EP3802705A1 - Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment - Google Patents

Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment

Info

Publication number
EP3802705A1
EP3802705A1 EP19724836.2A EP19724836A EP3802705A1 EP 3802705 A1 EP3802705 A1 EP 3802705A1 EP 19724836 A EP19724836 A EP 19724836A EP 3802705 A1 EP3802705 A1 EP 3802705A1
Authority
EP
European Patent Office
Prior art keywords
weight
component
group
thermoplastic composition
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19724836.2A
Other languages
English (en)
French (fr)
Other versions
EP3802705B1 (de
Inventor
Derk Erich WANDNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Intellectual Property GmbH and Co KG
Original Assignee
Covestro Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property GmbH and Co KG filed Critical Covestro Intellectual Property GmbH and Co KG
Publication of EP3802705A1 publication Critical patent/EP3802705A1/de
Application granted granted Critical
Publication of EP3802705B1 publication Critical patent/EP3802705B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0021Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin

Definitions

  • the invention relates to thermoplastic polycarbonate compositions containing Interfe rence and / or pearlescent pigment from the group of metal oxide-coated mica, and moldings of these compositions.
  • Effect pigments are platelet-shaped and cause a directed reflection and / or interference.
  • effect pigments metallic effect pigments, interference pigments and pearlescent pigments, with the boundaries between the latter in particular being able to be fluid and therefore also collectively referred to as "special effect pigments”.
  • Pearlescent pigments comprise transparent platelets of high refractive index. Multiple reflection creates a pearl-like effect.
  • the coloring of interference pigments, which may be both transparent and opaque, is based primarily on interference.
  • the pearlescent and / or interference pigments also include, in particular, metal oxide-coated mica pigments which find application in various fields, for example for housings of numerous devices in the household or consumer electronics or as a design element in the architectural sector.
  • Pearlescent effects and / or interference pigments of this type are available, inter alia, from BASF SE under the names "Magnapearl®” or “Mearlin®” or from Merck SE under the names "Iriodin®” or "Candurin®”.
  • DE 20 19 325 A1 discloses pigmented aromatic polycarbonates having a content of about 5 to about 100 percent by weight of epoxide group-containing copolymers, based on the pigment content.
  • WO 2016/096696 A1 describes a thermoplastic molding composition
  • a thermoplastic molding composition comprising g) 5 to 99.9% by weight of at least one thermoplastic polymer as component A; h) 0.05 to 10 wt .-% of at least one coated with a metal oxide mica as component B; i) from 0.05 to 50% by weight of at least one flame retardant other than component B as component C; j) 0 to 35% by weight of at least one functional polymer other than component A as component D; k) 0 to 60 wt .-% glass fibers as component E and 1) 0 to 10 wt .-% of further auxiliaries as component F, wherein the total amount of the components A to E 100 wt .-% results.
  • EP 0 158 931 A1 relates to thermoplastic molding compositions comprising: A) from 10 to 80 parts by weight of an aromatic, thermoplastic polycarbonate, B) from 10 to 60 parts by weight of a graft polymer of ethylenically unsaturated monomers onto rubbers having a rubber content of from 5 to 80 Wt .-%, based on the weight of component B) and C) 10 to 60 parts by wt.
  • a thermoplastic, resinous, high molecular weight, rubber-free copolymer wherein the sum of the weight parts A + B + C is 100, and optionally D) 1 to 20 parts by weight, based in each case on the sum of parts by wt.
  • a + B + C + D which in turn is 100, of an at least partially crosslinked butadiene-acrylonitrile copolymer rubber, the acrylonitrile to butadiene in a weight ratio from 15 to 85 to 35 to 65 in copolymerized form, and which has a particle size of 0.05 pm to 0.3 mip.
  • Component C contains from 0.05 to 5% by weight, based on the weight of component C, of an ethylenically unsaturated epoxide compound.
  • EP 0 718 354 A2 discloses thermoplastic, aromatic polycarbonates with
  • Phosphine stabilizers examples include tris (4-diphenyl) phosphine or tris (a-naphthyl) phosphine.
  • pearlescent pigments or interference pigments from the group of metal oxide-coated mica When used in polycarbonate compositions, pearlescent pigments or interference pigments from the group of metal oxide-coated mica usually lead to a significant degradation of the polycarbonate, resulting in a reduction of the molecular weight and a concomitant reduction in viscosity and thus increase the melt volume flow rate MVR and deterioration the mechanical properties shows.
  • the degradation processes also lead to a discoloration of the material.
  • the degradation processes are taken into account by using polycarbonate of higher molecular weight than is needed for the actual application.
  • the target molecular weight is then achieved by the compounding and injection molding or extrusion processes at elevated temperature.
  • other parameters in the compounding process such as the control of the energy input or the arrangement of the dosing for the effect pigment, a significant impact on the ultimately resulting Molekularge weight of the polycarbonate.
  • targeted control of the molecular weight is problematical.
  • thermostabilization of polycarbonate usually suitable organic phosphorus compounds such as aromatic phosphines, aromatic phosphites and organic antioxidants, in particular sterically hindered phenols, are usually added.
  • organic phosphorus compounds such as aromatic phosphines, aromatic phosphites and organic antioxidants, in particular sterically hindered phenols.
  • phosphites in combination with sterically hindered phenols is frequently described, for example in EP 0 426 499 A1.
  • the stabilization only by phosphites is not sufficient in the case of the effect pigments described.
  • the object was thus to provide polycarbonate compositions containing pearlescent and / or interference pigments from the group of metal oxide-coated mica, which exhibit the least possible degradation of the polycarbonate during compounding, so that the disadvantages described above are avoided as far as possible.
  • the object is achieved by adding epoxy group-containing copolymer or terpolymer of styrene and acrylic acid and / or methacrylic acid in combination with a phosphite thermostabilizer to form a polycarbonate composition containing pearlescent and / or interference pigment (s) from the group of US Pat Metal oxide-coated mica, is dissolved.
  • Thermoplastic compositions according to the invention are therefore those containing
  • composition also C) 0.05 wt .-% to ⁇ 3 wt .-% of an epoxy group-containing copolymer or terpolymer of styrene and acrylic acid and / or methacrylic acid and
  • component D contains from 0.001% to 0.500% by weight of one or more thermostabilizers, wherein component D comprises one or more phosphites as thermal stabilizer, and preferably such thermoplastic compositions, also containing E) further additives, more preferably 0 to 10% by weight. -%, particularly preferably selected from the group consisting of flame retardants, anti-dripping agents, impact modifiers, fillers, antistatic agents, colorants, including pigments other than component B, including carbon black, lubricants and / or mold release agents, Hydrolysestabilisa factors, compatibilizer, UV absorbers and / or IR absorbers.
  • component A comprises one or more phosphites as thermal stabilizer, and preferably such thermoplastic compositions, also containing E) further additives, more preferably 0 to 10% by weight. -%, particularly preferably selected from the group consisting of flame retardants, anti-dripping agents, impact modifiers, fillers, antistatic agents, colorants, including pigments other than component B, including carbon black, lubricants
  • Component A is aromatic polycarbonate.
  • polycarbonate according to the invention are meant both homopolycarbonates and copolycarbonates. It Kings nen the polycarbonates in a known manner be linear or branched. According to the invention, it is also possible to use mixtures of polycarbonates.
  • a part, up to 80 mol%, preferably from 20 mol% up to 50 mol%, of the carbonate groups in the polycarbonates used according to the invention may be replaced by aromatic dicarboxylic acid ter groups.
  • aromatic polyester carbonates Such polycarbonates, which contain both acid residues of carbonic acid and acid residues of aromatic dicarboxylic acids incorporated into the molecular chain, are referred to as aromatic polyester carbonates. They are subsumed in the context of the present invention under the generic term of the thermoplastic, aromatic polycarbonates.
  • thermoplastic polycarbonates including the thermoplastic aromatic poly ester carbonates, have average molecular weights M w, as determined by gel permeation chromatography according to DIN 55672-1: 2007-08, calibrated against bisphenol A polycarbonate standards using dichloromethane as eluant, of 10,000 g / mol to 35,000 g / mol, preferably from 12,000 g / mol to 32,000 g / mol, more preferably from 15,000 g / mol to 32,000 g / mol, in particular from 20,000 g / mol to 31,500 g / mol, calibration with linear Polycarbonates (from bisphenol A and phosgene) known molecular weight distribution of PSS Polymer Standards Service GmbH, Germany, calibration according to the method 2301-0257502-09D (from the year 2009 in German) of Currenta GmbH & Co.
  • the eluent is dichloromethane.
  • RI refractive index
  • Preferred methods of preparation of the polycarbonates to be used according to the invention, including the polyester carbonates, are the known interfacial process and the known melt transesterification process (cf., for example, WO 2004/063249 A1, WO 2001/05866 A1, US Pat. No. 5,340,905 A, US Pat. No. 5,097,002 A, US Pat. A 5,717,057 A).
  • the preparation of aromatic polycarbonates is e.g. by reacting dihydroxyaryl compounds with carbonyl halides, preferably phosgene, and / or with aromatic dicarboxylic acid dihalides, preferably benzenedicarboxylic acid dihalides, by the phase boundary process, if appropriate using chain terminators and optionally using trifunctional or more than trifunctional branching agents, where Her position of the polyester carbonates a part of the carbonic acid derivatives by aromatic dicarboxylic acids or derivatives of dicarboxylic acids is replaced, depending on the extent of the to be replaced in the aromatic polycarbonates Carbonat Designismeen by aromatic dicarboxylic ester structural units.
  • preparation via a melt polymerization process by reaction of dihydroxyaryl compounds with, for example, diphenyl carbonate is possible.
  • Dihydroxyaryl compounds suitable for the preparation of polycarbonates are those of the formula (1)
  • Z is an aromatic radical having 6 to 30 C atoms, which may contain one or more aromatic Ker ne, may be substituted and may contain aliphatic or cycloaliphatic radicals or alkylaryl or heteroatoms as bridge members.
  • Z in formula (1) preferably represents a radical of the formula (2)
  • R 6 and R 7 are each independently H, Ci to Gx-alkyl, Ci to Cix-alkoxy, halogen such as CI or Br or each optionally substituted aryl or aralkyl, preferably H or Ci to C 12- Alkyl, particularly preferably H or Ci to G-alkyl and very particularly preferably H or methyl, and X is a single bond, -S0 2 -, -CO-, -O-, -S-, Ci to G - Alkylene, C2 to G Alkylidcn or C5 to C 6 cycloalkylidene, which may be substituted by Ci to C 6 - alkyl, preferably methyl or ethyl, further for G to Ci2-arylene, which optionally with white may be condensed heteroatom-containing aromatic rings is.
  • halogen such as CI or Br or each optionally substituted aryl or aralkyl
  • X is a single bond, -S0 2 -, -CO-
  • X is a single bond, C ⁇ to C 5 -alkylene, C 2 - to C 5 -alkylidene, C - to C 8 -cycloalkylidene, -O-, -SO-, -CO-, -S-, -SO 2 or for a radical of the formula (2a)
  • Suitable dihydroxyaryl compounds for the preparation of the polycarbonates are, for example, hydroquinone, resorcinol, dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ethers, bis ( hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) sulfoxides, a-a'-bis- (hydroxyphenyl) -diisopropylbenzenes, phthalimidines derived from isatin or phenolphthalein derivatives, and their ketemalkylated, alkanated and chemically halogenated compounds ,
  • Preferred dihydroxyaryl compounds are 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1, 1-bis (4-hydroxyphenyl) -p-diisopropylbenzene, 2,2-bis (3-methyl-4-hydroxyphenyl) -propane, dimethyl-bisphenol A, bis (3,5-dimethyl-4-hydroxyphenyl) -methane, 2 , 2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) sulfone, 2,4-bis (3,5-dimethyl-4-) hydroxyphenyl) -2-methylbutane, 1,1-bis- (3,5-dimethyl-4-hydroxyphenyl) -p-diisopropylbenzene and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohex
  • R ' is in each case C 1 -C 10 -alkyl, aralkyl or aryl, preferably methyl or phenyl, very particularly preferably methyl.
  • dihydroxyaryl compounds are 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) -propane, 1,1-bis- (4-hydroxyphenyl) - cyclohexane, l, l-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and dimethyl-bisphenol A and the diphenols of the formulas (I), (II) and (III).
  • dihydroxyaryl compounds are e.g. in US-A 3,028,635, US-A 2,999,825, US-A 3,148,172, US-A 2,991,273, US-A 3,271,367, US-A 4,982,014 and US-A 2,999,846, in DE-A 1 570 703, DE-A 2063 050, DE-A 2 036 052, DE-A 2 211 956 and DE-A 3 832 396, in FR-A 1 561 518, in the monograph "H. Schnell , Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964 "and JP-A 62039/1986, JP-A 62040/1986 and JP-A 105550/1986.
  • Suitable carbonic acid derivatives are, for example, phosgene or diphenyl carbonate.
  • Suitable chain terminators that can be used in the preparation of the polycarbonates are monophenols.
  • Suitable monophenols are, for example, phenol itself, alkylphenols such as cresols, p-tert-butylphenol, cumylphenol and mixtures thereof.
  • Preferred chain terminators are the phenols which are mono- or polysubstituted by C 1 - to C 30 -alkyl radicals, linear or branched, preferably unsubstituted, or substituted by tert-butyl. Particularly preferred chain terminators are phenol, cumylphenol and / or p-tert-butylphenol.
  • the amount of chain terminator to be used is preferably 0.1 to 5 mol%, based on moles of diphenols used in each case.
  • the addition of the chain terminators can be carried out before, during or after the reaction with a carbonic acid derivative.
  • Suitable branching agents are the tri- or more than trifunctional compounds known in polycarbonate chemistry, especially those having three or more than three phenolic OH groups.
  • Suitable branching agents are, for example, 1,3,5-tri (4-hydroxyphenyl) benzene, 1,1,3-tri (4-hydroxyphenyl) ethane, tri- (4-hydroxyphenyl) -phenyl methane, 2,4- Bis (4-hydroxyphenylisopropyl) phenol, 2,6-bis (2-hydroxy-5'-methyl-benzyl) -4-methylphenol, 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphenyl) propane, tetra- (4-hydroxyphenyl) methane, tetra- (4- (4-hydroxyphenylisopropyl) phenoxy) methane and 1,4-bis - ((4 ', 4 "-dihydroxytriphenyl) methyl) benzene and 3,3-bis (3-methyl-4-hydroxyphenyl) -2-oxo-2,3-dihydroindole.
  • the amount of optionally used branching agent is preferably 0.05 mol% to 2.00 mol%, based on moles of dihydroxyaryl used in each case.
  • the branching agents may either be initially charged with the dihydroxyaryl compounds and the chain terminators in the aqueous alkaline phase or may be added dissolved in an organic solvent prior to phosgenation. In the case of the transesterification process, the branching agents are used together with the dihydroxyaryl compounds.
  • Particularly preferred polycarbonates are the homopolycarbonate based on bisphenol A, the homopolycarbonate based on 1,3-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and the copolycarbonates based on the two monomers bisphenol A and I, l -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, and of the diphenols of the formulas (I), (II) and / or (III)
  • R ' is in each case C 1 -C 10 -alkyl, aralkyl or aryl, preferably methyl or phenyl, very particularly preferably methyl, derived homo- or copolycarbonates, in particular with bisphenol A.
  • the component A is preferably used at least partially in the form of powders, granules or mixtures of powders and granules.
  • the polycarbonate preferably has an MVR of 5 to 20 cm 3 / (10 min), more preferably 5.5 to 12 cm 3 / (10 min), even more preferably 8 cm 3 / (10 min), determined to ISO 1133: 2012-03 at a test temperature of 300 ° C and 1.2 kg load, on.
  • polycarbonate a mixture of various polycarbonates may also be used, e.g. from the polycarbonates Al and A2:
  • the amount of the aromatic polycarbonate Al is preferably, based on the total amount of polycarbonate, 25.0 to 85.0 wt .-%, preferably 28.0 to 84.0 wt .-%, particularly preferably 30.0 to 83.0 Wt .-%, wherein this aromatic polycarbonate based on bisphenol A with a preferred melt volume flow rate MVR of 5 to 15 cm 3 / l0 min, more preferably with a melt volume flow rate MVR of 6 to 12 cmVlO min, determined according to ISO 1133th (Test temperature 300 ° C, mass 1.2 kg, DIN EN ISO 1133-1: 2012-03).
  • the amount of the powdery aromatic polycarbonate A2 is preferably, based on the total amount of polycarbonate, 2.0 to 12.0 wt .-%, preferably 3.0 to 11.0 wt .-%, particularly preferably 4.0 to 10, 0 wt .-%, most preferably from 5.0 to 8.0 wt .-%, said aromatic polycarbonate preferably based on bisphenol A having a preferred melt volume flow rate MVR from 12 to 65 cm 3 / (10 min) , more preferably with a melt volume flow rate MVR of 14 to 32 cm 3 / (10 min), and particularly preferably with a melt volume flow rate MVR of 15 to 20 cm 3 / (10 min).
  • compositions according to the invention 50 to 98.5 wt .-%, preferably 80 to 98.0 wt .-%, more preferably 85 to 97.5 wt .-%, particularly preferably 90.0 to 97.5 wt. -%, most preferably 93.0 wt .-% to 97.5 wt .-%, used aromatic polycarbonate.
  • Component B of the compositions according to the invention are interference pigments and / or pearlescent pigments from the group of metal oxide-coated mica.
  • the mica may be naturally occurring or synthetically produced mica, with the latter being preferred because of the usually higher purity. Mica obtained from nature is usually accompanied by other minerals.
  • Component B "mica" in mica obtained from nature also includes corresponding impurities with the stated amount.
  • the mica is preferably muscovite-based, ie it preferably comprises at least 60% by weight, more preferably at least 70% by weight, even more preferably at least 85% % By weight, particularly preferably at least 90% by weight of muscovite, based on the total weight of the mica fraction - without metal oxide coating - of the interference and / or pearlescent pigments.
  • the metal oxide coating preferably comprises one or more coating layers containing titanium dioxide, tin oxide, aluminum oxide and / or iron oxide, wherein the metal oxide further preferably ferric oxide (Fe 2 O 3), iron (II, III) oxide (FesO i, a mixture of FC2O3 and FeO) and / or titanium dioxide, more preferably titanium dioxide.
  • component B is a titanium dioxide-coated mica.
  • the proportion of titanium dioxide in the total weight of the pigment is preferably 30 to 60% by weight, more preferably 35 to 55% by weight, and the content of the mica is preferably 40 to 70% by weight, more preferably 45 to 65% by weight. -%.
  • the pigment comprises anatase-coated mica, very particularly preferred are at least 90 wt .-%, preferably 95 wt .-%, more preferably at least 98 wt .-%, of the pigment component B anatase-coated mica.
  • the pigment is preferably additionally provided with a silicate and / or silica coating, in particular a sol-gel coating.
  • a silicate and / or silica coating in particular a sol-gel coating.
  • the average particle size (D50) of the pigment is preferably 1 to 100 mih, more preferably 5 to 80 pm in the case of synthetic mica and more preferably 3 to 30 mih in the case of natural mica, more generally in the case of mica in particular preferably 3.5 to 15 mih, most preferably 4.0 to 10 mih, most preferably 4.5 to 8.0 mih.
  • the D90 value also determined by means of laser diffractometry on an aqueous slurry of the pigment, is preferably 10 to 150 ⁇ m in the case of synthetic mica and preferably 5 to 80 ⁇ m in the case of natural mica.
  • the density of the pigment is preferably 2.5 to 5.0 g / cm 3 , more preferably 2.8 to 4.0 g / cm 3 , determined according to DIN EN ISO 1183-1: 2013-04.
  • the proportion of the at least one metal oxide-coated mica on the entire polycarbonate-based composition is 0.8% by weight to ⁇ 5.0% by weight, preferably 1.0 to ⁇ 3.0% by weight. , More preferably 1.2 wt .-% to 2.5 wt .-%, particularly preferably 1.5 wt .-% to 2.0 wt .-%.
  • Component C is 0.8% by weight to ⁇ 5.0% by weight, preferably 1.0 to ⁇ 3.0% by weight. , More preferably 1.2 wt .-% to 2.5 wt .-%, particularly preferably 1.5 wt .-% to 2.0 wt .-%.
  • Component C of the compositions according to the invention is an epoxy group-containing copolymer or terpolymer of styrene and acrylic acid and / or methacrylic acid.
  • the epoxy groups can be introduced via unsaturated epoxides which are incorporated by copolymerization.
  • Such an unsaturated epoxide may be an acrylate or methacrylate which carries an epoxy group in the moiety derived formally from an alcohol, for example glycidyl (meth) acrylate.
  • component C comprises a copolymer of styrene and 2,3-epoxypropyl methacrylate, more preferably component C is a copolymer of styrene and 2,3-epoxypropyl methacrylate.
  • the copolymer or terpolymer according to component C in particular the copolymer of styrene and 2,3-epoxypropyl methacrylate, preferably has a styrene content, determined by means of 'H-NMR spectroscopy in CDCE, of 30 to 70 wt .-%, more preferably 40 to 60 wt .-%, particularly preferably from 50 to 55 wt .-%, on.
  • the weight-average molar mass of the copolymer or terpolymer according to component C is preferably from 2000 to 25000 g / mol, more preferably 3000 to 15000 g / mol, even more preferably 5000 to 10000 g / mol, particularly preferably 6000 to 8000 g / mol.
  • the epoxide content of the polymer according to component C is preferably from 5 to 20% by weight, more preferably from 7 to 18% by weight, particularly preferably from 10 to 15% by weight, determined in accordance with DIN EN 1877-1: 2000.
  • Such polymers are exaggerated ver example, from the BASF under the trademark Joncryl ® ADR.
  • the amount of component C in the total composition is 0.05% by weight to ⁇ 3% by weight, preferably 0.1% by weight to 2.0% by weight, more preferably 0.12% by weight. to 1.5 wt .-%, particularly preferably 0.15 wt .-% to ⁇ 1 wt .-%, in particular to ⁇ 0.5 wt .-%.
  • compositions according to the invention contain from 0.001 to 0.500% by weight, preferably from 0.005 to 0.300% by weight, more preferably from 0.05% by weight to 0.270% by weight, even more preferably from 0.15 to 0.25% by weight. %, particularly preferably 0.08 to 0.18 wt .-%, of one or more Thermostabi lisatoren, wherein component D comprises one or more phosphites as a heat stabilizer.
  • phosphine-based, phosphonite-based (in particular diphosphonite-based) stabilizers, phosphonate-based stabilizers, phenolic antixidants or a mixture of at least two of the aforementioned compounds may also be present.
  • phosphites are understood as meaning esters of phosphonic acid (often also referred to as phosphorous acid esters) having the general structure P (OR) 3, where R is aliphatic and / or aromatic hydrocarbon radicals, where the aromatic hydrocarbon radicals are further substituents, for example Alkyl groups, branched and / or un branched, may have.
  • Phosphonates are understood to mean compounds derived from the basic structure R-PO (OH) 2 , where R is aliphatic and / or aromatic hydrocarbon radicals, where the aromatic hydrocarbon radicals may have further substituents, such as, for example, branched and / or unbranched alkyl groups.
  • the OH groups of the basic structure may be partially or completely to OR functionalities, wherein R in turn represents aliphatic and / or aromatic hydrocarbon radicals, wherein the aromatic hydrocarbon radicals further substituents such as, for example, alkyl groups, branched and / or unbranched, esterified or be partially or completely deprotonated, the negative total charge is compensated by an ent speaking counterion.
  • phosphonites are esters, in particular diesters of phosphonous acid of the RP (OR) 2 type, where R is aliphatic and / or aromatic hydrocarbon radicals, the aromatic hydrocarbon radicals being further substituents such as, for example, alkyl groups, branched and or unbranched, may have.
  • the phosphonites may in this case have one phosphorus atom or else a plurality of phosphorus atoms bridged via corresponding aliphatic and / or aromatic hydrocarbons.
  • the radicals R in a compound may each be the same or different.
  • phosphines there are no restrictions on the choice of phosphines, the phosphine compounds preferably being selected from the group comprising aliphatic phosphines, aromatic phosphines and aliphatic-aromatic phosphines.
  • the phosphine compounds can be primary, secondary and tertiary phosphines. Tertiary phosphines are preferably used, with aromatic phosphines being particularly preferred and tertiary aromatic phosphines being very particularly preferred.
  • TPP triphenylphosphine
  • TPP trialkylphenylphosphine
  • bisdiphenylphosphinoethane or a trinaphthylphosphine
  • TPP triphenylphosphine
  • Grandsharmlich mixtures of different phosphines can be used.
  • phosphine compounds are known to the person skilled in the art and are described, for example, in EP 0 718 354 A2 and "Ullmanns Enzyklopadie der Technischen Chemie", 4th ed., Vol. 18, pp. 378-398 and Kirk-Othmer, 3rd ed , Vol. 17, pp. 527-534.
  • the composition always contains, after thermal processing, certain amounts of oxidized phosphine, particularly preferably triphenylphosphine oxide.
  • the amount of phosphine stabilizer in the end product is preferably> 0.01% by weight, more preferably> 0.02% by weight.
  • compositions according to the invention contain from 0.03 to 0.500% by weight, more preferably from 0.04 to 0.07% by weight of phosphine.
  • Irgafos® 168 tris (2,4-di-tert-butylphenyl) phosphite / CAS No. 31570-04-4
  • Irgafos® TPP CAS No. 101-02-0
  • ADK PEP Bar 36 CAS # 80693-00-1
  • Hostanox® P-EPQ CAS # 119345-01-6
  • Irgafos® TNPP CAS # 119345-01-6
  • No. 26523-78-4 Irgafos® 168 being particularly preferred.
  • the group of antioxidants include in particular the sterically hindered phenols.
  • sterically hindered phenols are esters n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate or ⁇ - (5-tert-butyl-4-hydroxy-3-methylphenyl) propionic acid or ß- (3,5-dicyclohexyl-4-hydroxyphenyl) propionic acid with monohydric or polyhydric alcohols, eg. B. with methanol, ethanol, butanol, n-octanol, i-octanol, n-octadecanol.
  • hindered phenol n-octadecyl-3- (3,5-di-t.butyl-4-hydroxyphenyl) propionate is used.
  • the hindered phenol is preferably used in amounts of 0.01 to 0.1 wt .-%, preferably 0.015 to 0.06 wt .-%, based on the total weight of the composition.
  • suitable phenolic antioxidants are, for example, Irganox® 1076 (CAS No. 2082-79-3 / 2,6-di-tert-butyl-4- (octadecanoxycarbonylethyl) phenol) and Irganox® 1010 (CAS No. 6683-19 -8th).
  • the stabilizer combination preferably contains a) 10% by weight to 89% by weight, more preferably 20% by weight to 78% by weight, and particularly preferably 30% by weight to 67% by weight of at least one phosphine stabilizer, b) 10% by weight to 89% by weight, more preferably 20% by weight to 78% by weight, and particularly preferably 30% by weight to 67% by weight of at least one phosphite stabilizer, and c) 1 Wt .-% - 50 wt .-%, more preferably 2 wt .-% - 40 wt .-%, and particularly preferably 3 wt .-% -20 wt .-% of at least one phenolic antioxidant, wherein the sum of the components a) -c) added to 100 wt .-%.
  • the stabilizer combination of Triphe nylphosphin, Irganox 1076® and bis (2,6-di-t.butyl-4-methylphenyl) pentaerythrityl diphosphite is particularly preferred.
  • Irganox® 1010 penentaerythritol-3- (4-hydroxy-3,5-di-tert-butylphenyl) propionate, CAS No .: 6683-19-8 can be used.
  • the proportion of the stabilizer combination in the total composition is 0.001 wt .-% - 0.500 wt .-%, preferably 0.005 wt .-% - 0.300 wt.%, More preferably 0.05 to 0.270 wt .-%, particularly preferably 0.15 wt .% - 0.25 wt.%, Based on the total weight of the composition.
  • the ratio of phosphite stabilizer to phenolic antioxidant is 1: 5 to 10: 1, more preferably 1: 5 to 5: 1 and most preferably from 3: 1 to 4: 1.
  • the ratio of phosphine (a) to the mixture of phosphite and phenolic antioxidant (b + c) is preferably 8: 1 to 1: 9, more preferably 1: 5 to 5: 1, the ratio of phosphite to Stabilizer (b) to phenolic antioxidant (c) from 1: 5 to 10: 1, more preferably from 1: 5 to 5: 1, and particularly preferably from 3: 1 to 4: 1.
  • thermoplastic matrix To stabilize the thermoplastic matrix, other phosphorus-based stabilizers or other thermal stabilizers can be used as long as they do not adversely affect the effect of stabilization described above.
  • Component E The compositions comprising aromatic polycarbonate, as further additives, one or more of the customary for polycarbonate compositions additives such as flame retardants, anti-dripping agents, impact modifiers, fillers, antistatic agents, colorants, a finally different from component B pigments, including carbon black, lubricants and / or mold release agents, UV absorbers, 1R absorbers, hydrolysis stabilizers and / or compatibilizers.
  • additives such as flame retardants, anti-dripping agents, impact modifiers, fillers, antistatic agents, colorants, a finally different from component B pigments, including carbon black, lubricants and / or mold release agents, UV absorbers, 1R absorbers, hydrolysis stabilizers and / or compatibilizers.
  • the group of further additives does not comprise any pigments according to component B, ie no pearlescent and / or interference pigments from the group of metal oxide coated mica, and no epoxide group-containing copolymers or terpolymers of styrene and acrylic acid and / or methacrylic acid, since these as component C are designated.
  • the group of further additives according to component E does not comprise any thermostabilizers, since these are already covered by the existing component D.
  • the amount of further additives is preferably up to 10 wt .-%, more preferably up to 7 wt .-%, even more preferably up to 5 wt .-%, particularly preferably 0.01 to 3 wt .-%, very particularly preferably up to 1% by weight, based on the total composition.
  • demulsifying agents for the compositions according to the invention are pentaerythritol tetrastearate (PETS) or glycerol monostearate (GMS), their carbonates and / or mixtures of these mold release agents.
  • PETS pentaerythritol tetrastearate
  • GMS glycerol monostearate
  • Coloring agents including pigments for the purposes of the present invention according to component E, are, for example, sulfur-containing pigments such as cadmium red and cadmium yellow, iron cyanide-based pigments such as Berlin blue, oxide pigments such as titanium dioxide, zinc oxide, red iron oxide, black iron oxide, chromium oxide , Titanium yellow, zinc-iron-based brown, titanium-cobalt-based green, cobalt blue, copper-chromium-based black and copper-iron-based black or chromium-based pigments such as chrome yellow, phthalocyanine-derived dyes such as copper phthalocyanine blue and Copper Phthalocyanine Green, condensed polycyclic dyes and pigments such as azo-based (eg, nickel-azo yellow), sulfur indigo dyes, perinone-based, perylene-based, quinacridone-derived, dioxazine-based, isoindolinone-based, and quinophthalone derived derivatives, anthraquinone-based, heterocyclic
  • MACROLEX® ® Blue RR MACROLEX® ® Violet 3R
  • MACROLEX® ® EC MACROLEX® ® Violet B (Lanxess AG, Germany), Sumiplast ® Violet RR, Sumiplast ® Violet B, Sumiplast ® Blue OR, (Sumitomo Chemical Co ® blue or Heliogen ® Green., Ltd.), Diaresin ® violet D, Diaresin ® Blue G, Diaresin ® Blue N (Mitsubishi Chemical Corporation), Heliogen (BASF AG, Germany).
  • cyanine derivatives, quinoline derivatives, anthraquinone derivatives, phthalocyanine derivatives are preferred.
  • Nanosize carbon blacks are preferably used as carbon blacks. These preferably have an average primary particle size, determined by scanning electron microscopy, of less than 100 nm, preferably from 10 to 99 nm, more preferably from 10 to 50 nm, particularly preferably from 10 to 30 nm, in particular from 10 to 20 nm Carbon blacks are particularly preferred.
  • carbon blacks useful in the invention are available from a variety of trade names and forms, such as pellets or powders.
  • suitable carbon blacks are available under the trade names BLACK PEARLS®, as wet-processed pellets under the names ELFTEX®, RE GAL® and CSX®, and in a fluffy form under MONARCH®, ELFTEX®, RE GAL® and MOGUL® - all from Cabot Corporation.
  • Particularly preferred are carbon blacks traded under the trade name BLACK PEARLS® (CAS No. 1333-86-4).
  • the composition contains an ultraviolet absorber.
  • Suitable ultraviolet absorbers are compounds which have the lowest possible transmission below 400 nm and the highest possible transmission above 400 nm. Such compounds and their preparation are known from the literature and are described, for example, in EP 0 839 623 A1, WO 1996/15102 A2 and EP 0 500 496 A1.
  • Particularly suitable ultraviolet absorbers for use in the composition according to the invention are benzotriazoles, triazines, benzophenones and / or arylated cyanoacrylates.
  • the following ultraviolet absorbers are, for example: hydroxy-benzotriazoles, such as 2- (3 ', 5'-bis (l, l-dimethylbenzyl) -2'-hydroxyphenyl) benzotriazole (Tinuvin ® 234, BASF SE, Ludwigsha fen), 2- (2'-hydroxy-5 '- (tert-octyl) phenyl) benzotriazole (Tinuvin ® 329, BASF SE, Ludwigshafen, Germany), 2- (2'-hydroxy-3' - (2- butyl) -5 '- (tert-butyl) phenyl) benzotriazole (Tinuvin ® 350, BASF SE, Ludwigshafen), bis (3- (2H-benzotriazolyl) -2-hydroxy-5-tert-octyl) methane, (Tinuvin ® 360, BASF SE, Loaded hafen), (2- (4,6-diphenyl-l, 3,5-triazin-2-yl)
  • Suitable IR absorbers are disclosed, for example, in EP 1 559 743 A1, EP 1 865 027 A1, DE 10 022 037 A1 and DE 10 006 208 A1.
  • those based on boride and tungstates, in particular cesium tungstate or zinc-doped cesium tungstate, and absorbers based on ITO and ATO and combinations thereof are preferred.
  • This group includes both core / shell-based systems such as ABS, MBS, acrylic-based, silicone-acrylic based impact modifiers, as well as non-core shell-based impact modifiers.
  • Organic and inorganic fillers in customary amounts can be added to the polycarbonate composition.
  • all finely ground organic and inorganic materials are suitable for this purpose. These may e.g. have particulate, flaky or fibrous character.
  • Mixtures of various inorganic materials can also be used.
  • Preferred inorganic fillers are finely divided (nanoscale) inorganic compounds of one or more metals of the 1st to 5th main group and 1st to 8th subgroup of the periodic system, preferably from the 2nd to 5th main group, more preferably on the 3rd to 5.
  • Examples of preferred compounds are oxides, hydroxides, hydrous / basic oxides, sulfates, sulfites, sulfides, carbonates, carbides, nitrates, nitrites, nitrides, borates, silicates, phosphates and / or hydrides.
  • Polytetrafluoroethylene is preferably used as the anti-dripping agent, in particular in amounts of from 0.2 to 0.8% by weight.
  • the components used may contain conventional impurities, for example, resulting from their manufacturing process. It is preferred to use components which are as pure as possible. It is further understood that these contaminants may also be included in a closed formulation of the composition.
  • thermoplastic compositions are those ent tend A) 90.0 wt .-% to 97.5 wt .-%, preferably 93.0 wt .-% to 97.5 wt .-%, aromatic polycarbonate, preferably with an MVR of 5 to 20 cm 3 / (10 min), determined according to ISO
  • component D comprises phosphite as a thermal stabilizer, preferably including i) phosphine, phosphite and phenolic antioxidant;
  • flame retardants preferably up to 5 wt .-%, particularly preferably 0.1 to 3 wt .-%, most preferably up to 1 wt .-% further additives, most preferably selected from the group consisting of flame retardants, anti-dripping agents, impact modifiers, fillers, antistatic agents, colorants, including pigments other than component B, including carbon black, lubricants and / or mold release agents, hydrolysis stabilizers, compatibilizers
  • the group of further additives according to component E very particularly preferably consists only of colorants, mold release agents, pigments other than component B, in particular carbon black.
  • thermoplastic compositions according to the invention
  • thermostabilizer D 0.05 wt .-% to 0.270 wt .-%, more preferably 0.10 wt .-% to 0.25 wt .-%, of one or more thermostabilizers, wherein component D one or more phosphites as thermostabilizers comprising, most preferably consisting of i) phosphine, phosphite and phenolic antioxidant,
  • additives are most preferably selected from the group consisting of colorants, lubricants Mold release agents, pigments other than component B, in particular carbon black, component b being titanium dioxide-coated mica, most preferably comprising at least 98% by weight anatase-coated mica.
  • thermoplastic compositions contain no further compo nents.
  • the preparation of the polymer compositions according to the invention containing the abovementioned components is carried out by customary incorporation methods by combining, mixing and homogenizing the individual constituents, wherein in particular the homogenization takes place preferably in the melt under the action of shearing forces.
  • the merging and mixing takes place before the melt homogenization using powder pre-mixes.
  • premixes which have been prepared from solutions of the mixture components in suitable solvents, if appropriate homogenizing in solution and then removing the solvent.
  • compositions according to the invention can be introduced by known methods or as a masterbatch.
  • masterbatches are particularly preferred for introducing the additives, in particular masterbatches based on the respective polymer matrix being used.
  • the composition can be combined, mixed, homogenized and then extruded in conventional equipment such as screw extruders (for example twin-screw extruder, ZSK), kneaders, Brabender or Banbury mills. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
  • the production of the plastic molded parts from the compositions according to the invention can preferably be carried out by injection molding, extrusion or rapid heat-cycle molding.
  • compositions according to the invention are preferably used for the production of injection-molded parts, in particular thin-walled, with pearlescent optics. Also preferably, the compositions according to the invention are used for the production of extrudates. Injection-molded parts and extrudates are understood according to the invention as "molded parts”.
  • Thin-walled in the context of the present invention are those molded parts in which wall thicknesses at the thinnest points of less than about 3 mm, preferably less than 3 mm, more preferably less than 2.5 mm, even more preferably less than 1, 5 mm, more preferably less than 0.5 mm. "Approximately” here means that the actual value does not deviate significantly from said value, with a deviation of not greater than 25%, preferably not greater than 10%, as " not essential ".
  • the invention therefore also corre sponding moldings, containing or consisting of these compositions, summarized as "moldings of these compositions”.
  • plastic moldings consisting of or comprising the compositions according to the invention are also an object of the present invention.
  • the pearlescent pigment consisted of a mica which is coated with titanium dioxide. Muscovite was determined to be the corresponding mica mineral by X-ray powder diffractometry. The ratio of both components was determined to be 56% mica and 44% anatase. The D50 value was determined to be 5.7 ⁇ m using a Malvern Mastersizer.
  • C copolymer of styrene and 2,3-epoxypropyl methacrylate.
  • Styrene content 53% by weight, determined by H-NMR spotting microscopy in CDCft.
  • M w 7400 g / mol, determined by gel permeation chromatography in o-dichlorobenzene at 150 ° C using poly styrene standards.
  • the epoxide content determined in accordance with DIN EN 1877-1: 2000, is 14% by weight.
  • D-1 ADK STAB® PEP-36, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, available from Adeka Palmaroie.
  • D-2 Hostanox PEPQ. Stabilizer mixture containing as main component tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenyldiphosphonite, available from Clariant.
  • D-3 Irganox® 1076, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, available from BASF SE.
  • Irganox® B900 blend of four parts Irgafos® 168 and one part Irganox® 1076.
  • Irgafos® 168 tris (2,4-tert-butylphenyl) phosphite, available from BASF SE.
  • D-5 triphenylphosphine, available from BASF SE.
  • E-I pentaerythritol tetrastearate
  • Loxiol VPG 861 from Emery Oleochemicals.
  • E-2 Mixture of common colorants including carbon black.
  • the polycarbonate compositions described in the following examples were prepared on an extruder Evolum EV32 from Clextral with a throughput of 50 kg / h by Compoun dtechnik.
  • the melt temperature was 300 ° C.
  • melt volume flow rate was carried out according to ISO 1133: 2012-03 (at a test temperature of 300 ° C, mass 1.2 kg) with the Zwick 4106 instrument from Zwick Rellell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft Zusammensetzungen auf Basis von aromatischem Polycarbonat, enthaltend Metalloxid-beschichteten Glimmer als Effektpigment, die keinen signifikanten Molekulargewichtsabbau des Polycarbonats, erkennbar an der MVR, unter thermischer Beanspruchung aufweisen. Dieses wird erreicht durch die Zugabe geringer Mengen eines Epoxidgruppen-haltigen Copolymers oder Terpolymers aus Styrol und Acrylsäure und/oder Methacrylsäure in Kombination mit Phosphit-haltigem Thermostabilisator.

Description

Polycarbonatzusammensetzung mit Perlglanzpigment und/oder Interferenzpigment
Die Erfindung betrifft thermoplastische Polycarbonat-Zusammensetzungen, enthaltend Interfe renz- und/oder Perlglanzpigment aus der Gruppe der Metalloxid-beschichteten Glimmer, sowie Formteile aus diesen Zusammensetzungen.
Polycarbonatzusammensetzungen werden teilweise Effektpigmente zugegeben, um das Aussehen der Zusammensetzungen durch winkelabhängige Farbton- und/oder Glanzänderungen zu beeinflus sen. Effektpigmente sind plättchenförmig und bewirken eine gerichtete Reflexion und/oder Interfe renz. Es gibt verschiedene Gruppen von Effektpigmenten: Metalleffektpigmente, Interferenzpig mente und Perlglanzpigmente, wobei insbesondere die Grenzen zwischen letzteren fließend sein können und diese daher auch zusammenfassend als„spezielle Effektpigmente“ bezeichnet werden.
Perlglanzpigmente umfassen transparente Plättchen mit hohem Brechungsindex. Durch Mehrfach reflexion entsteht ein perlenähnlicher Effekt. Die Farbgebung bei Interferenzpigmenten, die sowohl transparent als auch opak sein können, beruht vornehmlich auf Interferenz.
Zu den Perlglanz- und/oder Interferenzpigmenten zählen insbesondere auch Metalloxid beschichtete Glimmerpigmente, die in verschiedenen Bereichen, etwa für Gehäuse zahlreicher Geräte im Haushalt oder der Unterhaltungselektronik oder als Designelement im Architekturbe reich, Anwendung finden. Perlglanzeffekte und /oder Interferenzpigmente dieser Art sind unter Anderem unter den Namen„Magnapearl®“ oder„Mearlin®“ von der BASF SE oder unter den Namen„Iriodin®“ oder„Candurin®“ von der Merck SE erhältlich.
DE 20 19 325 Al offenbart pigmentierte aromatische Polycarbonate mit einem Gehalt von etwa 5 bis etwa 100 Gewichtsprozent an epoxidgruppenhaltigen Mischpolymeren, bezogen auf den Pigmentgehalt.
WO 2016/096696 Al beschreibt eine thermoplastische Formmasse, enthaltend g) 5 bis 99,9 Gew.- % mindestens eines thermoplastischen Polymers als Komponente A; h) 0,05 bis 10 Gew.-% mindestens eines mit einem Metalloxid beschichteten Glimmers als Komponente B; i) 0,05 bis 50 Gew.-% mindestens eines von Komponente B verschiedenen Flammschutzmittels als Komponente C; j) 0 bis 35 Gew.-% mindestens eines von Komponente A verschiedenen funktionellen Polymers als Komponente D; k) 0 bis 60 Gew.-% Glasfasern als Komponente E und 1) 0 bis 10 Gew.-% weiterer Hilfsstoffe als Komponente F, wobei die Gesamtmenge der Komponenten A bis E 100 Gew.-% ergibt.
EP 0 158 931 Al betrifft thermoplastische Formmassen enthaltend: A) 10 bis 80 Gew. -Teile eines aromatischen, thermoplastischen Polycarbonats, B) 10 bis 60 Gew. -Teile eines Pfropfpolymerisats von ethylenisch ungesättigten Monomeren auf Kautschuke mit einem Kautschukgehalt von 5 bis 80 Gew.-%, bezogen auf Gewicht der Komponente B) und C) 10 bis 60 Gew. -Teile eines thermoplastischen, harzartigen, hochmolekularen, kautschukfreien Copolymerisats, wobei die Summe der Gewichts-teile A + B + C jeweils 100 beträgt, und gegebenenfalls D) 1 bis 20 Gew.- Teile, bezogen jeweils auf die Summe der Gew. -Teile A + B + C + D, welche wiederum jeweils 100 beträgt, eines zumindest partiell vernetzten Butadien- Acrylnitril-Copolymerkautschuks, der Acrylnitril zu Butadien im Gewichtsverhältnis von 15 zu 85 bis 35 zu 65 einpolymerisiert enthält, und der eine Teilchengröße von 0,05 pm bis 0,3 mip hat. Die Komponente C enthält 0,05 bis 5 Gew.-%, bezogen auf Gewicht der Komponente C, einer ethylenisch ungesättigten Epoxidverbindung copolymerisiert.
EP 0 718 354 A2 offenbart thermoplastische, aromatische Polycarbonate mit
Phosphinstabilisatoren. Beispiele für einsetzbare Phosphine sind Tris-(4-diphenyl)-phosphin oder Tris-(a-naphthyl)-phosphin.
Bei Einsatz in Polycarbonat-Zusammensetzungen führen Perlglanzpigmente bzw. Interferenzpig mente aus der Gruppe der Metalloxid-beschichteten Glimmer üblicherweise zu einem signifikanten Abbau des Polycarbonates, was sich in einer Reduzierung des Molekulargewichtes und einer damit verbundenen Reduzierung der Viskosität und damit Erhöhung der Schmelzevolumenfließrate MVR und Verschlechterung der mechanischen Eigenschaften zeigt. Die Abbauprozesse führen außerdem zu einer Verfärbung des Materials.
Bei auf dem Markt befindlichen Zusammensetzungen werden die Abbauprozesse dadurch berück sichtigt, dass Polycarbonat mit höherem Molekulargewicht als für die eigentliche Anwendung be nötigt eingesetzt wird. Das Ziel-Molekulargewicht wird dann durch die Compoundier- und Spritz guss- bzw. Extrusionsprozesse bei erhöhter Temperatur erreicht. Auch haben weitere Parameter im Compoundierprozess, wie die Steuerung des Energieeintrages oder die Anordnung der Dosierstelle für das Effektpigment, einen wesentlichen Einfluss auf das sich letztlich ergebende Molekularge wicht des Polycarbonats. Dabei zeigte sich jedoch, dass eine gezielte Steuerung des Molekularge wichts problematisch ist.
Eine grundsätzliche Möglichkeit, den Abbau von Polycarbonat zu minimieren, ist die Verwendung von Thermostabilisatoren. Zur Thermostabilisierung von Polycarbonat werden üblicherweise im Wesentlichen geeignete organische Phosphorverbindungen wie aromatische Phosphine, aromati sche Phosphite und organische Antioxidantien, insbesondere sterisch gehinderten Phenole, zuge setzt. Häufig wird die Verwendung von Phosphiten in Kombination mit sterisch gehinderten Phe nolen beschrieben, etwa in der EP 0 426 499 Al. Die Stabilisierung nur durch Phosphite ist jedoch im Fall der beschriebenen Effektpigmente nicht ausreichend. Aufgabe war es somit, Polycarbonat-Zusammensetzungen, enthaltend Perlglanz- und/oder Interfe renzpigmente aus der Gruppe der Metalloxid-beschichteten Glimmer, bereitzustellen, die einen möglichst geringeren Abbau des Polycarbonates während der Compoundierung zeigen, so dass die vorstehend beschriebenen Nachteile möglichst vermieden werden. Überraschend wurde gefunden, dass die Aufgabe durch Zusatz von Epoxidgruppen-haltigen Copo lymer oder Terpolymer aus Styrol und Acrylsäure und/oder Methacrylsäure in Kombination mit einem Phosphit-Thermostabilisator zu einer Polycarbonatzusammensetzung, enthaltend Perlglanz- und/oder Interferenzpigment(e) aus der Gruppe der Metalloxid-beschichteten Glimmer, gelöst wird. Erfindungsgemäße thermoplastische Zusammensetzungen sind daher solche, enthaltend
A) 50 Gew.-% bis 98,5 Gew.-% aromatisches Polycarbonat und
B) 0,8 Gew.-% bis < 5,0 Gew.-% lnterferenzpigment und/oder Perlglanzpigment aus der Gruppe der Metalloxid-beschichteten Glimmer, dadurch gekennzeichnet, dass die Zusammensetzung außerdem C) 0,05 Gew.-% bis < 3 Gew.-% eines Epoxidgruppen-haltigen Copolymers oder Terpolymers aus Styrol und Acrylsäure und/oder Methacrylsäure und
D) 0,001 Gew.-% bis 0,500 Gew.-% eines oder mehrerer Thermostabilisatoren enthält, wobei Komponente D ein oder mehrere Phosphite als Thermostabilisator umfasst, und vorzugsweise solche thermoplastischen Zusammensetzungen, enthaltend außerdem E) weitere Additive, weiter bevorzugt 0 bis 10 Gew.-%, besonders bevorzugt ausgewählt aus der Gruppe, bestehend aus Flammschutzmitteln, Antitropfmitteln, Schlagzähmodifikatoren, Füllstoffen, Antistatika, Farbmitteln, einschließlich von Komponente B verschiedenen Pigmenten, auch umfassend Ruß, Gleit- und/oder Entformungsmitteln, Hydrolysestabilisa toren, Verträglichkeitsvermittlem, UV-Absorbem und/oder lR-Absorbem. Komponente A
Bei Komponente A handelt es sich um aromatisches Polycarbonat. Unter„Polycarbonat“ werden erfindungsgemäß sowohl Homopolycarbonate als auch Copolycarbonate verstanden. Dabei kön nen die Polycarbonate in bekannter Weise linear oder verzweigt sein. Erfindungsgemäß können auch Mischungen von Polycarbonaten verwendet werden.
Ein Teil, bis zu 80 Mol-%, vorzugsweise von 20 Mol-% bis zu 50 Mol-%, der Carbonat-Gruppen in den erfindungsgemäß eingesetzten Polycarbonaten können durch aromatische Dicarbonsäurees- ter-Gruppen ersetzt sein. Derartige Polycarbonate, die sowohl Säurereste der Kohlensäure als auch Säurereste von aromatischen Dicarbonsäuren in die Molekülkette eingebaut enthalten, werden als aromatische Polyestercarbonate bezeichnet. Sie werden im Rahmen der vorliegenden Erfindung unter dem Oberbegriff der thermoplastischen, aromatischen Polycarbonate subsumiert.
Der Ersatz der Carbonatgruppen durch die aromatischen Dicarbonsäureestergruppen erfolgt im Wesentlichen stöchiometrisch und auch quantitativ, so dass das molare Verhältnis der Reaktions partner sich auch im fertigen Polyestercarbonat wiederfindet. Der Einbau der aromatischen Dicar bonsäureestergruppen kann sowohl statistisch als auch blockweise erfolgen.
Die thermoplastischen Polycarbonate, einschließlich der thermoplastischen, aromatischen Poly estercarbonate, haben mittlere Molekulargewichte Mw, bestimmt mittels Gelpermeationschromoto- graphie nach DIN 55672-1 :2007-08, kalibriert gegen Bisphenol A-Polycarbonat-Standards unter Verwendung von Dichlormethan als Elutionsmittel, von 10.000 g/mol bis 35.000 g/mol, vorzugs weise von 12.000 g/mol bis 32.000 g/mol, weiter bevorzugt von 15.000 g / mol bis 32.000 g/mol, insbesondere von 20.000 g/mol bis 31.500 g/mol, Kalibrierung mit linearen Polycarbonaten (aus Bisphenol A und Phosgen) bekannter Molmassenverteilung der PSS Polymer Standards Service GmbH, Deutschland, Kalibrierung nach der Methode 2301-0257502-09D (aus dem Jahre 2009 in deutscher Sprache) der Currenta GmbH & Co. OHG, Leverkusen. Das Elutionsmittel ist Dichlor methan. Säulenkombination aus vernetzten Styrol-Divinylbenzolharzen. Durchmesser der analyti schen Säulen: 7,5 mm; Länge: 300 mm. Partikelgrößen des Säulenmaterials: 3 mih bis 20 mih. Kon zentration der Lösungen: 0,2 Gew.-%. Flussrate: 1,0 ml/min, Temperatur der Lösungen: 30°C. Detektion mit Hilfe eines Brechungsindex(RI)-Detektors.
Einzelheiten der Herstellung von Polycarbonaten sind in vielen Patentschriften seit etwa 40 Jahren niedergelegt. Beispielhaft sei hier auf Schnell, "Chemistry and Physics of Polycarbonates", Poly mer Reviews, Volume 9, Interscience Publishers, New York, London, Sydney 1964, auf D. Freitag, U. Grigo, P.R. Müller, H. Nouvertne, BAYER AG, "Polycarbonates" in Encyclopedia of Polymer Science and Engineering, Volume 11, Second Edition, 1988, Seiten 648-718 und schließlich aufU. Grigo, K. Kirchner und P.R. Müller "Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag München, Wien, 1992, Seiten 117-299 verwiesen.
Bevorzugte Herstellungsweisen der erfindungsgemäß zu verwendenden Polycarbonate, ein schließlich der Polyestercarbonate, sind das bekannte Grenzflächenverfahren und das bekannte Schmelzeumesterungsverfahren (vgl. z. B. WO 2004/063249 Al, WO 2001/05866 Al, US 5,340,905 A, US 5,097,002 A, US-A 5,717,057 A).
Die Herstellung aromatischer Polycarbonate erfolgt z.B. durch Umsetzung von Dihydroxyarylver- bindungen mit Kohlensäurehalogeniden, vorzugsweise Phosgen, und/oder mit aromatischen Dicar- bonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalogeniden, nach dem Phasengrenz- flächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern und gegebenenfalls unter Verwendung von trifunktionellen oder mehr als trifunktionellen Verzweigern, wobei zur Her stellung der Polyestercarbonate ein Teil der Kohlensäurederivate durch aromatische Dicarbonsäu- ren oder Derivate der Dicarbonsäuren ersetzt wird, und zwar je nach Maßgabe der in den aro matischen Polycarbonaten zu ersetzenden Carbonatstruktureinheiten durch aromatische Dicarbon- säureesterstruktureinheiten. Ebenso ist eine Herstellung über ein Schmelzepolymerisationsverfah- ren durch Umsetzung von Dihydroxyarylverbindungen mit beispielsweise Diphenylcarbonat mög- lich.
Für die Herstellung von Polycarbonaten geeignete Dihydroxyarylverbindungen sind solche der Formel (1)
HO-Z-OH (1), in welcher
Z ein aromatischer Rest mit 6 bis 30 C- Atomen ist, der einen oder mehrere aromatische Ker ne enthalten kann, substituiert sein kann und aliphatische oder cycloaliphatische Reste bzw. Alkylaryle oder Heteroatome als Brückenglieder enthalten kann. Bevorzugt steht Z in Formel (1) für einen Rest der Formel (2)
in der R6 und R7 unabhängig voneinander für H, Ci- bis Gx- Alkyl-, Ci- bis Cix-Alkoxy, Halogen wie CI oder Br oder für jeweils gegebenenfalls substituiertes Aryl- oder Aralkyl, bevorzugt für H oder Ci- bis C 12- Alkyl, besonders bevorzugt für H oder Ci- bis G- Alkyl und ganz besonders bevorzugt für H oder Methyl stehen, und X für eine Einfachbindung, -S02-, -CO-, -O-, -S-, Ci- bis G- Alkylen, C2- bis G-Alkylidcn oder C5- bis C6-Cycloalkyliden, welches mit Ci- bis C 6- Alkyl, vorzugsweise Methyl oder Ethyl, substituiert sein kann, ferner für G- bis Ci2-Arylen, welches gegebenenfalls mit wei teren Heteroatome enthaltenden aromatischen Ringen kondensiert sein kann, steht.
Bevorzugt steht X für eine Einfachbindung, C^ bis C5-Alkylen, C2- bis C5-Alkyliden, C - bis C8- Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO2- oder für einen Rest der Formel (2a)
Für die Herstellung der Polycarbonate geeignete Dihydroxyarylverbindungen sind beispielsweise Hydrochinon, Resorcin, Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis-(hydroxyphenyl)- cycloalkane, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)- ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, a-a'-Bis-(hydroxyphenyl)- diisopropylbenzole, Phthalimidine abgeleitet von Isatin- oder Phenolphthaleinderivaten sowie de ren kemalkylierte, kemarylierte und kemhalogenierte Verbindungen.
Bevorzugte Dihydroxyarylverbindungen sind 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)- propan (Bisphenol A), 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, 1 , 1 -Bis-(4-hydroxyphenyl)-p- diisopropylbenzol, 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, Dimethyl-Bisphenol A, Bis-(3,5- dimethyl-4-hydroxyphenyl)-methan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, Bis-(3,5- dimethyl-4-hydroxyphenyl)-sulfon, 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, 1,1- Bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropylbenzol und 1 , 1 -Bis-(4-hydroxyphenyl)-3,3,5- trimethylcyclohexan, sowie die Bisphenole (I) bis (III)
in denen R‘ jeweils für Ci- bis C i-Alkyl, Aralkyl oder Aryl, bevorzugt für Methyl oder Phenyl, ganz besonders bevorzugt für Methyl, steht.
Besonders bevorzugte Dihydroxyarylverbindungen sind 2,2-Bis-(4-hydroxyphenyl)-propan (Bi- sphenol A), 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, l,l-Bis-(4-hydroxyphenyl)- cyclohexan, l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und Dimethyl-Bisphenol A sowie die Diphenole der Formeln (I), (II) und (III).
Diese und weitere geeignete Dihydroxyarylverbindungen sind z.B. in US-A 3 028 635, US-A 2 999 825, US-A 3 148 172, US-A 2 991 273, US-A 3 271 367, US-A 4 982 014 und US-A 2 999 846, in DE-A 1 570 703, DE-A 2063 050, DE-A 2 036 052, DE-A 2 211 956 und DE-A 3 832 396, in FR- A 1 561 518, in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Inter science Publishers, New York 1964" sowie in JP-A 62039/1986, JP-A 62040/1986 und JP-A 105550/1986 beschrieben.
Im Fall der Homopolycarbonate wird nur eine Dihydroxyarylverbindung eingesetzt, im Fall der Copolycarbonate werden mehrere Dihydroxyarylverbindungen eingesetzt. Die verwendeten Dihyd roxyarylverbindungen, wie auch alle anderen der Synthese zugesetzten Chemikalien und Hilfsstof fe, können mit den aus ihrer eigenen Synthese, Handhabung und Lagerung stammenden Verunrei nigungen kontaminiert sein. Es ist jedoch wünschenswert, mit möglichst reinen Rohstoffen zu ar beiten. Geeignete Kohlensäurederivate sind beispielsweise Phosgen oder Diphenylcarbonat.
Geeignete Kettenabbrecher, die bei der Herstellung der Polycarbonate eingesetzt werden können, sind Monophenole. Geeignete Monophenole sind beispielsweise Phenol selbst, Alkylphenole wie Kresole, p-tert.-Butylphenol, Cumylphenol sowie deren Mischungen.
Bevorzugte Kettenabbrecher sind die Phenole, welche ein- oder mehrfach mit Ci- bis C30- Alkylresten, linear oder verzweigt, bevorzugt unsubstituiert, oder mit tert-Butyl substituiert sind. Besonders bevorzugte Kettenabbrecher sind Phenol, Cumylphenol und/oder p-tert-Butylphenol. Die Menge an einzusetzendem Kettenabbrecher beträgt bevorzugt 0,1 bis 5 Mol-%, bezogen auf Mole an jeweils eingesetzten Diphenolen. Die Zugabe der Kettenabbrecher kann vor, während oder nach der Umsetzung mit einem Kohlensäurederivat erfolgen.
Geeignete Verzweiger sind die in der Polycarbonatchemie bekannten tri- oder mehr als trifünktio- nellen Verbindungen, insbesondere solche mit drei oder mehr als drei phenolischen OH-Gruppen.
Geeignete Verzweiger sind beispielsweise l,3,5-Tri-(4-hydroxyphenyl)-benzol, l,l,l-Tri-(4- hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,4-Bis-(4-hydroxyphenylisopropyl)- phenol, 2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol, 2-(4-Hydroxyphenyl)-2-(2,4- dihydroxyphenylj-propan, T etra-(4-hydroxyphenyl)-methan, T etra-(4-(4-hydroxyphenylisopropyl)- phenoxyj-methan und l,4-Bis-((4',4"-dihydroxytriphenyl)-methyl)-benzol und 3,3-Bis-(3-methyl- 4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt bevorzugt 0,05 Mol-% bis 2,00 Mol-%, bezogen auf Mole an jeweils eingesetzten Dihydroxyarylverbindungen.
Die Verzweiger können entweder mit den Dihydroxyarylverbindungen und den Kettenabbrechern in der wässrig alkalischen Phase vorgelegt werden oder in einem organischen Lösungsmittel gelöst vor der Phosgenierung zugegeben werden. Im Fall des Umesterungsverfahrens werden die Ver zweiger zusammen mit den Dihydroxyarylverbindungen eingesetzt.
Besonders bevorzugte Polycarbonate sind das Homopolycarbonat auf Basis von Bisphenol A, das Homopolycarbonat auf Basis von l,3-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und die Copolycarbonate auf Basis der beiden Monomere Bisphenol A und l,l-Bis-(4-hydroxyphenyl)- 3,3,5-trimethylcyclohexan, sowie von den Diphenolen der Formeln (I), (II) und/oder (III)
in denen R‘ jeweils für Ci- bis C i-Alkyl, Aralkyl oder Aryl, bevorzugt für Methyl oder Phenyl, ganz besonders bevorzugt für Methyl, steht, abgeleitete Homo- oder Copolycarbonate, insbesondere mit Bisphenol A. Zur Einarbeitung von Additiven wird die Komponente A bevorzugt wenigstens teilweise in Form von Pulvern, Granulaten oder Gemischen aus Pulvern und Granulaten eingesetzt.
Das Polycarbonat weist bevorzugt eine MVR von 5 bis 20 cm3/(lO min), weiter bevorzugt von 5,5 bis 12 cm3/(lO min), noch weiter bevorzugt bis 8 cm3/(lO min), bestimmt nach ISO 1133:2012-03 bei einer Prüftemperatur von 300 °C und 1,2 kg Belastung, auf.
Als Polycarbonat kann auch eine Mischung aus verschiedenen Polycarbonaten eingesetzt werden, z.B. aus den Polycarbonaten Al und A2:
Die Menge des aromatischen Polycarbonats Al beträgt bevorzugt, bezogen auf die Gesamtmenge an Polycarbonat, 25,0 bis 85,0 Gew.-%, bevorzugt 28,0 bis 84,0 Gew.-%, besonders bevorzugt 30,0 bis 83,0 Gew.-%, wobei dieses aromatische Polycarbonat auf Basis von Bisphenol A mit einer bevorzugten Schmelze- Volumenfließrate MVR von 5 bis 15 cm3/l0 min, weiter bevorzugt mit einer Schmelze- Volumenfließrate MVR von 6 bis 12 cmVlO min, bestimmt gemäß ISO 1133 (Prüftemperatur 300°C, Masse 1,2 kg, DIN EN ISO 1133-1 :2012-03), ist.
Die Menge des pulverförmigen aromatischen Polycarbonats A2 beträgt bevorzugt, bezogen auf die Gesamtmenge an Polycarbonat, 2,0 bis 12,0 Gew.-%, bevorzugt 3,0 bis 11,0 Gew.-%, besonders bevorzugt 4,0 bis 10,0 Gew.-%, ganz besonders bevorzugt von 5,0 bis 8,0 Gew.-%, wobei dieses aromatische Polycarbonat bevorzugt auf Basis von Bisphenol A mit einer bevorzugten Schmelze- Volumenfließrate MVR von 12 bis 65 cm3/(10 min), weiter bevorzugt mit einer Schmelze- Volumenfließrate MVR von 14 bis 32 cm3/(10 min), und besonders bevorzugt mit einer Schmelze- Volumenfließrate MVR von 15 bis 20 cm3/(10 min) ist.
Insgesamt werden in den erfindungsgemäßen Zusammensetzungen 50 bis 98,5 Gew.-%, bevorzugt 80 bis 98,0 Gew.-%, weiter bevorzugt 85 bis 97,5 Gew.-%, besonders bevorzugt 90,0 bis 97,5 Gew.-%, ganz besonders bevorzugt 93,0 Gew.-% bis 97,5 Gew.-%, aromatisches Polycarbonat eingesetzt.
Komponente B
Bei Komponente B der erfindungsgemäßen Zusammensetzungen handelt es sich um Interferenz pigmente und/oder Perlglanzpigmente aus der Gruppe der Metalloxid-beschichteten Glimmer. Der Glimmer kann natürlich vorkommender oder synthetisch hergestellter Glimmer sein, wobei letzte rer aufgrund der üblicherweise höheren Reinheit bevorzugt ist. Glimmer, der aus der Natur gewon nen wird, ist üblicherweise von weiteren Mineralien begleitet. Komponente B„Glimmer“ bei aus der Natur gewonnenem Glimmer umfasst mit der angegebenen Menge auch entsprechende Verun reinigungen. Der Glimmer ist vorzugsweise Muskovit-basiert, d.h. er umfasst bevorzugt mindes tens 60 Gew.-%, weiter bevorzugt mindestens 70 Gew.-%, noch weiter bevorzugt mindestens 85 Gew.-%, besonders bevorzugt mindestens 90 Gew. % Muskovit, bezogen auf das Gesamtgewicht des Glimmeranteils - ohne Metalloxid-Beschichtung - des Interferenz- und/oder Perlglanzpigmen tes.
Die Metalloxid-Beschichtung umfasst vorzugsweise eine oder mehrere Beschichtungsschichten, enthaltend Titandioxid, Zinnoxid, Aluminiumoxid und/oder Eisenoxid, wobei das Metalloxid wei ter bevorzugt Eisen(III)-oxid (Fe203), Eisen(II, III)-oxid (FesO i, eine Mischung aus FC2O3 und FeO) und/oder Titandioxid ist, besonders bevorzugt Titandioxid. Ganz besonders bevorzugt ist Komponente B ein Titandioxid-beschichteter Glimmer.
Der Anteil des Titandioxids am Gesamtgewicht des Pigments beträgt vorzugsweise 30 bis 60 Gew.-%, noch weiter bevorzugt 35 bis 55 Gew.-% und der Anteil des Glimmers vorzugsweise 40 bis 70 Gew.-%, noch weiter bevorzugt 45 bis 65 Gew.-%.
Als Titandioxid sind Rutil und/oder Anatas bevorzugt. Besonders bevorzugt umfasst das Pigment Anatas-beschichteten Glimmer, ganz besonders bevorzugt sind mindestens 90 Gew.-%, bevorzugt 95 Gew.-%, weiter bevorzugt mindestens 98 Gew.-%, der Pigmentkomponente B Anatas- beschichteter Glimmer.
Um die Verträglichkeit mit der Polymermatrix aus Polycarbonat zu erhöhen, ist das Pigment vor zugsweise zusätzlich mit einer Silikat- und/oder Siliciumdioxid-Beschichtung versehen, insbeson dere einer Sol-Gel-Beschichtung. Hierdurch wird üblicherweise gleichzeitig die Wetter- und Che mikalienbeständigkeit des Pigmentes erhöht.
Die mittlere Partikelgröße (D50) des Pigments, bestimmt mittels Laserdiffraktometrie an einer wässrigen Aufschlämmung des Pigments, beträgt bevorzugt 1 bis 100 mih, bei synthetischem Glimmer weiter bevorzugt 5 bis 80 pm und bei natürlichem Glimmer weiter bevorzugt 3 bis 30 mih, generell bei Glimmer besonders bevorzugt 3,5 bis 15 mih, ganz besonders bevorzugt 4,0 bis 10 mih, äußerst bevorzugt 4,5 bis 8,0 mih. Der D90-Wert, ebenfalls bestimmt mittels Laserdiffrakto metrie an einer wässrigen Aufschlämmung des Pigments, beträgt bei synthetischem Glimmer vor zugsweise 10 bis 150 pm und bei natürlichem Glimmer vorzugsweise 5 bis 80 pm. Die Dichte des Pigments beträgt vorzugsweise 2,5 bis 5,0 g/cm3, weiter bevorzugt 2,8 bis 4,0 g/cm3, bestimmt nach DIN EN ISO 1183-1 :2013-04.
Der Anteil des mindestens einen Metalloxid-beschichteten Glimmers an der gesamten auf Polycar- bonat-basierenden Zusammensetzung beträgt 0,8 Gew.-% bis < 5,0 Gew.-%, bevorzugt 1,0 bis < 3,0 Gew.-%, weiter bevorzugt 1,2 Gew.-% bis 2,5 Gew.-%, besonders bevorzugt 1,5 Gew.-% bis 2,0 Gew.-%. Komponente C
Komponente C der erfindungsgemäßen Zusammensetzungen ist ein Epoxidgruppen-haltiges Copo lymer oder Terpolymer aus Styrol und Acrylsäure und/oder Methacrylsäure. Die Epoxygruppen können über ungesättigte Epoxide, welche mit einpolymerisiert werden, eingeführt werden. Solch ein ungesättigtes Epoxid kann ein Acrylat oder Methacrylat sein, welches in dem formal von einem Alkohol abgeleiteten Molekülteil eine Epoxygruppe trägt, zum Beispiel Glycidyl(meth) acrylat. Bevorzugt umfasst Komponente C ein Copolymer aus Styrol und 2,3-Epoxypropylmethacrylat, besonders bevorzugt ist Komponente C ein Copolymer aus Styrol und 2,3- Epoxypropylmethacrylat.
Das Copolymer bzw. Terpolymer gemäß Komponente C, insbesondere das Copolymer aus Styrol und 2,3-Epoxypropylmethacrylat, weist bevorzugt einen Styrol-Gehalt, bestimmt mittels 'H-NMR- Spektroskopie in CDCE, von 30 bis 70 Gew.-%, weiter bevorzugt 40 bis 60 Gew.-%, besonders bevorzugt von 50 bis 55 Gew.-%, auf.
Die gewichtsmittlere Molmasse des Copolymers bzw. Terpolymers gemäß Komponente C, insbe sondere des Copolymers aus Styrol und 2,3-Epoxypropylmethacrylat, bestimmt mittels Gelpermea tionschromatographie in o-Dichlorbenzol bei l50°C unter Verwendung von Polystyrol-Standards, beträgt bevorzugt 2000 bis 25000 g/mol, weiter bevorzugt 3000 bis 15000 g/mol, noch weiter be vorzugt 5000 bis 10000 g/mol, besonders bevorzugt 6000 bis 8000 g/mol.
Der Epoxid- Anteil des Polymers gemäß Komponente C beträgt bevorzugt 5 bis 20 Gew.%, weiter bevorzugt 7 bis 18 Gew.-%, besonders bevorzugt 10 bis 15 Gew.-%, bestimmt nach DIN EN 1877- 1 :2000.
Derartige Polymere werden beispielsweise von der BASF SE unter der Marke Joncryl® ADR ver trieben.
Die Menge an Komponente C in der Gesamtzusammensetzung beträgt 0,05 Gew.-% bis < 3 Gew.- %, bevorzugt 0,1 Gew.-% bis 2,0 Gew.-%, weiter bevorzugt 0,12 Gew.-% bis 1,5 Gew.-%, beson ders bevorzugt 0,15 Gew.-% bis < 1 Gew.-%, insbesondere bis < 0,5 Gew.-%.
Komponente D
Die erfindungsgemäßen Zusammensetzungen enthalten 0,001 bis 0,500 Gew.-%, bevorzugt 0,005 bis 0,300 Gew.-%, weiter bevorzugt 0,05 Gew.-% bis 0,270 Gew.-%, noch weiter bevorzugt 0,15 bis 0,25 Gew.-% , besonders bevorzugt 0,08 bis 0,18 Gew.-%, eines oder mehrerer Thermostabi lisatoren, wobei Komponente D ein oder mehrere Phosphite als Thermostabilisator umfasst. Zusätzlich können Stabilisatoren auf Phosphinbasis, auf Phosphonitbasis (insbesondere auf Diphosphonitbasis), auf Phosphonatbasis, aus der Gruppe der phenolischen Antixidantien oder eine Mischung aus mindestens zwei der vorgenannten Verbindungen anwesend sein.
Unter Phosphiten im Sinne der vorliegenden Erfindung werden Ester der Phosphonsäure (oft auch als Phosphorigsäureester bezeichnet) mit der allgemeinen Struktur P(OR)3 verstanden, wobei R für aliphatische und/oder aromatische Kohlenwasserstoffreste steht, wobei die aromatischen Kohlen wasserstoffreste weitere Substituenten wie zum Beispiel Alkylgruppen, verzweigt und/oder unver zweigt, aufweisen können.
Unter Phosphonaten werden von der Grundstruktur R-PO(OH)2 abgeleitete Verbindungen verstan den, wobei R für aliphatische und/oder aromatische Kohlenwasserstoffreste steht, wobei die aroma tischen Kohlenwasserstoffreste weitere Substituenten wie zum Beispiel verzweigte und/oder un verzweigte Alkylgruppen aufweisen können. Die OH-Gruppen der Grundstruktur können teilweise oder vollständig zu OR-Funktionalitäten, wobei R wiederum für aliphatische und/oder aromatische Kohlenwasserstoffreste steht, wobei die aromatischen Kohlenwasserstoffreste weitere Substituen ten wie zum Beispiel Alkylgruppen, verzweigt und/oder unverzweigt, aufweisen können, verestert oder teilweise oder vollständig deprotoniert sein, wobei die negative Gesamtladung durch ein ent sprechendes Gegenion ausgeglichen wird.
Unter Phosphoniten im Sinne der vorliegenden Erfindung werden Ester, insbesondere Diester der phosphonigen Säure vom Typ R-P(OR)2 verstanden, wobei R für aliphatische und/oder aromati sche Kohlenwasserstoffreste steht, wobei die aromatischen Kohlenwasserstoffreste weitere Substi tuenten wie zum Beispiel Alkylgruppen, verzweigt und/oder unverzweigt, aufweisen können. Die Phosphonite können hierbei ein Phosphor- Atom aufweisen oder aber mehrere, über entsprechende aliphatische und/oder aromatische Kohlenwasserstoffe verbrückte Phosphor- Atome.
Die Reste R in einer Verbindung können jeweils gleich oder verschieden sein.
Hinsichtlich der Auswahl der Phosphine liegen keine Beschränkungen vor, wobei die Phosphinver bindungen bevorzugt aus der Gruppe ausgewählt sind, die aliphatische Phosphine, aromatische Phosphine und aliphatisch-aromatische Phosphine umfasst.
Die Phosphinverbindungen können primäre, sekundäre und tertiäre Phosphine sein. Bevorzugt werden tertiäre Phosphine eingesetzt, wobei aromatische Phosphine besonders bevorzugt und terti äre aromatische Phosphine ganz besonders bevorzugt sind.
Bevorzugt werden Triphenylphosphin (TPP), Trialkylphenylphosphin, Bisdiphenylphosphinoethan oder ein Trinaphthylphosphin, wovon Triphenylphosphin (TPP) ganz besonders bevorzugt ist, oder Mischungen dieser Phosphine eingesetzt. Grandsätzlich können Mischungen aus verschiedenen Phosphinen eingesetzt werden.
Die Herstellung und Eigenschaften von Phosphinverbindungen sind dem Fachmann bekannt und beispielsweise in EP 0 718 354 A2 und "Ullmanns Enzyklopädie der Technischen Chemie", 4. Auf!., Bd. 18, S. 378-398 und Kirk-Othmer, 3. Auf!., Bd. 17, S. 527-534 beschrieben.
Bei der Einsatzmenge der Phosphinverbindung in der Stabilisatormischung ist zu berücksichtigen, dass unter bestimmten Verarbeitungsbedingungen in Abhängigkeit von Temperatur und Verweil zeit die Substanz oxidiert werden kann. Der oxidierte Anteil steht nicht mehr zur Stabilisierung zur Verfügung. Deshalb sind die Zahl der Verarbeitungsschritte und die jeweiligen Prozessbedingun gen zu berücksichtigen. Die Zusammensetzung enthält also nach thermischer Verarbeitung auch immer bestimmte Mengen an oxidiertem Phosphin, insbesondere bevorzugt Triphenylphosphi noxid.
Bevorzugt liegt die Menge an Phosphinstabilisator im Endprodukt bei > 0,01 Gew.-%, weiter be vorzugt bei > 0,02 Gew.-%.
Noch weiter bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen 0,03 bis 0,500 Gew.-%, weiter bevorzugt 0,04 bis 0,07 Gew.-% Phosphin.
Erhältliche, im Rahmen der vorliegenden Erfindung geeignete Phosphitstabilisatoren sind bei spielsweise Irgafos® 168 (Tris(2,4-di-tert-butyl-phenyl)-phosphit / CAS-Nr. 31570-04-4), Irga- fos® TPP (CAS-Nr. 101-02-0), ADK PEP Stab 36 (CAS-Nr. 80693-00-1), Hostanox® P-EPQ (CAS-Nr. 119345-01-6) und Irgafos® TNPP (CAS-Nr. 26523-78-4), wobei Irgafos® 168 beson ders bevorzugt ist.
Zur Gruppe der Antioxidantien zählen insbesondere die sterisch gehinderten Phenole. Mögliche sterisch gehinderte Phenole sind zum Beispiel Ester n-Octadecyl-3-(3,5-di-t.butyl-4- hydroxyphenyl)-propionat oder ß-(5-tert.-Butyl-4-hydroxy-3-methylphenyl)propionsäure oder ß- (3,5-Dicyclohexyl-4-hydroxyphenyl)propionsäure mit ein- oder mehrwertigen Alkoholen, z. B. mit Methanol, Ethanol, Butanol, n-Octanol, i-Octanol, n-Octadecanol. l,6-Hexandiol, l,9-Nonandiol, Ethylenglycol, 1 ,2-Propandiol, Neopentylglycol, Diethylenglycol, Triethylenglycol, Tris- (hydroxyethyl)isocyanurat, N,N’-Bis(Hydroxyethyl)oxamid, 3-Thiaundecanol, 3- Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-l-phospha-2,6,7- trioxabicyclo[2.2.2]octan.
Besonders bevorzugt wird als sterisch gehindertes Phenol n-Octadecyl-3-(3,5-di-t.butyl-4- hydroxyphenyl)-propionat verwendet. Das sterisch gehinderte Phenol wird bevorzugt in Mengen von 0,01 bis 0,1 Gew.-%, bevorzugt 0,015 bis 0,06 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung, eingesetzt. Kommerziell erhältliche geeignete phenolische Antioxidantien sind beispielsweise Irganox® 1076 (CAS-Nr. 2082-79-3 / 2,6-Di-tert-butyl-4-(octadecanoxycarbonylethyl)phenol) und Irganox® 1010 (CAS-Nr. 6683-19-8).
Die Stabilisatorkombination enthält vorzugsweise a) 10 Gew.-% - 89 Gew.-%, weiter bevorzugt 20 Gew.-% - 78 Gew.-%, und besonders bevorzugt 30 Gew.-% - 67 Gew.-% mindestens eines Phosphinstabilisators, b) 10 Gew.-% - 89 Gew.-%, weiter bevorzugt 20 Gew.-% - 78 Gew.-%, und besonders bevorzugt 30 Gew.-% - 67 Gew.-% mindestens eines Phosphitstabilisators, und c) 1 Gew.-% - 50 Gew.-%, weiter bevorzugt 2 Gew.-% - 40 Gew.-%, und besonders bevorzugt 3 Gew.-% -20 Gew.-% mindestens eines phenolischen Antioxidans, wobei sich die Summe der Komponenten a)-c) zu 100 Gew.-% addiert.
In einer besonders bevorzugten Ausführungsform besteht die Stabilisatorkombination aus Triphe nylphosphin, Irganox 1076® und Bis(2,6-di-t.butyl-4-methylphenyl)pentaerythrityldiphosphit.
Alternativ zu Irganox® 1076 kann Irganox® 1010 (Pentaerythrit- 3-(4-hydroxy-3,5-di-tert- butylphenyl)propionat; CAS-Nr.: 6683-19-8) verwendet werden.
Der Anteil der Stabilisatorkombination an der Gesamtzusammensetzung ist 0,001 Gew.-% - 0,500 Gew.-%, vorzugsweise 0,005 Gew.-% - 0,300 Gew.%, weiter bevorzugt 0,05 bis 0,270 Gew.-%, besonders bevorzugt 0,15 Gew.% - 0,25 Gew.%, bezogen auf das Gesamtgewicht der Zusammen setzung.
In einer bevorzugten Ausführungsform beträgt das Verhältnis von Phosphit-Stabilisator zu phenoli- schem Antioxidans 1 :5 bis 10:1, weiter bevorzugt 1 :5 bis 5:1 und besonders bevorzugt von 3:1 bis 4:1.
In einer weiteren bevorzugten Ausführungsform beträgt das Verhältnis von Phosphin (a) zum Ge misch aus Phosphit und phenolischen Antioxidans (b+c) bevorzugt 8: 1 bis 1 :9, weiter bevorzugt 1 :5 bis 5:1 wobei das Verhältnis von Phosphit-Stabilisator (b) zu phenolischem Antioxidans (c) von 1 : 5 bis 10:1, weiter bevorzugt von 1 :5 bis 5:1 und besonders bevorzugt von 3:1 bis 4:1 beträgt.
Um die thermoplastische Matrix zu stabilisieren, können weitere Phosphor-basierte Stabilisatoren oder andere Thermostabilisatoren eingesetzt werden, solange diese den Effekt der oben beschriebe nen Stabilisierung nicht negativ beeinflussen.
Komponente E Den Zusammensetzungen, enthaltend aromatisches Polycarbonat, können als weitere Additive noch ein oder mehrere der für Polycarbonat-Zusammensetzungen üblichen Additive wie Flamm schutzmittel, Antitropfmittel, Schlagzähmodifikatoren, Füllstoffe, Antistatika, Farbmittel, ein schließlich von Komponente B verschiedenen Pigmenten, auch umfassend Ruß, Gleit- und/oder Entformungsmittel, UV- Absorber, 1R- Absorber, Hydrolysestabilisatoren und/oder Verträglich keitsvermittler zugesetzt werden. Die Gruppe der weiteren Additive umfasst keine Pigmente gemäß Komponente B, d.h. keine Perlglanz- und/oder lnterferenzpigmente aus der Gruppe der Metalloxid beschichteten Glimmer, und keine Epoxidgruppen-haltigen Copolymere oder Terpolymere aus Styrol und Acrylsäure und/oder Methacrylsäure, da diese als Komponente C bezeichnet sind. Au ßerdem umfasst die Gruppe der weiteren Additive gemäß Komponente E keine Thermostabilisato ren, da diese bereits durch die vorhandene Komponente D erfasst sind.
Die Menge an weiteren Additiven beträgt bevorzugt bis zu 10 Gew.-%, weiter bevorzugt bis zu 7 Gew.-%, noch weiter bevorzugt bis zu 5 Gew.-%, besonders bevorzugt 0,01 bis 3 Gew.-%, ganz besonders bevorzugt bis zu 1 Gew.-%, bezogen auf die Gesamtzusammensetzung.
Besonders geeignete Entformungsmitel für die erfindungsgemäßen Zusammensetzungen sind Pen- taerythritetrastearat (PETS) oder Glycerinmonostearat (GMS), deren Carbonate und/oder Mi schungen dieser Entformungsmittel.
Farbmittel einschließlich Pigmenten im Sinne der vorliegenden Erfindung gemäß Komponente E sind beispielsweise Schwefel-haltige Pigmente wie Cadmium Red und Cadmium Gelb, Eisencya- nid-basierte Pigmente wie Berliner Blau, Oxid-Pigmente wie Titandioxid, Zinkoxid, rotes Eisen oxid, schwarzes Eisenoxid, Chromoxid, Titangelb, Zink-Eisen-basiertes Braun, Titan-Cobalt- basiertes Grün, Cobaltblau, Kupfer-Chrom-basiertes Schwarz und Kupfer-Eisen-basiertes Schwarz oder Chrom-basierte Pigmente wie Chromgelb, Phthalocyanin-abgeleitete Farbstoffe wie Kupfer- Phthalocyanin Blau und Kupfer-Phthalocyanin Grün, kondensierte polycyclische Farbstoffe und Pigmente wie Azo-basierte (z.B. Nickel-Azogelb), Schwefel- lndigo-Farbstoffe, Perinon-basierte, Perylen-basierte, Chinacridon-abgeleitete, Dioxazin-basierte, lsoindolinon-basierte und Chinoph- thalon-abgeleitete Derivate, Anthrachinon-basierte, heterocyclische Systeme, jedenfalls keine Perl glanzpigmente und/oder lnterferenzpigmente aus der Gruppe der Metalloxid-beschichteten Glim mer.
Konkrete Beispiele für Handelsprodukte sind z.B. MACROLEX® Blau RR, MACROLEX® Violet 3R, MACROLEX® EG, MACROLEX® Violett B (Lanxess AG, Deutschland), Sumiplast® Violett RR, Sumiplast® Violett B, Sumiplast® Blau OR, (Sumitomo Chemical Co., Ltd.), Diaresin® Violett D, Diaresin® Blau G, Diaresin® Blau N (Mitsubishi Chemical Corporation), Heliogen® Blau oder Heliogen® Grün (BASF AG, Deutschland). Von diesen sind Cyaninderivate, Chinolinderivate, Anthrachinonderivate, Phthalocyaninderivate bevorzugt.
Als Ruße kommen vorzugsweise nanoskalige Ruße, weiter bevorzugt nanoskalige Farbruße, zum Einsatz. Bevorzugt besitzen diese eine mittlere Primärpartikelgröße, bestimmt durch Rasterelektro nenmikroskopie, von weniger als 100 nm, bevorzugt von 10 bis 99 nm, weiter bevorzugt von 10 bis 50 nm, besonders bevorzugt von 10 bis 30 nm, insbesondere von 10 bis 20 nm. Die feinteiligen Farbruße sind besonders bevorzugt.
Kommerziell erhältliche und im Sinne der Erfindung geeignete Ruße sind unter einer Vielzahl von Handelsnamen und Formen, wie Pellets oder Pulver, erhältlich. So sind geeignete Ruße unter den Handelsnamen BLACK PEARLS®, als nass-verarbeitete Pellets unter den Namen ELFTEX®, RE GAL® und CSX®, und in einer flockigen Erscheinungsform unter MONARCH®, ELFTEX®, RE GAL® und MOGUL® - erhältlich, alle von Cabot Corporation. Insbesondere bevorzugt sind Ruße, die unter dem Handelsnamen BLACK PEARLS® (CAS-Nr. 1333-86-4) gehandelt werden.
Optional enthält die Zusammensetzung einen Ultraviolett-Absorber. Geeignete Ultraviolett- Absorber sind Verbindungen, die eine möglichst geringe Transmission unterhalb 400 nm und eine möglichst hohe Transmission oberhalb von 400 nm besitzen. Derartige Verbindungen und deren Herstellung sind literaturbekannt und sind beispielsweise in EP 0 839 623 Al, WO 1996/15102 A2 und EP 0 500 496 Al beschrieben. Für den Einsatz in der erfindungsgemäßen Zusammenset zung besonders geeignete Ultraviolett-Absorber sind Benzotriazole, Triazine, Benzophenone und/oder arylierte Cyanoacrylate.
Folgende Ultraviolett-Absorber sind beispielsweise geeignet: Hydroxy-Benzotriazole, wie 2-(3',5'- Bis-(l,l-dimethylbenzyl)-2'-hydroxy-phenyl)-benzotriazol (Tinuvin® 234, BASF SE, Ludwigsha fen), 2-(2'-Hydroxy-5'-(tert.-octyl)-phenyl)-benzotriazol (Tinuvin® 329, BASF SE, Ludwigshafen), 2-(2'-Hydroxy-3'-(2-butyl)-5'-(tert.butyl)-phenyl)-benzotriazol (Tinuvin® 350, BASF SE, Ludwigs hafen), Bis-(3-(2H-benztriazolyl)-2-hydroxy-5-tert.-octyl)methan, (Tinuvin® 360, BASF SE, Lud wigshafen), (2-(4,6-Diphenyl-l,3,5-triazin-2-yl)-5-(hexyloxy)-phenol (Tinuvin® 1577, BASF SE, Ludwigshafen), die Benzophenone 2,4-Dihydroxy-benzophenon (Chimasorb® 22, BASF SE, Lud wigshafen) oder 2-Hydroxy-4-(octyloxy)-benzophenon (Chimassorb® 81, BASF SE, Ludwigsha fen), 2-Cyano-3,3-diphenyl-2-propensäure, 2,2-Bis[[(2-cyano-l-oxo-3,3-diphenyl-2- propenyl)oxy]-methyl]-l,3-propandiylester (9CI) (Uvinul® 3030, BASF SE, Ludwigshafen), 2-[2- Hydroxy-4-(2-ethylhexyl)oxy]phenyl-4,6-di(4-phenyl)phenyl-l,3,5-triazin (CGX UVA 006, BASF SE, Ludwigshafen) oder Tetraethyl-2,2'-(l,4-phenylen-dimethyliden)-bismalonat (Hostavin® B- Cap, Clariant AG). Es können auch Mischungen dieser Ultraviolett- Absorber eingesetzt werden. Geeignete IR- Absorber sind beispielsweise in EP 1 559 743 Al, EP 1 865 027 Al, DE 10 022 037 Al und DE 10 006 208 Al offenbart. Von den in der zitierten Literatur genannten IR- Absorbern sind solche auf Borid- und Wolframatbasis, insbesondere Cäsiumwolframat oder Zink- dotiertes Cäsiumwolframat, sowie auf ITO und ATO basierende Absorber sowie Kombinationen daraus bevorzugt.
Als Schlagzähmodifikatoren können übliche Schlagzähmodifikatoren enthalten sein. Diese Gruppe umfasst sowohl Kem/Schale-basierte Systeme wie ABS, MBS, Acryl-basierte, Silikon- Acryl basierte Schlagzähmodifikatoren, aber auch nicht Kern- Schale-basierte Schlagzähmodifikatoren.
Der Polycarbonat-Zusammensetzung können organische und anorganische Füllstoffe in üblichen Mengen zugesetzt werden ln Frage kommen hierfür prinzipiell alle feinvermahlenen organischen und anorganischen Materialien. Diese können z.B. partikel-, schuppenförmigen oder faserförmigen Charakter haben. Beispielhaft seien an dieser Stelle Kreide, Quarzpulver, Titandioxid, Silika- te/Aluminosilikate wie z.B. Talk, Wollastonit, Montmorillonit, insbesondere auch in einer durch lonenaustausch modifizierten, organophilen Form, Kaolin, Zeolithe, Vermiculit sowie Alumini umoxid, Silica, Magnesiumhydroxid und Aluminiumhydroxid genannt. Es können auch Mischun gen verschiedener anorganischer Materialien zum Einsatz kommen.
Bevorzugte anorganische Füllstoffe sind feinstteilige (nanoskalige) anorganische Verbindungen aus einem oder mehreren Metallen der 1. bis 5. Hauptgruppe und 1. bis 8. Nebengruppe des Perioden systems, bevorzugt aus der 2. bis 5. Hauptgruppe, besonders bevorzugt auf der 3. bis 5. Hauptgrup pe, bzw. auf der 4. bis 8. Nebengruppe, mit den Elementen Sauerstoff, Schwefel, Bor, Phosphor, Kohlenstoff, Stickstoff, Wasserstoff und/oder Silicium.
Bevorzugte Verbindungen sind beispielsweise Oxide, Hydroxide, wasserhaltige/basische Oxide, Sulfate, Sulfite, Sulfide, Carbonate, Carbide, Nitrate, Nitrite, Nitride, Borate, Silikate, Phosphate und/oder Hydride.
Als Antitropfmittel wird bevorzugt Polytetrafluoroethylen (PTFE) verwendet, insbesondere in Mengen von 0,2 bis 0,8 Gew.-%.
Es versteht sich, dass die eingesetzten Komponenten übliche Verunreinigungen, die beispielsweise aus ihrem Herstellungsprozess herrühren, enthalten können. Es ist bevorzugt, möglichst reine Komponenten einzusetzen. Es versteht sich weiterhin, dass diese Verunreinigungen auch bei einer geschlossenen Formulierung der Zusammensetzung enthalten sein können.
Erfindungsgemäß besonders bevorzugte thermoplastische Zusammensetzungen sind solche, enthal tend A) 90,0 Gew.-% bis 97,5 Gew.-%, bevorzugt 93,0 Gew.-% bis 97,5 Gew.-%, aromatisches Po lycarbonat, bevorzugt mit einer MVR von 5 bis 20 cm3/(l0 min), bestimmt nach ISO
1133:2012-03 bei einer Prüftemperatur von 300 °C und 1,2 kg Belastung,
B) 1,0 bis 2,5 Gew.-%, bevorzugt 1,2 bis 2,0 Gew.-%, Perlglanzpigment und/oder Interferenz pigment aus der Gruppe der mit Titandioxid beschichteten Glimmer, besonders bevorzugt umfassend mindestens 98 Gew.-% Anatas-beschichteten Glimmer,
C) 0,1 Gew.-% bis 2,0 Gew.-%, besonders bevorzugt 0,2 Gew-% bis 1,2 Gew.-%, Epoxidgrup- pen-haltiges Copolymer oder Terpolymer aus Styrol und Acrylsäure und/oder Methacrylsäu- re,
D) 0,001 Gew.-% bis 0,500 Gew.-%, bevorzugt 0,05 bis 0,270 Gew.-%, eines oder mehrerer Thermostabilisatoren, wobei Komponente D Phosphit als Thermostabilisator umfasst, bevor zugt umfassend i) Phosphin, Phosphit und phenolisches Antioxidans,
E) bis zu 7 Gew.-%, bevorzugt bis zu 5 Gew.-%, besonders bevorzugt 0,1 bis 3 Gew.-%, ganz besonders bevorzugt bis zu 1 Gew.-% weitere Additive, äußerst bevorzugt ausgewählt aus der Gruppe, bestehend aus Flammschutzmitteln, Antitropfmitteln, Schlagzähmodifikatoren, Füllstoffen, Antistatika, Farbmitteln, einschließlich von Komponente B verschiedenen Pig menten, auch umfassend Ruß, Gleit- und/oder Entformungsmitteln, Hydrolysestabilisatoren, Verträglichkeitsvermittlern, UV-Absorbern und/oder IR-Absorbem.
„Bis zu“ umfasst erfindungsgemäß jeweils den sich diesen Worten anschließenden Wert als Ober grenze.
Dabei besteht die Gruppe der weiteren Additive gemäß Komponente E ganz besonders bevorzugt nur aus Farbmitteln, Entformungsmitteln, von Komponente B verschiedenen Pigmenten, insbeson dere Ruß.
Erfindungsgemäß ganz besonders bevorzugte thermoplastische Zusammensetzungen enthalten
A) 90,0 Gew.-% bis 97,5 Gew.-% aromatisches Polycarbonat, bevorzugt mit einer MVR von 5 bis 12 cm3/(l0 min), bestimmt nach ISO 1133:2012-03 bei einer Prüftemperatur von 300 °C und 1,2 kg Belastung,
B) 1,2 bis 2,0 Gew.-%, bevorzugt 1,5 bis 2,0 Gew.-%, Perlglanz- und/oder Interferenzpigment aus der Gruppe der mit Metalloxid-beschichteten Glimmer, C) 0,2 Gew.-% bis < 1 Gew.-%, besonders bevorzugt 0,3 Gew.-% bis 0,8 Gew-%, Epoxidgruppen haltiges Copolymer oder Terpolymer aus Styrol und Acrylsäure und/oder Methacrylsäure,
D) 0,05 Gew.-% bis 0,270 Gew.-%, äußerst bevorzugt 0,10 Gew.-% bis 0,25 Gew.-%, eines oder mehrerer Thermostabilisatoren, wobei Komponente D ein oder mehrere Phosphite als Thermosta- bilisatoren umfasst, umfassend, äußerst bevorzugt bestehend aus i) Phosphin, Phosphit und phenolischem Antioxidans,
E) bis zu 7 Gew.-%, bevorzugt bis zu 3 Gew.-%, äußerst bevorzugt bis zu 1 Gew.-%, weitere Addi tive, wobei die weiteren Additive äußerst bevorzugt ausgewählt sind aus der Gruppe, bestehend aus Farbmitteln, Gleitmitteln, Entformungsmitteln, von Komponente B verschiedenen Pigmenten, ins- besondere Ruß, wobei Komponente b Titandioxid beschichteter Glimmer, äußerst bevorzugt umfassend mindestens 98 Gew.-% Anatas-beschichteten Glimmer, ist.
Äußerst bevorzugt enthalten die thermoplastischen Zusammensetzungen keine weiteren Kompo nenten. Die Herstellung der erfindungsgemäßen Polymer-Zusammensetzungen, enthaltend die oben ge nannten Komponenten, erfolgt mit gängigen Einarbeitungsverfahren durch Zusammenführung, Vermischen und Homogenisieren der einzelnen Bestandteile, wobei insbesondere die Homogeni sierung bevorzugt in der Schmelze unter Einwirkung von Scherkräften stattfindet. Gegebenenfalls erfolgt das Zusammenführen und Vermischen vor der Schmelzehomogenisierung unter Verwen- düng von Pulvervormischungen.
Es können auch Vormischungen aus Granulaten oder Granulaten und Pulvern mit den erfindungs gemäßen Zusätzen verwendet werden.
Es können auch Vormischungen verwendet werden, die aus Lösungen der Mischungskomponenten in geeigneten Lösungsmitteln hergestellt worden sind, wobei gegebenenfalls in Lösung homogeni- siert wird und das Lösungsmittel anschließend entfernt wird.
Insbesondere können hierbei die Komponenten und vorgenannten Additive der erfindungsgemäßen Zusammensetzungen durch bekannte Verfahren oder als Masterbatch eingebracht werden.
Die Verwendung von Masterbatchen ist insbesondere zum Einbringen der Additive bevorzugt, wobei insbesondere Masterbatche auf Basis der jeweiligen Polymermatrix verwendet werden. In diesem Zusammenhang kann die Zusammensetzung in üblichen Vorrichtungen wie Schnecken- extrudem (zum Beispiel Zweischneckenextruder, ZSK), Knetern, Brabender- oder Banbury- Mühlen zusammengeführt, vermischt, homogenisiert und anschließend extrudiert werden. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Kompo nenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden.
Die Herstellung der Kunststoffformteile aus den erfindungsgemäßen Zusammensetzungen kann vorzugsweise durch Spritzguss, Extrusion oder Rapid-Heatcycle Moulding erfolgen.
Die erfindungsgemäßen Zusammensetzungen werden bevorzugt für die Herstellung von Spritz gussteilen, insbesondere dünnwandigen, mit Perlglanzoptik verwendet. Ebenso bevorzugt werden die erfindungsgemäßen Zusammensetzungen für die Herstellung von Extrudaten verwendet. Sprit- zugussteile und Extrudate werden erfindungsgemäß verstanden als„Formteile“.
„Dünnwandig“ im Sinne der vorliegenden Erfindung sind solche Formteile, bei denen Wandstärken an den dünnsten Stellen von weniger als etwa 3 mm, bevorzugt weniger als 3 mm, weiter bevorzugt von weniger als 2,5 mm, noch weiter bevorzugt von weniger als 1,5 mm, besonders bevorzugt von weniger als 0,5 mm vorliegen.„Etwa“ bedeutet hierbei, dass der tatsächliche Wert nicht wesentlich vom genannten Wert abweicht, wobei eine Abweichung von nicht größer als 25%, bevorzugt nicht größer als 10%, als„nicht wesentlich“ gilt. Gegenstand der Erfindung sind daher auch entspre chende Formteile, enthaltend bzw. bestehend aus diesen Zusammensetzungen, zusammengefasst als„Formteile aus diesen Zusammensetzungen“.
Diese Kunststoffformteile, bestehend aus bzw. umfassend die erfindungsgemäßen Zusammenset zungen, sind ebenfalls Gegenstand der vorliegenden Erfindung.
Beispiele
A: Makroion® 3l08-Pulver der Covestro Deutschland AG. Lineares Polycarbonat auf Basis von Bisphenol A mit einer Schmelze- Volumenfließrate MVR von 6 cm3/(l0 min) (gemäß 1SO 1133:2012-03, bei einer Prüftemperatur 300°C und 1,2 kg Belastung). Geprüft mit einem Fließprüfautomaten der Firma Zwick Roell, Ulm.
B: Perlglanzpigment. Anatas-beschichteter Glimmer Mearlin® Magnapearl® 3000 der Firma
BASF. Das Perglanzpigment bestand aus einem Glimmer, welcher mit Titandioxid be schichtet ist. Mittels Röntgenpulverdiffraktometrie wurde Muskovit als entsprechendes Glimmermineral bestimmt. Das Verhältnis beider Komponenten wurde zu 56% Glimmer und 44% Anatas bestimmt. Der D50-Wert wurde mittels eines Malvem Mastersizer zu 5,7 pm bestimmt. C: Copolymer aus Styrol und 2,3-Epoxypropylmethacrylat. Styrol-Anteil: 53 Gew.-%, be stimmt mittels H-NMR-Spcktroskopic in CDCft. Mw = 7400 g/mol, bestimmt mittels Gel permeationschromatographie in o-Dichlorbenzol bei l50°C unter Verwendung von Poly styrol-Standards. Der Epoxidgehalt, bestimmt nach DIN EN 1877-1 :2000, beträgt 14 Gew.-
D-l: ADK STAB® PEP-36, Bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritoldiphosphit, er hältlich bei der Firma Adeka Palmaroie.
D-2: Hostanox PEPQ. Stabilisator-Mischung, enthaltend als Hauptkomponente Tetrakis(2,4-di- tert-butylphenyl)-4,4'-biphenyldiphosphonit, erhältlich bei der Firma Clariant. D-3: Irganox® 1076, n-Octadecyl-3-(3,5-di-t.butyl-4-hydroxyphenyl)-propionat, erhältlich bei der Firma BASF SE.
D-4: Irganox® B900, Mischung aus vier Teilen Irgafos® 168 und einem Teil Irganox® 1076.
Irgafos® 168: Tris(2,4-tert-butylphenyl)phosphit, erhältlich bei der Firma BASF SE.
D-5: Triphenylphosphin, erhältlich bei der Firma BASF SE.
E-l: Pentaerythrittetrastearat; Loxiol VPG 861 von Emery Oleochemicals.
E-2: Mischung aus üblichen Farbmitteln einschließlich Ruß.
Die in den folgenden Beispielen beschriebenen Polycarbonatzusammensetzungen wurden auf ei nem Extruder Evolum EV32 der Firma Clextral mit einem Durchsatz von 50 kg/h durch Compoun dierung hergestellt. Die Schmelzetemperatur betrug 300°C.
Die Bestimmung des Schmelze-Volumenfließrate (MVR) erfolgte nach ISO 1133:2012-03 (bei einer Prüftemperatur von 300 °C, Masse 1,2 kg) mit dem Gerät Zwick 4106 der Firma Zwick Ro- ell.

Claims

Patentansprüche
1. Thermoplastische Zusammensetzung, enthaltend
A) 50 Gew.-% bis 98,5 Gew.-% aromatisches Polycarbonat und
B) 0,8 Gew.-% bis < 5,0 Gew.-% Interferenzpigment und/oder Perlglanzpigment aus der Gruppe der Metalloxid-beschichteten Glimmer, dadurch gekennzeichnet, dass die Zusammensetzung außerdem
C) 0,05 Gew.-% bis < 3 Gew.-% eines Epoxidgruppen-haltigen Copolymers oder Terpolymers aus Styrol und Acrylsäure und/oder Methacrylsäure und
D) 0,001 Gew.-% bis 0,500 Gew.-% eines oder mehrerer Thermostabilisatoren enthält, wobei Komponente D ein oder mehrere Phosphite als Thermostabilisator umfasst.
2. Thermoplastische Zusammensetzung nach Anspruch 1, enthaltend
A) 90,0 Gew.-% bis 97,5 Gew.-% aromatisches Polycarbonat,
B) 1,0 bis < 3,0 Gew.-% Interferenzpigment und/oder Perlglanzpigment aus der Gruppe der Me- talloxid-beschichteten Glimmer, C) 0,2 Gew.-% bis < 1 Gew.-% eines Epoxidgruppen-haltigen Copolymers oder Terpolymers aus
Styrol und Acrylsäure und/oder Methacrylsäure,
D) 0,001 Gew.-% bis 0,500 Gew.-% eines oder mehrerer Thermostabilisatoren, wobei Kompo nente D ein oder mehrere Phosphite als Thermostabilisator umfasst.
3. Thermoplastische Zusammensetzung nach Anspruch 1 oder 2, enthaltend 1,2 bis 2,0 Gew.-% Interferenzpigment und/oder Perlglanzpigment aus der Gruppe der Metalloxid-beschichteten
Glimmer.
4. Thermoplastische Zusammensetzung nach Anspruch 1, wobei Komponente D
i) Phosphin, Phosphit und phenolisches Antioxidans
als Phosphor-haltige Thermostabilisatoren umfasst.
5. Thermoplastische Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei als
Thermostabilisator Bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritoldiphosphit enthalten ist.
6. Thermoplastische Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Epoxidgruppen-haltige Copolymer oder Terpolymer aus Styrol und Acrylsäure und/oder Methac- rylsäure ein Copolymer aus Styrol und 2,3-Epoxypropylmethacrylat umfasst.
7. Thermoplastische Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei Kompo nente C ein Copolymer aus Styrol und 2,3-Epoxypropylmethacrylat ist.
8. Thermoplastische Zusammensetzung nach Anspruch 7, wobei Komponente C einen Styrol- Gehalt, bestimmt mittels H-NMR-Spcktroskopic in CDCh, von 30 bis 70 Gew.-%, eine ge wichtsmittlere Molmasse, bestimmt mittels Gelpermeationschromatographie in o-Dichlorbenzol bei l50°C unter Verwendung von Polystyrol-Standards, von 2000 bis 25000 g/mol und einen Epoxid- Anteil, bestimmt nach DIN EN 1877-1 :2000, von 5 bis 20 Gew.-%, aufweist.
9. Thermoplastische Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei als Perl- glanz- und/oder Interferenzpigment aus der Gruppe der Metalloxid-beschichteten Glimmer Ana- tas- oder Rutil-beschichteter Glimmer enthalten ist.
10. Thermoplastische Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Zu sammensetzung
A) 90,0 Gew.-% bis 97,5 Gew.-% aromatisches Polycarbonat,
B) 1,2 Gew.-% bis 2,0 Gew.-% Perlglanz- und/oder Interferenzpigment aus der Gruppe der mit Metalloxid-b eschichteten Glimmer,
C) 0,1 Gew.-% bis < 1 Gew.-% eines Epoxidgruppen-haltigen Copolymers oder Terpolymers aus Styrol und Acrylsäure und/oder Methacrylsäure,
D) 0,001 Gew.-% bis 0,500 Gew.-% eines oder mehrerer Thermostabilisatoren, wobei Kompo nente D ein oder mehrere Phosphite als Thermostabilisator umfasst,
E) 0 bis 7 Gew.-% weitere Additive, ausgewählt aus der Gruppe, bestehend aus Flammschutzmit teln, Antitropfmitteln, Schlagzähmodifikatoren, Füllstoffen, Antistatika, Farbmitteln, ein schließlich von Komponente B verschiedenen Pigmenten, auch umfassend Ruß, Gleitmitteln, Entformungsmitteln, Hydrolysestabilisatoren, Verträglichkeitsvermittlem, UV- Absorbern und/oder IR- Absorbern, enthält, wobei Komponente B ein Perlglanz- und/oder Interferenzpigment aus der Gruppe der mit Titandioxid-beschichteten Glimmer und das Polymer gemäß Komponente C ein Copolymer aus Styrol und 2,3-Epoxypropylmethacrylat ist.
11. Thermoplastische Zusammensetzung nach Anspruch 10, wobei die Zusammensetzung keine wei teren Komponenten enthält.
12. Thermoplastische Zusammensetzung nach Anspruch 10 oder 11, wobei als weitere Additive ge mäß Komponente E nur ggf. Farbmittel, Entformungsmittel und/oder von Komponente B ver- schiedene Pigmente enthalten sind.
13. Formteil, hergestellt aus einer thermoplastischen Zusammensetzung nach einem der Ansprüche 1 bis 12.
EP19724836.2A 2018-05-25 2019-05-20 Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment Active EP3802705B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18174213.1A EP3572469A1 (de) 2018-05-25 2018-05-25 Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment
PCT/EP2019/062965 WO2019224151A1 (de) 2018-05-25 2019-05-20 Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment

Publications (2)

Publication Number Publication Date
EP3802705A1 true EP3802705A1 (de) 2021-04-14
EP3802705B1 EP3802705B1 (de) 2023-06-07

Family

ID=62386072

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18174213.1A Ceased EP3572469A1 (de) 2018-05-25 2018-05-25 Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment
EP19724836.2A Active EP3802705B1 (de) 2018-05-25 2019-05-20 Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18174213.1A Ceased EP3572469A1 (de) 2018-05-25 2018-05-25 Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment

Country Status (4)

Country Link
US (1) US20210198482A1 (de)
EP (2) EP3572469A1 (de)
CN (1) CN112262182A (de)
WO (1) WO2019224151A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083800A1 (de) * 2018-10-26 2020-04-30 Covestro Deutschland Ag Additives fertigungsverfahren mit einem aufbaumaterial enthaltend metalloxid-beschichteten glimmer
US20230407044A1 (en) 2020-11-23 2023-12-21 Covestro Deutschland Ag Polycarbonate Compositions Containing Titanium Dioxide and Metal Oxide-Coated Mica Particles

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104015C (de) 1953-10-16
DE1007996B (de) 1955-03-26 1957-05-09 Bayer Ag Verfahren zur Herstellung thermoplastischer Kunststoffe
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
BE585496A (de) 1958-12-12
US3028635A (en) 1959-04-17 1962-04-10 Schlumberger Cie N Advancing screw for gill box
GB1122003A (en) 1964-10-07 1968-07-31 Gen Electric Improvements in aromatic polycarbonates
NL152889B (nl) 1967-03-10 1977-04-15 Gen Electric Werkwijze ter bereiding van een lineair polycarbonaatcopolymeer, alsmede orienteerbare textielvezel van dit copolymeer.
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
NL160310C (nl) * 1970-04-22 1979-10-15 Bayer Ag Werkwijze ter bereiding van gepigmenteerde thermoplastische aromatische polycarbonaatharsen.
DE2063050C3 (de) 1970-12-22 1983-12-15 Bayer Ag, 5090 Leverkusen Verseifungsbeständige Polycarbonate, Verfahren zu deren Herstellung und deren Verwendung
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
DE3413751A1 (de) * 1984-04-12 1985-10-24 Bayer Ag, 5090 Leverkusen Thermoplastische formmassen auf basis von polycarbonat-pfropfpolymerisat-gemischen
JPS6162039A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS6162040A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS61105550A (ja) 1984-10-29 1986-05-23 Fuji Xerox Co Ltd 電子写真用感光体
US5026817A (en) 1988-07-11 1991-06-25 Ge Plastics Japan, Ltd. Catalytic process for preparing polycarbonates from carbonic acid
NO170326C (no) 1988-08-12 1992-10-07 Bayer Ag Dihydroksydifenylcykloalkaner
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
US5166239A (en) 1989-11-03 1992-11-24 Rohm And Haas Company Polymeric additives
TW222292B (de) 1991-02-21 1994-04-11 Ciba Geigy Ag
DE4238123C2 (de) 1992-11-12 2000-03-09 Bayer Ag Verfahren zur Herstellung von thermoplastischen Polycarbonaten
EP0900782B1 (de) 1994-11-10 2002-01-30 Basf Aktiengesellschaft 2-Cyanacrylsäureester
DE4445786A1 (de) * 1994-12-21 1996-06-27 Bayer Ag Arylphosphin-haltige Polycarbonate
US5717057A (en) 1994-12-28 1998-02-10 General Electric Company Method of manufacturing polycarbonate
EP0839623B1 (de) 1996-10-30 2001-01-31 Ciba SC Holding AG Stabilisatorkombination für das Rotomolding-Verfahren
DE19933132A1 (de) 1999-07-19 2001-01-25 Bayer Ag Verfahren zur Herstellung von modifizierten Polycarbonaten
DE10006208A1 (de) 2000-02-11 2001-08-16 Bayer Ag IR-absorbierende Zusammensetzungen
DE10022037A1 (de) 2000-05-05 2001-11-08 Bayer Ag IR-absorbierende Zusammensetzungen
DE10300598A1 (de) 2003-01-10 2004-07-22 Bayer Ag Verfahren zur Herstellung von Polycarbonaten
US20050165148A1 (en) 2004-01-28 2005-07-28 Bogerd Jos V.D. Infra-red radiation absorption articles and method of manufacture thereof
US8153239B2 (en) 2005-03-28 2012-04-10 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and heat ray shielding molded product
US9062196B2 (en) * 2007-09-28 2015-06-23 Sabic Global Technologies B.V. High heat polycarbonates, methods of making, and articles formed therefrom
JP6762941B2 (ja) * 2014-12-15 2020-09-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 難燃剤としての金属酸化物で被覆された雲母
JP6575352B2 (ja) * 2015-02-03 2019-09-18 三菱エンジニアリングプラスチックス株式会社 光輝性ポリカーボネート樹脂組成物及びその成形品

Also Published As

Publication number Publication date
US20210198482A1 (en) 2021-07-01
WO2019224151A1 (de) 2019-11-28
EP3802705B1 (de) 2023-06-07
EP3572469A1 (de) 2019-11-27
CN112262182A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
EP1228129B1 (de) Formmassen
EP3116971B1 (de) Thermisch leitfähige thermoplastische zusammensetzungen mit ausgewogener verarbeitbarkeit
EP3575362A1 (de) Abdeckungen für led-lichtquellen
EP3395898B1 (de) Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment
WO2002077101A2 (de) Schmelzepolycarbonat mit verbesserter hydrolysebeständigkeit
EP3802705B1 (de) Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment
EP3502182B1 (de) Stabilisierte, gefüllte polycarbonat-zusammensetzungen
WO2020083800A1 (de) Additives fertigungsverfahren mit einem aufbaumaterial enthaltend metalloxid-beschichteten glimmer
DE202017007301U1 (de) Transparente Formteile mit geringer Dicke
EP4251688A1 (de) Polycarbonat-zusammensetzungen enthaltend titandioxid und eine titandioxid-beschichtung umfassende glas-plättchen
EP4077520B1 (de) Polycarbonat-zusammensetzungen enthaltend füllstoffe und epoxy-gruppen enthaltendes triacylglycerol
WO2022106530A1 (de) Polycarbonat-zusammensetzungen enthaltend titandioxid und epoxy-gruppen enthaltendes triacylglycerol
WO2022106524A1 (de) Polycarbonat-zusammensetzungen enthaltend titandioxid und metalloxid-beschichtete glimmerteilchen
EP2635629A1 (de) Flammhemmend ausgestattete, uv-geschützte polycarbonatformmassen mit geringem molekulargewichtsabbau
WO2022106533A1 (de) Flammgeschützte, titandioxid enthaltende polycarbonat-zusammensetzungen
EP4083136A1 (de) Polycarbonat-zusammensetzungen mit zinksulfid als weisspigment
EP4194479A1 (de) Gute schlagzähigkeit bei mechanisch recyceltem polycarbonat
WO2023198594A1 (de) Flammgeschützte, thermisch leitfähige polycarbonat-zusammensetzungen mit hoher kriechstromfestigkeit
EP3838979A1 (de) Schmelzepolycarbonat mit verbesserten optischen eigenschaften
EP4194478A1 (de) Verbesserte hydrolysestabilität bei polycarbonat-zusammensetzungen
WO2017097915A1 (de) Polyglycidylether-haltige polycarbonatzusammensetzungen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210928

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1574947

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008051

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019008051

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

26N No opposition filed

Effective date: 20240308