1,2,3-pentachloropropane and / or 1,1,2,2,3-pentachloropropane with HF to a reaction mixture comprising HCl, 2-chloro- 3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene, unreacted HF and optionally 1,1,1,2,2-pentafluoropropane; (b) separation of the reaction mixture into a first stream comprising HCl and 2,3,3,3-tetrafluoropropene and a second stream comprising HF, 2-chloro-3,3,3-trifluoropropene and optionally 1,1,1,2 , 2- pentafluoro
  • control and control of the reaction temperature is an important parameter which makes it possible to achieve the reaction kinetics, the conversions and the selectivities. This is also particularly recommended in order to avoid thermal decompositions of thermally sensitive compounds which may impact the activity of the catalyst by the formation of coke and thus considerably reduce the lifetime of the catalyst.
  • a multitubular reactor is by definition the ideal insulated reactor to be able to control the reaction temperature and obtain the most homogeneous reaction temperature possible since the catalyst is distributed in tubes and a fluid can circulate in the shell around the tubes to either remove reaction heat in the event of an exothermic reaction, or provide heat in the event of an endothermic reaction.
  • the production of a multitubular reactor may prove to be impossible since it would require too many tubes and a homogeneous distribution of the gases in each of the tubes is therefore very difficult. to achieve.
  • adiabatic fixed bed reactor does not exhibit heat exchange with an external medium by definition.
  • the adiabatic reactor is characterized by an inhomogeneous temperature at any point of the fixed bed and thus, by a temperature gradient both radial and longitudinal, due to the reaction heats and heat losses at the external walls of the reactor.
  • Document US 2016/0347692 describes the implementation of a radical production process in homogeneous gas phase of chlorinated or fluorinated propene in an adiabatic flow reactor controlling the turbulence of the flows entering the reactor.
  • the present invention relates to a process for producing 2,3,3,3-tetrafluoropropene comprising the steps:
  • a stream A comprising at least one starting compound selected from the group consisting of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1,1-trifluoropropane;
  • the temperature at the inlet of the fixed bed of said adiabatic reactor is between 300 ° C and 400 ° C and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of said reactor is less than 20 ° C.
  • the value of the longitudinal temperature difference is considered in absolute value.
  • the temperature at the inlet of the fixed bed of said reactor is between 330 ° C and 360 ° C and the longitudinal temperature difference between the inlet of the fixed bed of said reactor and the outlet of the fixed bed of said reactor is below 20 ° C.
  • the HF / starting compound molar ratio is adjusted so as to keep the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of the reactor less than 20 ° C.
  • the HF / starting compound molar ratio is greater than or equal to 5, advantageously greater than or equal to 10, preferably greater than or equal to 12.
  • said reactor comprises side walls comprising an interior layer, an intermediate layer disposed on said interior layer and an insulating layer disposed on said intermediate layer; and the difference in radial temperature between a point located in the center of the fixed bed of said reactor and a point located in the radial plane at the level of the inner layer of the side wall of said reactor is less than 10 ° C.
  • Said inner layer is that in contact with the reagents.
  • the value of the radial temperature difference is considered as an absolute value.
  • said reactor comprises side walls comprising an interior layer, an intermediate layer disposed on said interior layer and an insulating layer disposed on said intermediate layer; said insulating layer being made of an M2 heat-insulating material whose thickness varies between 1 mm and 500 mm.
  • the M2 heat-insulating material is selected from the group consisting of rock wool, glass wool, silicate fibers, calcium-magnesium silicates, calcium silicates, microporous insulators, cellular glass , expanded perlite, exfoliated vermiculite.
  • the pressure at the inlet of said reactor is between 3 and 15 bara.
  • stream B comprises, in addition to 2, 3,3,3-tetrafluoropropene, HF, HCl, 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-l, l, l - unreacted trifluoropropane and 1,1,1,2,2-pentafluoropropane; and has an electrical conductivity less than 15 mS / cm.
  • the present invention relates to an installation for manufacturing 2,3,3,3-tetrafluoropropene, comprising:
  • an adiabatic reactor comprising a bottom, a cover and side walls joining between the bottom and the cover, at least one fixed bed and at least one rod supporting one or more temperature sensor (s); said bottom, said cover and said side walls each comprise at least one inner layer, an intermediate layer disposed on said inner layer and an insulating layer disposed around said intermediate layer; said inner layer being made of an Ml material comprising a mass content of nickel of at least 30%; said intermediate layer being made of a material Ml 'comprising at least 70% by weight of iron; said insulating layer being made of an M2 heat-insulating material selected from the group consisting of rock wool, glass wool, silicate fibers, calcium-magnesium silicates, calcium silicates, microporous insulators, cellular glass, expanded perlite, exfoliated vermiculite; the length of said at least one rod supporting one or more temperature sensor (s) being at least equal to the height of said fixed bed; and said at least one rod comprising at least one temperature sensor disposed in said fixed bed.
  • reaction flow supply system for said reactor comprising a supply line for hydrofluoric acid and at least one supply line for a stream A comprising 2-chloro-3,3,3-trifluoropropene or 2, 3-dichloro-1,1,1-trifluoropropane;
  • At least one conductivity meter capable of measuring the electrical conductivity of the reaction flow entering said reactor.
  • FIG. 1 schematically represents a reactor according to a particular embodiment of the present invention.
  • FIG. 2 schematically represents a view in longitudinal section of a reactor according to a particular embodiment of the present invention.
  • FIG. 3 schematically represents a cross-sectional view of a reactor according to a particular embodiment of the present invention.
  • Figure 4 schematically shows a sectional view of the side walls of a reactor according to a particular embodiment of the present invention.
  • FIG. 5 schematically represents a plant for manufacturing 2,3,3,3-tetrafluoropropene according to a particular embodiment of the present invention.
  • the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene.
  • said process for producing 2,3,3,3-tetrafluoropropene comprises the steps:
  • a stream A comprising at least one starting compound selected from the group consisting of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1,1-trifluoropropane;
  • an adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing said stream A into contact with HF in the presence or not of a catalyst to produce a stream B comprising 2,3,3,3 -tétrafluoropropène.
  • the temperature at the inlet of the fixed bed of said reactor is between 300 ° C and 400 ° C and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of the reactor is less than 20 ° vs.
  • the temperature at the inlet of the fixed bed of said reactor is between 320 ° C and 400 ° C, preferably between 320 ° C and 375 ° C, more preferably between 320 ° C and 360 ° C, in particular between 330 ° C and 360 ° C.
  • a temperature above 400 ° C can make the catalyst irreversibly inactive while a temperature below 300 ° C prevents the fluorination reaction from being carried out.
  • FIG. 2 represents a schematic view in longitudinal section of a reactor 1 according to a particular embodiment of the present invention and comprising a fixed bed 5.
  • the longitudinal temperature difference ATa is defined by the temperature difference between the inlet of the fixed bed 9 and the exit from the fixed bed 10.
  • the longitudinal temperature difference between the inlet of the fixed bed of said reactor and the outlet of the fixed bed of said reactor is less than 20 ° C, advantageously less than 19 ° C, preferably less than 18 ° C, more preferably less at 17 ° C, in particular less than 16 ° C, more particularly less than 15 ° C, preferably less than 14 ° C, advantageously less than 13 ° C, preferably less than 12 ° C, more preferably less than 11 ° C, more preferably less than 10 ° C.
  • step ii) is carried out in the presence of a catalyst, preferably a chromium-based catalyst.
  • a catalyst preferably a chromium-based catalyst.
  • the chromium-based catalyst can be a chromium oxide (e.g. CrÜ2, CrC> 3 or Cr2C> 3), chromium oxyfluoride or chromium fluoride (e.g. CrFs) or a mixture thereof .
  • the chromium oxyfluoride may contain a fluorine content of between 1 and 60% by weight based on the total weight of the chromium oxyfluoride, advantageously between 5 and 55% by weight, preferably between 10 and 52% by weight, more preferably between 15 and 52% by weight, in particular between 20 and 50% by weight, more particularly between 25 and 45% by weight, preferably between 30 and 45% by weight, more preferably between 35 and 45% by weight of fluorine based on the total weight of chromium oxyfluoride.
  • the catalyst can also comprise a co-catalyst chosen from the group consisting of Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb; of preferably Ni, Co, Zn, Mg, Mn; in particular Ni, Co, Zn.
  • the content by weight of the cocatalyst is between 1 and 10% by weight based on the total weight of the catalyst.
  • the catalyst can be supported or not.
  • a support such as alumina, for example in its alpha form, activated alumina, aluminum halides (AIF3 for example), aluminum oxyhalides, activated carbon, magnesium fluoride or graphite can be used.
  • the catalyst can have a specific surface area between 1 and 100 m 2 / g, preferably between 5 and 80 m 2 / g, more preferably between 5 and 70 m 2 / g, ideally between 5 and 50 m 2 / g, in particular between 10 and 50 m 2 / g, more particularly between 15 and 45 m 2 / g.
  • step ii) is carried out in the absence of catalyst.
  • said fixed bed contains an inert solid.
  • the inert solid can be corundum, silicon carbide, quartz balls or rings, a metal lining with a metal M1 as defined in the present application or nickel balls.
  • step ii) is carried out at atmospheric pressure or at a pressure greater than this, advantageously at a pressure greater than 1.5 bara, preferably at a pressure greater than 2, 0 bara, in particular at a pressure greater than 2.5 bara, more particularly at a pressure greater than 3.0 bara.
  • step ii) is carried out at a pressure between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
  • step ii) of the present process is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s.
  • An oxidant such as oxygen or chlorine, can be added during step ii).
  • the molar ratio of the oxidant to the hydrocarbon compound can be between 0.005 and 2, preferably between 0.01 and 1.5.
  • the oxidant can be pure oxygen, air or a mixture of oxygen and nitrogen.
  • the HF / said starting compound molar ratio is greater than or equal to 5, advantageously greater than or equal to 10, preferably greater than or equal to 12.
  • the HF molar ratio / said compound starting range is between 12: 1 and 150: 1, preferably between 12: 1 and 125: 1, more preferably between 12: 1 and 100: 1.
  • the temperature within the reactor, and in particular within the fixed bed varies radially, i.e. the temperature varies between the center of the reactor and the side walls of the reactor located in the same plane, in particular between the center of the fixed bed and the side wall of the reactor located in the same plane.
  • the control of the radial temperature in the fixed bed can be carried out by insulating the side walls of said reactor with an insulating material of a defined thickness.
  • said side walls each comprise at least one inner layer and an insulating layer disposed around said inner layer.
  • an intermediate layer is disposed between said inner layer and said insulating layer.
  • FIG. 3 represents a transverse view along the section plane (a, a ') of a reactor 1 according to an embodiment of the present invention and comprising a fixed bed 5.
  • the side walls 3 of said reactor comprise an inner layer 21 , an intermediate layer 22 disposed on said inner layer 21 and an insulating layer 23 disposed on said intermediate layer 22 ( Figure 4).
  • the difference in radial temperature ATb is defined by the difference between a point located in the center of the fixed bed 5 of the reactor and a point 12 located in the radial plane at the level of the inner layer 21 of the side wall 3 of said reactor ( Figure 3) .
  • the difference in radial temperature between a point located in the center of the fixed bed of the reactor and a point located in the radial plane at the level of the inner layer of the side wall of said reactor is less than 10 ° C, advantageously less than 9 ° C, preferably less than 8 ° C, more preferably less than 7 ° C, in particular less than 6 ° C, more particularly less than 5 ° C.
  • said inner layer has a thickness of between 0.01 and 20 mm.
  • said inner layer can have a thickness of between 0.05 and 15 mm, preferably between 0.1 and 10 mm, more preferably between 0.1 and 5 mm.
  • Said inner layer may be made of an Ml material comprising a mass content of nickel of at least 30%.
  • the material M1 comprises at least 40% by weight of nickel based on the total weight of the material Ml.
  • the material M1 comprises at least 45% by weight of nickel, more preferably at least 50% by weight of nickel, in particular at least 55% by weight of nickel, more particularly at least 60% by weight of nickel, preferably at least 65% by weight of nickel, more preferably at least 70% by weight of nickel based on the total weight of the material Ml.
  • the material M1 can also comprise chromium in a content of less than 35% by weight based on the total weight of the material Ml, advantageously less than 30% by weight, preferably less than 20% by weight, more preferably less than 15% by weight. weight, in particular less than 10% by weight, more particularly less than 5% by weight based on the total weight of the material Ml.
  • the material M1 can also comprise molybdenum in a content of less than 35% by weight based on the total weight of the material Ml, advantageously less than 30% by weight, preferably less than 20% by weight, more preferably less than 15% by weight, in particular less than 10% by weight, more particularly less than 5% by weight based on the total weight of the material Ml.
  • the material M1 comprises at least 40% by weight of nickel based on the total weight of the material Ml, preferably at least 45% by weight of nickel, more preferably at least 50% by weight of nickel, in particular at least 55% by weight of nickel, more particularly at least 60% by weight of nickel, preferably at least 65% by weight of nickel, more preferably at least 70% by weight of nickel based on the total weight of the material Ml ; and less than 35% by weight of chromium, advantageously less than 30% by weight, preferably less than 20% by weight, more preferably less than 15% by weight, in particular less than 10% by weight, more particularly less than 5 % by weight of chromium based on the total weight of the material Ml; and less than 35% by weight of molybdenum, advantageously less than 30% by weight, preferably less than 20% by weight, more preferably less than 15% by weight, in particular less than 10% by weight, more particularly less than 5 % by weight of chromium based on the total weight of the material Ml; and less than 35% by weight of
  • the material M1 can also comprise cobalt in a content of less than 10% by weight based on the total weight of the material Ml, advantageously less than 8% by weight, preferably less than 6% by weight, more preferably less than 4% by weight. weight, in particular less than 3% by weight, more particularly less than 2% by weight based on the total weight of the material Ml.
  • the material M1 can also comprise tungsten in a content of less than 10% by weight based on the total weight of the material Ml, advantageously less than 9% by weight, preferably less than 8% by weight, more preferably less than 7% by weight. weight, in particular less than 6% by weight, more particularly less than 5% by weight based on the total weight of the material Ml.
  • the material M1 can also comprise iron in a content of less than 25% by weight based on the total weight of the material Ml, advantageously less than 20% by weight, preferably less than 15% by weight, more preferably less than 10% by weight. weight, in particular less than 7% by weight, more particularly less than 5% by weight based on the total weight of the material Ml.
  • the material M1 can also comprise manganese in a content of less than 5% by weight based on the total weight of the alloy, advantageously less than 4% by weight, preferably less than 3% by weight, more preferably less than 2% by weight, in particular less than 1% by weight, more particularly less than 0.5% by weight based on the total weight of the material Ml.
  • the material M1 can also comprise copper in a content of less than 50% by weight, advantageously less than 45% by weight, preferably less than 40% by weight, more preferably less than 35% by weight, particular less than 30% by weight, more particularly less than 25% by weight of copper based on the total weight of the material Ml.
  • said intermediate layer has a thickness of between 0.1 and 50 mm.
  • said intermediate layer can have a thickness of between 0.5 and 40 mm, preferably between 1 and 30 mm, more preferably between 1 and 25 mm.
  • said intermediate layer 22 is disposed between said inner layer 21, in contact with the reagents, and said insulating layer 23 ( Figure 4). Said intermediate layer 22 can be made of a material M.
  • the material M1 ' comprises at least 70% by weight of iron, advantageously at least 75% by weight, preferably at least 80% by weight, more preferably at least 85% by weight, in particular at minus 90% by weight, more particularly at least 95% by weight of iron based on the total weight of the material M.
  • the material M1 ′ can also comprise less than 2% by weight of carbon, advantageously less than 1.5% by weight, preferably less than 1% by weight, more preferably less than 0.75% by weight, in particular less than 0.5% by weight, more particularly less than 0.2% by weight, preferably less than 0.1% by weight based on the total weight of the material M.
  • the material M1 ′ can comprise between 0.01 and 0.2% by weight of carbon based on the total weight of the material M.
  • the material M1 ′ can also comprise less than 2% by weight of molybdenum, advantageously less than 1.5% by weight, preferably less than 1.25% by weight, more preferably less than 1% by weight of molybdenum based on the total weight of material M.
  • the material M1 ′ can comprise between 0.1 and 1% by weight of molybdenum based on the total weight of the material M.
  • the material M1 ′ can also comprise less than 5% by weight of chromium, advantageously less than 4% by weight, preferably less than 3% by weight, more preferably less than 2% by weight, in particular less than 1% by weight.
  • the material M1 'can comprise between 0.5 and 2% by weight of chromium based on the total weight of the material M.
  • the material M1 ′ can also comprise less than 2% by weight of silicon, advantageously less than 1.5% by weight, preferably less than 1.25% by weight, more preferably less than 1% by weight of silicon based on total weight of material M. More particularly, the material M1 'can comprise between 0.1 and 1.5% by weight of silicon based on the total weight of the material M.
  • the material M1 ′ can also comprise less than 2% by weight of manganese, advantageously less than 1.5% by weight, preferably less than 1.25% by weight, more preferably less than 1% by weight of manganese based on the total weight of the material Ml '. More particularly, the material Ml ′ can comprise between 0.1 and 1% by weight of manganese based on the total weight of the material
  • said insulating layer is made of an M2 heat-insulating material.
  • Said M2 heat-insulating material is selected from the group consisting of rock wool, glass wool, silicate fibers, calcium-magnesium silicates, calcium silicates, microporous insulators, cellular glass, expanded perlite, vermiculite exfoliated.
  • Silicate fibers include, for example, aluminosilicate fibers.
  • the side walls of said reactor comprise an insulating layer made of an M2 heat-insulating material whose thickness varies between 1 mm and 500 mm, preferably between 5 mm and 400 mm.
  • the pressure at the inlet of said reactor is atmospheric pressure or a pressure greater than this, advantageously the pressure at the inlet of said reactor is greater than 1.5 bara, preferably greater than 2 , 0 bara, in particular greater than 2.5 bara, more particularly greater than 3.0 bara.
  • step ii) is carried out at a pressure at the inlet of said reactor of between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and
  • stream A comprises 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1,-trifluoropropane, HF and optionally 1,1,1,2,2- pentafluoropropane.
  • stream B comprises, in addition to 2, 3,3,3-tetrafluoropropene, HF, HCl, 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-l, l, l - unreacted trifluoropropane and optionally 1,1,1,2,2-pentafluoropropane.
  • stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and optionally 1,1,1,2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1-trifluoropropane.
  • said stream B is distilled under conditions sufficient to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and optionally 1,1,1,2,2-pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3- trifluoropropene.
  • the distillation can be carried out at a pressure of 2 to 6 bara, more particularly at a pressure of 3 to 5 bara.
  • the temperature at the top of the distillation column is from -35 ° C to 10 ° C, preferably from -20 ° C to 0 ° C.
  • said stream B obtained in step b) is cooled before the purification mentioned above.
  • said stream B obtained in step b) is cooled to a temperature below 100 ° C., then distilled to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and optionally 1, 1.1 , 2,2-pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1-trifluoropropane; the temperature at the top of the distillation column is from -35 ° C to 10 ° C and the distillation is carried out at a pressure of 2 to 6 bara.
  • Said stream B can be cooled, before distillation, to a temperature below 95 ° C, advantageously below 90 ° C, preferably below 85 ° C, more preferably below 80 ° C, in particular below 70 ° C, more particularly less than 60 ° C, preferably less than 55 ° C, advantageously less than 50 ° C, preferably less than 40 ° C, more preferably less than 30 ° C, so particularly preferred below 25 ° C, more particularly preferred below 20 ° C. Cooling the product stream to such temperatures can facilitate subsequent distillation.
  • the cooling of said stream B can be carried out by means of one or a plurality of heat exchangers.
  • the cooling of said stream B can be carried out by passing it through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
  • Said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1-trifluoropropane can be recycled in step ii).
  • the first stream comprising 2,3,3,3-tetrafluoropropene, HCl and optionally 1,1,1,2,2-pentafluoropropane can be purified, preferably by distillation, to form a third stream, preferably at the top of the column. distillation, comprising HCl and a fourth stream comprising 2,3,3,3-tetrafluoropropene and optionally 1,1,1,2,2-pentafluoropropane.
  • the method according to the present invention is carried out continuously.
  • the process is carried out continuously and in the gas phase.
  • said current A has an electrical conductivity of less than 15 mS / cm.
  • the electrical conductivity of said current A is less than 14 mS / cm, preferably less than 13 mS / cm, more preferably less than 12 mS / cm, in particular less than 11 mS / cm, more particularly less than 10 mS / cm , in a privileged way less than 9 mS / cm, advantageously preferably less than 8 mS / cm, preferably preferably less than 7 mS / cm, more preferably preferred less than 6 mS / cm, particularly preferably less than 5 mS / cm.
  • step ii) is carried out in the presence of hydrofluoric acid having an electrical conductivity of less than 10 mS / cm, preferably less than 5 mS / cm.
  • said second current which can be recycled in step ii) has an electrical conductivity of less than 15 mS / cm, advantageously less than 10 mS / cm, preferably less than 5 mS / cm.
  • the electrical conductivity of said current A or of H F or of said second current is measured prior to step i) or ii).
  • the electrical conductivity of the current under consideration or of the HF is measured when the latter is in liquid form.
  • Said method according to the present invention can therefore comprise a step of heating the current under consideration or of HF prior to the implementation of step i) or ii) to supply said stream A and HF in gaseous form.
  • said current A used in step i) is in gaseous form when it is brought into contact with HF.
  • the electrical conductivity is measured at room temperature.
  • the electrical conductivity is measured using an inductive conductivity measuring cell and according to the practice known to those skilled in the art.
  • the measuring cell is coated with a material resistant to a corrosive medium, in particular resistant to hydrofluoric acid.
  • the electrical conductivity of a current can be reduced to reach a conductivity of less than 15 ms / cm by reducing the concentration of electrolyte possibly present in it according to techniques known to those skilled in the art (distillation, cooling and decantation, passage on molecular sieves of 3 to 5 A or zeolites).
  • Such an electrical conductivity makes it possible to improve the conversion and / or the selectivity of the reaction.
  • an adiabatic reactor 1 is provided.
  • said reactor 1 comprises a bottom 4, a cover 2 and side walls 3 forming a junction between the bottom 4 and the cover 2, at least one fixed bed 5 and at least one rod 6 supporting one or more temperature sensors 7a , 7b ( Figure 1).
  • said bottom 4, said cover 2 and said side walls 3 each comprise at least one interior layer 21, an intermediate layer 22 disposed on said interior layer and an insulating layer 23 disposed around said intermediate layer 22.
  • Said interior layers 21 , intermediate 22 and insulating 23 are made respectively of a material Ml, M and M2 as described above.
  • said insulating layer 23 can be covered by a base layer 24.
  • Said base layer 24 can be made of an M3 material.
  • Said M3 material can be a metallic coating made with sheets of aluminum, stainless steel or galvanized steel.
  • said base layer has a thickness of between 0.2 mm and 2 mm.
  • Said inner layer 21, said intermediate layer 22, said insulating layer 23 and said base layer 22 can be arranged one on the other according to techniques well known to those skilled in the art.
  • the length of said at least one rod 6 is at least equal to the height of said fixed bed 5.
  • said at least one rod 6 comprises at least one sensor, or at least two sensors or at least 3 sensors of temperature, advantageously at least 5 temperature sensors, preferably at least 7 temperature sensors, in particular at least 10 temperature sensors, preferably at least 12 temperature sensors, preferably at least 15 temperature sensors.
  • At least one of said one or more temperature sensors, supported by said at least one rod is arranged in said fixed bed 5.
  • at least two or three or four or five or six or seven temperature sensors, supported by said at least one rod are arranged in said fixed bed 5
  • each rod 6 can comprise either an identical number or a different number of temperature sensors.
  • each rod can include a temperature sensor in the sky and / or in the bottom of the reactor ( Figure 1, Reference 7b and 7b ').
  • the temperature sensors 7a, 7b can be distributed equidistantly or in a more targeted manner according to the needs for controlling the temperature profile in the fixed bed.
  • said reactor can comprise at least two canes 6, more preferably at least three canes 6, in particular at least four canes 6.
  • said reactor can comprise between 1 and 20 canes 6, advantageously between 2 and 15 canes 6 , preferably between 3 and 10 rods 6.
  • the reactor 1 is supplied with hydrocarbon compound 14 by supply lines 13.
  • the reactor also comprises effluent or outlet lines 15 making it possible to evacuate the reaction mixture 16 from the reactor ( Figure 1).
  • the feed or outlet lines of the reactor are made of material capable of also resisting corrosion, for example made of Ml material covered with a layer of M2 material and with a base layer made of a material M3.
  • the supply lines can be tubular.
  • the supply or outlet lines may comprise an inner layer, preferably made of a material M1 as described above, an insulating layer, preferably made of a material M2 as described above, and a base layer, preferably made of an M3 material as described above.
  • the reactor also includes one or more dephlegmator (s), one or more dip tube (s), one or more raw material introduction device (s), one or more support and retaining grid (s) of the catalyst.
  • Said one or more dephlegmator (s) and / or said one or more dip tube (s) and / or said one or more device (s) for introducing the raw materials and / or said one or more grid (s) ) for supporting and retaining the catalyst may comprise an inner layer, preferably made of a material M1 as described above.
  • the fixed bed 5 comprises a catalyst or an inert solid or both.
  • the inert solid can be corundum, silicon carbide, quartz balls or rings, a metal lining with a metal M1 as defined in the present application or nickel balls.
  • the fixed bed 5 comprises a catalyst
  • the inert solid is placed on the upper part 17 and the lower part 18 of the fixed bed 5, said catalyst 19c being located between the layers of the inert solid 19a and 19b, in the part central 20 of the fixed bed 5.
  • the fixed bed 5 comprises a catalyst
  • the inert solid is placed in the upper part 17 or in the lower part 18 of the fixed bed 5.
  • the fixed bed 5 comprises a catalyst
  • no layer of inert solid is placed in the fixed bed.
  • the lower part 18, the central part 20 and the upper part 17 of the fixed bed 5 can contain only inert solid.
  • This alternative embodiment can be implemented when, for example, step ii) of the process according to the present invention is carried out in the absence of catalyst.
  • the inert solid makes it possible to improve the distribution of the gases inside the reactor.
  • the inert solid is corundum or nickel beads.
  • the fixed bed 5 contains a layer of catalyst 19c in its central part 20.
  • the catalyst is distributed homogeneously in the fixed bed.
  • the homogeneous distribution of the catalyst in the fixed bed makes it possible to minimize the disturbances in the flow of gases and avoid hot spots within the catalyst layer. The presence of hot spots can lead to irreversible crystallization of the catalyst, resulting in deactivation of the latter.
  • the fixed bed is loaded using the specific method of dense catalyst loading. This method is known to those skilled in the art. It makes it possible to obtain an optimal distribution of the catalyst inside the reactor while avoiding foxing (channeling) during the reaction and the attrition of the catalyst.
  • the apparent mass density of the catalyst in the fixed bed is greater than the theoretical mass density of the latter. The apparent mass density is determined according to standard ASTM D1895.
  • said reactor is a gas phase fluorination reactor.
  • the present invention makes it possible to implement a process for the production of 2,3,3,3-tetrafluoropropene with a greater quantity of catalyst, if this is carried out in the presence of catalyst.
  • controlling and controlling the temperature radially and longitudinally makes it possible to maintain a conversion and a selectivity of the reactions.
  • a plant for manufacturing 2,3,3,3-tetrafluoropropene is provided.
  • the installation comprises an adiabatic reactor according to the present invention, a reaction flow supply system for said reactor, a system for collecting and purifying the output flow from said reactor.
  • said installation also comprises at least one conductivity meter able to measure the electrical conductivity of the reaction flow entering said reactor.
  • said installation also comprises a heat exchanger supplied by the outlet stream and connected to a first distillation column.
  • said installation also comprises a compressor supplied with the current coming from said first distillation column.
  • said installation comprises a second distillation column supplied with a current from the compressor. Said second distillation column aims to eliminate all or part of the HCl present in the stream supplied to it.
  • Said installation can also include a plurality of other distillation columns for purifying 2,3,3,3-tetrafluoropropene.
  • the reaction flow supply system of the reactor 101 comprises a hydrofluoric acid supply line 102 and a supply line. supply of 2-chloro-3,3,3-trifluoropropene 105. 2-chloro-3,3,3-trifluoropropene and HF can be mixed before contacting with the catalyst in reactor 101.
  • the flow Output 107 includes 2-chloro-3,3,3-trifluoropropene, unreacted, HF, HCl, 2,3,3,3-tetrafluoropropene and optionally 1,1,1,2,2-pentafluoropropane.
  • the installation includes a heat exchanger 108 able to cool the outlet flow 107 from said reactor 101 to form a cooled current.
  • the outlet stream 107 is routed to a cooling device 108.
  • the outlet stream 107 is thus cooled to a temperature from 0 ° C to 70 ° C before being introduced into a distillation column 109 via a pipe 110.
  • L 'installation can therefore include a first distillation column 109 supplied with said cooled stream.
  • the distillation column 109 is configured so as to allow separation between on the one hand hydrochloric acid and 2,3,3,3-tetrafluoropropene and optionally 1,1,1,2,2-pentafluoropropane and a on the other hand hydrofluoric acid and 2-chloro-3,3,3-trifluoropropene.
  • the stream of HF and of 2-chloro-3,3,3-trifluoropropene is recovered at the bottom of the distillation column 109 and recycled to the reactor 101 via line 112.
  • the stream comprising 2,3,3,3- tetrafluoropropene and hydrochloric acid and optionally 1,1,1,2,2- pentafluoropropane is recovered at the head of distillation column 109 to be conveyed by a line 111 to a compressor 113.
  • said installation comprises a compressor, preferably supplied with the stream from the head of said first distillation column 109.
  • the compressor makes it possible to compress the stream comprising 2,3,3,3-tetrafluoropropene and hydrochloric acid at a pressure between 10 and 25 bara.
  • the current thus compressed is conveyed via line 114 to a second distillation column 115.
  • This is configured so as to separate on one side the 2,3,3,3-tetrafluoropropene and optionally 1,1,1,2 , 2-pentafluoropropane and the other hydrochloric acid.
  • the hydrochloric acid is recovered and is at the head of the distillation column 115 to be conveyed to a purification device 118 via line 116.
  • the hydrochloric acid purification device 118 is a device known from the prior art, for example from WO 2015/079137.
  • 2,3,3,3-tetrafluoropropene and optionally 1,1,1,2,2-pentafluoropropane is recovered at the bottom of distillation column 115 to be conveyed by line 117 to a third distillation column 119.
  • the column of distillation 119 aims to separate the 2,3,3,3-tetrafluoropropene from the 1,1,1,2,2-pentafluoropropene possibly present in the outlet stream 107.
  • the 2,3,3,3-tetrafluoropropene is recovered at the head distillation column to be routed to a purification device via line 121.
  • the 1,1,1,2,2-pentafluoropropene recovered at the bottom of the distillation column is recycled to reactor 101 via line 120.
  • the device purification comprises in particular a device for removing HF 122 and one or more distillation columns capable of purifying the stream comprising 2,3,3,3-tetrafluoropropene of impurities which it could contain, such as for example 1,1,1,2,2-pentafluoropropane and / or 1,3,3,3-tetrafluoropropene.
  • the HF removal device 122 can remove the residual HF which can be recycled to the reactor 101 (not shown).
  • the HF elimination device 122 may be able to allow the settling of HF or the absorption of HF.
  • the stream comprising 2,3,3,3-tetrafluoropropene contains impurities such as 1,3,3,3-tetrafluoropropene or 1,1,1,2,2-pentafluoropropane, this can be purified for example from next way.
  • the stream comprising 2,3,3,3-tetrafluoropropene is conveyed to a distillation column 124 by a line 123.
  • the distillation column 124 is an extractive distillation column.
  • An extractant 127 is added to the stream comprising 2,3,3,3-tetrafluoropene.
  • the extractive distillation column 124 makes it possible to remove impurities possibly present in the stream comprising 2,3,3,3-tetrafluoropropene.
  • impurities may include 1,3,3,3-tetrafluoropropene.
  • a stream comprising 2,3,3,3-tetrafluoropene is recovered at the head of distillation column 124 and is conveyed by a line 128 to a distillation column 129.
  • the distillation column 129 can make it possible to separate the 2,3, Residual 1,1,1,2,2-pentafluoropropane 3,3-tetrafluoropene.
  • a stream 130 comprising 2,3,3,3-tetrafluoropene is recovered at the top of the distillation column.
  • a stream 131 comprising the residual 1,1,1,2,2-pentafluoropropane is recovered at the bottom of the distillation column; the latter can be recycled to the reactor 101.
  • the stream 125 recovered at the bottom of the distillation column 124 comprises the organic extraction agent and 1,3,3,3-tetrafluoropropene. These are separated, for example by distillation, to form a stream 126 comprising 1,3,3,3-tetrafluoropropene.
  • the organic extraction agent is recycled in 127.
  • the stream from the bottom of the distillation column 119 and the stream from the bottom of the distillation column 109 are conveyed to the reactor 101 respectively via the lines 120 and 112.
  • the two streams can be mixed before to be introduced into said reactor 101.
  • the electrical conductivity of the two streams or of the mixture thereof is measured by the conductivity meter 132.
  • the electrical conductivity of the HF and of the stream A can also be measured before their introduction into the reactor 101.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention se rapporte à un procédé de production de 2,3,3,3-tetrafluoropropène comprenant les étapes: i) fourniture d'un courant A comprenant au moins un composé de départ sélectionné parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène et 2,3- dichloro-1,1,1-trifluoropropane; et ii) dans un réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact dudit courant A avec HF en présence ou non d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène, caractérisé en ce que la température à l'entrée du lit fixedudit réacteur adiabatique est comprise entre 300°C et 400°C et la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixedudit réacteur est inférieure à 20°C.

Description

Procédé de production de 2.3.3.3-tetrafluoropropène et installation pour la mise en œuyre de celui-ci
Domaine technique de l'invention
La présente invention se rapporte à la production d'hydrofluorooléfines, en particulier la présente invention se rapporte à la production de 2,3,3,3-tetrafluoropropène.
Arrière-plan technologique de l'invention
Les hydrocarbures halogénés, en particulier les hydrocarbures fluorés comme les hydrofluorooléfines, sont des composés qui ont une structure utile comme matériaux fonctionnels, solvants, réfrigérants, agents de gonflage et monomères pour polymères fonctionnels ou matériaux de départ pour de tels monomères. Des hydrofluorooléfines comme le 2,3,3,3-tétrafluoropropène (HFO-1234yf) attirent l'attention parce qu'elles offrent un comportement prometteur comme réfrigérants à faible potentiel de réchauffement global.
Les procédés de production de fluorooléfines sont habituellement effectués en présence d'une substance de départ telle qu'un alcane contenant du chlore ou un alcène contenant du chlore, et en présence d'un agent fluorant tel que le fluorure d'hydrogène. Ces procédés peuvent être effectués en phase gazeuse ou en phase liquide, en absence ou non de catalyseur. On connaît par exemple par US 2009/0240090 un procédé en phase gazeuse de préparation du 2-chloro-3,3,3-trifluoropropène (HCFO-1233xf) à partir du 1,1, 1,2,3- pentachloropropane (HCC-240db). Le HCFO-1233xf ainsi produit est converti en 2-chloro-
1.1.1.2-tétrafluoropropane (HCFC-244bb) en phase liquide puis ce dernier est converti en
2.3.3.3-tétrafluoropropène.
On connaît également par WO 2013/088195, un procédé de préparation du 2, 3,3,3- tétrafluoropropène à partir du 1,1,1,2,3-pentachloropropane et/ou 1, 1,2, 2,3- pentachloropropane, comprenant les étapes : (a) réaction catalytique du 1,1,1,2,3- pentachloropropane et/ou 1,1,2,2,3-pentachloropropane avec HF en un mélange réactionnel comprenant HCl, 2-chloro-3,3,3-trifluoropropène, 2,3,3,3-tetrafluoropropène, HF n'ayant pas réagi et optionnellement 1,1,1,2,2-pentafluoropropane; (b) séparation du mélange réactionnel en un premier courant comprenant HCl et 2,3,3,3-tétrafluoropropène et un second courant comprenant HF, 2-chloro-3,3,3-trifluoropropène et optionnellement 1,1,1,2,2- pentafluoropropane; (c) réaction catalytique dudit second courant en un mélange réactionnel comprenant 2,3,3,3-tétrafluoropropène, HCl, 2-chloro-3,3,3-trifluoropropène non réagi, HF non réagi et optionnellement 1,1,1,2,2-pentafluoropropane et (d) alimentation du mélange réactionnel obtenu à l'étape c) directement à l'étape a) sans séparation.
Dans les procédés de production du 2,3,3,3-tétrafluoropropène, la maîtrise et le contrôle de la température de la réaction est un paramètre important qui permet d'atteindre la cinétique de réaction, les conversions et les sélectivités souhaitées. Ceci est également particulièrement recommandé pour éviter des décompositions thermiques de composés thermiquement sensibles pouvant impacter l'activité du catalyseur par la formation de coke et ainsi réduire considérablement la durée de vie du catalyseur.
On connaît par W02008/054781 qu'une température (300-350°C) favorise formation de 1234yf, 245cb, 1233xf, tandis qu'une température plus importante (350-450°C) favorise formation des isomères 1234ze, 245fa, 1233zd.
Il s'avère donc important de maîtriser et de contrôler la température des gaz à l'entrée des réacteurs mais également de maîtriser et de contrôler en tout point de la masse catalytique, s'il y en une.
Un réacteur multitubulaire est par définition le réacteur isotherme idéal pour pouvoir contrôler la température de réaction et obtenir une température de réaction la plus homogène possible puisque le catalyseur est réparti dans des tubes et qu'un fluide peut circuler dans la calandre autour des tubes pour soit éliminer de la chaleur de réaction en cas de réaction exothermique, soit apporter de la chaleur en cas de réaction endothermique. En revanche, lorsque des quantités de catalyseurs importantes doivent être utilisées, la réalisation d'un réacteur multitubulaire peut s'avérer impossible car il faudrait un nombre de tubes trop important et une distribution homogène des gaz dans chacun des tubes s'avère alors très difficile à réaliser. De plus, la maintenance de réacteurs multitubulaires de grande taille s'avère beaucoup plus délicate et coûteuse; en particulier les opérations de changement de catalyseur requièrent une longue immobilisation du réacteur à la fois pour vidanger le catalyseur usagé et pour remplir de façon extrêmement homogène chaque tube par du catalyseur neuf. Cet aspect négatif sera renforcé lorsque la durée de vie du catalyseur sera courte.
Dès lors, l'utilisation d'un réacteur à lit fixe adiabatique est préférée. Néanmoins, ce type de réacteur ne présente pas d'échange de chaleur avec un milieu extérieur par définition. En effet, le réacteur adiabatique est caractérisé par une température non homogène en tout point du lit fixe et ainsi, par un gradient de température à la fois radial et longitudinal, du fait des chaleurs de réaction et des pertes thermiques au niveau des parois externes du réacteur. Le document US 2016/0347692 décrit la mise en œuvre d'un procédé de production radicalaire en phase gazeuse homogène de propène chloré ou fluoré dans un réacteur adiabatique à écoulement contrôlant les turbulences des flux entrant dans le réacteur.
Il existe néanmoins un besoin pour améliorer les procédés de production de 2, 3,3,3- tetrafluoropropène dans des réacteurs adiabatiques.
Résumé de l'invention
Selon un premier aspect, la présente invention concerne un procédé de production de 2,3,3,3-tetrafluoropropène comprenant les étapes :
i) fourniture d'un courant A comprenant au moins un composé de départ sélectionné parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène et 2,3-dichloro-l,l,l- trifluoropropane ; et
ii) dans un réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact dudit courant A avec HF en présence ou non d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène,
caractérisé en ce que la température à l'entrée du lit fixe dudit réacteur adiabatique est comprise entre 300°C et 400°C et la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe dudit réacteur est inférieure à 20°C.
La valeur de la différence de température longitudinale est considérée en valeur absolue.
Selon un mode de réalisation préféré, la température à l'entrée du lit fixe dudit réacteur est comprise entre 330°C et 360°C et la différence de température longitudinale entre l'entrée du lit fixe dudit réacteur et la sortie du lit fixe dudit réacteur est inférieure à 20°C.
Selon un mode de réalisation préféré, à l'étape ii), le ratio molaire HF/composés de départ est ajusté de sorte à maintenir la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur inférieure à 20°C.
Selon un mode de réalisation préféré, à l'étape ii), le ratio molaire HF/composés de départ est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12.
Selon un mode de réalisation préféré, ledit réacteur comprend des parois latérales comportant une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée sur ladite couche intermédiaire ; et la différence de température radiale entre un point situé au centre du lit fixe dudit réacteur et un point situé dans le plan radial au niveau de la couche intérieure de la paroi latérale dudit réacteur est inférieure à 10°C. Ladite couche intérieure est celle en contact avec les réactifs. La valeur de la différence de température radiale est considérée en valeur absolue.
Selon un mode de réalisation préféré, ledit réacteur comprend des parois latérales comportant une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée sur ladite couche intermédiaire ; ladite couche isolante étant faite d'un matériau calorifuge M2 dont l'épaisseur varie entre 1 mm et 500 mm.
Selon un mode de réalisation préféré, le matériau calorifuge M2 est sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée.
Selon un mode de réalisation préféré, la pression à l'entrée dudit réacteur est comprise entre 3 et 15 bara.
Selon un mode de réalisation préféré, le courant B comprend, outre 2, 3,3,3- tétrafluoropropène, HF, HCl, 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l- trifluoropropane n'ayant pas réagi et 1,1,1,2,2-pentafluoropropane ; et a une conductivité électrique inférieure à 15 mS/cm.
Selon un second aspect, la présente invention concerne une installation de fabrication du 2,3,3,3-tétrafluoropropène, comprenant :
- un réacteur adiabatique comprenant un fond, un couvercle et des parois latérales faisant jonction entre le fond et le couvercle, au moins un lit fixe et au moins une canne supportant un ou plusieurs capteur(s) de température ; ledit fond, ledit couvercle et lesdites parois latérales comprennent chacun au moins une couche intérieure , une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée autour de ladite couche intermédiaire ; ladite couche intérieure étant faite d'un matériau Ml comprenant une teneur massique en nickel d'au moins 30% ; ladite couche intermédiaire étant faite d'un matériau Ml' comprenant au moins 70% en poids de fer ; ladite couche isolante étant faite d'un matériau calorifuge M2 sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée ; la longueur de ladite au moins une canne supportant un ou plusieurs capteur(s) de température étant au moins égale à la hauteur dudit lit fixe ; et ladite au moins une canne comprenant au moins un capteur de température disposé dans ledit lit fixe.
- un système d'alimentation en flux réactionnel dudit réacteur comprenant une ligne d'amenée de l'acide fluorhydrique et au moins une ligne d'amenée d'un courant A comprenant 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l-trifluoropropane ;
- un système de collecte et de purification du flux de sortie dudit réacteur ;
- au moins un conductimètre apte à mesurer la conductivité électrique du flux réactionnel entrant dans ledit réacteur.
Brève description des figures
La figure 1 représente schématiquement un réacteur selon un mode de réalisation particulier de la présente invention.
La figure 2 représente schématiquement une vue en coupe longitudinale d'un réacteur selon un mode de réalisation particulier de la présente invention.
La figure 3 représente schématiquement une vue en coupe transversale d'un réacteur selon un mode de réalisation particulier de la présente invention.
La figure 4 représente schématiquement une vue en coupe des parois latérales d'un réacteur selon un mode de réalisation particulier de la présente invention.
La figure 5 représente schématiquement une installation de fabrication de 2, 3,3,3- tétrafluoropropène selon un mode de réalisation particulier de la présente invention.
Description détaillée de l'invention
La présente invention se rapporte à un procédé de production de 2, 3,3,3- tétrafluoropropène. De préférence, ledit procédé de production de 2,3,3,3-tétrafluoropropène comprend les étapes :
i) fourniture d'un courant A comprenant au moins un composé de départ sélectionné parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène et 2,3-dichloro-l,l,l- trifluoropropane ; et
ii) dans un réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact dudit courant A avec HF en présence ou non d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène. De préférence, la température à l'entrée du lit fixe dudit réacteur est comprise entre 300°C et 400°C et la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur est inférieure à 20°C.
De préférence, la température à l'entrée du lit fixe dudit réacteur est comprise entre 320°C et 400°C, de préférence entre 320°C et 375°C, plus préférentiellement entre 320°C et 360°C, en particulier entre 330°C et 360°C. Dans cette étape i), une température supérieure à 400°C peut rendre le catalyseur inactif de façon irréversible tandis qu'une température inférieure à 300°C empêche la réaction de fluoration d'être mise en oeuvre.
Comme mentionné ci-dessus, dans un réacteur adiabatique, la température au sein du réacteur, et en particulier au sein du lit fixe, varie longitudinalement, c'est-à-dire que la température varie entre l'entrée du réacteur et la sortie du réacteur, en particulier entre l'entrée du lit fixe et la sortie du lit fixe. La figure 2 représente une vue schématique en coupe longitudinale d'un réacteur 1 selon un mode particulier de la présente invention et comprenant un lit fixe 5. La différence de température longitudinale ATa est définie par la différence de température entre l'entrée du lit fixe 9 et la sortie du lit fixe 10.
De préférence, la différence de température longitudinale entre l'entrée du lit fixe dudit réacteur et la sortie du lit fixe dudit réacteur est inférieure à 20°C, avantageusement inférieure à 19°C, de préférence inférieure à 18°C, plus préférentiellement inférieure à 17°C, en particulier inférieure à 16°C, plus particulièrement inférieure à 15°C, de manière privilégiée inférieure à 14°C, de manière avantageusement privilégiée inférieure à 13°C, de manière préférentiellement privilégiée inférieure à 12°C, de manière plus préférentiellement privilégiée inférieure à 11°C, de manière particulièrement privilégiée inférieure à 10°C.
Selon un mode de réalisation préféré, l'étape ii) est mise en oeuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome. De préférence, le catalyseur à base de chrome peut être un oxyde de chrome (par exemple CrÜ2, CrC>3 ou Cr2C>3), un oxyfluorure de chrome ou un fluorure de chrome (par exemple CrFs) ou un mélange de ceux-ci. L'oxyfluorure de chrome peut contenir une teneur en fluor comprise entre 1 et 60% en poids sur base du poids total de l'oxyfluorure de chrome, avantageusement entre 5 et 55% en poids, de préférence entre 10 et 52% en poids, plus préférentiellement entre 15 et 52% en poids, en particulier entre 20 et 50% en poids, plus particulièrement entre 25 et 45% en poids, de manière privilégiée entre 30 et 45% en poids, de manière plus privilégiée de 35 à 45% en poids de fluor sur base du poids total de l'oxyfluorure de chrome. Le catalyseur peut également comprendre un co-catalyseur choisi parmi le groupe consistant en Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb ; de préférence Ni, Co, Zn, Mg, Mn ; en particulier Ni, Co, Zn. La teneur en poids du co-catalyseur est comprise entre 1 et 10% en poids sur base du poids total du catalyseur. Le catalyseur peut être supporté ou non. Un support tel que l'alumine, par exemple sous sa forme alpha, de l'alumine activée, les halogénures d'aluminium (AIF3 par exemple), les oxyhalogénures d'aluminium, du charbon actif, fluorure de magnésium ou du graphite peut être utilisé.
De préférence, le catalyseur peut une surface spécifique entre 1 et 100 m2/g, de préférence entre 5 et 80 m2/g, plus préférentiellement entre 5 et 70 m2/g, idéalement entre 5 et 50 m2/g, en particulier entre 10 et 50 m2/g, plus particulièrement entre 15 et 45 m2/g.
Selon un autre mode de réalisation préféré, l'étape ii) est mise en oeuvre en l'absence de catalyseur. Dans ce cas, ledit lit fixe contient un solide inerte. Le solide inerte peut être du corindon, du carbure de silicium, des billes ou anneaux de quartz, un garnissage métallique d'un métal Ml tel que défini dans la présente demande ou des billes de nickel. Selon un mode de réalisation préféré, l'étape ii) est mise en oeuvre à la pression atmosphérique ou à une pression supérieure à celle-ci, avantageusement à une pression supérieure à 1,5 bara, de préférence à une pression supérieure à 2,0 bara, en particulier à une pression supérieure à 2,5 bara, plus particulièrement à une pression supérieure à 3,0 bara. De préférence, l'étape ii) est mise en oeuvre à une pression comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et 15 bara. De préférence, l'étape ii) du présent procédé est mise en oeuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape ii). Le rapport molaire de l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote.
De préférence, à l'étape ii), le ratio molaire HF/ledit composé de départ est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12. Avantageusement, le ratio molaire HF/ ledit composé de départ est compris entre 12 :1 et 150 :1, de préférence entre 12 :1 et 125 :1, plus préférentiellement entre 12 :1 et 100 :1.
Comme mentionné ci-dessus, dans un réacteur adiabatique, la température au sein du réacteur, et en particulier au sein du lit fixe, varie radialement, c'est-à-dire que la température varie entre le centre du réacteur et les parois latérales du réacteur situées dans le même plan, en particulier entre le centre du lit fixe et la paroi latérale du réacteur située dans le même plan.
Le contrôle de la température radiale dans le lit fixe peut être effectué en isolant les parois latérales dudit réacteur avec un matériau calorifuge d'une épaisseur définie. Ainsi, lesdites parois latérales comprennent chacune au moins une couche intérieure et une couche isolante disposée autour de ladite couche intérieure. De préférence, une couche intermédiaire est disposée entre ladite couche intérieure et ladite couche isolante.
La figure 3 représente une vue transversale suivant le plan de coupe (a, a') d'un réacteur 1 selon un mode de réalisation de la présente invention et comprenant un lit fixe 5. Les parois latérales 3 dudit réacteur comprennent une couche intérieure 21, une couche intermédiaire 22 disposée sur ladite couche intérieure 21 et une couche isolante 23 disposée sur ladite couche intermédiaire 22 (Figure 4). La différence de température radiale ATb est définie par la différence entre un point situé au centre du lit fixe 5 du réacteur et un point 12 situé dans le plan radial au niveau de la couche intérieure 21 de la paroi latérale 3 dudit réacteur (Figure 3).
Ainsi, la différence de température radiale entre un point situé au centre du lit fixe du réacteur et un point situé dans le plan radial au niveau de la couche intérieure de la paroi latérale dudit réacteur est inférieure à 10°C, avantageusement inférieure à 9°C, de préférence inférieure à 8°C, plus préférentiellement inférieure à 7°C, en particulier inférieure à 6°C, plus particulièrement inférieure à 5°C.
Selon un mode de réalisation préféré, ladite couche intérieure a une épaisseur comprise entre 0,01 et 20 mm. De préférence, ladite couche intérieure peut avoir une épaisseur comprise entre 0,05 et 15 mm, de préférence entre 0,1 et 10 mm, plus préférentiellement entre 0,1 et 5 mm.
Ladite couche intérieure peut être faite d'un matériau Ml comprenant une teneur massique en nickel d'au moins 30%. Avantageusement, le matériau Ml comprend au moins 40% en poids de nickel sur base du poids total du matériau Ml. De préférence, le matériau Ml comprend au moins 45 % en poids de nickel, plus préférentiellement au moins 50% en poids de nickel, en particulier au moins 55% en poids de nickel, plus particulièrement au moins 60% en poids de nickel, de manière privilégiée au moins 65% en poids de nickel, de manière plus privilégiée au moins 70% en poids de nickel sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du chrome dans une teneur inférieure à 35% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 30% en poids, de préférence inférieure à 20% en poids, plus préférentiellement inférieure à 15% en poids, en particulier inférieure à 10% en poids, plus particulièrement inférieure à 5% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du molybdène dans une teneur inférieure à 35% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 30% en poids, de préférence inférieure à 20% en poids, plus préférentiellement inférieure à 15% en poids, en particulier inférieure à 10% en poids, plus particulièrement inférieure à 5% en poids sur base du poids total du matériau Ml. De préférence, le matériau Ml comprend au moins 40% en poids de nickel sur base du poids total du matériau Ml, de préférence au moins 45 % en poids de nickel, plus préférentiellement au moins 50% en poids de nickel, en particulier au moins 55% en poids de nickel, plus particulièrement au moins 60% en poids de nickel, de manière privilégiée au moins 65% en poids de nickel, de manière plus privilégiée au moins 70% en poids de nickel sur base du poids total du matériau Ml ; et moins de 35% en poids de chrome, avantageusement moins de 30% en poids, de préférence moins de 20% en poids, plus préférentiellement moins de 15% en poids, en particulier moins de 10% en poids, plus particulièrement moins de 5% en poids de chrome sur base du poids total du matériau Ml ; et moins de 35% en poids de molybdène, avantageusement moins de 30% en poids, de préférence moins de 20% en poids, plus préférentiellement moins de 15% en poids, en particulier moins de 10% en poids, plus particulièrement moins de 5% en poids de molybdène, sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du cobalt dans une teneur inférieure à 10% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 8% en poids, de préférence inférieure à 6% en poids, plus préférentiellement inférieure à 4% en poids, en particulier inférieure à 3% en poids, plus particulièrement inférieure à 2% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du tungstène dans une teneur inférieure à 10% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 9% en poids, de préférence inférieure à 8% en poids, plus préférentiellement inférieure à 7% en poids, en particulier inférieure à 6% en poids, plus particulièrement inférieure à 5% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du fer dans une teneur inférieure à 25% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 20% en poids, de préférence inférieure à 15% en poids, plus préférentiellement inférieure à 10% en poids, en particulier inférieure à 7% en poids, plus particulièrement inférieure à 5% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du manganèse dans une teneur inférieure à 5% en poids sur base du poids total de l'alliage, avantageusement inférieure à 4% en poids, de préférence inférieure à 3% en poids, plus préférentiellement inférieure à 2% en poids, en particulier inférieure à 1% en poids, plus particulièrement inférieure à 0,5% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du cuivre dans une teneur inférieure à 50% en poids, avantageusement inférieure à 45% en poids, de préférence inférieure à 40% en poids, plus préférentiellement inférieure à 35% en poids, en particulier inférieure à 30% en poids, plus particulièrement inférieure à 25% en poids de cuivre sur base du poids total du matériau Ml.
Selon un mode de réalisation préféré, ladite couche intermédiaire a une épaisseur comprise entre 0,1 et 50 mm. De préférence, ladite couche intermédiaire peut avoir une épaisseur comprise entre 0,5 et 40 mm, de préférence entre 1 et 30 mm, plus préférentiellement entre 1 et 25 mm. Selon un mode de réalisation préféré, ladite couche intermédiaire 22 est disposée entre ladite couche intérieure 21, en contact avec les réactifs, et ladite couche isolante 23 (Figure 4). Ladite couche intermédiaire 22 peut être faite d'un matériau M . Selon un mode de réalisation préféré, le matériau Ml' comprend au moins 70% en poids de fer, avantageusement au moins 75% en poids, de préférence au moins 80% en poids, plus préférentiellement au moins 85% en poids, en particulier au moins 90% en poids, plus particulièrement au moins 95% en poids de fer sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 2% en poids de carbone, avantageusement moins de 1,5% en poids, de préférence moins de 1% en poids, plus préférentiellement moins de 0,75% en poids, en particulier moins de 0,5% en poids, plus particulièrement moins de 0,2% en poids, de manière privilégiée moins de 0,1% en poids sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,01 et 0,2% en poids de carbone sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 2% en poids de molybdène, avantageusement moins de 1,5% en poids, de préférence moins de 1,25% en poids, plus préférentiellement moins de 1% en poids de molybdène sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,1 et 1% en poids de molybdène sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 5% en poids de chrome, avantageusement moins de 4% en poids, de préférence moins de 3% en poids, plus préférentiellement moins de 2% en poids, en particulier moins de 1% en poids de chrome sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,5 et 2% en poids de chrome sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 2% en poids de silicium, avantageusement moins de 1,5% en poids, de préférence moins de 1,25% en poids, plus préférentiellement moins de 1% en poids de silicium sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,1 et 1,5 % en poids de silicium sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 2% en poids de manganèse, avantageusement moins de 1,5% en poids, de préférence moins de 1,25% en poids, plus préférentiellement moins de 1% en poids de manganèse sur base du poids total du matériau Ml'. Plus particulièrement, le matériau Ml' peut comprendre entre 0,1 et 1% en poids de manganèse sur base du poids total du matériau
Ml'.
De préférence, ladite couche isolante est faite d'un matériau calorifuge M2. Ledit matériau calorifuge M2 est sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée. Les fibres de silicate incluent par exemple les fibres d'aluminosilicates. En particulier, les parois latérales dudit réacteur comprennent une couche isolante faite d'un matériau calorifuge M2 dont l'épaisseur varie entre 1 mm et 500 mm, de préférence entre 5 mm et 400 mm.
Selon un mode de réalisation préféré, la pression à l'entrée dudit réacteur est la pression atmosphérique ou une pression supérieure à celle-ci, avantageusement la pression à l'entrée dudit réacteur est supérieure à 1,5 bara, de préférence supérieure à 2,0 bara, en particulier supérieure à 2,5 bara, plus particulièrement supérieure à 3,0 bara. De préférence, l'étape ii) est mise en oeuvre à une pression à l'entrée dudit réacteur comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et
15 bara.
Selon un mode de réalisation préféré, le courant A comprend 2-chloro-3,3,3- trifluoropropène ou 2,3-dichloro-l,l,l-trifluoropropane, HF et optionnellement 1, 1,1, 2,2- pentafluoropropane.
Selon un mode de réalisation préféré, le courant B comprend, outre 2, 3,3,3- tétrafluoropropène, HF, HCl, 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l- trifluoropropane n'ayant pas réagi et optionnellement 1,1,1,2,2-pentafluoropropane.
Selon un mode de réalisation préféré, le courant B est purifié, de préférence par distillation, pour former un premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et optionnellement 1,1,1,2,2-pentafluoropropane, et un second courant comprenant HF et 2- chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l-trifluoropropane.
De préférence, ledit courant B est distillé dans des conditions suffisantes pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et optionnellement 1,1,1,2,2-pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3- trifluoropropene. En particulier, la distillation peut être effectuée à une pression de 2 à 6 bara, plus particulièrement à une pression de 3 à 5 bara. En particulier, la température en tête de colonne de distillation est de -35°C à 10°C, de préférence de -20°C à 0°C. Selon un mode réalisation préféré, ledit courant B obtenu à l'étape b) est refroidi préalablement à la purification mentionnée ci-dessus. En particulier, ledit courant B obtenu à l'étape b) est refroidi à une température inférieure à 100°C, puis distillé pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et optionnellement 1, 1,1, 2,2- pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l-trifluoropropane ; la température en tête de colonne de distillation est de -35°C à 10°C et la distillation est mise en oeuvre à une pression de 2 à 6 bara.
Ledit courant B peut être refroidi, avant distillation, à une température inférieure à 95°C, avantageusement inférieure à 90°C, de préférence inférieure à 85°C, plus préférentiellement inférieure à 80°C, en particulier inférieure à 70°C, plus particulièrement inférieure à 60°C, de manière privilégiée inférieure à 55°C, de manière avantageusement privilégiée inférieure à 50°C, de manière préférentiellement privilégiée inférieure à 40°C, de manière plus préférentiellement privilégiée inférieure à 30°C, de manière particulièrement privilégiée inférieure à 25°C, de manière plus particulièrement privilégiée inférieure à 20°C. Le refroidissement du flux de produits obtenu à de telles températures peut faciliter la distillation ultérieure.
Le refroidissement dudit courant B peut être effectué grâce à un ou une pluralité d'échangeurs de chaleur. Le refroidissement dudit courant B peut être effectué en faisant passer celui-ci au travers de un, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix échangeurs de chaleur, de préférence le nombre d'échangeurs de chaleur est compris entre 2 et 8, en particulier entre 3 et 7.
Ledit second courant comprenant HF et 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro- 1,1,1-trifluoropropane peut être recyclé à l'étape ii).
Le premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et optionnellement 1,1,1,2,2-pentafluoropropane peut être purifié, de préférence par distillation, pour former un troisième courant, de préférence en tête de colonne de distillation, comprenant HCl et un quatrième courant comprenant 2,3,3,3-tétrafluoropropène et optionnellement 1,1,1,2,2- pentafluoropropane.
De préférence, le procédé selon la présente invention est mis en oeuvre en continu.
De préférence, le procédé est mis en oeuvre en continu et en phase gazeuse.
De préférence, ledit courant A a une conductivité électrique inférieure à 15 mS/cm. Avantageusement, la conductivité électrique dudit courant A est inférieure 14 mS/cm, de préférence inférieure à 13 mS/cm, plus préférentiellement inférieure à 12 mS/cm, en particulier inférieure à 11 mS/cm, plus particulièrement inférieure à 10 mS/cm, de manière privilégiée inférieure à 9 mS/cm, de manière avantageusement privilégiée inférieure à 8 mS/cm, de manière préférentiellement privilégiée inférieure à 7 mS/cm, de manière plus préférentiellement privilégiée inférieure à 6 mS/cm, de manière particulièrement privilégiée inférieure à 5 mS/cm. De préférence, l'étape ii) est réalisée en présence d'acide fluorhydrique ayant une conductivité électrique inférieure à 10 mS/cm, de préférence inférieure à 5 mS/cm. De préférence, ledit second courant pouvant être recyclé à l'étape ii) a une conductivité électrique inférieure à 15 mS/cm, avantageusement inférieure à 10 mS/cm, de préférence inférieure à 5 mS/cm.
La conductivité électrique dudit courant A ou de H F ou dudit second courant est mesurée préalablement à l'étape i) ou ii). De préférence, la conductivité électrique du courant considéré ou du HF est mesurée lorsque celui-ci est sous forme liquide. Ledit procédé selon la présente invention peut donc comprendre une étape de chauffage du courant considéré ou de HF préalable à la mise en oeuvre de l'étape i) ou ii) pour fournir ledit courant A et HF sous forme gazeuse. De préférence, ledit courant A mis en oeuvre à l'étape i) est sous forme gazeuse lors de sa mise en contact avec HF. La conductivité électrique est mesurée à température ambiante. La conductivité électrique est mesurée à l'aide d'une cellule de mesure de conductivité inductive et selon la pratique connue de l'homme du métier. De préférence, la cellule de mesure est revêtue d'un matériau résistant à un milieu corrosif, en particulier résistant à l'acide fluorhydrique. La conductivité électrique d'un courant peut être diminuée pour atteindre une conductivité inférieure à 15 ms/cm en diminuant la concentration en électrolyte éventuellement présent dans celui-ci selon les techniques connues de l'homme du métier (distillation, refroidissement et décantation, passage sur des tamis moléculaires de 3 à 5 A ou des zéolites). Une telle conductivité électrique permet d'améliorer la conversion et/ou la sélectivité de la réaction.
Selon un second aspect de la présente invention, un réacteur adiabatique 1 est fourni. De préférence, ledit réacteur 1 comprend un fond 4, un couvercle 2 et des parois latérales 3 faisant jonction entre le fond 4 et le couvercle 2, au moins un lit fixe 5 et au moins une canne 6 supportant un ou plusieurs capteurs de température 7a, 7b (Figure 1).
De préférence, ledit fond 4, ledit couvercle 2 et lesdites parois latérales 3 comprennent chacun au moins une couche intérieure 21, une couche intermédiaire 22 disposée sur ladite couche intérieure et une couche isolante 23 disposée autour de ladite couche intermédiaire 22. Lesdites couches intérieure 21, intermédiaire 22 et isolante 23 sont faites respectivement d'un matériau Ml, M et M2 comme décrit ci-dessus. Selon un mode de réalisation préféré, ladite couche isolante 23 peut être recouverte par une couche de base 24. Ainsi, ladite couche isolante 23 est disposée entre ladite couche intermédiaire 22 et ladite couche de base 24 (Figure 4). Ladite couche de base 24 peut être faite d'un matériau M3. Ledit matériau M3 peut être un revêtement métallique réalisé avec des tôles d'aluminium, d'acier inoxydable ou d'acier galvanisé. De préférence, ladite couche de base a une épaisseur comprise entre 0,2 mm et 2 mm.
Ladite couche intérieure 21, ladite couche intermédiaire 22, ladite couche isolante 23 et ladite couche de base 22 peuvent être disposées l'une sur l'autre selon des techniques bien connues de l'homme de l'art.
De préférence, la longueur de ladite au moins une canne 6 est au moins égale à la hauteur dudit lit fixe 5. En particulier, ladite au moins une canne 6 comprend au moins un capteur, ou au moins deux capteurs ou au moins 3 capteurs de température, avantageusement au moins 5 capteurs de température, de préférence au moins 7 capteurs de température, en particulier au moins 10 capteurs de température, de manière privilégiée au moins 12 capteurs de température, de manière préférentiellement privilégiée au moins 15 capteurs de température.
De préférence, au moins un desdits un ou plusieurs capteurs de température, supporté par ladite au moins une canne, est disposé dans ledit lit fixe 5. En particulier, au moins deux ou trois ou quatre ou cinq ou six ou sept capteurs de température, supporté par ladite au moins une canne, sont disposés dans ledit lit fixe 5
De préférence, chaque canne 6 peut comporter soit un nombre identique, soit un nombre différent de capteurs de température. En particulier, chaque canne peut comporter un capteur de température dans le ciel et/ou dans le fond du réacteur (Figure 1, Référence 7b et 7b'). De même, les capteurs de température 7a, 7b peuvent être répartis à équidistance ou de façon plus ciblée en fonction des besoins de contrôle du profil de température dans le lit fixe.
De préférence, ledit réacteur peut comprendre au moins deux cannes 6, plus préférentiellement au moins trois cannes 6, en particulier au moins quatre cannes 6. En particulier, ledit réacteur peut comprendre entre 1 et 20 cannes 6, avantageusement entre 2 et 15 cannes 6, de préférence entre 3 et 10 cannes 6.
De préférence, le réacteur 1 est alimenté en composé hydrocarbure 14 par des lignes d'alimentation 13. Le réacteur comprend également des lignes d'effluent ou de sortie 15 permettant d'évacuer le mélange réactionnel 16 du réacteur (Figure 1). De préférence, les lignes d'alimentation ou de sortie du réacteur sont faites de matériau capable de résister également à la corrosion, par exemple faites du matériau Ml recouvert d'une couche de matériau M2 et d'une couche de base faite d'un matériau M3. Les lignes d'alimentation peuvent être de forme tubulaire. Alternativement, les lignes d'alimentation ou de sortie peuvent comprendre une couche intérieure, de préférence faite d'un matériau Ml tel que décrit ci-dessus, une couche isolante, de préférence faite d'un matériau M2 tel que décrit ci-dessus, et une couche de base, de préférence faite d'un matériau M3 tel que décrit ci-dessus. Le réacteur comprend également un ou plusieurs déphlegmateur(s), un ou plusieurs tube(s) plongeur(s), un ou plusieurs dispositif(s) d'introduction des matières premières, une ou plusieurs grille(s) de support et de retenue du catalyseur. Ledit un ou plusieurs déphlegmateur(s) et/ou ledit un ou plusieurs tube(s) plongeur(s) et/ou ledit un ou plusieurs dispositif(s) d'introduction des matières premières et/ou ladite une ou plusieurs grille(s) de support et de retenue du catalyseur peuvent comprendre une couche intérieure, de préférence faite d'un matériau Ml tel que décrit ci-dessus.
De préférence, le lit fixe 5 comprend un catalyseur ou un solide inerte ou les deux. Le solide inerte peut être du corindon, du carbure de silicium, des billes ou anneaux de quartz, un garnissage métallique d'un métal Ml tel que défini dans la présente demande ou des billes de nickel. De préférence, lorsque le lit fixe 5 comprend un catalyseur, le solide inerte est disposé sur la partie supérieure 17 et la partie inférieure 18 du lit fixe 5, ledit catalyseur 19c se trouvant entre les couches du solide inerte 19a et 19b, dans la partie centrale 20 du lit fixe 5. Dans un mode de réalisation alternatif, lorsque le lit fixe 5 comprend un catalyseur, le solide inerte est disposé dans la partie supérieure 17 ou dans la partie inférieure 18 du lit fixe 5. Dans un mode de réalisation alternatif, lorsque le lit fixe 5 comprend un catalyseur, aucune couche de solide inerte n'est disposée dans le lit fixe. Dans un mode de réalisation alternatif, dans lequel le réacteur ne contient pas catalyseur, la partie inférieure 18, la partie centrale 20 et la partie supérieure 17 du lit fixe 5 peuvent contenir uniquement du solide inerte. Ce mode de réalisation alternatif peut être mis en oeuvre lorsque, par exemple, l'étape ii) du procédé selon la présente invention est réalisée en l'absence de catalyseur. Dans ce cas, le solide inerte permet d'améliorer la distribution des gaz à l'intérieur du réacteur. De préférence, le solide inerte est du corindon ou des billes de nickel.
De préférence, le lit fixe 5 contient une couche de catalyseur 19c dans sa partie centrale 20. Dans un mode de réalisation préféré, le catalyseur est réparti de manière homogène dans le lit fixe. La répartition homogène du catalyseur dans le lit fixe permet de minimiser les perturbations dans l'écoulement des gaz et d'éviter les points chauds au sein de la couche de catalyseur. La présence de points chauds peut conduire à une cristallisation irréversible du catalyseur entraînant une désactivation de celui-ci. Le chargement du lit fixe est réalisé selon la méthode spécifique de chargement dense du catalyseur. Cette méthode est connue de l'homme de l'art. Elle permet d'obtenir une distribution optimale du catalyseur à l'intérieur du réacteur en évitant les renardages (channelling) durant la réaction et l'attrition du catalyseur. De manière générale, la densité massique apparente du catalyseur dans le lit fixe est supérieure à la densité massique théorique de celui-ci. La densité massique apparente est déterminée suivant la norme ASTM D1895.
De préférence, ledit réacteur est un réacteur de fluoration en phase gazeuse.
La présente invention permet de mettre en oeuvre un procédé de production de 2, 3,3,3- tetrafluoropropène avec une quantité de catalyseur plus importante, si celui-ci est réalisé en présence de catalyseur. En outre, la maîtrise et le contrôle de la température de manière radiale et longitudinale permettent de maintenir une conversion et une sélectivité des réactions.
Selon un troisième aspect de l'invention, une installation de fabrication du 2, 3,3,3- tetrafluoropropène est fourni. De préférence, l'installation comprend un réacteur adiabatique selon la présente invention, un système d'alimentation en flux réactionnel dudit réacteur, un système de collecte et de purification du flux de sortie dudit réacteur. De préférence, ladite installation comprend également au moins un conductimètre apte à mesurer la conductivité électrique du flux réactionnel entrant dans ledit réacteur.
De préférence, ladite installation comprend également un échangeur de chaleur alimenté par le flux de sortie et connecté à une première colonne de distillation. De préférence, ladite installation comprend également un compresseur alimenté par le courant issu de ladite première colonne de distillation. De préférence, ladite installation comprend une seconde colonne de distillation alimentée par un courant issu du compresseur. Ladite seconde colonne de distillation vise à éliminer tout ou partie du HCl présent dans le courant acheminé vers celle- ci. Ladite installation peut également comprendre une pluralité d'autres colonnes de distillation pour purifier le 2,3,3,3-tétrafluoropropène.
Une installation selon un mode de réalisation particulier de la présente invention est illustrée à la figure 5. De préférence, le système d'alimentation en flux réactionnel du réacteur 101 comprend une ligne d'amenée de l'acide fluorhydrique 102 et une ligne d'amenée du 2- chloro-3,3,3-trifluoropropène 105. Le 2-chloro-3,3,3-trifluoropropène et HF peuvent être mélangés avant la mise en contact avec le catalyseur dans le réacteur 101. De préférence, le flux de sortie 107 comprend 2-chloro-3,3,3-trifluoropropène n'ayant pas réagi, HF, HCl, 2, 3,3,3- tétrafluoropropène et optionnellement 1,1,1,2,2-pentafluoropropane. L'installation comprend un échangeur de chaleur 108 apte à refroidir le flux de sortie 107 issu dudit réacteur 101 pour former un courant refroidi. Le flux de sortie 107 est acheminé vers un dispositif de refroidissement 108. Le flux de sortie 107 est ainsi refroidi à une température de 0°C à 70°C avant d'être introduit dans une colonne de distillation 109 via une conduite 110. L'installation peut donc comprendre une première colonne de distillation 109 alimentée par ledit courant refroidi. La colonne de distillation 109 est configurée de sorte à permettre la séparation entre d'un côté l'acide chlorhydrique et le 2,3,3,3-tetrafluoropropène et optionnellement 1,1,1,2,2- pentafluoropropane et d'un autre côté l'acide fluorhydrique et 2-chloro-3,3,3-trifluoropropène. Le courant d'HF et de 2-chloro-3,3,3-trifluoropropène est récupéré en pied de colonne de distillation 109 et recyclé vers le réacteur 101 par la conduite 112. Le courant comprenant le 2,3,3,3-tetrafluoropropène et l'acide chlorhydrique et optionnellement 1,1,1,2,2- pentafluoropropane est récupéré en tête de colonne de distillation 109 pour être acheminé par une conduite 111 vers un compresseur 113. Selon un mode de réalisation préféré, ladite installation comprend un compresseur, alimenté de préférence par le courant issu de la tête de ladite première colonne de distillation 109. Le compresseur permet de comprimer le courant comprenant le 2,3,3,3-tetrafluoropropène et l'acide chlorhydrique à une pression comprise entre 10 et 25 bara. Le courant ainsi comprimé est acheminé par la conduite 114 vers une seconde colonne de distillation 115. Celle-ci est configurée de sorte à séparer d'un côté le 2,3,3,3-tetrafluoropropène et optionnellement 1,1,1,2,2-pentafluoropropane et de l'autre l'acide chlorhydrique. L'acide chlorhydrique est récupéré est tête de colonne de distillation 115 pour être acheminé vers un dispositif de purification 118 par la conduite 116. Le dispositif de purification 118 de l'acide chlorhydrique est un dispositif connu de l'art antérieur, par exemple de WO 2015/079137. Le 2,3,3,3-tetrafluoropropène et optionnellement 1,1,1,2,2- pentafluoropropane est récupéré en pied de colonne de distillation 115 pour être acheminé par la conduite 117 vers une troisième colonne de distillation 119. La colonne de distillation 119 vise à séparer le 2,3,3,3-tetrafluoropropène du 1,1,1,2,2-pentafluoropropène éventuellement présent dans le flux de sortie 107. Le 2,3,3,3-tetrafluoropropène est récupéré en tête de colonne de distillation pour être acheminé vers un dispositif de purification par la conduite 121. Le 1,1,1,2,2-pentafluoropropène récupéré en pied de colonne de distillation est recyclé vers le réacteur 101 par la conduite 120. Le dispositif de purification comprend notamment un dispositif d'élimination du HF 122 et une ou plusieurs colonnes de distillation apte à purifier le courant comprenant le 2,3,3,3-tetrafluoropropène d'impuretés qu'il pourrait contenir, telles que par exemple le 1,1,1,2,2-pentafluoropropane et/ou le 1,3,3,3-tetrafluoropropène. Le dispositif de d'élimination du HF 122 peut éliminer le HF résiduel qui peut être recyclé vers le réacteur 101 (non représenté). Le dispositif d'élimination d'HF 122 peut être apte à permettre la décantation du HF ou l'absorption du HF. Si le courant comprenant 2,3,3,3-tétrafluoropropène contient des impuretés telles que 1,3,3,3-tétrafluoropropène ou 1,1,1,2,2-pentafluoropropane, celui-ci peut être purifié par exemple de la manière suivante. Le courant comprenant le 2,3,3,3- tetrafluoropropène est acheminé vers une colonne de distillation 124 par une conduite 123. La colonne de distillation 124 est une colonne de distillation extractive. Un agent d'extraction 127 est ajouté au courant comprenant le 2,3,3,3-tetrafluoropène. La colonne de distillation extractive 124 permet d'éliminer des impuretés éventuellement présentes dans le courant comprenant 2,3,3,3-tétrafluoropropène. Ces impuretés peuvent comprendre le 1,3,3,3- tétrafluoropropène. Un courant comprenant le 2,3,3,3-tetrafluoropène est récupéré en tête de colonne de distillation 124 et est acheminé par une conduite 128 vers une colonne de distillation 129. La colonne de distillation 129 peut permettre de séparer le 2,3,3,3-tetrafluoropène de 1,1,1,2,2-pentafluoropropane résiduel. Un courant 130 comprenant le 2,3,3,3-tetrafluoropène est récupéré en tête de colonne de distillation. Un courant 131 comprenant le 1,1,1,2,2- pentafluoropropane résiduel est récupéré en pied de colonne de distillation ; ce dernier pouvant être recyclé vers le réacteur 101. Le courant 125 récupéré en pied de colonne de distillation 124 comprend l'agent d'extraction organique et le 1,3,3,3-tetrafluoropropène. Ceux-ci sont séparés, par exemple par distillation, pour former un courant 126 comprenant le 1,3,3,3- tetrafluoropropène. L'agent d'extraction organique est quant à lui recyclé en 127.
Comme mentionné ci-dessus, le courant issu du pied de la colonne de distillation 119 et le courant issu du pied de la colonne de distillation 109 sont acheminés vers le réacteur 101 respectivement par les conduites 120 et 112. Les deux courants peuvent être mélangés avant d'être introduit dans ledit réacteur 101. En outre, avant d'être introduit dans ledit réacteur 101, la conductivité électrique des deux courants ou du mélange de ceux-ci est mesurée par le conductimètre 132. La conductivité électrique du HF et du courant A peut également être mesurée avant leur introduction dans le réacteur 101.

Claims

Revendications
1. Procédé de production de 2,3,3,3-tetrafluoropropène comprenant les étapes :
i) fourniture d'un courant A comprenant au moins un composé de départ sélectionné parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène et 2,3-dichloro-l,l,l- trifluoropropane ; et
ii) dans un réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact dudit courant A avec HF en présence ou non d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène,
caractérisé en ce que la température à l'entrée du lit fixe dudit réacteur adiabatique est comprise entre 300°C et 400°C et la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe dudit réacteur est inférieure à 20°C.
2. Procédé selon la revendication 1 caractérisé en ce que la température à l'entrée du lit fixe dudit réacteur est comprise entre 330°C et 360°C et la différence de température longitudinale entre l'entrée du lit fixe dudit réacteur et la sortie du lit fixe dudit réacteur est inférieure à 20°C.
3. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que, à l'étape ii), le ratio molaire HF/composés de départ est ajusté de sorte à maintenir la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur inférieure à 20°C.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que, à l'étape ii), le ratio molaire HF/composés de départ est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit réacteur comprend des parois latérales comportant une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée sur ladite couche intermédiaire ; et la différence de température radiale entre un point situé au centre du lit fixe dudit réacteur et un point situé dans le plan radial au niveau de la couche intérieure de la paroi latérale dudit réacteur est inférieure à 10°C.
6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit réacteur comprend des parois latérales comportant une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée sur ladite couche intermédiaire ; ladite couche isolante étant faite d'un matériau calorifuge M2 dont l'épaisseur varie entre 1 mm et 500 mm.
7. Procédé selon la revendication précédente caractérisé en ce que le matériau calorifuge M2 est sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la pression à l'entrée dudit réacteur est comprise entre 3 et 15 bara.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant B comprend, outre 2,3,3,3-tétrafluoropropène, HF, HCl, 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l-trifluoropropane n'ayant pas réagi et 1,1,1,2,2-pentafluoropropane ; et a une conductivité électrique inférieure à 15 mS/cm.
10. Installation de fabrication du 2,3,3,3-tetrafluoropropène, comprenant :
- un réacteur adiabatique (101) comprenant un fond (4), un couvercle (2) et des parois latérales (3) faisant jonction entre le fond (4) et le couvercle (2), au moins un lit fixe (5) et au moins une canne (6) supportant un ou plusieurs capteur(s) de température (7a, 7b) ; ledit fond (4), ledit couvercle (2) et lesdites parois latérales (3) comprennent chacun au moins une couche intérieure (21), une couche intermédiaire (22) disposée sur ladite couche intérieure (21) et une couche isolante (23) disposée autour de ladite couche intermédiaire (22) ; ladite couche intérieure (21) étant faite d'un matériau Ml comprenant une teneur massique en nickel d'au moins 30% ; ladite couche intermédiaire (22) étant faite d'un matériau Ml' comprenant au moins 70% en poids de fer ; ladite couche isolante (23) étant faite d'un matériau calorifuge M2 sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée ; la longueur de ladite au moins une canne (6) supportant un ou plusieurs capteur(s) de température (7a, 7b) étant au moins égale à la hauteur dudit lit fixe (5) ; et ladite au moins une canne (6) comprenant au moins un capteur de température (7a) disposé dans ledit lit fixe.
- un système d'alimentation en flux réactionnel dudit réacteur comprenant une ligne d'amenée de l'acide fluorhydrique (102) et au moins une ligne d'amenée (105) d'un courant A comprenant 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l- trifluoropropane ;
- un système de collecte et de purification du flux de sortie (107) dudit réacteur (101) ;
- au moins un conductimètre (132) apte à mesurer la conductivité électrique du flux réactionnel entrant dans ledit réacteur.
EP19742080.5A 2018-06-12 2019-06-06 Procede de production de 2,3,3,3-tetrafluoropropene et installation pour la mise en oeuvre de celui-ci Pending EP3807237A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855107A FR3082203B1 (fr) 2018-06-12 2018-06-12 Procede de production de 2,3,3,3-tetrafluoropropene et installation pour la mise en oeuvre de celui-ci.
PCT/FR2019/051355 WO2019239039A1 (fr) 2018-06-12 2019-06-06 Procédé de production de 2,3,3,3-tetrafluoropropène et installation pour la mise en œuvre de celui-ci

Publications (1)

Publication Number Publication Date
EP3807237A1 true EP3807237A1 (fr) 2021-04-21

Family

ID=63638005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19742080.5A Pending EP3807237A1 (fr) 2018-06-12 2019-06-06 Procede de production de 2,3,3,3-tetrafluoropropene et installation pour la mise en oeuvre de celui-ci

Country Status (5)

Country Link
US (1) US11136282B2 (fr)
EP (1) EP3807237A1 (fr)
CN (1) CN112313196A (fr)
FR (1) FR3082203B1 (fr)
WO (1) WO2019239039A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3098127B1 (fr) * 2018-06-12 2022-10-21 Arkema France Procédé de production de 2,3,3,3-tétrafluoropropène et réacteur pour la mise en œuvre de celui-ci
FR3098216B1 (fr) * 2020-07-03 2023-01-13 Arkema France Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058486B2 (en) 2004-04-29 2011-11-15 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
DE102005052923A1 (de) * 2005-11-03 2007-05-10 Basf Ag Verfahren zum stabilen Betreiben eines kontinuierlich ausgeübten Herstellprozesses zur Erzeugung von Acrolein, oder Acrylsäure oder deren Gemisch aus Propan
CN103553871A (zh) 2006-10-31 2014-02-05 纳幕尔杜邦公司 氟丙烷、卤代丙烯以及2-氯-3,3,3-三氟-1-丙烯与hf的共沸组合物和1,1,1,2,2-五氟丙烷与hf的共沸组合物的制备方法
US7795480B2 (en) * 2007-07-25 2010-09-14 Honeywell International Inc. Method for producing 2-chloro-3,3,3,-trifluoropropene (HCFC-1233xf)
CN102216245B (zh) * 2008-11-19 2014-04-23 阿科玛股份有限公司 用于制造氢氟烯烃的方法
EP2485833A2 (fr) * 2009-10-09 2012-08-15 Dow Global Technologies LLC Réacteurs pistons adiabatiques et procédés les incorporant
ES2645268T3 (es) 2011-12-14 2017-12-04 Arkema France Proceso para la preparación de 2,3,3,3 tetrafluoropropeno
JP5930077B2 (ja) * 2012-08-08 2016-06-08 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
JP5825299B2 (ja) * 2013-07-12 2015-12-02 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
FR3013606B1 (fr) 2013-11-28 2015-11-13 Arkema France Procede de purification d'acide chlorhydrique

Also Published As

Publication number Publication date
US11136282B2 (en) 2021-10-05
FR3082203B1 (fr) 2020-08-14
WO2019239039A1 (fr) 2019-12-19
CN112313196A (zh) 2021-02-02
FR3082203A1 (fr) 2019-12-13
US20210253500A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP5930077B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP6378812B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
EP3807237A1 (fr) Procede de production de 2,3,3,3-tetrafluoropropene et installation pour la mise en oeuvre de celui-ci
EP3762353A1 (fr) Procédé de production du 2,3,3,3-tétrafluoropropène
WO2019170991A1 (fr) Procédé de production du 2,3,3,3-tétrafluoropropène
JP5713017B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
EP2858744A1 (fr) Reaction catalytique avec regeneration en flux inverse
EP2828228B1 (fr) Procédé de préparation de 2-chloro-3,3,3-trifluoropropène
WO2019239040A1 (fr) Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci
WO2019239041A1 (fr) Procédé de production de 2,3,3,3-tétrafluoropropène, réacteur et installation pour la mise en œuvre de celui-ci
EP3807239A1 (fr) Procede production de 2,3,3,3-tetrafluoropropene et reacteur pour la mise en oeuvre de celui-ci
WO2019239038A1 (fr) Procédé de production de 2-chloro-3,3,3-trifluoropropène et installation pour la mise en œuvre de celui-ci
FR3098127A1 (fr) Procédé de production de 2,3,3,3-tétrafluoropropène et réacteur pour la mise en œuvre de celui-ci
FR3098216A1 (fr) Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci
JP6966712B2 (ja) フルオロエタンの製造方法及びフルオロオレフィンの製造方法
US20190210943A1 (en) Method for producing tetrafluoropropene
WO2019170992A1 (fr) Procédé de déhydrofluoration d'un composé hydrocarbure
FR3077072A1 (fr) Procédé de purification du 1,1,1,2,3-pentafluoropropane et utilisation de celui-ci pour l’obtention de 2,3,3,3-tétrafluoropropène de haute pureté

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230322