WO2019239040A1 - Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci - Google Patents
Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci Download PDFInfo
- Publication number
- WO2019239040A1 WO2019239040A1 PCT/FR2019/051356 FR2019051356W WO2019239040A1 WO 2019239040 A1 WO2019239040 A1 WO 2019239040A1 FR 2019051356 W FR2019051356 W FR 2019051356W WO 2019239040 A1 WO2019239040 A1 WO 2019239040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- fixed bed
- inlet
- less
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/0013—Controlling the temperature of the process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
- B01J19/242—Tubular reactors in series
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/25—Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/26—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
- C07C17/263—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
- C07C17/269—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/04—Chloro-alkenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00054—Controlling or regulating the heat exchange system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00054—Controlling or regulating the heat exchange system
- B01J2219/00056—Controlling or regulating the heat exchange system involving measured parameters
- B01J2219/00058—Temperature measurement
- B01J2219/00063—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/0015—Controlling the temperature by thermal insulation means
- B01J2219/00155—Controlling the temperature by thermal insulation means using insulating materials or refractories
Definitions
- the present invention relates to the production of hydrofluoroolefins, in particular the present invention relates to the production of 2,3,3,3-tetrafluoropropene.
- Halogenated hydrocarbons in particular fluorinated hydrocarbons such as hydrofluoroolefins, are compounds which have a useful structure as functional materials, solvents, refrigerants, blowing agents and monomers for functional polymers or starting materials for such monomers.
- Hydrofluorolefins like 2,3,3,3-tetrafluoropropene (HFO-1234yf) attract attention because they offer promising behavior as refrigerants with low global warming potential.
- the processes for producing fluoroolefins are usually carried out in the presence of a starting material such as an alkane containing chlorine or an alkene containing chlorine, and in the presence of a fluorinating agent such as hydrogen fluoride. These processes can be carried out in the gas phase or in the liquid phase, without or without the catalyst.
- a starting material such as an alkane containing chlorine or an alkene containing chlorine
- a fluorinating agent such as hydrogen fluoride.
- HCFO-1233xf 2-chloro-3,3,3-trifluoropropene
- HCC- 240db 1,1,1,2,3- pentachloropropane
- a process for the preparation of 2,3,3,3-tetrafluoropropene from 1,1,1,2,3-pentachloropropane and / or 1, 1,2, 2,3- pentachloropropane comprising the stages: (a) catalytic reaction of 1,1,1,2,3-pentachloropropane and / or 1,1,2,2,3-pentachloropropane with HF to a reaction mixture comprising HCl, 2-chloro- 3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene, unreacted HF and optionally 1,1,1,2,2-pentafluoropropane; (b) separation of the reaction mixture into a first stream comprising HCl and 2,3,3,3-tetrafluoropropene and a second stream comprising HF, 2-chloro-3,3,3-trifluoropropene and optionally 1,1,1,2 , 2- pentafluoro
- control and control of the reaction temperature is an important parameter which makes it possible to achieve the reaction kinetics, the conversions and the selectivities. This is also particularly recommended in order to avoid thermal decompositions of thermally sensitive compounds which may impact the activity of the catalyst by the formation of coke and thus considerably reduce the lifetime of the catalyst.
- a multitubular reactor is by definition the ideal insulated reactor to be able to control the reaction temperature and obtain the most homogeneous reaction temperature possible since the catalyst is distributed in tubes and a fluid can circulate in the shell around the tubes to either remove reaction heat in the event of an exothermic reaction, or provide heat in the event of an endothermic reaction.
- the production of a multitubular reactor may prove to be impossible since it would require too many tubes and a homogeneous distribution of the gases in each of the tubes is therefore very difficult. to achieve.
- adiabatic fixed bed reactor does not exhibit heat exchange with an external medium by definition.
- the adiabatic reactor is characterized by an inhomogeneous temperature at any point of the fixed bed and thus, by a temperature gradient both radial and longitudinal, due to the reaction heats and heat losses at the external walls of the reactor.
- Document US 2016/0347692 describes the implementation of a radical production process in homogeneous gas phase of chlorinated or fluorinated propene in an adiabatic flow reactor controlling the turbulence of the flows entering the reactor.
- the present invention relates to a method for producing
- a first adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, brought into contact in the gas phase in the presence or not of a hydrofluoric acid catalyst with at least one chlorine compound selected from the group consisting of
- a second adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing the stream A obtained in step i) into contact with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream B comprising 2,3,3,3-tetrafluoropropene;
- the temperature at the inlet of the fixed bed of one of said first or second reactors is between 300 ° C and 400 ° C and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of the considered reactor is below 20 ° C.
- the value of the longitudinal temperature difference is considered in absolute value.
- the temperature at the inlet of the fixed bed of said first reactor is between 340 ° C and 380 ° C and the longitudinal temperature difference between the inlet of the fixed bed of said second reactor and the outlet of the bed fixed of said second reactor is less than 20 ° C.
- the temperature at the inlet of the fixed bed of said second reactor is between 330 ° C and 360 ° C and the longitudinal temperature difference between the inlet of the fixed bed of said first reactor and the outlet of the bed fixed of said first reactor is less than 20 ° C.
- the HF / 2-chloro-3,3,3-trifluoropropene molar ratio in step ii) or the molar ratio between HF and said chlorinated compound in step i) or both is adjusted so as to maintain the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of the reactor considered below 20 ° C.
- the FIF / chlorine compound molar ratio, in step i) is greater than or equal to 5, advantageously greater than or equal to 10, preferably greater than or equal to 12.
- the HF / 2-chloro-3,3,3-trifluoropropene molar ratio, in step ii), is greater than or equal to 5, advantageously greater than or equal to 10, preferably greater than or equal at 12.
- the side walls of said first reactor and / or of said second reactor comprise an inner layer, an intermediate layer disposed on said inner layer and an insulating layer disposed on said intermediate layer; and the difference in radial temperature between a point situated in the center of the fixed bed of one of said first or second reactors and a point situated in the radial plane at the level of the inner layer of the side wall of said considered reactor is less than 10 ° C. .
- Said inner layer is that in contact with the reagents.
- the value of the radial temperature difference is considered as an absolute value.
- the side walls of said first reactor and / or of said second reactor comprise an inner layer, an intermediate layer disposed on said inner layer and an insulating layer disposed on said intermediate layer; said insulating layer being made of an M2 heat-insulating material whose thickness varies between 1 mm and 500 mm.
- Said inner layer is that in contact with the reaction mixture.
- the M2 heat-insulating material is selected from the group consisting of rock wool, glass wool, silicate fibers, calcium-magnesium silicates, calcium silicates, microporous insulators, cellular glass , expanded perlite, exfoliated vermiculite.
- the pressure at the inlet of said first reactor and at the inlet of said second reactor is between 3 and 15 bara.
- the present invention provides an installation for manufacturing 2,3,3,3-tetrafluoropropene, comprising: - a first and a second adiabatic reactor, each of said first and second reactors comprising a bottom, a cover and side walls joining between the bottom and the cover, at least one fixed bed and at least one rod supporting one or more sensors ( s) temperature; said bottom, said cover and said side walls each comprise at least one inner layer, an intermediate layer disposed on said inner layer and an insulating layer disposed around said intermediate layer; said inner layer is made of an Ml material comprising a mass content of nickel of at least 30%; said intermediate layer is made of a material Ml 'comprising at least 70% by weight of iron; said insulating layer is made of an M2 heat-insulating material selected from the group consisting of rock wool, glass wool, silicate fibers, calcium magnesium silicates, calcium silicates, microporous insulators, cellular glass, expanded perlite, exfoliated vermiculite; the length of said
- At least one conductivity meter capable of measuring the electrical conductivity of the reaction flow entering said first reactor.
- the reaction flow supply system of said first reactor comprises a supply line for hydrofluoric acid, at least one supply line for at least one chlorinated compound as defined above , and at least one device for mixing hydrofluoric acid and said at least one chlorinated compound
- the reaction flow supply system of said second reactor comprises a hydrofluoric acid supply line and at least one line d 'brought from said current A as defined above.
- FIG. 1 schematically represents a reactor according to a particular embodiment of the present invention.
- FIG. 2 schematically represents a view in longitudinal section of a reactor according to a particular embodiment of the present invention.
- FIG. 3 schematically represents a cross-sectional view of a reactor according to a particular embodiment of the present invention.
- Figure 4 schematically shows a sectional view of the side walls of a reactor according to a particular embodiment of the present invention.
- FIG. 5 schematically represents a plant for manufacturing 2,3,3,3-tetrafluoropropene according to a particular embodiment of the present invention.
- the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf). More particularly, the invention relates to a two-step production process for 2,3,3,3-tetrafluoropropene.
- said process for producing 2,3,3,3-tetrafluoropropene comprises the steps:
- a first adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, brought into contact in the gas phase in the presence or not of a hydrofluoric acid catalyst with at least one chlorine compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l, l, l-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream A comprising 2-chloro-3,3,3-trifluoropropene,
- a second adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing the stream A obtained in step i) into contact with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream B comprising 2,3,3,3-tetrafluoropropene.
- the temperature at the inlet of the fixed bed of one of said first or second reactors is between 300 ° C and 400 ° C and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of the reactor considered is less than 20 ° C.
- the temperature at the inlet of the fixed bed of said first reactor is between 330 ° C and 400 ° C, preferably between 330 ° C and 390 ° C, in particular between 340 ° C and 380 ° C.
- a temperature above 400 ° C can make the catalyst irreversibly inactive while a temperature below 300 ° C prevents the fluorination reaction from being carried out.
- the temperature at the inlet of the fixed bed of said second reactor is between 320 ° C and 400 ° C, preferably between 320 ° C and 375 ° C, more preferably between 320 ° C and 360 ° C, in particular between 330 ° C and 360 ° C.
- a temperature above 400 ° C can make the catalyst irreversibly inactive while a temperature below 300 ° C prevents the fluorination reaction from being carried out.
- FIG. 2 represents a schematic view in longitudinal section of a reactor 1 according to a particular embodiment of the present invention and comprising a fixed bed 5.
- the longitudinal temperature difference ATa is defined by the temperature difference between the inlet of the fixed bed 9 and the exit from the fixed bed 10.
- the longitudinal temperature difference between the inlet of the fixed bed of said first reactor and the outlet of the fixed bed of said first reactor is less than 20 ° C, advantageously less than 19 ° C, preferably less than 18 ° C, more preferably less than 17 ° C, in particular less than 16 ° C, more particularly less than 15 ° C, preferably less than 14 ° C, advantageously less than 13 ° C, preferably less than 12 ° C, more preferably less than 11 ° C, particularly preferably less than 10 ° C.
- the longitudinal temperature difference between the inlet of the fixed bed of said second reactor and the outlet of the fixed bed of said second reactor is less than 20 ° C, advantageously less than 19 ° C, preferably less than 18 ° C, more preferably less than 17 ° C, in particular less than 16 ° C, more particularly less than 15 ° C, preferably less than 14 ° C, advantageously less than 13 ° C, preferably less than 12 ° C, more preferably less than 11 ° C, particularly preferably less than 10 ° C.
- step i) and step ii) are carried out in the presence of a catalyst, preferably a catalyst based on chromium.
- a catalyst preferably a catalyst based on chromium.
- the chromium-based catalyst can be a chromium oxide (e.g. CrÜ2, CrC> 3 or Cr2C> 3), chromium oxyfluoride or chromium fluoride (e.g. CrFs) or a mixture thereof .
- the chromium oxyfluoride may contain a fluorine content of between 1 and 60% by weight based on the total weight of the chromium oxyfluoride, advantageously between 5 and 55% by weight, preferably between 10 and 52% by weight, more preferably between 15 and 52% by weight, in particularly between 20 and 50% by weight, more particularly between 25 and 45% by weight, preferably between 30 and 45% by weight, more preferably 35 to 45% by weight of fluorine based on the total weight of the chromium oxyfluoride.
- the catalyst can also comprise a co-catalyst chosen from the group consisting of Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb; preferably Ni, Co, Zn, Mg, Mn; in particular Ni, Co, Zn.
- the content by weight of the cocatalyst is between 1 and 10% by weight based on the total weight of the catalyst.
- the catalyst can be supported or not.
- a support such as alumina, for example in its alpha form, activated alumina, aluminum halides (AIF3 for example), aluminum oxyhalides, activated carbon, magnesium fluoride or graphite can be used.
- the catalyst can have a specific surface area between 1 and 100 m 2 / g, preferably between 5 and 80 m 2 / g, more preferably between 5 and 70 m 2 / g, ideally between 5 and 50 m 2 / g, in particular between 10 and 50 m 2 / g, more particularly between 15 and 45 m 2 / g.
- step i) is carried out at atmospheric pressure or at a pressure greater than this, advantageously at a pressure greater than 1.5 bara, preferably at a pressure greater than 2, 0 bara, in particular at a pressure greater than 2.5 bara, more particularly at a pressure greater than 3.0 bara.
- step i) is carried out at a pressure between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
- step i) of the present method is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s.
- An oxidant such as oxygen or chlorine, can be added during step i).
- the molar ratio of the oxidant to the hydrocarbon compound can be between 0.005 and 2, preferably between 0.01 and 1.5.
- the oxidant can be pure oxygen, air or a mixture of oxygen and nitrogen.
- step ii) is carried out at atmospheric pressure or at a pressure greater than this, advantageously at a pressure greater than 1.5 bara, preferably at a pressure greater than 2, 0 bara, in particular at a pressure greater than 2.5 bara, more particularly at a pressure greater than 3.0 bara.
- step ii) is carried out at a pressure between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
- step ii) of the present process is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s.
- An oxidant such as oxygen or chlorine, can be added during step ii).
- the molar ratio of the oxidant on the hydrocarbon compound can be between 0.005 and 2, preferably between 0.01 and 1.5.
- the oxidant can be pure oxygen, air or a mixture of oxygen and nitrogen.
- the stream A from step i) feeds the second reactor without being purified prior to its injection into it.
- the HF / said molar ratio of said at least one chlorinated compound is greater than or equal to 5, advantageously greater than or equal to 10, preferably greater than or equal to 12.
- the HF / said molar ratio at least one chlorinated compound is between 12: 1 and 150: 1, preferably between 12: 1 and 125: 1, more preferably between 12: 1 and 100: 1.
- the HF / 2-chloro-3,3,3-trifluoropropene molar ratio is greater than or equal to 5, advantageously greater than or equal to 10, preferably greater than or equal to 12.
- the HF / 2-chloro-3,3,3-trifluoropropene molar ratio is between 12: 1 and 150: 1, preferably between 12: 1 and 125: 1, more preferably between 12: 1 and 100: 1.
- the temperature within the reactor, and in particular within the fixed bed varies radially, i.e. the temperature varies between the center of the reactor and the side walls of the reactor located in the same plane, in particular between the center of the fixed bed and the side wall of the reactor located in the same plane.
- the control of the radial temperature in the fixed bed can be carried out by insulating the side walls of said reactor with an insulating material of a defined thickness.
- said side walls each comprise at least one inner layer and an insulating layer disposed around said inner layer.
- FIG. 3 represents a transverse view along the section plane (a, a ') of a reactor 1 according to an embodiment of the present invention and comprising a fixed bed 5.
- the side walls 3 of said first reactor and / or of said second reactor include an inner layer 21, an intermediate layer 22 disposed on said inner layer 21 and an insulating layer 23 disposed on said intermediate layer 22 ( Figure 4).
- the difference in radial temperature ATb is defined by the difference between a point located in the center of the fixed bed 5 of one of said first or second reactors and a point 12 located in the radial plane at the level of the inner layer 21 of the side wall 3 of said reactor considered ( Figure 3).
- the difference in radial temperature between a point located in the center of the fixed bed of one of said first or second reactors and a point located in the radial plane at the level of the inner layer of the side wall of said considered reactor is less than 10 ° C, advantageously less than 9 ° C, preferably less than 8 ° C, more preferably less than 7 ° C, in particular less than 6 ° C, more particularly less than 5 ° C.
- the difference in radial temperature between a point located in the center of the fixed bed of said first reactor and a point situated in the radial plane at the level of the inner layer of the side wall of said first reactor is less than 10 ° C., advantageously less than 9 ° C, preferably less than 8 ° C, more preferably less than 7 ° C, in particular less than 6 ° C, more particularly less than 5 ° C.
- the difference in radial temperature between a point located in the center of the fixed bed of said second reactor and a point located in the radial plane at the level of the inner layer of the side wall of said second reactor is less than 10 ° C., advantageously less at 9 ° C, preferably less than 8 ° C, more preferably less than 7 ° C, in particular less than 6 ° C, more particularly less than 5 ° C.
- said inner layer has a thickness of between 0.01 and 20 mm.
- said inner layer can have a thickness of between 0.05 and 15 mm, preferably between 0.1 and 10 mm, more preferably between 0.1 and 5 mm.
- Said inner layer may be made of an Ml material comprising a mass content of nickel of at least 30%.
- the material M1 comprises at least 40% by weight of nickel based on the total weight of the material Ml.
- the material M1 comprises at least 45% by weight of nickel, more preferably at least 50% by weight of nickel, in particular at least 55% by weight of nickel, more particularly at least 60% by weight of nickel, preferably at least 65% by weight of nickel, more preferably at least 70% by weight of nickel based on the total weight of the material Ml.
- the material M1 can also comprise chromium in a content of less than 35% by weight based on the total weight of the material Ml, advantageously less than 30% by weight, preferably less than 20% by weight, more preferably less than 15% by weight. weight, in particular less than 10% by weight, more particularly less than 5% by weight based on the total weight of the material Ml.
- the material M1 can also comprise molybdenum in a content of less than 35% by weight based on the total weight of the material Ml, advantageously less than 30% by weight, preferably less than 20% by weight, more preferably less than 15% by weight. weight, in particular less than 10% by weight, more particularly less than 5% by weight based on the total weight of the material Ml.
- the material M1 comprises at least 40% by weight of nickel based on the total weight of the material Ml, preferably at least 45% by weight of nickel, more preferably at least 50% by weight of nickel, in particular at least 55% by weight of nickel, more particularly at least 60% by weight of nickel, preferably at least 65% by weight of nickel, more preferably at least 70% by weight of nickel based on the total weight of the material Ml; and less than 35% by weight of chromium, advantageously less than 30% by weight, preferably less than 20% by weight, more preferably less than 15% by weight, in particular less than 10% by weight, more particularly less than 5 % by weight of chromium based on the total weight of the material Ml; and less than 35% by weight of molybdenum, advantageously less than 30% by weight, preferably less than 20% by weight, more preferably less than 15% by weight, in particular less than 10% by weight, more particularly less than 5 % by weight of chromium based on the total weight of the material Ml; and less than 35% by weight of mo
- the material M1 can also comprise cobalt in a content of less than 10% by weight based on the total weight of the material Ml, advantageously less than 8% by weight, preferably less than 6% by weight, more preferably less than 4% by weight. weight, in particular less than 3% by weight, more particularly less than 2% by weight based on the total weight of the material Ml.
- the material M1 can also comprise tungsten in a content of less than 10% by weight based on the total weight of the material Ml, advantageously less than 9% by weight, preferably less than 8% by weight, more preferably less than 7% by weight. weight, in particular less than 6% by weight, more particularly less than 5% by weight based on the total weight of the material Ml.
- the material M1 can also comprise iron in a content of less than 25% by weight based on the total weight of the material Ml, advantageously less than 20% by weight, preferably less than 15% by weight, more preferably less than 10% by weight. weight, in particular less than 7% by weight, more particularly less than 5% by weight based on the total weight of the material Ml.
- the material M1 can also comprise manganese in a content of less than 5% by weight based on the total weight of the alloy, advantageously less than 4% by weight, preferably less than 3% by weight, more preferably less than 2% by weight, in particular less than 1% by weight, more particularly less than 0.5% by weight based on the total weight of the material Ml.
- the material M1 can also comprise copper in a content of less than 50% by weight, advantageously less than 45% by weight, preferably less than 40% by weight, more preferably less than 35% by weight, in particular less than 30%. by weight, more particularly less than 25% by weight of copper based on the total weight of the material Ml.
- said intermediate layer has a thickness of between 0.1 and 50 mm.
- said intermediate layer can have a thickness of between 0.5 and 40 mm, preferably between 1 and 30 mm, more preferably between 1 and 25 mm.
- said intermediate layer 22 is disposed between said inner layer 21, in contact with the reagents, and said insulating layer 23 ( Figure 4). Said intermediate layer 22 can be made of a material M.
- the material M1 ' comprises at least 70% by weight of iron, advantageously at least 75% by weight, preferably at least 80% by weight, more preferably at least 85% by weight, in particular at minus 90% by weight, more particularly at least 95% by weight of iron based on the total weight of the material M.
- the material M1 ′ can also comprise less than 2% by weight of carbon, advantageously less than 1.5% by weight, preferably less than 1% by weight, more preferably less than 0.75% by weight, in particular less than 0.5% by weight, more particularly less than 0.2% by weight, preferably less than 0.1% by weight based on the total weight of the material M.
- the material M1 ′ can comprise between 0.01 and 0.2% by weight of carbon based on the total weight of the material M.
- the material M1 ′ can also comprise less than 2% by weight of molybdenum, advantageously less than 1.5% by weight, preferably less than 1.25% by weight, more preferably less than 1% by weight of molybdenum based on the total weight of material M.
- the material M1 ′ can comprise between 0.1 and 1% by weight of molybdenum based on the total weight of the material M.
- the material M1 ′ can also comprise less than 5% by weight of chromium, advantageously less than 4% by weight, preferably less than 3% by weight, more preferably less than 2% by weight, in particular less than 1% by weight.
- the material M1 'can comprise between 0.5 and 2% by weight of chromium based on the total weight of the material M.
- the material M1 ′ can also comprise less than 2% by weight of silicon, advantageously less than 1.5% by weight, preferably less than 1.25% by weight, more preferably less than 1% by weight of silicon based on total weight of material M. More particularly, the material M1 'can comprise between 0.1 and 1.5% by weight of silicon based on the total weight of the material M.
- the material M1 ′ can also comprise less than 2% by weight of manganese, advantageously less than 1.5% by weight, preferably less than 1.25% by weight, more preferably less than 1% by weight of manganese based on the total weight of material M. More particularly, the material M1 'can comprise between 0.1 and 1% by weight of manganese based on the total weight of the material Ml'.
- said insulating layer is made of an M2 heat-insulating material.
- Said M2 heat-insulating material is selected from the group consisting of rock wool, glass, silicate fibers, calcium-magnesium silicates, calcium silicates, microporous insulators, cellular glass, expanded perlite, exfoliated vermiculite.
- Silicate fibers include, for example, aluminosilicate fibers.
- the side walls of said first reactor comprise a layer made of an M2 heat-insulating material whose thickness varies between 1 mm and 500 mm, preferably between 5 mm and 400 mm.
- the side walls of said second reactor comprise a layer made of an M2 heat-insulating material whose thickness varies between 1 mm and 500 mm, preferably between 5 mm and 400 mm.
- the pressure at the inlet of said first reactor from step i) is greater than the pressure at the inlet of said second reactor from step ii).
- the pressure difference between the pressure at the inlet of said first reactor and the pressure at the inlet of said second reactor is from 100 mbar to 3.5 bar, advantageously from 150 mbar to 3.0 bar, preferably from 300 mbar to 2.5 bar, more preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar.
- the pressure at the inlet of said first reactor is atmospheric pressure or a pressure greater than this, advantageously the pressure at the inlet of said first reactor is greater than 1.5 bara, preferably greater at 2.0 bara, in particular greater than 2.5 bara, more particularly greater than 3.0 bara.
- step i) is carried out at a pressure at the inlet of said first reactor of between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
- the pressure at the inlet of said second reactor can be lower than atmospheric pressure.
- the pressure at the inlet of said second reactor may be greater than 1.5 bara while being lower than that at the inlet of said first reactor, preferably greater than 2.0 bara while being less than that at the inlet of said first reactor, in particular greater than 2.5 bara while being less than that at the inlet of said first reactor, more particularly greater than 3.0 bara while being less than that at the inlet of said first reactor.
- step ii) is carried out at a pressure between atmospheric pressure and 20 bara while being lower than that at the inlet of said first reactor, preferably between 2 and 18 bara while being lower than that at the inlet of said first reactor, more preferably between 3 and 15 bara while being less than that at the inlet of said first reactor.
- Step i) can be carried out at a temperature different or equal to that of step ii).
- stage i) can be carried out at a temperature lower than that of stage ii) or at a higher temperature to that of step ii).
- hydrofluoric acid and said at least one chlorinated compound are brought into contact prior to their entry into said first reactor.
- the resulting mixture is mixture C.
- said at least one chlorinated compound is in the liquid state before its contact with hydrofluoric acid. This is vaporized by mixing with hydrofluoric acid.
- the resulting mixture C is then in gaseous form.
- the mixing between hydrofluoric acid and said at least one chlorinated compound is carried out in a static mixer.
- said at least one chlorinated compound is introduced into the static mixer via one or more spray nozzles.
- Said at least one chlorinated compound is thus sprayed in the form of droplets before being vaporized by mixing with hydrofluoric acid, thus forming a mixture C in gaseous form.
- Spraying said at least one chlorinated compound in the form of fine droplets makes it possible to ensure a more efficient vaporization of the latter.
- the average diameter of the droplets thus produced can be less than 500 ⁇ m.
- Said mixture C can optionally be heated or cooled before its introduction into said first reactor.
- This step can be carried out via a heat exchanger to control the temperature at the inlet of said first reactor.
- Said stream A obtained in step i) can be heated or cooled before its introduction into the second reactor.
- said stream B comprises, in addition to 2, 3,3,3-tetrafluoropropene, HF, HCl, unreacted 2-chloro-3,3,3-trifluoropropene and optionally 1,1, 1,2,2-pentafluoropropane.
- stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and optionally 1,1,1,2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene.
- said stream B is distilled under conditions sufficient to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and optionally 1,1,1,2,2-pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3- trifluoropropene.
- the distillation can be carried out at a pressure of 2 to 6 bara, more particularly at a pressure of 3 to 5 bara.
- the temperature at the top of the distillation column is from -35 ° C to 10 ° C, preferably from -20 ° C to 0 ° C.
- said second stream is recycled in step i).
- Said second stream can optionally be purified, in particular by distillation, before being recycled in step i).
- said stream B obtained in step ii) is cooled prior to the purification mentioned above.
- said stream B obtained in step ii) is cooled to a temperature below 100 ° C., then distilled to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and optionally 1, 1.1 , 2,2-pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene; the temperature at the top of the distillation column is from -35 ° C to 10 ° C and the distillation is carried out at a pressure of 2 to 6 bara; said second stream obtained at the bottom of the distillation column is recycled in step i).
- Said stream B can be cooled, before distillation, to a temperature below 95 ° C, advantageously below 90 ° C, preferably below 85 ° C, more preferably below 80 ° C, in particular below 70 ° C, more particularly less than 60 ° C, preferably less than 55 ° C, advantageously less than 50 ° C, preferably less than 40 ° C, more preferably less than 30 ° C, so particularly preferred below 25 ° C, more particularly preferred below 20 ° C.
- the cooling of the product stream obtained at such temperatures facilitates subsequent distillation.
- the cooling of said stream B can be carried out by means of one or a plurality of heat exchangers.
- the cooling of said stream B can be carried out by passing it through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
- the method according to the present invention is carried out continuously.
- the process is carried out continuously and in the gas phase.
- said second stream recycled in step i) has an electrical conductivity of less than 15 mS / cm, advantageously less than 14 mS / cm, preferably less than 13 mS / cm, more preferably less than 12 mS / cm, in particular less than 11 mS / cm, more particularly less than 10 mS / cm, preferably less than 9 mS / cm, advantageously less than 8 mS / cm, preferably less than 7 mS / cm, more preferably preferred less than 6 mS / cm, particularly preferred less than 5 mS / cm.
- step i) and / or step ii) is carried out in the presence of hydrofluoric acid having an electrical conductivity of less than 10 mS / cm, preferably less than 5 mS / cm.
- the electrical conductivity of said second current is measured prior to its introduction into the first reactor.
- the electrical conductivity is measured when it is in liquid form.
- the present method can therefore include a step of heating said second stream prior to the implementation of step i) to supply said second stream in gaseous form.
- the electrical conductivity is measured at room temperature.
- the electrical conductivity is measured using an inductive conductivity measuring cell and according to the practice known to those skilled in the art.
- the measuring cell is coated with a material resistant to a corrosive medium, in particular resistant to hydrofluoric acid.
- the electrical conductivity of a current can be reduced to reach a conductivity of less than 15 ms / cm by reducing the concentration of electrolyte possibly present in it according to techniques known to those skilled in the art (distillation, cooling and decantation, passage on molecular sieves of 3 to 5 A or zeolites). Such an electrical conductivity makes it possible to improve the conversion and / or the selectivity of the reaction.
- an adiabatic reactor 1 is provided.
- said reactor 1 comprises a bottom 4, a cover 2 and side walls 3 forming a junction between the bottom 4 and the cover 2, at least one fixed bed 5 and at least one rod 6 supporting one or more temperature sensors 7a , 7b ( Figure 1).
- said bottom 4, said cover 2 and said side walls 3 each comprise at least one inner layer 21, an intermediate layer 22 disposed on said inner layer and an insulating layer 23 disposed around said intermediate layer.
- Said inner 21, intermediate 22 and insulating 23 layers are made respectively of a material M1, M and M2 as described above.
- said insulating layer 23 can be covered by a base layer 24.
- Said base layer 24 can be made of an M3 material.
- Said M3 material can be a metallic coating made with sheets of aluminum, stainless steel or galvanized steel.
- said base layer has a thickness of between 0.2 mm and 2 mm.
- the length of said at least one rod 6 is at least equal to the height of said fixed bed 5.
- said at least one rod 6 comprises at least one sensor or at least two sensors or at least 3 temperature sensors , advantageously at least 5 temperature sensors, preferably at least 7 temperature sensors, in particular at least 10 temperature sensors, preferably at least 12 temperature sensors, preferably at least 15 temperature sensors.
- at least one of said one or more temperature sensors, supported by said at least one rod is arranged in said fixed bed 5.
- each rod 6 can comprise either an identical number or a different number of temperature sensors.
- each rod can include a temperature sensor in the sky and / or in the bottom of the reactor ( Figure 1, Reference 7b and 7b ').
- the temperature sensors 7a, 7b can be distributed equidistantly or in a more targeted manner according to the needs for controlling the temperature profile in the fixed bed.
- said reactor can comprise at least two canes 6, more preferably at least three canes 6, in particular at least four canes 6.
- said reactor can comprise between 1 and 20 canes 6, advantageously between 2 and 15 canes 6 , preferably between 3 and 10 rods 6.
- the reactor 1 is supplied with hydrocarbon compound 14 by supply lines 13.
- the reactor also comprises effluent or outlet lines 15 making it possible to evacuate the reaction mixture 16 from the reactor ( Figure 1).
- the feed or outlet lines of the reactor are made of material capable of also resisting corrosion, for example made of Ml material covered with a layer of M2 material and with a base layer made of a material M3.
- the supply lines can be tubular.
- the supply or outlet lines may comprise an inner layer, preferably made of a material M1 as described above, an insulating layer, preferably made of a material M2 as described above, and a base layer, preferably made of an M3 material as described above.
- the reactor also includes one or more dephlegmator (s), one or more dip tube (s), one or more raw material introduction device (s), one or more support and retaining grid (s) of the catalyst.
- Said one or more dephlegmator (s) and / or said one or more dip tube (s) and / or said one or more device (s) for introducing the raw materials and / or said one or more grid (s) ) catalyst support and retention can comprise an inner layer, preferably made of a material M1 as described above.
- the fixed bed 5 comprises a catalyst or an inert solid or both.
- the inert solid can be corundum, silicon carbide, quartz balls or rings, a metal lining with a metal M1 as defined in the present application or nickel balls.
- the fixed bed 5 comprises a catalyst
- the inert solid is placed in the upper part 17 and the lower part 18 of the fixed bed 5, said catalyst 19c being located between the layers of inert solid 19a and 19b, in the part central 20 of the fixed bed 5.
- inert solid is placed in the upper part 17 or in the lower part 18 of the fixed bed 5.
- the fixed bed 5 comprises a catalyst
- no layer of inert solid is placed in the fixed bed.
- the lower part 18, the central part 20 and the upper part 17 of the fixed bed 5 can contain only inert solid.
- This alternative embodiment can be implemented when, for example, step i) of the process according to the present invention is carried out in the absence of catalyst.
- the inert solid makes it possible to improve the distribution of the gases inside the reactor.
- the inert solid is corundum or nickel beads.
- the fixed bed 5 contains a layer of catalyst 19c in its central part 20.
- the catalyst is distributed homogeneously in the fixed bed.
- the homogeneous distribution of the catalyst in the fixed bed makes it possible to minimize disturbances in the flow of gases and to avoid hot spots within the catalyst layer. The presence of hot spots can lead to irreversible crystallization of the catalyst, resulting in deactivation of the latter.
- the fixed bed is loaded using the specific method of dense catalyst loading. This method is known to those skilled in the art. It makes it possible to obtain an optimal distribution of the catalyst inside the reactor while avoiding foxing (channeling) during the reaction and the attrition of the catalyst.
- the apparent mass density of the catalyst in the fixed bed is greater than the theoretical mass density of the latter. The apparent mass density is determined according to standard ASTM D1895.
- said reactor is a gas phase fluorination reactor.
- the present invention makes it possible to carry out a process for producing 2,3,3,3-tetrafluoropropene with a greater quantity of catalyst.
- the mastery and temperature control radially and longitudinally maintain conversion and selectivity of the reactions.
- a plant for manufacturing 2,3,3,3-tetrafluoropropene is provided.
- the installation comprises a first adiabatic reactor 101 according to the present invention; a second adiabatic reactor 103 according to the present invention; a reaction flow supply system for said first and second reactors; a system for collecting and purifying the outlet stream from said second reactor optionally a system for collecting and / or purifying the outlet stream from said first reactor.
- said installation also comprises a heat exchanger supplied by the outlet stream 107 and connected to a first distillation column 109.
- said installation also comprises a compressor 113 supplied with the current coming from said first distillation column 109
- said installation comprises a second distillation column 115 supplied with a stream from the compressor 113.
- Said second distillation column 115 aims to remove all or part of the HCl present in the stream supplied to it.
- Said installation can also include a plurality of other distillation columns for purifying 2,3,3,3-tetrafluoropropene and removing impurities.
- FIG. 5 An installation according to a particular embodiment of the present invention is illustrated in FIG. 5 and described below.
- the reaction flow supply system of said first reactor comprises a supply line for hydrofluoric acid 102 and at least one supply line for said chlorinated compound 105.
- the installation also comprises a device 104 for mixing acid hydrofluoric acid and said chlorinated compound.
- the mixing device is preferably a static mixer.
- hydrofluoric acid and said at least one chlorinated compound are mixed, sprayed and vaporized in said mixing device 104 before being introduced into said first reactor 101 via line 105a.
- the reaction flow supply system of said second reactor comprises a supply line for hydrofluoric acid 102, at least one supply line 106 for 2-chloro-3,3,3-trifluoropropene from and product of the first reactor 101.
- the outlet stream 107 from said second reactor which is collected and purified comprises 2-chloro-3,3,3-trifluoropropene, HF, HCl, 2,3,3,3-tetrafluoropropene and optionally 1, 1.1, 2,2- pentafluoropropane.
- the heat exchanger 108 is able to cool the outlet stream 107 from said second reactor 103 to form a cooled stream.
- the output stream 107 is routed to a cooling device 108 to be cooled to a temperature from 0 ° C to 70 ° C before being introduced into a distillation column 109 via a pipe 110.
- the distillation column 109 is configured so as to allow separation between on the one hand hydrochloric acid, 2,3,3,3-tetrafluoropropene and optionally 1,1,1,2,2-pentafluoropropane, and on the other hand hydrofluoric acid and 2-chloro-3,3 , 3-trifluoropropene.
- the stream of HF and 2-chloro-3,3,3-trifluoropropene is recovered at the bottom of the distillation column 109 and recycled to the first reactor 101 via line 112.
- the stream comprising 2,3,3,3 - Tetrafluoropropene and hydrochloric acid and optionally 1,1,1,2,2-pentafluoropropane is recovered at the head of distillation column 109 to be conveyed by a line 111 to a compressor 113.
- the compressor makes it possible to compress the current comprising the 2,3,3,3-tetrafluoropropene and hydrochloric acid at a pressure between 10 and 25 bara.
- the current thus compressed is conveyed via line 114 to a second distillation column 115. This is configured so as to separate on one side the 2,3,3,3-tetrafluoropropene and optionally 1,1,1,2 , 2-pentafluoropropane and the other hydrochloric acid.
- the hydrochloric acid is recovered and is at the head of the distillation column 115 to be conveyed to a purification device 118 via line 116.
- the hydrochloric acid purification device 118 is a device known from the prior art, for example from WO 2015/079137.
- 2,3,3,3-tetrafluoropropene and optionally 1,1,1,2,2-pentafluoropropane is recovered at the bottom of distillation column 115 to be conveyed by line 117 to a third distillation column 119.
- the column of distillation 119 aims to separate the 2,3,3,3-tetrafluoropropene from the 1,1,1,2,2-pentafluoropropane possibly present in the outlet stream 107.
- the 2,3,3,3-tetrafluoropropene is recovered at the head from the distillation column to be conveyed to a purification device via line 121.
- the 1,1,1,2,2-pentafluoropropane recovered at the bottom of the distillation column is recycled to the first reactor 101 via line 120.
- the device purification device comprises in particular an HF 122 removal device and one or more distillation columns capable of purifying the stream comprising the 2,3,3,3-tetrafluoropropene of impurities which it could contain, such as for example 1 , 1,1,2,2-pentafluoropropane e t / or 1,3,3,3-tetrafluoropropene.
- the HF removal device 122 removes the residual HF which can be recycled to the first reactor 101 or the second reactor 103 (not shown).
- the HF elimination device 122 may be able to allow the settling of HF or the absorption of HF.
- the stream comprising 2,3,3,3-tetrafluoropropene is conveyed to a distillation column 124 by a line 123.
- the distillation column 124 is an extractive distillation column.
- An agent 127 is added to the stream comprising 2,3,3,3-tetrafluoropene.
- the extractive distillation column 124 makes it possible to remove impurities possibly present in the stream comprising 2,3,3,3-tetrafluoropropene.
- impurities can include 1,3, 3, 3-tetrafluoropropene or 1,1,1,2,2-pentafluoropropane.
- a stream comprising 2,3,3,3-tetrafluoropene is recovered at the top of distillation column 124 and is conveyed by a line 128 to a distillation column 129.
- the distillation column 129 can make it possible to separate the 2,3, Residual 1,1,1,2,2-pentafluoropropane 3,3-tetrafluoropene.
- a stream 130 comprising 2,3,3,3-tetrafluoropene is recovered at the top of the distillation column.
- a stream 131 comprising 1,1,1,2,2-pentafluoropropane is recovered at the bottom of the distillation column; the latter can be recycled to the first reactor 101 (not shown).
- the stream 125 recovered at the bottom of the distillation column 124 comprises the organic extraction agent and 1,3,3,3-tetrafluoropropene. These are separated, for example by distillation, to form a stream 126 comprising 1,3,3,3-tetrafluoropropene.
- the organic extraction agent is recycled in 127.
- the stream from the bottom of the distillation column 119 and the stream from the bottom of the distillation column 109 are fed to the first reactor. 101 respectively via lines 120 and 112.
- the two streams can be mixed before being introduced into said first reactor 101 or before being introduced into mixing device 104.
- the electrical conductivity of the two currents or of the mixture of these is measured by the conductivity meter 132.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
La présente invention se rapporte à un procédé de production de 2,3,3,3-tétrafluoropropène comprenant les étapes: i) dans un premier réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3,3- tétrachloropropène et 1,1,2,3-tétrachloropropènepour produire un courant A comprenant 2- chloro-3,3,3-trifluoropropène, ii) dans un second réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact du courant A obtenu à l'étape i) avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène; caractérisé en ce que la température à l'entrée du lit fixe d'un desdits premier ou second réacteurs est comprise entre 300°C et 400°C et la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur considéré est inférieure à 20°C.
Description
Procédé de production de 2.3.3.3-tétrafluoropropène et installation pour la mise en œuyre de celui-ci
Domaine technique de l'invention
La présente invention se rapporte à la production d'hydrofluorooléfines, en particulier la présente invention se rapporte à la production de 2,3,3,3-tétrafluoropropène.
Arrière-plan technologique de l'invention
Les hydrocarbures halogénés, en particulier les hydrocarbures fluorés comme les hydrofluorooléfines, sont des composés qui ont une structure utile comme matériaux fonctionnels, solvants, réfrigérants, agents de gonflage et monomères pour polymères fonctionnels ou matériaux de départ pour de tels monomères. Des hydrofluorooléfines comme le 2,3,3,3-tétrafluoropropène (HFO-1234yf) attirent l'attention parce qu'elles offrent un comportement prometteur comme réfrigérants à faible potentiel de réchauffement global.
Les procédés de production de fluorooléfines sont habituellement effectués en présence d'une substance de départ telle qu'un alcane contenant du chlore ou un alcène contenant du chlore, et en présence d'un agent fluorant tel que le fluorure d'hydrogène. Ces procédés peuvent être effectués en phase gazeuse ou en phase liquide, en absence ou non de catalyseur. On connaît par exemple par US 2009/0240090 un procédé en phase gazeuse de préparation du 2-chloro-3,3,3-trifluoropropène (HCFO-1233xf) à partir du 1,1, 1,2,3- pentachloropropane (HCC-240db). Le HCFO-1233xf ainsi produit est converti en 2-chloro-
1.1.1.2-tétrafluoropropane (HCFC-244bb) en phase liquide puis ce dernier est converti en
2.3.3.3-tétrafluoropropène.
On connaît également par WO 2013/088195, un procédé de préparation du 2, 3,3,3- tétrafluoropropène à partir du 1,1,1,2,3-pentachloropropane et/ou 1, 1,2, 2,3- pentachloropropane, comprenant les étapes : (a) réaction catalytique du 1,1,1,2,3- pentachloropropane et/ou 1,1,2,2,3-pentachloropropane avec HF en un mélange réactionnel comprenant HCl, 2-chloro-3,3,3-trifluoropropène, 2,3,3,3-tetrafluoropropène, HF n'ayant pas réagi et optionnellement 1,1,1,2,2-pentafluoropropane; (b) séparation du mélange réactionnel en un premier courant comprenant HCl et 2,3,3,3-tétrafluoropropène et un second courant comprenant HF, 2-chloro-3,3,3-trifluoropropène et optionnellement 1,1,1,2,2- pentafluoropropane; (c) réaction catalytique dudit second courant en un mélange réactionnel comprenant 2,3,3,3-tétrafluoropropène, HCl, 2-chloro-3,3,3-trifluoropropène non réagi, HF non
réagi et optionnellement 1,1,1,2,2-pentafluoropropane et (d) alimentation du mélange réactionnel obtenu à l'étape c) directement à l'étape a) sans séparation.
Dans les procédés de production du 2,3,3,3-tétrafluoropropène, la maîtrise et le contrôle de la température de la réaction est un paramètre important qui permet d'atteindre la cinétique de réaction, les conversions et les sélectivités souhaitées. Ceci est également particulièrement recommandé pour éviter des décompositions thermiques de composés thermiquement sensibles pouvant impacter l'activité du catalyseur par la formation de coke et ainsi réduire considérablement la durée de vie du catalyseur.
On connaît par W02008/054781 qu'une température (300-350°C) favorise formation de 1234yf, 245cb, 1233xf, tandis qu'une température plus importante (350-450°C) favorise formation des isomères 1234ze, 245fa, 1233zd.
Il s'avère donc important de maîtriser et de contrôler la température des gaz à l'entrée des réacteurs mais également de maîtriser et de contrôler en tout point de la masse catalytique, s'il y en une.
Un réacteur multitubulaire est par définition le réacteur isotherme idéal pour pouvoir contrôler la température de réaction et obtenir une température de réaction la plus homogène possible puisque le catalyseur est réparti dans des tubes et qu'un fluide peut circuler dans la calandre autour des tubes pour soit éliminer de la chaleur de réaction en cas de réaction exothermique, soit apporter de la chaleur en cas de réaction endothermique. En revanche, lorsque des quantités de catalyseurs importantes doivent être utilisées, la réalisation d'un réacteur multitubulaire peut s'avérer impossible car il faudrait un nombre de tubes trop important et une distribution homogène des gaz dans chacun des tubes s'avère alors très difficile à réaliser. De plus, la maintenance de réacteurs multitubulaires de grande taille s'avère beaucoup plus délicate et coûteuse; en particulier les opérations de changement de catalyseur requièrent une longue immobilisation du réacteur à la fois pour vidanger le catalyseur usagé et pour remplir de façon extrêmement homogène chaque tube par du catalyseur neuf. Cet aspect négatif sera renforcé lorsque la durée de vie du catalyseur sera courte.
Dès lors, l'utilisation d'un réacteur à lit fixe adiabatique est préférée. Néanmoins, ce type de réacteur ne présente pas d'échange de chaleur avec un milieu extérieur par définition. En effet, le réacteur adiabatique est caractérisé par une température non homogène en tout point du lit fixe et ainsi, par un gradient de température à la fois radial et longitudinal, du fait des chaleurs de réaction et des pertes thermiques au niveau des parois externes du réacteur.
Le document US 2016/0347692 décrit la mise en œuvre d'un procédé de production radicalaire en phase gazeuse homogène de propène chloré ou fluoré dans un réacteur adiabatique à écoulement contrôlant les turbulences des flux entrant dans le réacteur.
Il existe néanmoins un besoin pour améliorer les procédés de production de 2, 3,3,3- tétrafluoropropène dans des réacteurs adiabatiques.
Résumé de l'invention
Selon un premier aspect, la présente invention concerne un procédé de production de
2.3.3.3-tétrafluoropropène comprenant les étapes :
i) dans un premier réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec au moins un composé chloré sélectionné parmi le groupe consistant en
1.1.1.2.3-pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2,3,3,3-tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant A comprenant 2-chloro-3,3,3- trifluoropropène,
ii) dans un second réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact du courant A obtenu à l'étape i) avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant B comprenant 2,3,3,3- tétrafluoropropène ; et
caractérisé en ce que
la température à l'entrée du lit fixe d'un desdits premier ou second réacteurs est comprise entre 300°C et 400°C et la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur considéré est inférieure à 20°C.
La valeur de la différence de température longitudinale est considérée en valeur absolue.
Selon un mode de réalisation préféré, la température à l'entrée du lit fixe dudit premier réacteur est comprise entre 340°C et 380°C et la différence de température longitudinale entre l'entrée du lit fixe dudit second réacteur et la sortie du lit fixe dudit second réacteur est inférieure à 20°C.
Selon un mode de réalisation préféré, la température à l'entrée du lit fixe dudit second réacteur est comprise entre 330°C et 360°C et la différence de température longitudinale entre l'entrée du lit fixe dudit premier réacteur et la sortie du lit fixe dudit premier réacteur est inférieure à 20°C.
Selon un mode de réalisation préféré, le ratio molaire HF/2-chloro-3,3,3- trifluoropropène à l'étape ii) ou le ratio molaire entre HF et ledit composé chloré à l'étape i) ou les deux est ajusté de sorte à maintenir la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur considéré inférieure à 20°C.
Selon un mode de réalisation préféré, le ratio molaire FIF/composé chloré, à l'étape i), est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12.
Selon un mode de réalisation préféré, le ratio molaire HF/2-chloro-3,3,3- trifluoropropène, à l'étape ii), est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12.
Selon un mode de réalisation préféré, les parois latérales dudit premier réacteur et/ou dudit second réacteur comprennent une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée sur ladite couche intermédiaire ; et la différence de température radiale entre un point situé au centre du lit fixe d'un desdits premier ou second réacteurs et un point situé dans le plan radial au niveau de la couche intérieure de la paroi latérale dudit réacteur considéré est inférieure à 10°C. Ladite couche intérieure est celle en contact avec les réactifs. La valeur de la différence de température radiale est considérée en valeur absolue.
Selon un mode de réalisation préféré, les parois latérales dudit premier réacteur et/ou dudit second réacteur comprennent une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée sur ladite couche intermédiaire ; ladite couche isolante étant faite d'un matériau calorifuge M2 dont l'épaisseur varie entre 1 mm et 500 mm. Ladite couche intérieure est celle en contact avec le mélange réactionnel.
Selon un mode de réalisation préféré, le matériau calorifuge M2 est sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée.
Selon un mode de réalisation préféré, la pression à l'entrée dudit premier réacteur et à l'entrée dudit second réacteur est comprise entre 3 et 15 bara.
Selon un autre aspect, la présente invention fournit une installation de fabrication du 2,3,3,3-tétrafluoropropène, comprenant :
- un premier et un second réacteur adiabatique, chacun desdits premier et second réacteurs comprenant un fond, un couvercle et des parois latérales faisant jonction entre le fond et le couvercle, au moins un lit fixe et au moins une canne supportant un ou plusieurs capteur(s) de température ; ledit fond, ledit couvercle et lesdites parois latérales comprennent chacun au moins une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée autour de ladite couche intermédiaire ; ladite couche intérieure est faite d'un matériau Ml comprenant une teneur massique en nickel d'au moins 30% ; ladite couche intermédiaire est faite d'un matériau Ml' comprenant au moins 70% en poids de fer ; ladite couche isolante est faite d'un matériau calorifuge M2 sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium- magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée ; la longueur de ladite au moins une canne supportant un ou plusieurs capteur(s) de température est au moins égale à la hauteur dudit lit fixe ; et ladite au moins une canne comprend au moins un capteur de température disposée dans ledit lit fixe.
- un système d'alimentation en flux réactionnel desdits premier et second réacteurs ;
- un système de collecte et de purification du flux de sortie dudit second réacteur ;
- optionnellement un système de collecte et/ou de purification du flux de sortie dudit premier réacteur ;
- au moins un conductimètre apte à mesurer la conductivité électrique du flux réactionnel entrant dans ledit premier réacteur.
Selon un mode de réalisation préféré, le système d'alimentation en flux réactionnel dudit premier réacteur comprend une ligne d'amenée de l'acide fluorhydrique, au moins une ligne d'amenée d'au moins un composé chloré tel que défini ci-dessus, et au moins un dispositif de mélange de l'acide fluorhydrique et dudit au moins un composé chloré, et le système d'alimentation en flux réactionnel dudit second réacteur comprend une ligne d'amenée de l'acide fluorhydrique et au moins une ligne d'amenée dudit courant A tel que défini ci-dessus.
Brève description des figures
La figure 1 représente schématiquement un réacteur selon un mode de réalisation particulier de la présente invention.
La figure 2 représente schématiquement une vue en coupe longitudinale d'un réacteur selon un mode de réalisation particulier de la présente invention.
La figure 3 représente schématiquement une vue en coupe transversale d'un réacteur selon un mode de réalisation particulier de la présente invention.
La figure 4 représente schématiquement une vue en coupe des parois latérales d'un réacteur selon un mode de réalisation particulier de la présente invention.
La figure 5 représente schématiquement une installation de fabrication de 2, 3,3,3- tétrafluoropropène selon un mode de réalisation particulier de la présente invention.
Description détaillée de l'invention
La présente invention se rapporte à un procédé de production de 2, 3,3,3- tétrafluoropropène (HFO-1234yf). Plus particulièrement, l'invention se rapporte à un procédé de production en deux étapes du 2,3,3,3-tétrafluoropropène.
De préférence, ledit procédé de production de 2,3,3,3-tétrafluoropropène comprend les étapes :
i) dans un premier réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2,3,3,3-tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant A comprenant 2-chloro-3,3,3- trifluoropropène,
ii) dans un second réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact du courant A obtenu à l'étape i) avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant B comprenant 2,3,3,3- tétrafluoropropène.
De préférence, la température à l'entrée du lit fixe d'un desdits premier ou second réacteurs est comprise entre 300°C et 400°C et la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur considéré est inférieure à 20°C.
De préférence, la température à l'entrée du lit fixe dudit premier réacteur est comprise entre 330°C et 400°C, de préférence entre 330°C et 390°C, en particulier entre 340°C et 380°C. Dans cette étape i), une température supérieure à 400°C peut rendre le catalyseur inactif de façon irréversible tandis qu'une température inférieure à 300°C empêche la réaction de fluoration d'être mise en oeuvre.
De préférence, la température à l'entrée du lit fixe dudit second réacteur est comprise entre 320°C et 400°C, de préférence entre 320°C et 375°C, plus préférentiellement entre 320°C et 360°C, en particulier entre 330°C et 360°C. Dans cette étape ii), une température supérieure à 400°C peut rendre le catalyseur inactif de façon irréversible tandis qu'une température inférieure à 300°C empêche la réaction de fluoration d'être mise en oeuvre.
Comme mentionné ci-dessus, dans un réacteur adiabatique, la température au sein du réacteur, et en particulier au sein du lit fixe, varie longitudinalement, c'est-à-dire que la température varie entre l'entrée du réacteur et la sortie du réacteur, en particulier entre l'entrée du lit fixe et la sortie du lit fixe. La figure 2 représente une vue schématique en coupe longitudinale d'un réacteur 1 selon un mode particulier de la présente invention et comprenant un lit fixe 5. La différence de température longitudinale ATa est définie par la différence de température entre l'entrée du lit fixe 9 et la sortie du lit fixe 10.
De préférence, la différence de température longitudinale entre l'entrée du lit fixe dudit premier réacteur et la sortie du lit fixe dudit premier réacteur est inférieure à 20°C, avantageusement inférieure à 19°C, de préférence inférieure à 18°C, plus préférentiellement inférieure à 17°C, en particulier inférieure à 16°C, plus particulièrement inférieure à 15°C, de manière privilégiée inférieure à 14°C, de manière avantageusement privilégiée inférieure à 13°C, de manière préférentiellement privilégiée inférieure à 12°C, de manière plus préférentiellement privilégiée inférieure à 11°C, de manière particulièrement privilégiée inférieure à 10°C.
De préférence, la différence de température longitudinale entre l'entrée du lit fixe dudit second réacteur et la sortie du lit fixe dudit second réacteur est inférieure à 20°C, avantageusement inférieure à 19°C, de préférence inférieure à 18°C, plus préférentiellement inférieure à 17°C, en particulier inférieure à 16°C, plus particulièrement inférieure à 15°C, de manière privilégiée inférieure à 14°C, de manière avantageusement privilégiée inférieure à 13°C, de manière préférentiellement privilégiée inférieure à 12°C, de manière plus préférentiellement privilégiée inférieure à 11°C, de manière particulièrement privilégiée inférieure à 10°C.
Selon un mode de réalisation préféré, l'étape i) et l'étape ii) sont mises en oeuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome. De préférence, le catalyseur à base de chrome peut être un oxyde de chrome (par exemple CrÜ2, CrC>3 ou Cr2C>3), un oxyfluorure de chrome ou un fluorure de chrome (par exemple CrFs) ou un mélange de ceux- ci. L'oxyfluorure de chrome peut contenir une teneur en fluor comprise entre 1 et 60% en poids sur base du poids total de l'oxyfluorure de chrome, avantageusement entre 5 et 55% en poids, de préférence entre 10 et 52% en poids, plus préférentiellement entre 15 et 52% en poids, en
particulier entre 20 et 50% en poids, plus particulièrement entre 25 et 45% en poids, de manière privilégiée entre 30 et 45% en poids, de manière plus privilégiée de 35 à 45% en poids de fluor sur base du poids total de l'oxyfluorure de chrome. Le catalyseur peut également comprendre un co-catalyseur choisi parmi le groupe consistant en Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb ; de préférence Ni, Co, Zn, Mg, Mn ; en particulier Ni, Co, Zn. La teneur en poids du co-catalyseur est comprise entre 1 et 10% en poids sur base du poids total du catalyseur. Le catalyseur peut être supporté ou non. Un support tel que l'alumine, par exemple sous sa forme alpha, de l'alumine activée, les halogénures d'aluminium (AIF3 par exemple), les oxyhalogénures d'aluminium, du charbon actif, fluorure de magnésium ou du graphite peut être utilisé.
De préférence, le catalyseur peut une surface spécifique entre 1 et 100 m2/g, de préférence entre 5 et 80 m2/g, plus préférentiellement entre 5 et 70 m2/g, idéalement entre 5 et 50 m2/g, en particulier entre 10 et 50 m2/g, plus particulièrement entre 15 et 45 m2/g.
Selon un mode de réalisation préféré, l'étape i) est mise en oeuvre à la pression atmosphérique ou à une pression supérieure à celle-ci, avantageusement à une pression supérieure à 1,5 bara, de préférence à une pression supérieure à 2,0 bara, en particulier à une pression supérieure à 2,5 bara, plus particulièrement à une pression supérieure à 3,0 bara. De préférence, l'étape i) est mise en oeuvre à une pression comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et 15 bara. De préférence, l'étape i) du présent procédé est mise en oeuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape i). Le rapport molaire de l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote.
Selon un mode de réalisation préféré, l'étape ii) est mise en oeuvre à la pression atmosphérique ou à une pression supérieure à celle-ci, avantageusement à une pression supérieure à 1,5 bara, de préférence à une pression supérieure à 2,0 bara, en particulier à une pression supérieure à 2,5 bara, plus particulièrement à une pression supérieure à 3,0 bara. De préférence, l'étape ii) est mise en oeuvre à une pression comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et 15 bara. De préférence, l'étape ii) du présent procédé est mise en oeuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape ii). Le rapport molaire de
l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote.
De préférence, le courant A issu de l'étape i) alimente le second réacteur sans être purifié préalablement à son injection dans celui-ci.
De préférence, à l'étape i), le ratio molaire HF/ledit au moins un composé chloré est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12. Avantageusement le ratio molaire HF/ledit au moins un composé chloré est compris entre 12 :1 et 150 :1, de préférence entre 12 :1 et 125 :1, plus préférentiellement entre 12 :1 et 100 :1.
De préférence, à l'étape ii), le ratio molaire HF/2-chloro-3,3,3-trifluoropropène est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12. Avantageusement le ratio molaire HF/2-chloro-3,3,3-trifluoropropène est compris entre 12 :1 et 150 :1, de préférence entre 12 :1 et 125 :1, plus préférentiellement entre 12 :1 et 100 :1.
Comme mentionné ci-dessus, dans un réacteur adiabatique, la température au sein du réacteur, et en particulier au sein du lit fixe, varie radialement, c'est-à-dire que la température varie entre le centre du réacteur et les parois latérales du réacteur situées dans le même plan, en particulier entre le centre du lit fixe et la paroi latérale du réacteur située dans le même plan.
Le contrôle de la température radiale dans le lit fixe peut être effectué en isolant les parois latérales dudit réacteur avec un matériau calorifuge d'une épaisseur définie. Ainsi, lesdites parois latérales comprennent chacune au moins une couche intérieure et une couche isolante disposée autour de ladite couche intérieure.
La figure 3 représente une vue transversale suivant le plan de coupe (a, a') d'un réacteur 1 selon un mode de réalisation de la présente invention et comprenant un lit fixe 5. Les parois latérales 3 dudit premier réacteur et/ou dudit second réacteur comprennent une couche intérieure 21, une couche intermédiaire 22 disposée sur ladite couche intérieure 21 et une couche isolante 23 disposée sur ladite couche intermédiaire 22 (Figure 4). La différence de température radiale ATb est définie par la différence entre un point situé au centre du lit fixe 5 d'un desdits premier ou second réacteurs et un point 12 situé dans le plan radial au niveau de la couche intérieure 21 de la paroi latérale 3 dudit réacteur considéré (Figure 3).
Ainsi, la différence de température radiale entre un point situé au centre du lit fixe d'un desdits premier ou second réacteurs et un point situé dans le plan radial au niveau de la couche intérieure de la paroi latérale dudit réacteur considéré est inférieure à 10°C, avantageusement inférieure à 9°C, de préférence inférieure à 8°C, plus préférentiellement inférieure à 7°C, en particulier inférieure à 6°C, plus particulièrement inférieure à 5°C.
Ainsi, la différence de température radiale entre un point situé au centre du lit fixe dudit premier réacteur et un point situé dans le plan radial au niveau de la couche intérieure de la paroi latérale dudit premier réacteur est inférieure à 10°C, avantageusement inférieure à 9°C, de préférence inférieure à 8°C, plus préférentiellement inférieure à 7°C, en particulier inférieure à 6°C, plus particulièrement inférieure à 5°C.
En outre, la différence de température radiale entre un point situé au centre du lit fixe dudit second réacteur et un point situé dans le plan radial au niveau de la couche intérieure de la paroi latérale dudit second réacteur est inférieure à 10°C, avantageusement inférieure à 9°C, de préférence inférieure à 8°C, plus préférentiellement inférieure à 7°C, en particulier inférieure à 6°C, plus particulièrement inférieure à 5°C.
Selon un mode de réalisation préféré, ladite couche intérieure a une épaisseur comprise entre 0,01 et 20 mm. De préférence, ladite couche intérieure peut avoir une épaisseur comprise entre 0,05 et 15 mm, de préférence entre 0,1 et 10 mm, plus préférentiellement entre 0,1 et 5 mm.
Ladite couche intérieure peut être faite d'un matériau Ml comprenant une teneur massique en nickel d'au moins 30%. Avantageusement, le matériau Ml comprend au moins 40% en poids de nickel sur base du poids total du matériau Ml. De préférence, le matériau Ml comprend au moins 45 % en poids de nickel, plus préférentiellement au moins 50% en poids de nickel, en particulier au moins 55% en poids de nickel, plus particulièrement au moins 60% en poids de nickel, de manière privilégiée au moins 65% en poids de nickel, de manière plus privilégiée au moins 70% en poids de nickel sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du chrome dans une teneur inférieure à 35% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 30% en poids, de préférence inférieure à 20% en poids, plus préférentiellement inférieure à 15% en poids, en particulier inférieure à 10% en poids, plus particulièrement inférieure à 5% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du molybdène dans une teneur inférieure à 35% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 30% en poids, de préférence inférieure à 20% en poids, plus préférentiellement inférieure à 15% en poids, en particulier inférieure à 10% en poids, plus particulièrement inférieure à 5% en poids sur base du poids total du matériau Ml. De préférence, le matériau Ml comprend au moins 40% en poids de nickel sur base du poids total du matériau Ml, de préférence au moins 45 % en poids de nickel, plus préférentiellement au moins 50% en poids de nickel, en particulier au moins 55% en poids de nickel, plus particulièrement au moins 60% en poids de nickel, de
manière privilégiée au moins 65% en poids de nickel, de manière plus privilégiée au moins 70% en poids de nickel sur base du poids total du matériau Ml ; et moins de 35% en poids de chrome, avantageusement moins de 30% en poids, de préférence moins de 20% en poids, plus préférentiellement moins de 15% en poids, en particulier moins de 10% en poids, plus particulièrement moins de 5% en poids de chrome sur base du poids total du matériau Ml ; et moins de 35% en poids de molybdène, avantageusement moins de 30% en poids, de préférence moins de 20% en poids, plus préférentiellement moins de 15% en poids, en particulier moins de 10% en poids, plus particulièrement moins de 5% en poids de molybdène, sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du cobalt dans une teneur inférieure à 10% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 8% en poids, de préférence inférieure à 6% en poids, plus préférentiellement inférieure à 4% en poids, en particulier inférieure à 3% en poids, plus particulièrement inférieure à 2% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du tungstène dans une teneur inférieure à 10% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 9% en poids, de préférence inférieure à 8% en poids, plus préférentiellement inférieure à 7% en poids, en particulier inférieure à 6% en poids, plus particulièrement inférieure à 5% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du fer dans une teneur inférieure à 25% en poids sur base du poids total du matériau Ml, avantageusement inférieure à 20% en poids, de préférence inférieure à 15% en poids, plus préférentiellement inférieure à 10% en poids, en particulier inférieure à 7% en poids, plus particulièrement inférieure à 5% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du manganèse dans une teneur inférieure à 5% en poids sur base du poids total de l'alliage, avantageusement inférieure à 4% en poids, de préférence inférieure à 3% en poids, plus préférentiellement inférieure à 2% en poids, en particulier inférieure à 1% en poids, plus particulièrement inférieure à 0,5% en poids sur base du poids total du matériau Ml. Le matériau Ml peut également comprendre du cuivre dans une teneur inférieure à 50% en poids, avantageusement inférieure à 45% en poids, de préférence inférieure à 40% en poids, plus préférentiellement inférieure à 35% en poids, en particulier inférieure à 30% en poids, plus particulièrement inférieure à 25% en poids de cuivre sur base du poids total du matériau Ml.
Selon un mode de réalisation préféré, ladite couche intermédiaire a une épaisseur comprise entre 0,1 et 50 mm. De préférence, ladite couche intermédiaire peut avoir une épaisseur comprise entre 0,5 et 40 mm, de préférence entre 1 et 30 mm, plus préférentiellement
entre 1 et 25 mm. Selon un mode de réalisation préféré, ladite couche intermédiaire 22 est disposée entre ladite couche intérieure 21, en contact avec les réactifs, et ladite couche isolante 23 (Figure 4). Ladite couche intermédiaire 22 peut être faite d'un matériau M . Selon un mode de réalisation préféré, le matériau Ml' comprend au moins 70% en poids de fer, avantageusement au moins 75% en poids, de préférence au moins 80% en poids, plus préférentiellement au moins 85% en poids, en particulier au moins 90% en poids, plus particulièrement au moins 95% en poids de fer sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 2% en poids de carbone, avantageusement moins de 1,5% en poids, de préférence moins de 1% en poids, plus préférentiellement moins de 0,75% en poids, en particulier moins de 0,5% en poids, plus particulièrement moins de 0,2% en poids, de manière privilégiée moins de 0,1% en poids sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,01 et 0,2% en poids de carbone sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 2% en poids de molybdène, avantageusement moins de 1,5% en poids, de préférence moins de 1,25% en poids, plus préférentiellement moins de 1% en poids de molybdène sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,1 et 1% en poids de molybdène sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 5% en poids de chrome, avantageusement moins de 4% en poids, de préférence moins de 3% en poids, plus préférentiellement moins de 2% en poids, en particulier moins de 1% en poids de chrome sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,5 et 2% en poids de chrome sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 2% en poids de silicium, avantageusement moins de 1,5% en poids, de préférence moins de 1,25% en poids, plus préférentiellement moins de 1% en poids de silicium sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,1 et 1,5 % en poids de silicium sur base du poids total du matériau M . Le matériau Ml' peut également comprendre moins de 2% en poids de manganèse, avantageusement moins de 1,5% en poids, de préférence moins de 1,25% en poids, plus préférentiellement moins de 1% en poids de manganèse sur base du poids total du matériau M . Plus particulièrement, le matériau Ml' peut comprendre entre 0,1 et 1% en poids de manganèse sur base du poids total du matériau Ml'.
De préférence, ladite couche isolante est faite d'un matériau calorifuge M2. Ledit matériau calorifuge M2 est sélectionné parmi le groupe consistant en laine de roche, laine de
verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée. Les fibres de silicate incluent par exemple les fibres d'aluminosilicates.
En particulier, les parois latérales dudit premier réacteur comprennent une couche faite d'un matériau calorifuge M2 dont l'épaisseur varie entre 1 mm et 500 mm, de préférence entre 5 mm et 400 mm.
En particulier, les parois latérales dudit second réacteur comprennent une couche faite d'un matériau calorifuge M2 dont l'épaisseur varie entre 1 mm et 500 mm, de préférence entre 5 mm et 400 mm.
Selon un mode de réalisation préféré de l'invention, la pression à l'entrée dudit premier réacteur de l'étape i) est supérieure à la pression à l'entrée dudit second réacteur de l'étape ii). De préférence, la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 100 mbar à 3,5 bar, avantageusement de 150 mbar à 3,0 bar, de préférence de 300 mbar à 2,5 bar, plus préférentiellement de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar.
Selon un mode de réalisation préféré, la pression à l'entrée dudit premier réacteur est la pression atmosphérique ou une pression supérieure à celle-ci, avantageusement la pression à l'entrée dudit premier réacteur est supérieure à 1,5 bara, de préférence supérieure à 2,0 bara, en particulier supérieure à 2,5 bara, plus particulièrement supérieure à 3,0 bara. De préférence, l'étape i) est mise en oeuvre à une pression à l'entrée dudit premier réacteur comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et 15 bara. Ainsi, la pression à l'entrée dudit second réacteur peut être inférieure à la pression atmosphérique. La pression à l'entrée dudit second réacteur peut être supérieure à 1,5 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, de préférence supérieure à 2,0 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, en particulier supérieure à 2,5 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, plus particulièrement supérieure à 3,0 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur. De préférence, l'étape ii) est mise en oeuvre à une pression comprise entre la pression atmosphérique et 20 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, de préférence entre 2 et 18 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, plus préférentiellement entre 3 et 15 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur.
L'étape i) peut être mise en œuvre à une température différente ou égale à celle de l'étape ii). Lorsque l'étape i) est mise en œuvre à une température différente de celle de l'étape ii), l'étape i) peut être mise en œuvre à une température inférieure à celle de l'étape ii) ou à une température supérieure à celle de l'étape ii).
Selon un mode de réalisation préféré, l'acide fluorhydrique et ledit au moins un composé chloré sont mis en contact préalablement à l'entrée de ceux-ci dans ledit premier réacteur. Le mélange résultant est le mélange C. De préférence, ledit au moins un composé chloré est à l'état liquide avant son contact avec l'acide fluorhydrique. Celui-ci est vaporisé par mélange avec l'acide fluorhydrique. Le mélange résultant C est alors sous forme gazeuse. En particulier, le mélange entre l'acide fluorhydrique et ledit au moins un composé chloré est effectué dans un mélangeur statique. De préférence, ledit au moins un composé chloré est introduit dans le mélangeur statique via une ou plusieurs buses de pulvérisation. Ledit au moins un composé chloré est ainsi pulvérisé sous forme de gouttelettes avant d'être vaporisé par mélange avec l'acide fluorhydrique, formant ainsi un mélange C sous forme gazeuse. La pulvérisation dudit au moins un composé chloré sous forme de fines gouttelettes permet d'assurer une vaporisation plus efficace de celui-ci. Par exemple, le diamètre moyen des gouttelettes ainsi produites peut être inférieur à 500 pm.
Ledit mélange C peut optionnellement être chauffé ou refroidi avant son introduction dans ledit premier réacteur. Cette étape peut être réalisée par l'intermédiaire d'un échangeur de chaleur pour contrôler la température à l'entrée dudit premier réacteur. Ledit courant A obtenu à l'étape i) peut être chauffé ou refroidi avant son introduction dans le second réacteur.
Selon un mode de réalisation préféré, ledit courant B comprend, outre 2, 3,3,3- tétrafluoropropène, HF, HCl, le 2-chloro-3,3,3-trifluoropropène n'ayant pas réagi et optionnellement 1,1,1,2,2-pentafluoropropane. De préférence, le courant B est purifié, de préférence par distillation, pour former un premier courant comprenant 2, 3,3,3- tétrafluoropropène, HCl et optionnellement 1,1,1,2,2-pentafluoropropane, et un second courant comprenant HF et 2-chloro-3,3,3-trifluoropropène.
De préférence, ledit courant B est distillé dans des conditions suffisantes pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et optionnellement 1,1,1,2,2-pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3- trifluoropropene. En particulier, la distillation peut être effectuée à une pression de 2 à 6 bara, plus particulièrement à une pression de 3 à 5 bara. En particulier, la température en tête de colonne de distillation est de -35°C à 10°C, de préférence de -20°C à 0°C.
Selon un mode de réalisation préféré, ledit second courant est recyclé à l'étape i). Ledit second courant peut éventuellement être purifié, en particulier par distillation, avant d'être recyclé à l'étape i).
Selon un mode réalisation préféré, ledit courant B obtenu à l'étape ii) est refroidi préalablement à la purification mentionnée ci-dessus. En particulier, ledit courant B obtenu à l'étape ii) est refroidi à une température inférieure à 100°C, puis distillé pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et optionnellement 1, 1,1, 2,2- pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3-trifluoropropène; la température en tête de colonne de distillation est de -35°C à 10°C et la distillation est mise en oeuvre à une pression de 2 à 6 bara ; ledit second courant obtenu en pied de colonne de distillation est recyclé à l'étape i). Ledit courant B peut être refroidi, avant distillation, à une température inférieure à 95°C, avantageusement inférieure à 90°C, de préférence inférieure à 85°C, plus préférentiellement inférieure à 80°C, en particulier inférieure à 70°C, plus particulièrement inférieure à 60°C, de manière privilégiée inférieure à 55°C, de manière avantageusement privilégiée inférieure à 50°C, de manière préférentiellement privilégiée inférieure à 40°C, de manière plus préférentiellement privilégiée inférieure à 30°C, de manière particulièrement privilégiée inférieure à 25°C, de manière plus particulièrement privilégiée inférieure à 20°C. Le refroidissement du flux de produits obtenu à de telles températures facilite la distillation ultérieure. Le refroidissement dudit courant B peut être effectué grâce à un ou une pluralité d'échangeurs de chaleur. Le refroidissement dudit courant B peut être effectué en faisant passer celui-ci au travers de un, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix échangeurs de chaleur, de préférence le nombre d'échangeurs de chaleur est compris entre 2 et 8, en particulier entre 3 et 7.
De préférence, le procédé selon la présente invention est mis en oeuvre en continu.
De préférence, le procédé est mis en oeuvre en continu et en phase gazeuse.
De préférence, ledit second courant recyclé à l'étape i) a une conductivité électrique inférieure à 15 mS/cm, avantageusement inférieure 14 mS/cm, de préférence inférieure à 13 mS/cm, plus préférentiellement inférieure à 12 mS/cm, en particulier inférieure à 11 mS/cm, plus particulièrement inférieure à 10 mS/cm, de manière privilégiée inférieure à 9 mS/cm, de manière avantageusement privilégiée inférieure à 8 mS/cm, de manière préférentiellement privilégiée inférieure à 7 mS/cm, de manière plus préférentiellement privilégiée inférieure à 6 mS/cm, de manière particulièrement privilégiée inférieure à 5 mS/cm. De préférence, l'étape i)
et/ou l'étape ii) est réalisée en présence d'acide fluorhydrique ayant une conductivité électrique inférieure à 10 mS/cm, de préférence inférieure à 5 mS/cm.
La conductivité électrique dudit second courant est mesurée préalablement à son introduction dans le premier réacteur. De préférence, la conductivité électrique est mesurée lorsque celui-ci est sous forme liquide. Le présent procédé peut donc comprendre une étape de chauffage dudit second courant préalablement à la mise en oeuvre de l'étape i) pour fournir ledit second courant sous forme gazeuse. La conductivité électrique est mesurée à température ambiante. La conductivité électrique est mesurée à l'aide d'une cellule de mesure de conductivité inductive et selon la pratique connue de l'homme du métier. De préférence, la cellule de mesure est revêtue d'un matériau résistant à un milieu corrosif, en particulier résistant à l'acide fluorhydrique. La conductivité électrique d'un courant peut être diminuée pour atteindre une conductivité inférieure à 15 ms/cm en diminuant la concentration en électrolyte éventuellement présent dans celui-ci selon les techniques connues de l'homme du métier (distillation, refroidissement et décantation, passage sur des tamis moléculaires de 3 à 5 A ou des zéolites). Une telle conductivité électrique permet d'améliorer la conversion et/ou la sélectivité de la réaction.
Selon un second aspect de la présente invention, un réacteur adiabatique 1 est fourni. De préférence, ledit réacteur 1 comprend un fond 4, un couvercle 2 et des parois latérales 3 faisant jonction entre le fond 4 et le couvercle 2, au moins un lit fixe 5 et au moins une canne 6 supportant un ou plusieurs capteurs de température 7a, 7b (Figure 1).
De préférence, ledit fond 4, ledit couvercle 2 et lesdites parois latérales 3 comprennent chacun au moins une couche intérieure 21, une couche intermédiaire 22 disposée sur ladite couche intérieure et une couche isolante 23 disposée autour de ladite couche intermédiaire. Lesdites couches intérieure 21, intermédiaire 22 et isolante 23 sont faites respectivement d'un matériau Ml, M et M2 comme décrit ci-dessus. Selon un mode de réalisation préféré, ladite couche isolante 23 peut être recouverte par une couche de base 24. Ainsi, ladite couche isolante 23 est disposée entre ladite couche intermédiaire 22 et ladite couche de base 24 (Figure 4). Ladite couche de base 24 peut être faite d'un matériau M3. Ledit matériau M3 peut être un revêtement métallique réalisé avec des tôles d'aluminium, d'acier inoxydable ou d'acier galvanisé. De préférence, ladite couche de base a une épaisseur comprise entre 0,2 mm et 2 mm. Ladite couche intérieure 21, ladite couche intermédiaire 22, ladite couche isolante 23 et ladite couche de base 22 peuvent être disposées l'une sur l'autre selon des techniques bien connues de l'homme de l'art.
De préférence, la longueur de ladite au moins une canne 6 est au moins égale à la hauteur dudit lit fixe 5. En particulier, ladite au moins une canne 6 comprend au moins un capteur ou au moins deux capteurs ou au moins 3 capteurs de température, avantageusement au moins 5 capteurs de température, de préférence au moins 7 capteurs de température, en particulier au moins 10 capteurs de température, de manière privilégiée au moins 12 capteurs de température, de manière préférentiellement privilégiée au moins 15 capteurs de température. De préférence, au moins un desdits un ou plusieurs capteurs de température, supporté par ladite au moins une canne, est disposé dans ledit lit fixe 5. En particulier, au moins deux ou trois ou quatre ou cinq ou six ou sept capteurs de température, supporté par ladite au moins une canne, sont disposés dans ledit lit fixe 5. De préférence, chaque canne 6 peut comporter soit un nombre identique, soit un nombre différent de capteurs de température. En particulier, chaque canne peut comporter un capteur de température dans le ciel et/ou dans le fond du réacteur (Figure 1, Référence 7b et 7b'). De même, les capteurs de température 7a, 7b peuvent être répartis à équidistance ou de façon plus ciblée en fonction des besoins de contrôle du profil de température dans le lit fixe. De préférence, ledit réacteur peut comprendre au moins deux cannes 6, plus préférentiellement au moins trois cannes 6, en particulier au moins quatre cannes 6. En particulier, ledit réacteur peut comprendre entre 1 et 20 cannes 6, avantageusement entre 2 et 15 cannes 6, de préférence entre 3 et 10 cannes 6.
De préférence, le réacteur 1 est alimenté en composé hydrocarbure 14 par des lignes d'alimentation 13. Le réacteur comprend également des lignes d'effluent ou de sortie 15 permettant d'évacuer le mélange réactionnel 16 du réacteur (Figure 1). De préférence, les lignes d'alimentation ou de sortie du réacteur sont faites de matériau capable de résister également à la corrosion, par exemple faites du matériau Ml recouvert d'une couche de matériau M2 et d'une couche de base faite d'un matériau M3. Les lignes d'alimentation peuvent être de forme tubulaire. Alternativement, les lignes d'alimentation ou de sortie peuvent comprendre une couche intérieure, de préférence faite d'un matériau Ml tel que décrit ci-dessus, une couche isolante, de préférence faite d'un matériau M2 tel que décrit ci-dessus, et une couche de base, de préférence faite d'un matériau M3 tel que décrit ci-dessus. Le réacteur comprend également un ou plusieurs déphlegmateur(s), un ou plusieurs tube(s) plongeur(s), un ou plusieurs dispositif(s) d'introduction des matières premières, une ou plusieurs grille(s) de support et de retenue du catalyseur. Ledit un ou plusieurs déphlegmateur(s) et/ou ledit un ou plusieurs tube(s) plongeur(s) et/ou ledit un ou plusieurs dispositif(s) d'introduction des matières premières et/ou ladite une ou plusieurs grille(s) de support et de retenue du catalyseur peuvent
comprendre une couche intérieure, de préférence faite d'un matériau Ml tel que décrit ci- dessus.
De préférence, le lit fixe 5 comprend un catalyseur ou un solide inerte ou les deux. Le solide inerte peut être du corindon, du carbure de silicium, des billes ou anneaux de quartz, un garnissage métallique d'un métal Ml tel que défini dans la présente demande ou des billes de nickel. De préférence, lorsque le lit fixe 5 comprend un catalyseur, le solide inerte est disposé dans la partie supérieure 17 et la partie inférieure 18 du lit fixe 5, ledit catalyseur 19c se trouvant entre les couches de solide inerte 19a et 19b, dans la partie centrale 20 du lit fixe 5. Dans un mode de réalisation alternatif, lorsque le lit fixe 5 comprend un catalyseur, du solide inerte est disposé dans la partie supérieure 17 ou dans la partie inférieure 18 du lit fixe 5. Dans un mode de réalisation alternatif, lorsque le lit fixe 5 comprend un catalyseur, aucune couche de solide inerte n'est disposée dans le lit fixe. Dans un mode de réalisation alternatif, dans lequel le réacteur ne contient pas catalyseur, la partie inférieure 18, la partie centrale 20 et la partie supérieure 17 du lit fixe 5 peuvent contenir uniquement du solide inerte. Ce mode de réalisation alternatif peut être mis en oeuvre lorsque, par exemple, l'étape i) du procédé selon la présente invention est réalisée en l'absence de catalyseur. Dans ce cas, le solide inerte permet d'améliorer la distribution des gaz à l'intérieur du réacteur. De préférence, le solide inerte est du corindon ou des billes de nickel.
De préférence, le lit fixe 5 contient une couche de catalyseur 19c dans sa partie centrale 20. Dans un mode de réalisation préféré, le catalyseur est réparti de manière homogène dans le lit fixe. La répartition homogène du catalyseur dans le lit fixe permet de minimiser les perturbations dans l'écoulement des gaz et d'éviter les points chauds au sein de la couche de catalyseur. La présence de points chauds peut conduire à une cristallisation irréversible du catalyseur entraînant une désactivation de celui-ci. Le chargement du lit fixe est réalisé selon la méthode spécifique de chargement dense du catalyseur. Cette méthode est connue de l'homme de l'art. Elle permet d'obtenir une distribution optimale du catalyseur à l'intérieur du réacteur en évitant les renardages (channelling) durant la réaction et l'attrition du catalyseur. De manière générale, la densité massique apparente du catalyseur dans le lit fixe est supérieure à la densité massique théorique de celui-ci. La densité massique apparente est déterminée suivant la norme ASTM D1895.
De préférence, ledit réacteur est un réacteur de fluoration en phase gazeuse.
La présente invention permet de mettre en oeuvre un procédé de production de 2, 3,3,3- tétrafluoropropène avec une quantité de catalyseur plus importante. En outre, la maîtrise et le
contrôle de la température de manière radiale et longitudinale permettent de maintenir une conversion et une sélectivité des réactions.
Selon un troisième aspect de l'invention, une installation de fabrication du 2, 3,3,3- tétrafluoropropène est fourni. De préférence, l'installation comprend un premier réacteur adiabatique 101 selon la présente invention ; un second réacteur adiabatique 103 selon la présente invention ; un système d'alimentation en flux réactionnel desdits premier et second réacteurs ; un système de collecte et de purification du flux de sortie dudit second réacteur optionnellement un système de collecte et/ou de purification du flux de sortie dudit premier réacteur.
De préférence, ladite installation comprend également un échangeur de chaleur alimenté par le flux de sortie 107 et connecté à une première colonne de distillation 109. De préférence, ladite installation comprend également un compresseur 113 alimenté par le courant issu de ladite première colonne de distillation 109. De préférence, ladite installation comprend une seconde colonne de distillation 115 alimenté par un courant issu du compresseur 113. Ladite seconde colonne de distillation 115 vise à éliminer tout ou partie du HCl présent dans le courant acheminé vers celle-ci. Ladite installation peut également comprendre une pluralité d'autres colonnes de distillation pour purifier le 2,3,3,3-tétrafluoropropène et éliminer des impuretés.
Une installation selon un mode de réalisation particulier de la présente invention est illustrée à la figure 5 et décrit ci-dessous.
Le système d'alimentation en flux réactionnel dudit premier réacteur comprend une ligne d'amenée de l'acide fluorhydrique 102 et au moins une ligne d'amenée dudit composé chloré 105. L'installation comprend également un dispositif de mélange 104 de l'acide fluorhydrique et dudit composé chloré. Le dispositif de mélange est de préférence un mélangeur statique. Ainsi, l'acide fluorhydrique et ledit au moins un composé chloré sont mélangés, pulvérisés et vaporisés dans ledit dispositif de mélange 104 avant d'être introduits dans ledit premier réacteur 101 par la conduite 105a. Le système d'alimentation en flux réactionnel dudit second réacteur comprend une ligne d'amenée de l'acide fluorhydrique 102, au moins une ligne d'amenée 106 du 2-chloro-3,3,3-trifluoropropène issu et produit du premier réacteur 101. De préférence, le flux de sortie 107 dudit second réacteur collecté et purifié comprend 2-chloro- 3,3,3-trifluoropropène, HF, HCl, 2,3,3,3-tétrafluoropropène et optionnellement 1, 1,1, 2,2- pentafluoropropane. L'échangeur de chaleur 108 est apte à refroidir le flux de sortie 107 issu dudit second réacteur 103 pour former un courant refroidi. Le flux de sortie 107 est acheminé
vers un dispositif de refroidissement 108 pour être refroidi à une température de 0°C à 70°C avant d'être introduit dans une colonne de distillation 109 via une conduite 110. La colonne de distillation 109 est configurée de sorte à permettre la séparation entre d'un côté l'acide chlorhydrique, 2,3,3,3-tetrafluoropropène et optionnellement 1,1,1,2,2-pentafluoropropane, et d'un autre côté l'acide fluorhydrique et 2-chloro-3,3,3-trifluoropropène. Le courant d'HF et de 2-chloro-3,3,3-trifluoropropène est récupéré en pied de colonne de distillation 109 et recyclé vers le premier réacteur 101 par la conduite 112. Le courant comprenant le 2,3,3,3- tetrafluoropropène et l'acide chlorhydrique et optionnellement 1,1,1,2,2-pentafluoropropane est récupéré en tête de colonne de distillation 109 pour être acheminé par une conduite 111 vers un compresseur 113. Le compresseur permet de comprimer le courant comprenant le 2,3,3,3-tetrafluoropropène et l'acide chlorhydrique à une pression comprise entre 10 et 25 bara. Le courant ainsi comprimé est acheminé par la conduite 114 vers une seconde colonne de distillation 115. Celle-ci est configurée de sorte à séparer d'un côté le 2,3,3,3-tetrafluoropropène et optionnellement 1,1,1,2,2-pentafluoropropane et de l'autre l'acide chlorhydrique. L'acide chlorhydrique est récupéré est tête de colonne de distillation 115 pour être acheminé vers un dispositif de purification 118 par la conduite 116. Le dispositif de purification 118 de l'acide chlorhydrique est un dispositif connu de l'art antérieur, par exemple de WO 2015/079137. Le 2,3,3,3-tetrafluoropropène et optionnellement 1,1,1,2,2-pentafluoropropane est récupéré en pied de colonne de distillation 115 pour être acheminé par la conduite 117 vers une troisième colonne de distillation 119. La colonne de distillation 119 vise à séparer le 2,3,3,3- tetrafluoropropène du 1,1,1,2,2-pentafluoropropane éventuellement présent dans le flux de sortie 107. Le 2,3,3,3-tetrafluoropropène est récupéré en tête de colonne de distillation pour être acheminé vers un dispositif de purification par la conduite 121. Le 1,1,1,2,2- pentafluoropropane récupéré en pied de colonne de distillation est recyclé vers le premier réacteur 101 par la conduite 120. Le dispositif de purification comprend notamment un dispositif d'élimination du HF 122 et une ou plusieurs colonnes de distillation apte à purifier le courant comprenant le 2,3,3,3-tetrafluoropropène d'impuretés qu'il pourrait contenir, telles que par exemple le 1,1,1,2,2-pentafluoropropane résiduel et/ou le 1,3,3,3-tetrafluoropropène. Le dispositif d'élimination du HF 122 élimine le HF résiduel qui peut être recyclé vers le premier réacteur 101 ou le second réacteur 103 (non représenté). Le dispositif d'élimination d'HF 122 peut être apte à permettre la décantation du HF ou l'absorption du HF. Le courant comprenant le 2,3,3,3-tetrafluoropropène est acheminé vers une colonne de distillation 124 par une conduite 123. La colonne de distillation 124 est une colonne de distillation extractive. Un agent
d'extraction 127 est ajouté au courant comprenant le 2,3,3,3-tetrafluoropène. La colonne de distillation extractive 124 permet d'éliminer des impuretés éventuellement présentes dans le courant comprenant 2,3,3,3-tétrafluoropropène. Ces impuretés peuvent comprendre le 1,3, 3, 3- tétrafluoropropène ou le 1,1,1,2,2-pentafluoropropane. Un courant comprenant le 2, 3,3,3- tetrafluoropène est récupéré en tête de colonne de distillation 124 et est acheminé par une conduite 128 vers une colonne de distillation 129. La colonne de distillation 129 peut permettre de séparer le 2,3,3,3-tetrafluoropène de 1,1,1,2,2-pentafluoropropane résiduel. Un courant 130 comprenant le 2,3,3,3-tetrafluoropène est récupéré en tête de colonne de distillation. Un courant 131 comprenant le 1,1,1,2,2-pentafluoropropane est récupéré en pied de colonne de distillation ; ce dernier pouvant être recyclé vers le premier réacteur 101 (non représenté). Le courant 125 récupéré en pied de colonne de distillation 124 comprend l'agent d'extraction organique et le 1,3,3,3-tetrafluoropropène. Ceux-ci sont séparés, par exemple par distillation, pour former un courant 126 comprenant le 1,3,3,3-tetrafluoropropène. L'agent d'extraction organique est quant à lui recyclé en 127. Comme mentionné ci-dessus, le courant issu du pied de la colonne de distillation 119 et le courant issu du pied de la colonne de distillation 109 sont acheminés vers le premier réacteur 101 respectivement par les conduites 120 et 112. Les deux courants peuvent être mélangés avant d'être introduit dans ledit premier réacteur 101 ou avant d'être introduit dans le dispositif de mélange 104. En outre, avant d'être introduit dans ledit premier réacteur 101, la conductivité électrique des deux courants ou du mélange de ceux-ci est mesurée par le conductimètre 132.
Claims
1. Procédé de production de 2,3,3,3-tétrafluoropropène comprenant les étapes :
i) dans un premier réacteur adiabatique comportant un lit fixe composé d'une entrée et d'une sortie, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2,3,3,3-tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant A comprenant 2-chloro-3,3,3- trifluoropropène,
ii) dans un second réacteur adiabatique comportant un lit catalytique composé d'une entrée et d'une sortie, mise en contact du courant A obtenu à l'étape i) avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur, pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène ; et
caractérisé en ce que
la température à l'entrée du lit fixe d'un desdits premier ou second réacteurs est comprise entre 300°C et 400°C et la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur considéré est inférieure à 20°C.
2. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la température à l'entrée du lit fixe dudit premier réacteur est comprise entre 340°C et 380°C et la différence de température longitudinale entre l'entrée du lit fixe dudit second réacteur et la sortie du lit fixe dudit second réacteur est inférieure à 20°C.
3. Procédé selon la revendication 1 caractérisé en ce que la température à l'entrée du lit fixe dudit second réacteur est comprise entre 330°C et 360°C et la différence de température longitudinale entre l'entrée du lit fixe dudit premier réacteur et la sortie du lit fixe dudit premier réacteur est inférieure à 20°C.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le ratio molaire HF/2-chloro-3,3,3-trifluoropropène à l'étape ii) ou le ratio molaire entre HF et ledit composé chloré à l'étape i) ou les deux est ajusté de sorte à maintenir la différence de température longitudinale entre l'entrée du lit fixe et la sortie du lit fixe du réacteur considéré inférieure à 20°C.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le ratio molaire HF/composé chloré, à l'étape i), est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12.
6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le ratio molaire HF/2-chloro-3,3,3-trifluoropropène, à l'étape ii), est supérieur ou égal à 5, avantageusement supérieur ou égal à 10, de préférence supérieur ou égal à 12.
7. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que lesdits premier et/ou second réacteurs comprennent des parois latérales, celles-ci comportant une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée sur ladite couche intermédiaire ; et la différence de température radiale entre un point situé au centre du lit fixe d'un desdits premier ou second réacteurs et un point situé dans le plan radial au niveau de la couche intérieure de la paroi latérale dudit réacteur considéré est inférieure à 10°C.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que lesdits premier et/ou second réacteurs comprennent des parois latérales, celles-ci comportant une couche intérieure, une couche intermédiaire disposée sur ladite couche intérieure et une couche isolante disposée sur ladite couche intermédiaire ; ladite couche isolante étant faite d'un matériau calorifuge M2 dont l'épaisseur varie entre 1 mm et 500 mm.
9. Procédé selon la revendication précédente caractérisé en ce que le matériau calorifuge M2 est sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée.
10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la pression à l'entrée dudit premier réacteur et/ou à l'entrée dudit second réacteur est comprise entre 3 et 15 bara.
11. Installation de fabrication du 2,3,3,3-tétrafluoropropène, comprenant :
- un premier et un second réacteur adiabatique (101,103), chacun desdits premier et second réacteurs (101,103) comprenant un fond (4), un couvercle (2) et des parois latérales (3) faisant jonction entre le fond (4) et le couvercle (2), au moins un lit fixe (5) et au moins une canne (6) supportant un ou plusieurs capteur(s) de température (7a, 7b) ; ledit fond (4), ledit couvercle (2) et lesdites parois latérales (3) comprennent chacun au moins une couche intérieure (21) , une couche intermédiaire (22) disposée sur ladite couche intérieure (21) et une couche isolante (23) disposée autour de ladite couche intermédiaire (22) ; ladite couche intérieure (21) est faite d'un matériau Ml comprenant une teneur massique en nickel d'au moins 30% ; ladite couche intermédiaire (22) est faite d'un matériau Ml' comprenant au moins 70% en poids de fer ; ladite couche isolante (23) est faite d'un matériau calorifuge M2 sélectionné parmi le groupe consistant en laine de roche, laine de verre, les fibres de silicate, les silicates de calcium-magnésium, les silicates de calcium, les isolants microporeux, le verre cellulaire, la perlite expansée, la vermiculite exfoliée ; la longueur de ladite au moins une canne (6) supportant un ou plusieurs capteur(s) de température (7a, 7b) est au moins égale à la hauteur dudit lit fixe (5) ; et ladite au moins une canne (6) comprend au moins un capteur de température (7a) disposé dans ledit lit fixe.
- un système d'alimentation en flux réactionnel desdits premier et second réacteurs ;
- un système de collecte et de purification du flux de sortie (107b) dudit second réacteur ;
- optionnellement un système de collecte et/ou de purification du flux de sortie dudit premier réacteur ;
- au moins un conductimètre (132) apte à mesurer la conductivité électrique du flux réactionnel entrant dans ledit premier réacteur.
12. Installation selon la revendication précédente caractérisée en ce que :
- le système d'alimentation en flux réactionnel dudit premier réacteur comprend une ligne d'amenée de l'acide fluorhydrique (105), au moins une ligne d'amenée (106) d'au moins un composé chloré tel que défini à la revendication 1, et au moins un dispositif de mélange (104) de l'acide fluorhydrique et dudit au moins un composé chloré, et
- le système d'alimentation en flux réactionnel dudit second réacteur comprend une ligne d'amenée de l'acide fluorhydrique (102) et au moins une ligne d'amenée dudit courant A tel que défini à la revendication 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980039202.8A CN112243434A (zh) | 2018-06-12 | 2019-06-06 | 生产2,3,3,3-四氟丙烯的方法和用于进行该方法的系统 |
EP19742846.9A EP3807238A1 (fr) | 2018-06-12 | 2019-06-06 | Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en ouvre de celui-ci |
US16/973,518 US11192837B2 (en) | 2018-06-12 | 2019-06-06 | Process for producing 2,3,3,3-tetrafluoropropene, and system for carrying out same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1855108A FR3082202B1 (fr) | 2018-06-12 | 2018-06-12 | Procede de production de 2,3,3,3-tetrafluoropropene et installation pour la mise en oeuvre de celui-ci. |
FR1855108 | 2018-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019239040A1 true WO2019239040A1 (fr) | 2019-12-19 |
Family
ID=65031254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2019/051356 WO2019239040A1 (fr) | 2018-06-12 | 2019-06-06 | Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci |
Country Status (5)
Country | Link |
---|---|
US (1) | US11192837B2 (fr) |
EP (1) | EP3807238A1 (fr) |
CN (1) | CN112243434A (fr) |
FR (1) | FR3082202B1 (fr) |
WO (1) | WO2019239040A1 (fr) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008054781A1 (fr) | 2006-10-31 | 2008-05-08 | E. I. Du Pont De Nemours And Company | Procédés de production de fluoropropanes et d'halopropènes et compositions azéotropiques de 2-chloro-3,3,3-trifluoropropène avec du hf et de 1,1,1,2,2-pentafluoropropane avec du hf |
EP1945600B1 (fr) * | 2005-11-03 | 2009-04-15 | Basf Se | Procede permettant de mettre en oeuvre de maniere stable un processus de production en continu d'acroleine ou d'acide acrylique ou d'un melange des deux a partir de propane |
US20090240090A1 (en) | 2004-04-29 | 2009-09-24 | Honeywell International Inc. | Integrated process to produce 2,3,3,3-tetrafluoropropene |
WO2013088195A1 (fr) | 2011-12-14 | 2013-06-20 | Arkema France | Procédé pour la préparation de 2,3,3,3-tétrafluoropropène |
US20140316171A1 (en) * | 2008-11-19 | 2014-10-23 | Arkema Inc. | Process for the manufacture of hydrofluoroolefins |
WO2015079137A1 (fr) | 2013-11-28 | 2015-06-04 | Arkema France | Procede de purification d'acide chlorhydrique |
US20150203421A1 (en) * | 2012-08-08 | 2015-07-23 | Daikin Industries, Ltd. | Process for producing 2,3,3,3-tetrafluoropropene |
US20160347692A1 (en) | 2009-10-09 | 2016-12-01 | Blue Cube Ip Llc | Adiabatic plug flow reactors and processes incorporating the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103717560B (zh) * | 2011-07-26 | 2016-04-27 | 大金工业株式会社 | 用于制备2,3,3,3-四氟丙烯的方法 |
-
2018
- 2018-06-12 FR FR1855108A patent/FR3082202B1/fr active Active
-
2019
- 2019-06-06 EP EP19742846.9A patent/EP3807238A1/fr active Pending
- 2019-06-06 CN CN201980039202.8A patent/CN112243434A/zh active Pending
- 2019-06-06 US US16/973,518 patent/US11192837B2/en active Active
- 2019-06-06 WO PCT/FR2019/051356 patent/WO2019239040A1/fr unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090240090A1 (en) | 2004-04-29 | 2009-09-24 | Honeywell International Inc. | Integrated process to produce 2,3,3,3-tetrafluoropropene |
EP1945600B1 (fr) * | 2005-11-03 | 2009-04-15 | Basf Se | Procede permettant de mettre en oeuvre de maniere stable un processus de production en continu d'acroleine ou d'acide acrylique ou d'un melange des deux a partir de propane |
WO2008054781A1 (fr) | 2006-10-31 | 2008-05-08 | E. I. Du Pont De Nemours And Company | Procédés de production de fluoropropanes et d'halopropènes et compositions azéotropiques de 2-chloro-3,3,3-trifluoropropène avec du hf et de 1,1,1,2,2-pentafluoropropane avec du hf |
US20140316171A1 (en) * | 2008-11-19 | 2014-10-23 | Arkema Inc. | Process for the manufacture of hydrofluoroolefins |
US20160347692A1 (en) | 2009-10-09 | 2016-12-01 | Blue Cube Ip Llc | Adiabatic plug flow reactors and processes incorporating the same |
WO2013088195A1 (fr) | 2011-12-14 | 2013-06-20 | Arkema France | Procédé pour la préparation de 2,3,3,3-tétrafluoropropène |
US20150203421A1 (en) * | 2012-08-08 | 2015-07-23 | Daikin Industries, Ltd. | Process for producing 2,3,3,3-tetrafluoropropene |
WO2015079137A1 (fr) | 2013-11-28 | 2015-06-04 | Arkema France | Procede de purification d'acide chlorhydrique |
Also Published As
Publication number | Publication date |
---|---|
FR3082202A1 (fr) | 2019-12-13 |
US20210253501A1 (en) | 2021-08-19 |
CN112243434A (zh) | 2021-01-19 |
EP3807238A1 (fr) | 2021-04-21 |
FR3082202B1 (fr) | 2020-08-28 |
US11192837B2 (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6378812B2 (ja) | 2,3,3,3−テトラフルオロプロペンの製造方法 | |
WO2019170991A1 (fr) | Procédé de production du 2,3,3,3-tétrafluoropropène | |
EP3762353A1 (fr) | Procédé de production du 2,3,3,3-tétrafluoropropène | |
WO2015055927A1 (fr) | Procédé de production de composes fluores | |
EP3807237A1 (fr) | Procede de production de 2,3,3,3-tetrafluoropropene et installation pour la mise en oeuvre de celui-ci | |
FR3078698A1 (fr) | Procede de production du 2-chloro-3,3,3-trifluoropropene | |
EP2828228B1 (fr) | Procédé de préparation de 2-chloro-3,3,3-trifluoropropène | |
WO2019239040A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci | |
EP3807239A1 (fr) | Procede production de 2,3,3,3-tetrafluoropropene et reacteur pour la mise en oeuvre de celui-ci | |
WO2019239041A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène, réacteur et installation pour la mise en œuvre de celui-ci | |
EP3807240A1 (fr) | Procede de production de 2-chloro-3,3,3-trifluoropropene et installation pour la mise en oeuvre de celui-ci | |
FR3098127A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène et réacteur pour la mise en œuvre de celui-ci | |
FR3098216A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci | |
FR3073516B1 (fr) | Procede de production du 2,3,3,3-tetrafluoropropene. | |
FR3073221B1 (fr) | Procede de production du 2,3,3,3-tetrafluoropropene. | |
WO2019170992A1 (fr) | Procédé de déhydrofluoration d'un composé hydrocarbure | |
FR3077072A1 (fr) | Procédé de purification du 1,1,1,2,3-pentafluoropropane et utilisation de celui-ci pour l’obtention de 2,3,3,3-tétrafluoropropène de haute pureté |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19742846 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019742846 Country of ref document: EP Effective date: 20210112 |